

THEME ARTICLE: HISTORY OF DESKTOP PUBLISHING: LAYING THE FOUNDATION

The Origins of PostScript

Introduced by Adobe Systems in 1984, PostScript

was a unique device-independent approach to

describing the appearance of a printed page, for the

first time allowing pages to be printed on a range of devices of different resolutions.

From 1984 to 1987, the use of PostScript by printer manufacturers grew to the point

that it became the de facto standard.

PostScript is a graphic programming language introduced by Adobe Systems in 1984. At its in-

troduction, PostScript described pages in a device-independent manner so that a page could be

printed on a wide range of devices of different resolutions. Other solutions at that time were

markup or other declarative descriptions. From 1984 to 1987, the use of PostScript by printer

manufacturers grew to the point that it became the de facto standard. This article describes the

11-year sequence of events leading to the announcement of the language.

MY BACKGROUND

Before telling the history of the development of PostScript, let me cover a bit of my own per-

sonal history.

I was born in 1940 in Salt Lake City, Utah, and I grew up in Utah. I received my BS in mathe-

matics and philosophy in 1961, my MS in mathematics in 1964, and my PhD in electrical engi-

neering in 1969, all from the University of Utah. From 1966 to 1969, I worked under David C.

Evans and Ivan Sutherland on an Advanced Research Project Agency (ARPA) grant on

“Man/Machine Communication.”

Over the course of my career, I have worked for IBM, the University of Utah, Computime Can-

ada, Computer Sciences Corp., Evans & Sutherland, Xerox Palo Alto Research Center (PARC),

and Adobe Systems.

POSTSCRIPT MINUS 10: EVANS & SUTHERLAND
AND JOY

The PostScript history really starts in 1974. In 1972–1973, I worked for Evans & Sutherland

(E&S) as part of a group that was contracted by Ames Research to help make a supercomputer

called the Illiac IV work for weather forecasting applications. Then, in 1974, Dave Evans asked

me to hire four engineers for a new project that he wanted me to manage; I hired John Gaffney,

Paul (PJ) Zima, Christine Barton, and David Lewis. We worked in a small office in Mountain

View, California, to solve what appeared to be an impossible problem.

John E. Warnock

Adobe Systems

68
IEEE Annals of the History of Computing Published by the IEEE Computer Society

1058-6180/18/$33.00 ©2018 IEEEJuly–September 2018

 IEEE ANNALS OF THE HISTORY OF COMPUTING

Our employer, E&S, an early pioneer in advanced computer graphics systems that had been

formed out of the University of Utah’s famous graphics ARPA contract, had taken on a three-

year subcontract with Philco-Ford to build a five-projector graphics system to simulate a ship

steaming into New York Harbor and through its surroundings. This graphics system was to be

installed on the mock-up of a ship’s bridge and was to be used to train the ship’s pilots how to

navigate into and out of the New York Harbor. The project, called

CAORF (Computer Aided Operations Research Facility), was being

built for the US Maritime Academy.

Our group in the Mt. View office was responsible for modeling the

harbor from the Verrazano-Narrows Bridge, down around Staten Is-

land, into Newark Bay, and into the Port of Newark. This model

needed to include the Verrazano-Narrows Bridge, Staten Island,

Brooklyn, Constable Hook, Bayonne Bridge, and the Newark shore-

line. This included the topography of the area and about 4,000 struc-

tures, such as buildings, oil storage tanks, and houses. We also had to

construct the model to work for the expected four types of ships that

might be in the harbor.

In addition, the Mt. View office was responsible for writing all the

software needed to manage the 3D database and drive the image gen-

erators. In those days, not enough computer memory was available to

store the images that were generated (frame buffers), so the image

generators had to create all images from the database in real time.

The Salt Lake City office of E&S was responsible for designing the

image generation hardware and the interfaces to the five Eidophor pro-

jectors. The special-purpose imaging systems were to be driven by a

PDP-11/45 computer. All the electronics were to be contained in six

racks (each the size of the PDP-11).

Two years had already elapsed since the start of the project, and essen-

tially nothing had been accomplished except for designing and build-

ing a large digitizing tablet that was interfaced to the PDP-11. This tablet was designed and built

by Ivan Sutherland. The bottom line was that we had to design, build, and install all the database

components, software, and hardware and get the entire imaging system working in one year.

Why was this so hard?

First off, in those days a PDP-11 had a maximum of 32,000 16-bit words of memory and was

incredibly slow by today’s standards. It only had DEC tapes, a keyboard, a text display, and our

digitizing tablet as I/O devices, and the programming was all done in assembly language (the

machine’s native language).

Second, other than topographic maps of the New York Harbor, no source material existed about

the appearance of building, tanks, bridges, or anything else in the harbor.

Lastly, because no specifications of the electronics were available (they were not designed yet),

we had no concept of the final format or requirements of the database.

So, this is what we did. John Gaffney traveled to New York with multiple cameras. The E&S

project management team arranged for a small boat to take John through the Verrazano-Narrows

and along the complete path of the harbor. He and a helper took pictures every few seconds from

multiple cameras to record all points of view. He took about 35 rolls of 36 exposure film.

Next, all five of us in the Mt. View office spent about a week going through the images, noting

the major landmarks, finding them on the topographic maps, and recording the type of land-

mark—for instance, three-story brownstone building, fuel tank, water tower, industrial building,

or house. We would also note each landmark’s color. The topographic maps showed the build-

ing’s footprint, orientation, and elevation.

The question then became: How do we build a 3D database?

Evans & Sutherland

was an early

pioneer in

advanced computer

graphics systems

that had been

formed out of the

University of Utah’s

famous graphics

ARPA contract.

69July–September 2018 www.computer.org/annals

 HISTORY OF DESKTOP PUBLISHING: LAYING THE FOUNDATION

We imagined drawing lots of 2D menus, taping them to the digitizing tablet, taping down the to-

pography map, and then writing a lot of programs (in assembly language) to produce some kind

of database that was not yet specified.

At this point, however, John Gaffney had a brilliant idea: imagine a machine that had registers

and storage, but where the operators of the machine were arbitrarily powerful. For example, op-

erators would convert strings to numbers and numbers to strings, write strings to files, read val-

ues from the digitizer, perform mathematical functions, execute operations based on conditions,

execute loops, and do anything else that higher-level languages do. But this machine would in-

terpret the programs (text) and execute them with no compile step. Also, these programs could

be associated with menus on the digitizing tablet. The user would type in the program, and the

interpretive program would execute it. Arguments to subroutines would be passed through regis-

ters. This was my first exposure to the possibilities of an interpreted computer language. It was

simple, relatively easy to implement, and we called it Joy.

The strategy needed to build the database became clear: rather than directly building computer

structures that were the final database, we would have the Joy programs write intermediate text

files that contained all the information needed to construct the data structures, no matter what

they were ultimately defined to be.

For example, a water tank would need its latitude, longitude, altitude, diameter, height, and

color. The digitizing program would collect this information when the user touched menu entries

(color, height, width), location on the topographic map, and a menu entry specifying the type of

object (water tank). It would write this information as a text line in a text file. When we discov-

ered different types of objects, we would write a little Joy program to collect the information and

output the text files.

This general methodology was used to build the entire New York Harbor database. The text files

that represented the database could be edited manually with a text editor and could be processed

by the final program that would generate the database in its final form. The miraculous result of

using these concepts along with the 24/7 work of the Salt Lake team was that we were able to

deliver the working simulator in the one-year timeframe.

The simulator was used for both research and training about 2,500 hours per year from 1975 un-

til at least 1983 (http://www.dtic.mil/dtic/tr/fulltext/u2/a135601.pdf). Figure 1 shows two images

from the CAORF simulation.

Figure 1. Two views from the CAORF (Computer Aided Operations Research Facility) simulation.
Evans & Sutherland built CAORF for the US Maritime Academy to train ship pilots how to navigate
into and out of the New York Harbor.

POSTSCRIPT MINUS 2: THE DESIGN SYSTEM AT
E&S

The Joy implementation was sort of a toy, but it worked so well that John Gaffney, PJ Zima, and

I decided to build a complete interpreted language around a more sophisticated machine architec-

ture. The motivation for this new language was that it would make it much easier to build com-

plex graphical databases. In particular, an upcoming project at E&S involved building a database

70July–September 2018 www.computer.org/annals

 IEEE ANNALS OF THE HISTORY OF COMPUTING

for the space shuttle simulator for NASA. Also, E&S had other customers that had complex

graphical databases and visualization problems.

We were motivated by these requirements to build graphical databases that were procedural ra-

ther than declarative. We called this effort the Design System.

The architecture suggested by John Gaffney was to be based on a fictitious stack machine (at that

time we had no knowledge of a similar approach taken by the Forth language). The data types

included integers, real numbers, strings, arrays, names, operators, procedures, dictionaries, and

files. All of these are fairly common except for dictionaries. As the name implies, a dictionary is

a collection of names that are associated with values, where the values can be anything. Our de-

sign system program was just a text file, where the syntax allowed for words, numbers, and

strings. There were also constructors for procedures, dictionaries, and arrays.

The machine had three kinds of stacks: operand, execution, and dictionary. The execution stack

contained operators and procedures. The dictionary stack provided name lookup context (scope).

The operand stack provided a source command’s operands. This implementation was developed

on a PDP-11 between 1975 and 1978 and contained almost everything that would be eventually

needed except for graphic and imaging operators. Instead of graphic operators, we interfaced to

the E&S graphic displays.

This entire effort was funded by E&S and a number of consulting projects we accepted along the

way.

In early 1978, Dave Evans asked me to move back to Utah to join him at the main E&S facility.

My wife and I concluded that our home was in California.

POSTSCRIPT MINUS 1: XEROX PARC AND JAM

Because I had received my education at the University of Utah while working on the ARPA pro-

ject, I knew a number of people who had left Utah to work at Xerox PARC in Palo Alto, Califor-

nia. The head of the Computer Science Lab, Robert Taylor, had worked briefly at Utah as part of

the ARPA contract. Alan Kay, William Newman, Bob Flegal, and Patrick Boudelaire all came

from Utah to work at PARC.

Because of these prior relationships, I left E&S in 1978 and joined Xerox PARC under Chuck

Geschke in a newly established Imaging Sciences Laboratory.

Xerox PARC was and is still famous for the innovative advancements in computer science it

made in the 1970s. I arrived at PARC into a truly amazing environment. Each researcher had his

or her own computer, in most cases an Alto.1 This computer was designed and built at Xerox. It

had a bitmapped display the size of a printed page. Each bit on the display was either black or

white. The machine had about 65 Kbytes of memory, a 2.5-Mbyte hard drive (the size of a large

pizza box), a keyboard, and a mouse. More importantly, each machine was connected to a net-

work with file servers and laser printers. Remember that this environment was around within

Xerox almost nine years before the IBM PC was announced.

When I arrived at PARC, the researchers were working on two new machines: Dolphin and Do-

rado. The new machines were not restricted to the Alto’s bitmapped display; instead, they had

color displays of various resolutions. I was hired to work on device-independent graphics. Most

of the graphics at PARC were focused on the manipulation of bitmaps (arrays of black and white

dots). The new machines being designed had the ability to drive both grayscale and color dis-

plays of various resolutions, and the bitmap technologies used on the Alto did not scale. Graphic

representations were needed that were abstract enough to be rendered on any kind of display or

printer. A model with this flexibility is what we called device independent.

At PARC, the programming environment of choice was a strongly typed language called Mesa

(not an acronym). (A strongly typed language detects type errors during compilation, not at run

time.2) Other programming environments like SmallTalk and LISP were also used. Mesa was

well suited to work on systems software as well as on any other software that demanded extreme

reliability and stability.

71July–September 2018 www.computer.org/annals

 HISTORY OF DESKTOP PUBLISHING: LAYING THE FOUNDATION

Early on, I missed the interpretive programming environment we had at E&S because I felt it

would provide a great experimental environment in which to do research. I embarked on repro-

ducing the E&S environment at PARC, implementing this environment in Mesa. Because imple-

menting the interpretive system was a large project, I enlisted the help of Martin Newell and

Doug Wyatt. We called this language JaM (John and Martin). As part of this project, we had to

define an “imaging model” and the associated graphics operations.

The graphics required at Xerox were very different from the 3D modeling that I had done at

E&S. The model had to handle anything you might see on any printed page: photos (black &

white or color), lines, curves, filled shapes, text (in any typeface), geometric patterns, and sten-

cils (clipping regions) blocking portions of any of the above.

Doug and I submitted a paper to Siggraph outlining a proposed imaging model.3 Then, Martin,

Doug, and I implemented that model into JaM. The model’s geometric components included

straight lines and curves. To represent almost any shape one would encounter on a printed page,

we chose third-order Bézier curves.

Curves and lines were combined to make graphical shapes. These shapes could be filled with im-

ages or solid colors. They could also be outlined with any color. Theoretically, the imaging

model was practically complete, and the only part of the model that didn’t work in a straightfor-

ward way was text. If all displays were super high resolution, then everything would have been

fine, and we could have defined each letter with curves and lines and rendered them onto a raster

display. But the display resolution was relatively low (72 spots per inch), and the printer resolu-

tion was about 300 spots per inch. On these devices, straightforward algorithms to fill shapes

with pixels applied to small text rendered from curves and lines did not work, and the output

looked horrible, as the top portion of Figure 2 illustrates.

At PARC in the 1970s, and for the Alto and laser printers, the text problem was solved by manu-

ally creating bitmaps of each character, size, and font and then storing these bitmaps in a file.

This was okay, except you could not transform these characters (scale or rotate them). This was

at odds with and contrary to any generalized device-independent imaging model.

Figure 2. Two renderings of characters. In the 1970s, due to low device resolution, straightforward
algorithms to fill shapes with pixels applied to small text rendered from curves and lines did not
work. (Courtesy of the author)

72July–September 2018 www.computer.org/annals

 IEEE ANNALS OF THE HISTORY OF COMPUTING

INTERPRESS

In 1979, five senior scientists (Butler Lampson, Bob Sproull, Chuck Geschke, Brian Reid, and I)

and one project manager from El Segundo (Jerry Mendelson) embarked on designing a new

printer protocol for Xerox. The motivation for this effort was that Xerox was trying to commer-

cialize many of the developments that had occurred at PARC and make them available to corpo-

rate America. The machines and systems they were building was called the Star System.

The Interpress team had extensive experience in this area.4 Bob Sproull wrote the existing printer

driver at PARC called Press. Butler Lampson was probably the most senior systems architect at

PARC. Brian Reid was the author of a document creation system called Scribe. Chuck Geschke

was an architect of the Mesa programming language. Jerry Mendelson

had system printer experience. And I had considerable experience with

graphics.

Over a two-year period, this group only met together three or four

times. Most interactions took place over email. Actually, I think this

was good because each member had to think carefully about sugges-

tions and responses to ideas that were introduced. Thus, little emotion

interrupted this process. Because of the team’s experience base, sev-

eral features of the printing protocol were thought to be essential and

required for any solution to be acceptable. These requirements in-

cluded page independence and extensive bitmap handling functions to

provide font capabilities.

These overarching requirements made the design process difficult, and

the solutions were disconnected and awkward. Interpress was becom-

ing a mash-up of a declarative format and a JaM-like language. I was

skeptical that any user would be able understand it. The biggest and

fatal problem with Interpress was that it was not device independent

(due to the font strategy). I felt that this problem would doom its fu-

ture success. At the end of the process, it was my personal belief that

Interpress could not be practically implemented,5 but most of the rest

of the team did not agree.

In spite of our misgivings, Chuck and I were able to sell this potential

solution to the powers that be at Xerox. And Xerox adopted the Inter-

press solution as a standard, but only under the constraint that it would never be disclosed to the

public until all Xerox printers were driven by Interpress. This constraint was a breaking point for

Chuck and me. We were both convinced that this solution would never be successful.

Up until that point, my employment at PARC was the best job I had ever had. We were living in

a scientist’s dream sandbox, surrounded by and working with some of the most creative, talented

computer scientists in the country. We were also given extraordinary freedom to create.

But Chuck and I spoke in his office one day, and we agreed that some of our best work would

never see the light of day and that we should consider leaving Xerox to form a new company. I

flew to Salt Lake City to meet with Dave Evans (my thesis advisor and previous employer at

E&S). We discussed what Chuck and I had in mind, the building of computerized document cre-

ation systems, and he introduced us to Bill Hambrecht, a well-known and highly regarded ven-

ture capitalist with Hambrecht & Quist in Silicon Valley. He was intrigued by the idea of a

company that could engage the printing and publishing sector. Because of his own business, he

personally did not like working with the financial printers then available. Hambrecht & Quist

committed $2 million over two years to fund our new company.

To avoid intellectual property issues, our new company licensed the design system from E&S.

We needed no implementations because we would be implementing on different machines.

On 2 December 1982, Chuck and I founded Adobe Systems. After many false starts, we picked

the name Adobe because it was the name of the creek down the street from our house. (Figure 3

shows one of my early photos during this time.)

The initial idea

behind Adobe was

to leverage our

experience at Xerox

PARC and build a

document creation

system that

businesses would

use.

73July–September 2018 www.computer.org/annals

 HISTORY OF DESKTOP PUBLISHING: LAYING THE FOUNDATION

Figure 3. John Warnock. This photo taken in 1984 just before PostScript was announced.
(Courtesy of the author)

The initial idea behind the company was to leverage our experience at Xerox PARC and build a

document creation system that businesses would use. At PARC, where we both had worked, we

had used the Alto computer and its successors (Dolphin and Dorado), Ethernet networks, and

Xerox laser printers as an effective document creation system, and we were interested in building

a configuration outside of Xerox that would replicate its functionality. At that time, the personal

computer was not yet widely available, Apple computers were toys, and the IBM PC was just

being introduced, but workstations from Sun and Apollo were becoming established in the mar-

ket. We anticipated using Sun Microsystems workstations and existing laser printers and then

building additional hardware and software, as necessary, to make the whole system functional.

We even contemplated building a high-resolution machine to replace traditional typesetters.

At Adobe we took an entirely different approach than we had taken in the Interpress design at

Xerox PARC. We decided to gamble by basing our solution on JaM, a familiar interpreted pro-

gramming language that I had championed over the years. This interpreted language would

evolve into PostScript with help and guidance from extremely talented software engineers

(Chuck Geschke, Doug Brotz, Bill Paxton, and Ed Taft).

After writing an ambitious business plan, we talked with many vendors, potential clients, and

potential partners. Then, in May 1983, Steve Jobs called us because he had heard about our ef-

forts and asked to meet with us. At that time, Apple was completing the final aspects of the Mac-

intosh, which was to be partnered with a dot-matrix printer. Steve had also been meeting with

Canon about their new low-cost laser printer. I think Steve realized that a dot-matrix printer was

not going to succeed in an office environment, so he needed a laser printer to go along with the

Mac.

Steve was taken by our progress and experience in driving laser printers, and he was interested in

a partnership with Adobe. One of the advantages that PostScript had for Apple was the language

interface. Apple had developed applications for the Mac and had a graphic interface called

QuickDraw. Because PostScript was a programming language, it was fairly straightforward to

write a QuickDraw-to-PostScipt converter in PostScript. This converter would reside in the

printer’s memory, making the interface to the Mac fairly easy. This property of PostScript would

be used by many customers and applications.

74July–September 2018 www.computer.org/annals

 IEEE ANNALS OF THE HISTORY OF COMPUTING

For our work, we had borrowed a laser printer from Digital Equipment Corporation and had been

having discussions with Sam Fuller, who was the head of research at DEC. Sam was also inter-

ested and supportive of our work with laser printers.

Because of the increasing demand for a new way to drive printers and our discussions with po-

tential customers, we decided to change the Adobe business plan and focus on providing soft-

ware that would provide the interface between the emerging personal computers and the newly

introduced laser printers.

POSTSCRIPT AND SOLVING THE FONT PROBLEM

Even though our initial focus was on full publishing systems, printing and PostScript were al-

ways a major component of our various business plans. In that regard, there was one remaining

very technical hurdle to overcome. As we developed PostScript, we were committed to unifying

the imaging model so that fonts and text could be manipulated like any other graphics compo-

nents. That would mean that one could scale, rotate, and transform all text and graphics in a uni-

fied, device and resolution independent way. But laser printers at PARC were 300 dots per inch,

the newly introduced Canon printer was 300 dots per inch, and image setters from Linotype were

1,200 dots per inch. Documents in PostScript had to image flawlessly on all these devices and

had to anticipate the color displays and color printers of the future. We

strongly believed that solving these problems was the key to Adobe’s

future success.

By June 1983, PostScript had been developed to the point where we

could start experimenting with outlined fonts (letters defined by math-

ematical curves). In the past, the font problem was framed as a scan-

conversion problem. That means, given a letter outlined by a set of

curves, you found an algorithm that would “turn on” the pixels inside

the curve that would produce an acceptable bitmapped character for

the device’s resolution. This problem had been attacked by researchers

at PARC and Donald Knuth at Stanford, with little or no success.

I came up with a different way to frame the problem: instead of figur-

ing out what bits to turn on, I suggested that we modify the outline of

the characters based on the target resolution so that a standard scan-

conversion process would yield great bitmaps. After working months

on this problem with Doug Brotz and Bill Paxton, we finally came up

with a robust solution that passed the scrutiny of graphic artists, pub-

lishing professionals, printer manufacturers, and type designers (see

the bottom portion of Figure 2).

At Adobe, we decided not to patent this approach because of the pos-

sibility that someone would figure out a way to work around the pa-

tent. Instead, we kept the approach a trade secret until 2012, when I gave a Goldstine Lecture at

the American Philosophical Society.6

The basic idea behind the solution was to distort the outlines of each letter so that the vertical

and horizontal boundaries would align with the pixel rows and columns. We also modified the

curves so that the letters were less fat. (This reduced the apparent weight of the letters.) These

changes to font rendering produced great results and made PostScript truly device independent.

POSTSCRIPT ADOPTION

Solving the font problem allowed PostScript to be widely adopted throughout the computer in-

dustry.

We started to call on customers, printer manufacturers, industry gurus, and potential partners to

show them what we had done. The reaction was pretty much disbelief that laser printers could

We decided not to

patent the font

technology because

of the possibility

that someone would

figure out a way to

work around the

patent.

75July–September 2018 www.computer.org/annals

 HISTORY OF DESKTOP PUBLISHING: LAYING THE FOUNDATION

produce such varied and high-quality output. One of the industry leaders, Jonathan Seybold, told

us this technology would change the entire world of printing and publishing.

We signed contracts with Apple, Linotype, DEC, Wang, QMS, and Compugraphic to produce a

variety of laser printers and typesetters. After we signed with IBM in 1986, Hewlett-Packard de-

cided to license PostScript for its printers. At that point, we essentially had established the stand-

ard for the industry.

We did not know at the time that PostScript would became the foundation for Adobe’s success.

Together with a following derivative technology called PDF, it would play a major role in trans-

forming all aspects of printing and publishing over the whole world.

(Both John Gaffney and PJ Zima, who are now deceased, worked with me on the CAORF pro-

ject in 1974 and finished their careers working at Adobe.)

The rest of this story is the history of Adobe and the desktop publishing industry, which will be

the subject of a subsequent special issue article in the Annals next year.

REFERENCES
1. C.P. Thacker et al., Alto: A Personal Computer, CSL-79-11, Xerox PARC, August

1979.
2. C.M. Geschke, J.H. Morris Jr., and E.H. Satterthwaite, “Early Experience with Mesa,”

Comm. ACM, vol. 20, no. 8, 1977, pp. 540–553.
3. J. Warnock and D.K. Wyatt, “A Device Independent Graphics Imaging Model for Use

with Raster Devices,” ACM Siggraph Computer Graphics, vol. 16, no. 3, 1982, pp.
313–319.

4. R.F. Sproull and B.K. Reid, “Introduction to Interpress,” Xerox System Integration

Guide, XSIG 038306, Xerox PARC, June 1983;
http://www.bitsavers.org/pdf/xerox/xns/standards/XSIG_038306_Introduction_to_Inte
rpress_Jun1983.pdf.

5. B. Reid, “PostScript and Interpress: A Comparison,”;
https://groups.google.com/forum/#!msg/fa.laser-lovers/H3us4h8S3Kk/-vGRDirzDV0J.

6. J.E. Warnock, “Simple Ideas That Changed Printing and Publishing,” Proc. Am.

Philosophical Soc., vol. 156, no. 4, 2012, pp. 363–378.

ABOUT THE AUTHOR
John E. Warnock cofounded Adobe Systems with Charles Geschke in 1982. He was suc-
cessively president, CEO, and board cochairman at Adobe from its founding until 2017.
With Geschke, he developed the PostScript page description language. He has also held po-
sitions at Evans & Sutherland, Computer Sciences Corp., IBM, and the University of Utah.
He has a PhD in electrical engineering from the University of Utah. Contact him at
warnock@adobe.com.

76July–September 2018 www.computer.org/annals

