
 The Herman H. Goldstine Lecture

 Simple Ideas That Changed
 Printing and Publishing1

 JOHN E. WARNOCK
 Co-Founder, Co-Chairman of the Board of Directors

 Adobe Systems

 TRADITIONAL, paper-based printing and publishing evolved into its current state over five and a half centuries (depending
 on where you start); transforming page composition into a

 wholly computer-based process for printing and publishing took a mere
 thirty years. Several technological advances occurring somewhat con
 currently allowed this transformation to take hold and become glob
 ally pervasive. I would like to explain these technological innovations
 and the historical environment that made modern publishing possible.

 This is a timely discussion because of the uncertain future of print
 based enterprises. The businesses around newspapers, books, and mag
 azines are changing on a daily basis; even still, global electronic com
 munication over the Internet is systematically replacing print media as
 the staple of the written word. This has undoubtably been influenced
 by the fact that the final form of most print publications is now pro
 duced on the computer.

 What Happened and Where

 Although typesetter manufacturers took some steps toward electronic
 publishing, it is safe to say that much of the credit leading to the techni
 cal innovations around publishing began at the Xerox Palo Alto Re
 search Center (PARC) in California. The personal computer with a
 graphical user interface was born at PARC, the Ethernet was invented
 there, and black-and-white and color laser printers were developed at
 PARC. These key components led to the computerization of publishing.

 'Read 11 November 2010.

 PROCEEDINGS OF THE AMERICAN PHILOSOPHICAL SOCIETY VOL. 156, NO. 4, DECEMBER 2012

 [363]

This content downloaded from 148.88.67.84 on Tue, 03 Jul 2018 00:37:39 UTC
All use subject to http://about.jstor.org/terms

 364 JOHN E. WARNOCK

 □

 Alto computer at PARC, 1973

 When I started to work at PARC in 1978, an enormous amount of
 groundwork had already been laid. We each had our own personal
 computer (the Alto) with a black-and-white page-sized raster display, a
 removable disk drive, and a keyboard and mouse. All our computers
 were connected via the Ethernet, which linked them to laser raster
 printers. All of these components were developed at PARC.

 The predecessor of modern word processors (Bravo) was developed
 in this work environment by Charles Simonyi (among others), who
 later joined Microsoft and developed Microsoft Word. We also used an
 email system (Laurel) that was remarkably like the email we use today.

 Sites around the country, including PARC, were connected via the
 ARPANET (which later became the Internet). When it was founded in
 1972, PARC management's mandate was to invent the "office of the fu
 ture." For all practical purposes, the researchers at PARC accomplished
 their task.

 In 1978 the offices at PARC had all of the basic components of a
 typical workplace today—all in place before any commercial personal
 computers or networks were available. It is, however, important to note
 that computers were vastly less powerful. Speeds of the processors were
 hundreds of times slower, computer memories were tens of thousands
 of times smaller, and external storage was hundreds of thousands of
 times smaller.

 Xerox was very secretive about the technologies at PARC, and few
 people knew what existed there. Over time the ideas at PARC escaped

This content downloaded from 148.88.67.84 on Tue, 03 Jul 2018 00:37:39 UTC
All use subject to http://about.jstor.org/terms

 SIMPLE IDEAS 365

 and were exploited and developed to become the computing environ
 ment we use today. Steve Jobs borrowed the ideas in the graphic user
 interface for the Lisa computer and later for the Macintosh. Bill Gates
 borrowed the same ideas for Windows.

 There was one aspect of PARC that was unique among computer
 environments of the time. Because Xerox's business was based on the

 quality of its copiers, researchers at PARC were predisposed to care
 about the quality of the printed page.

 About a year after I came to Xerox, I was asked to join the Imag
 ing Sciences Lab, a new laboratory led by Chuck Geschke. The charter
 of the Imaging Sciences Lab was to explore techniques for making
 high-level graphic programming interfaces for both displays and print
 ers. This included figuring out how to represent the printed page in a
 resolution-independent way.

 The Problems to Be Solved

 From our perspective there were two major problems: how to build a
 computer representation, in a resolution-independent way, of any
 printed page; and how to represent text, and typefaces, that are com
 patible with a solution to the first problem.

 Since the time of Gutenberg, text and graphics have been treated
 separately, and this was also true at Xerox. The laser printers at Xerox
 were 240 dots per inch (dpi) while the computer screens were 72 dpi.
 Both are raster devices, which form images by coloring selected, closely
 spaced dots (called pixels)—the number of the dots per inch determines
 the resolution of the device.

 To make high-quality pages, each letterform was designed as an ar
 ray of dots with one array, called a bitmap, for each letter size for each
 device. It was commonly believed that a separate design for each size of
 each letter was necessary to preserve quality on raster devices, espe
 cially if they were of low or medium resolution. For example, the fol
 lowing image illustrates enlarged characters for the 12-point size of the
 Times Roman font for 72 dpi and 240 dpi devices.

 ABCDEF

 abcdefgh
 ABCDEF

 abcdefgh

 12 pt type bitmap
 at 72 dpi

 12 pt type bitmap
 at 240 dpi

This content downloaded from 148.88.67.84 on Tue, 03 Jul 2018 00:37:39 UTC
All use subject to http://about.jstor.org/terms

 366 JOHN E. WARNOCK

 The researchers at PARC had laboriously crafted type designs for
 each font size for both the 72 dpi screen and the 240 dpi laser printers.
 This approach to representing character shapes was highly limiting be
 cause complete type libraries would have to be constructed for every
 new, different-resolution device that might be invented. Also, if a
 model was wanted that would allow for the scaling and rotation of
 page elements, then the PARC scheme would not be flexible enough.
 This limited representation of typefaces greatly constrained the way
 printed pages could be depicted, but at the time it was thought to be
 necessary.

 At Xerox, Chuck Geschke and I worked with Butler Lampson, Bob
 Sproull, Brian Reid, and Gerry Mendleson on a printer protocol called
 Interpress, which was to be a standard for document representation for
 all Xerox printers. The design of Interpress incorporated some pro
 gramming aspects; unfortunately, its design embodied the limitations in
 type representation that had become part of the Xerox culture.

 In some sense, even with the above problems, Interpress was suc
 cessful in that Xerox adopted it as a standard. Unfortunately, manage
 ment would not expose its design to the public until all Xerox printers
 conformed to its implementation, which might never occur. This deci
 sion was very frustrating, to say the least: we had all worked for two
 years on Interpress only to have it hidden by Xerox. I approached
 Chuck in May 1982 and suggested we form our own company. In No
 vember 1982 we left Xerox and started Adobe Systems.

 The Language

 When I first joined PARC in 1978,1 needed some tools to help me do
 graphics research. Before PARC, while working at Evans & Sutherland,
 John Gaffney and I developed a simple interpretive language called the
 Design System. I re-implemented the language at Xerox with the help
 of Martin Newell and Doug Wyatt, and called it JaM (for John and
 Martin). At Adobe, Chuck Geschke, Doug Brotz, Ed Taft, and Bill Pax
 ton implemented the language yet again; we called it PostScript.

 In general, at that time in the industry, printer protocols were en
 coded static-data structures—or mark-up languages—that defined a
 page. Any application program wanting to output to a printer had to
 build the encoded structure, or language, and deliver it to the printer. If
 the internal model of the application program differed from the model
 of the representation required by the printer, then building the interface
 to the printer drivers was problematic.

 At Adobe we had a radical new idea: we would make programs writ
 ten in PostScript the representation of a page. The PostScript interpreter

This content downloaded from 148.88.67.84 on Tue, 03 Jul 2018 00:37:39 UTC
All use subject to http://about.jstor.org/terms

 SIMPLE IDEAS 367

 would execute the program to build the raster array needed for the
 printer. As a result, a single PostScript program would produce exactly
 the same image when sent to any device equipped with a PostScript in
 terpreter. For example, to draw a black one-inch square with the text
 "hello world" on top of it in the PostScript language, one sent the fol
 lowing program to the interpreter:

 0 setgray %set the color to black
 100 100 moveto %go to lower left corner
 100 172 lineto %draw the left edge
 172 172 lineto %draw the top edge
 172 100 lineto %draw the right edge
 closepath %close the path
 fill %fill the path with current color
 /Helvetica findfont %find the Helvetica font
 24 scalefont %make the font 24 points
 setfont %set current font to this font

 100 184 moveto %move to 12 pts above the left
 %edge of the box

 (hello world) show %show the text on the page
 showpage %print the page

 The graphics model2 supported by PostScript is really quite simple.
 There are two kinds of graphic objects: the paths composed of curves
 and straight lines, and rectangular arrays of sampled values represent
 ing images (a pixel-based image format, such as TIFF, or JPEG). The
 paths can be open or closed, and multiple paths can form a complex
 path. Paths can be filled with any color or stroked with a line type of

 2John Warnock and Douglas K. Wyatt, "A Device Independent Graphics Imaging Model
 for Use with Raster Devices," Computer Graphics 16.3 (July 1982): 313-19.

This content downloaded from 148.88.67.84 on Tue, 03 Jul 2018 00:37:39 UTC
All use subject to http://about.jstor.org/terms

 368 JOHN E. WARNOCK

 any thickness, and with a variety of joins and end caps, and with any
 color. Paths can also act as clipping boundaries for images and other
 paths, i.e., an image can be displayed only in the interior of a path, and
 masked on the exterior. An image can be any rectangular image of any
 resolution (black and white or color). Images can also act as masks for
 painting operations.
 Our goal was to implement a full programming language that pro

 vided all the graphics operators required to build complex pages. To
 achieve this, the PostScript interpreter implements about 400 opera
 tors. An abbreviated example set of operators includes

 Math operators: add, sub, mul, div, sqrt, exp, log, sin, cos, tan, arc
 tan, abs, floor, ceiling, etc.

 Control operators: if, ifelse, for, forall, loop, repeat, exec, etc.
 Graphic operators: moveto, lineto, curveto, arcto, closepath, fill,
 stroke, image, imagemask, clippath, show, etc.

 Data construction operators: array, string, diet, etc.
 File operators: file, read, readline, readhexstring, readstring, write,
 writehexstring, writestring, closefile, etc.

 Graphic state operators: setgray, setrgbcolor, sethsbcolor, setline
 width, setlinejoin, rotate, translate, scale, etc.

 The list goes on, but the important thing was that even the most
 complex pages found in any book or magazine could be described with
 PostScript and the extensive set of operators.3 Choosing a program to
 represent a document had several theoretical disadvantages:

 1. The program could go into a loop and never stop.
 2. Examining the program did not always tell you how many pages
 (if any) were produced.

 3. The program dictated the order in which pages were produced.

 Even with these drawbacks, selecting a program as the page's represen
 tation had some major advantages:

 1. Because each operator in the language could be redefined, it was
 possible to fix or extend the language's capabilities without
 changing the interpreter.

 2. Programs in the language could interpret existing printer pro
 tocols and emulate their behavior (this is how the first Apple
 LaserWriter became compatible with all the existing applications
 on the Macintosh).

 3Adobe Systems Incorporated, PostScript Language Reference Manual (Reading, Mass.:
 Addison-Wesley, 1985).

This content downloaded from 148.88.67.84 on Tue, 03 Jul 2018 00:37:39 UTC
All use subject to http://about.jstor.org/terms

 SIMPLE IDEAS 369

 3. Complex character encodings could be implemented program
 matically, e.g., Japanese, Chinese, Farsi, Unicode. This capability
 allowed PostScript to handle multiple encodings and ultimately
 become an international standard.

 4. Subroutines in the language could efficiently represent complex
 sub pictures in a page.

 The Representation of Curves and Characters

 So far nothing has been said about how curves, characters, or typefaces
 were handled in PostScript. If we were to remain true to our goal of
 device-independent representations, then characters would have to be
 defined in the same way as any other graphic shapes: by a collection of
 mathematical curves and straight lines (paths).

 Curves in PostScript are defined as third-order Bézier curves (after
 the French engineer Pierre Bézier).4 We chose these curves because they
 are simple to describe, easy to render on a computer, and flexible
 enough, when put together in combination, to describe the most com
 plex shapes found in the graphic arts industry. Any ordered four points
 (pl,p2, p3, and p4) on a plane define a third-order Bézier curve. Below
 are samples of third order Bézier curves.

 o—

 4 Pierre Étienne Bézier and Paul de Faget de Casteljau were working independently and
 almost simultaneously on a system that would enable automobile designers to express a curve
 mathematically. De Casteljau (a mathematician at Citroën) solved the problem first in 1959,
 but the company kept the algorithm a secret. His two technical reports, Outillages, méthodes,
 calcul (1959) and Courbes et surfaces à pôles (1963), did not become known to the outside
 world until Wolfgang Boehm obtained copies in 1975. Bézier (a mechanical engineer at Re
 nault) began his researches in 1960, and published his "Définition numérique des courbes et
 surfaces. . . ." in two parts in the journal Automatisme (1968-69). In the division of the no
 menclatural spoils, since Bézier had, in all innocence, already been commemorated in the
 curve, de Casteljau was allotted the algorithm. Bézier writes in 1982, "I understood [in 1972]
 that the conception of the type of curves and surfaces representation was born in the brain
 of mathematicians, namely MM. de Casteljau and Vercelli, whose capacity I admire. Right
 from the start, they thought to use the properties of Bernstein functions, while I ignored their
 existence, instead of doing, as I did, a heavy analytic study of the properties of the functions
 I wanted to use for the curves and surfaces representation. Finally I ended up at the same re
 sult, but by using a very bumpy way." Christophe Rabut, "On Pierre Bézier's Life and Motiva
 tions," Computer-Aided Design 34 (2002): 493-510.

This content downloaded from 148.88.67.84 on Tue, 03 Jul 2018 00:37:39 UTC
All use subject to http://about.jstor.org/terms

 370 JOHN E. WARNOCK

 The interesting thing about Bézier curves is the very simplicity of
 the geometric construction that determines their points. For example,
 the four points below define the curve.

 1. The first and last Bézier control points (pi and p4) are always
 on the curve, and the curve is tangent to pl-p3 at pi, and
 p3-p4 at p4.

 2. To construct another point on the curve, find the midpoints of
 the segments between pi and p2 (ml), between p2 and p3 (m2),
 and between p3 and p4 (m3).

 3. Find the midpoints of the segments between ml and m.2 (nl), and
 between m2 and m3 (n2). Connect nl and n2 with a segment.

 4. Find the midpoint (kl) of the segment between nl and n2.
 5. The point kl is on the Bézier curve, the left-hand side of the
 curve has the Bézier control points pi, ml, nl, and kl. The
 right-hand side of the curve has the Bézier control points kl,n2,
 m3, and p4.

 J3
 —-"9

 p2

 pi

 p4

 p3

 m2^.
 P2

 _ ,n2
 ml " kl

)m3

 pi

 p4

This content downloaded from 148.88.67.84 on Tue, 03 Jul 2018 00:37:39 UTC
All use subject to http://about.jstor.org/terms

 SIMPLE IDEAS 371

 When this construction process is repeated recursively, points are
 generated all along the line. The process stops when all the control
 points for a segment are within an error tolerance for the resolution of
 the device, i.e., the process stops when the straight-line segment con
 necting the control points approximates the curve segment needed for
 the raster device. The result might be

 Here the black points are on the curve. Armed with this curve technol
 ogy, it was now possible to define device-independent characters.
 As an example, consider how to define the character a in the Times

 Roman typeface. The following image shows the Bézier control points
 that define the letter. The black dots are points on the curve. The pairs
 of outlined dots together with the adjacent black dots are Bézier con
 trol points for that curve segment.

 The program that defined this character in PostScript consisted of
 "moveto," "lineto," "curveto," and "closepath" commands. Tens of
 thousands of typefaces across all written languages are now defined in
 this way.

 The Font Problem

 In 1982, it was widely believed that the only way to make acceptable
 fonts for low- and medium-resolution devices was to design the bitmap

This content downloaded from 148.88.67.84 on Tue, 03 Jul 2018 00:37:39 UTC
All use subject to http://about.jstor.org/terms

 372 JOHN E. WARNOCK

 representations by hand. And there was a good reason for this: if one
 takes the outline description of a character and turns on the pixels
 where the character outline touches or covers a pixel, the results look
 inconsistent and rough.
 For instance, converting outlines to arrays of black dots looks

 like this:

 10 pt sans serifed font at 240 dpi
 ABCDEFGHIJKLMNOP 12345

 mnopqrstuvwxyz !@#$%A&*0

 10 pt serifed font at 240 dpi
 ABCDEF GHIJKLMNOP12345

 mnopqrstuvwxyz !@#$%A&*0

 At Xerox, and elsewhere, a number of attempts were made to de
 sign an algorithm that figured out which pixels to turn on and which to
 turn off, based on information from the outline of a character. None of
 these solutions worked well when implemented over a wide variety of
 typefaces.

 At Adobe we knew that if PostScript was going to be successful we
 had to solve this problem for existing medium printer-resolution de
 vices. We had to find a way to generate high-quality bitmap representa
 tions from outlined characters automatically.

 A Very Simple Idea

 At one point, it occurred to me that we had been looking at the prob
 lem from the wrong point of view. Rather than trying to figure which
 bits to turn on based on the outline, one should change the outlines (in
 a minor way) at the time of raster conversion for a specific size of the
 character so that high-quality characters would be generated with a
 straightforward algorithm. Doug Brotz, Bill Paxton, and I worked on
 solving this problem.

 To illustrate: After scaling the outline to the desired size, if the bit
 map is generated with no change to the outline, then the result is

This content downloaded from 148.88.67.84 on Tue, 03 Jul 2018 00:37:39 UTC
All use subject to http://about.jstor.org/terms

 SIMPLE IDEAS 373

 Notice that the center stem and third stem are four pixels wide,
 whereas the first stem is three pixels wide. This kind of error makes the
 characters look inconsistent and rough.
 If you mark the vertical stems and/or curved parts that should be

 consistent, then you know how to align the curves with the pixel array.
 If you also mark the baseline of the font family and the x-height, then
 the characters' heights can be made to be consistent relative to the pixel
 array and to each other.

 Blue
 hints
 Blue
 hints

 Yellow hints Yellow bints

 We marked the vertical strokes that were to be consistent with pairs
 of vertical lines (we called these "yellow hints"). We marked the baselines
 and x-heights with two lines that applied to the whole alphabet ("blue
 hints"). We then stretched or compressed parts of the curves by moving
 the control points so that the yellow and blue hints were consistent rela
 tive to the dot matrix. In the case of the m (as with all characters of the
 font), the blue hints were moved to the closest raster boundary, and the
 curves expanded or condensed to correspond to those lines.

 Blue hints corrected

 Next we added the yellow hints for each character. Pairs of yellow
 hints are put on curves or strokes where it is important that the stroke
 weights are consistent in the final character. In the case of the m the hint

This content downloaded from 148.88.67.84 on Tue, 03 Jul 2018 00:37:39 UTC
All use subject to http://about.jstor.org/terms

 374 JOHN E. WARNOCK

 lines are put at the edges of the vertical staffs. Pairs of yellow hint lines
 are translated to the nearest raster boundaries. The control points of the
 curves inside the pairs of yellow hint lines are only translated, whereas
 the points outside the yellow hint lines are linearly interpolated depend
 ing on how much the movement of the hints compressed or expanded
 the region it defined. This transforms the curves accordingly: the center
 stem of the m shifts to the left to follow the hint.

 -b= cd

 n

 b=_=i_s=_

 Yellow vertical hint pairs corrected

 Although these changes to the curve worked extremely well when
 generating character bitmaps, the resulting fonts still looked heavy, i.e.,
 too many bits were being turned on. In particular, diagonal lines looked
 much too heavy.

 After much experimentation, we came up with the idea of "ero
 sion." The basic idea was to shave the outlines as a function of angle
 (oblique lines are shaved more) to reduce the number of bits that are
 turned on. To accomplish this, the amount of erosion is a function

 Erosion correction

 of the pixel size and not the character size. After the erosion process,
 the bitmap for the character at that size was generated in a straightfor
 ward manner. All the pixel squares that are touched are turned on. Be
 low is a comparison of the m before hinting and erosion, and after.

This content downloaded from 148.88.67.84 on Tue, 03 Jul 2018 00:37:39 UTC
All use subject to http://about.jstor.org/terms

 SIMPLE IDEAS 375

 mm
 Before correction

 m
 After correction

 The resulting bitmap of the m is remembered. All the lowercase m's
 of this size and orientation are identical, and can be used over and over
 as m's are required. In practice, for each size and orientation of a char
 acter, the character is built once and cached into a holding memory.
 This vastly reduces the amount of computing needed to generate a typi
 cal page.

 Below is a comparison of type generated from outlines without
 hinting, and type generated from outlines with hinting.

 10 pt sans serifed font at 240 dpi
 ABCDEFGHIJKLMNOP12345

 mnopqrstuvwxyz !©#$%A&*0

 10 pt serifed font at 240 dpi
 ABCDEFGHDKLMNOP12345

 mnopqrstuvwxyz !@#$%A&*0

 10 pt sans serifed font at 240 dpi
 ABCDEFGHIJKLMNOP 12345

 mnopqrstuvwxyz !@#$%A&*0

 10 pt serifed font at 240 dpi
 ABCDEFGHIJKLMNOP12345

 mnopqrstuvwxyz !@#$%A&*()

 It is interesting to note that the outline modification of the yellow
 and blue hints is applied only when the lines of text are parallel to ei
 ther the x or y axis of the page. When fonts are rotated, there is no fre
 quency in the raster that conflicts the horizontal and vertical strokes in
 the font. Even so, the outline erosion strategy is always applied. This
 combination of hints and erosion produced high-quality raster repre
 sentations of the letters at medium and high resolution.

 The Successes of PostScript

 In 1983 we began showing samples of PostScript output to a number of
 computer and computer printer suppliers as well as to some typesetter

This content downloaded from 148.88.67.84 on Tue, 03 Jul 2018 00:37:39 UTC
All use subject to http://about.jstor.org/terms

 376 JOHN E. WARNOCK

 manufacturers. In particular, we met with Steve Jobs of Apple Com
 puter, who showed us the new Apple Macintosh about to be introduced
 in January of 1984. In mid-1983 we signed a contract to build a Post
 Script interpreter for the controller of the Apple LaserWriter, which was
 to be based on a Canon laser printer. A little later that year, Linotype
 Corporation contracted with us to build a PostScript interpreter for a
 controller for their Linotronic 100 and 300 machines.

 With the Apple LaserWriter, the Linotronic 100 and 300, the Apple
 Macintosh, Aldus's PageMaker page composition program, and Post
 Script, desktop publishing was born.

 The years following were very competitive: printer and compu
 ter manufacturers were faced with either supporting PostScript or
 introducing competing formats. In 1990, 31 companies were producing
 120 different PostScript printers or imagesetters,5 including Apple,
 IBM, Hewlett-Packard, Digital Equipment Corporation, Texas Instru
 ments, Wang, Canon, NEC, Ricoh, Fujitsu, Matsushita, Compugraphic,
 Linotype, Autologic, Monotype, and Scitex. PostScript was becoming
 an international standard for printing and publishing.

 In 1989 PostScript came under competitive pressure from Apple
 and Microsoft. They formed an alliance to introduce their own font
 format (called TrueType). In response, Bill Paxton, Steve Schiller, Tom
 Malloy, and Mike Byron improved the Adobe font technology so that
 high-quality fonts could be produced from Adobe's character outlines
 for low-resolution devices (screens).

 This technology was called ATM (Adobe Type Manager), and al
 lowed users to display high-quality type on display screens by scaling
 type within applications that ran on Macs and PCs.

 The Next Innovation

 In 1990, large- and medium-size organizations increasingly began us
 ing local area networks. At the same time, almost all application pro
 grams for Macintosh computers and PCs produced PostScript files for
 printing. In 1991, it occurred to me that there was a novel trick to use
 the ubiquity of PostScript to produce a file format that would reliably
 communicate documents between all different kinds of computers and
 operating systems.6 PostScript itself was not a viable candidate for this
 purpose because

 5 Adobe Systems Incorporated 1990, Annual Report (Mountain View, Calif.: Adobe Sys
 tems Incorporated, 1991), 2.

 6 John Warnock, "The Camelot Project" (internai document, Adobe Systems Incorporated,
 1991). Available at: http://www.planetpdf.com/planetpdf/pdfs/warnock_camelot.pdf.

This content downloaded from 148.88.67.84 on Tue, 03 Jul 2018 00:37:39 UTC
All use subject to http://about.jstor.org/terms

 SIMPLE IDEAS 377

 1. PostScript files are programs that are not necessarily secure. It is
 generally dangerous to send programs between computers across
 networks.

 2. It is impossible to examine a PostScript program and determine
 how many pages it will generate without actually executing it.
 To generate a particular page, one first has to generate all the
 pages that preceded it (at great cost in time).
 3. A given PostScript program can compute a lot and produce little
 or no output.
 4. PostScript programs are not generally self-contained. They usu
 ally do not contain the typefaces that they reference.

 The trick that made conversion of the file possible was to execute a
 PostScript program, but redefine the graphics and graphic state operators:
 setrgbcolor, setcmykcolor, moveto, lineto, curveto, closepath, fill, stroke,
 translate, rotate, scale, findfont, setfont, scalefont, show, showpage, etc.,
 so that, rather than building up the page image, these operators would
 write their arguments before their operator names to a new text file.
 This distilled file is a PostScript file, but has only the graphic com

 mands. All loops, conditional statements, and control statements are
 absent from the file. This file is secure and has well-delineated pages
 and minimal computing associated with its execution. From this file it
 is straightforward to build a data file that represents the document
 while retaining device independence: it is no longer a program itself.
 Typefaces referenced can also be included in the file. We called this new
 file format the "Portable Document Format," or PDF.
 In 1993 Adobe introduced Acrobat. This application allowed users

 to read, navigate, annotate, and output PDF files from any application.
 Adobe also announced Acrobat Reader, a free application, which made
 it possible for users to read, navigate, and annotate PDF files. Since
 2006, there have been more than one billion downloads of Acrobat
 Reader. There are roughly 170 million PDF files on the Internet, and
 probably many times that within organizations and corporations. PDF
 is a recognized National Archives Standard and an ISO Standard.
 Since the days of PostScript, PDF has been extended to encompass

 all manner of media, including video, animation, 3D, sound, and online
 collaboration. The technologies around PDF have begun to replace the
 millions of paper workflows that exist in and between organizations.
 We will probably never attain a "paperless society," but if trends con
 tinue, our use of paper for communication will be drastically reduced.
 The three simple ideas—using a computer program in the language

 PostScript as the representation of any complex page, no matter the com
 binations or kinds of text and graphics; modifying character outlines
 composed of third-order Bézier curves to make any typeface readable

This content downloaded from 148.88.67.84 on Tue, 03 Jul 2018 00:37:39 UTC
All use subject to http://about.jstor.org/terms

 378 JOHN E. WARNOCK

 on screens and on paper; and then using PostScript again as the basis
 for PDF, making possible the safe and accurate transmittal of any page
 anyone might think to create on a computer—have together built the
 foundation of modern electronic publishing.
 Of course, in addition to the above ideas, it takes a huge amount of

 engineering and development by dedicated people to make successful
 the dozens of innovative products that continue to advance the ever
 broadening media landscape.
 Our traditional definition of a document, a sequential collection of

 words, images, and graphics printed on paper, is changing daily. Docu
 ments in the electronic world can contain all kinds of media, can be in
 teractive, and can dynamically link to all manner of other material.
 How we will cope with this changing base of information and save

 it for future generations is yet to be discovered.

This content downloaded from 148.88.67.84 on Tue, 03 Jul 2018 00:37:39 UTC
All use subject to http://about.jstor.org/terms

