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Abstract Most mathematical marbling simulations gener-

ate patterns for texture mapping and surface decoration. We

explore the application of three-dimensional deformations

inspired by mathematical marbling as a suite of tools to

enable creative shape design. Our tools are expressed as ana-

lytical functions of space and are volume-preserving vector

fields, meaning that the modelling process preserves volumes

and avoids self-intersections. Complicated deformations are

easily combined to create complex objects from simple ones.

To achieve smooth and high-quality shapes, we also present

a mesh refinement and simplification algorithm adapted to

our deformations. We show a number of examples of shapes

created with our technique in order to demonstrate its power

and expressiveness.

Keywords Computational geometry · Shape modelling ·
Volume-preserving vector fields · Marbling art

1 Introduction

Three-dimensional models are a cornerstone of computer

graphics practice, and research on modelling can be found
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throughout computer graphics, computer-aided design and

computer-aided geometric design. Traditionally, such research

has focused on fundamental questions of validity and robust-

ness, but more recent work has also embraced other goals,

such as aesthetics, functionality and creativity [9].

Marbling is a traditional craft in which a complex and

attractive design is transferred to paper and fabrics [21]. Fig-

ure 1 shows two examples of 2D marbling patterns. The

design is created by dropping multiple colours of paint onto

water and then stirring the surface with a variety of tools

such as brushes and combs. The resulting pattern of paint

can then be applied to a sheet of paper or fabric by lay-

ing it atop the water surface. These vivid, unique patterns

are used in many decorative contexts, including books, tis-

sue boxes, jewellery and scarves. Past research in computer

graphics has sought to reproduce the appearance of marbling

(see Sect. 2.3). Typically, the thickness of the floating paint

is considered negligible, reducing the marbling problem to a

2D physical simulation. Of course, real-world marbling may

involve complex 3D fluid flow, and we believe that a fuller

simulation of the 3D behaviour of marbling may open up

new opportunities for creative 3D modelling.

Most past approaches to computer marbling have been

based on traditional fluid flow simulation, i.e. advection in a

discretized grid. However, a few researchers have explored

methods based on explicit surface tracking, producing the

geometric curves that define the boundaries between paints

of different colours [4,19]. Inspired by these latter methods,

we propose a simple and effective mathematical approach to

3D marbling. We define marbling tools in terms of volume-

preserving 3D vector fields, which are then applied to the

current geometry of a marbled shape in order to deform it.

When a tool is moved, it causes a deformation of the shape

along the tool’s path. More complicated deformations can be

achieved by applying several tools in sequence.
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Fig. 1 2D marbling patterns

The main contributions of this paper can be summarized

as follows:

1. We introduce marbling as a novel tool in 3D geometric

modelling. To the best of our knowledge, this is the first

use of marbling as a technique for deforming 3D surfaces.

2. We develop volume-preserving homeomorphisms pat-

tern functions. The 3D modelling process therefore

preserves volumes and avoids self-intersections.

3. We improve on previous mathematical marbling methods

by adding a new “welding” tool (Sect. 3.7), and propose

alternative decay modes in other tools.

4. We offer an adaptive remeshing framework tailored

to the deformations introduced in marbling, in order

to overcome meshing artefacts that accumulate during

deformation (Sect. 4).

2 Related work

In this section, we focus on techniques targeting deformation-

based shape modelling, data-driven object modelling and the

generation of marbling patterns, the topics that are most rel-

evant to our work.

2.1 Deformation-based shape modelling

Barr [6] first introduced techniques for spatial deformation,

defining transformation functions for tapering, twisting and

bending. A deformation of a smooth surface was calculated

using transformation matrices that varied smoothly along one

coordinate axis. Blanc [7] proposed a generic implementation

of Barr’s method by extending deformations to functions of

several spatial coordinates. These methods are easy to imple-

ment and involve little user interaction, but are limited to the

three previously mentioned deformation types.

Free-form deformation is a well-established deformation

technique in geometric modelling. It has been widely used

in both academia and industry [26]. FFD based on Bézier

basis functions was originally introduced by Sederberg and

Parry [25]. Hsu et al. [14] introduced an intuitive direct

manipulation approach for FFD, in which users move points

on the surface being edited instead of the control points of a

cage around the surface. Most recently, Cui et al. [10] pro-

posed a real-time, GPU-based FFD method that can produce

effective deformations of smooth regions of surfaces while

also preserving sharp features.

Angelidis et al. [5] proposed a space deformation frame-

work called Sweepers for interactive shape modelling. The

space deformation operations are defined via paths through

which a tool is swept. Each vertex in a surface is transformed

by an amount determined by a scalar distance field relative

to the surface of the tool. A related method is warp sculpt-

ing, introduced by Gain and Marais [12]. Their sculpting

tools are also encoded by distance fields and decay functions.

Kil et al. [18] introduced the 3D warp brush for interactive

modelling. It uses the same principles, but the work concen-

trates more on user interaction. They adopted an immersive

virtual reality environment which enables creative and intu-

itive direct manipulation of shapes. The work of von Funck

et al. [28,29] applied scalar and vector fields for space defor-

mation in a more direct way. The transformation of each

vertex is obtained via path integration of a time-based vec-

tor field. Since their vector fields are divergence-free, the

resulting deformations were volume preserving and free of

self-intersections.

Other related deformation-based shape modelling meth-

ods include deformations with nonlinear bijective map-

pings [23], user-controlled nonlinear mesh deformations [22,

27] and shape-driven deformations [24].

2.2 Data-driven object modelling

Data-driven modelling methods produce novel shapes by

assembling parts extracted from 3D model databases. Such

techniques are playing an increasingly important role in geo-

metric modelling. Inspired by evolutionary computation, Xu

et al. [32] proposed a genetic approach for 3D shape gen-

eration. They define crossover and mutation operators to

perform part replacement and warping on an initial gen-

eration of shapes. The evolution process is guided by a

fitness function derived from user feedback. Guo et al. [13]

introduced a system based on shape grammars to gener-

ate creative 3D monster models to serve as references for

artists. Based on a large collection of pre-segmented 3D

models, Xie et al. [30] developed an interactive sketch-

to-design system that generates novel models by com-

bining parts from the collection. Huang et al. [15] used

deep learning to synthesize geometrically diverse 3D shape

families. On a more philosophical note, Cohen-Or and

Zhang [9] discussed object modelling in the context of com-

putational creativity, articulating a sequence of paradigms

for tools to assist users with the construction of creative

models.
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2.3 Marbling patterns

We divide the methods for synthesis of marbling patterns into

two categories: texture-based and shape-based simulation.

Texture-based simulation Most marbling simulation meth-

ods generate 2D patterns for texture mapping and surface

decoration. Akgun [3] introduced a digital marbling tool for

generating traditional Turkish marbling textures. Acar [2]

developed a level-set method to model various flows and

effects in 2D fluid simulation, including marbling patterns.

Jin et al. [17] proposed an efficient GPU-based marbling sys-

tem. Xu et al. [31] and Zhao et al. [33] improved the method of

Jin et al. by using a non-dissipative fluid solver, suppressing

blurring artefacts. These methods all produce 2D textures,

which will inevitably undergo deformation when mapped

non-isometrically onto 3D surfaces. Lu et al. [20] first pro-

posed a marbling method that produces 3D solid textures,

which can then be applied effortlessly to a wide range of 3D

objects without any distortion.

Shape-based simulation Shape-based marbling simulation

methods produce geometric descriptions of 2D marbling-

like shapes, i.e. they generate vector graphics rather than

raster images. Ando and Tsuruno [4] adopted an explicit sur-

face tracking method to create 2D vector graphic marbling

shapes. They used sequences of connected points to describe

contours between paints and then advected or stretched them

along an underlying velocity field generated by fluid simula-

tion. In addition to marbling, this method has applications

in shape design, target-driven shape deformation, vector

graphic editing and Flash animation. However, their under-

lying fluid simulation required significant computation. Lu

et al. [19] introduced an algorithm that expressed standard

marbling tools as closed-form mathematical expressions,

yielding marbling drawings as vector graphic images. How-

ever, these methods are still restricted to two dimensions.

Our work can be viewed as a hybrid of the approaches

mentioned above: a 3D deformation model inspired by mar-

bling simulation, but one that tracks deforming surfaces

rather than advecting fluid in a grid. Furthermore, our target

application is creative surface design, not texture generation.

3 Deformation patterning tools

In our work, every tool is defined formally as a continuous

deformation of 3D space. Let f : R
3 �→ R

3 be a continuous,

one-to-one function that maps points to points in 3D. A given

surface S may be deformed into a new surface S′ by defining

S′ = { f (P)|P ∈ S}. More generally, if { fi }n
i=1 is a sequence

of homeomorphisms, then we can define S0 = S and Si =
{ fi (P)|P ∈ Si−1} for i = 1, . . . , n. The final surface Sn will

be the result of applying each of the n deformation tools in

Fig. 2 The process of placing sphere objects to 3D space by the sphere

insertion pattern function. The previously dropped objects are deformed

by the subsequently injected ones

sequence. Because each fi is continuous and one to one, it is

guaranteed never to tear the surface into multiple pieces and

will never cause any two parts of the surface to collide. Any

composition of such functions satisfies these same properties,

in particular the composite deformation

Sn = {(Ωn
i=1 fi )(P)|P ∈ S}, (1)

where Ωn
i=1 fi is shorthand for the iterated composition

fn ◦ · · · ◦ f1. Note that the ordering of these operations is

important. In particular, the final deformation fn will have

the most visible effect in Sn .

In the following subsections, we define seven patterning

tools by giving closed-form expressions for their deforma-

tion functions. The functions are taken from, and retain the

behaviours typical of, existing 2D and solid mathematical

marbling techniques [19,20]. They are all volume preserv-

ing (see “Appendix 1” for more detailed discussion of this

property). In addition, we introduce a new welding tool

(Sect. 3.7) and provide an alternative decay mode that pro-

duces output more closely resembling fluid flow simulation

(“Appendix 2”).

3.1 Sphere insertion function

Given a sphere with centre C and radius r , we wish to model

the effect of inserting the sphere into an existing environment,

by developing a deformation that pushes 3D geometry out of

the way to make room for the incoming sphere. We use the

following function:

f (P) = C + (P − C)
3

√

1 +
r3

|P − C|3
. (2)

Figure 2 shows the results of injecting spheres to 3D space

by using the sphere insertion pattern function. This function

is defined everywhere in R
3 except for C ; in practice, it is

unlikely that a pre-existing mesh vertex would lie precisely

at C ; if one is found, it can be jittered slightly away from C

before deformation.
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(a) (b) α = 5, λ = 0.3 (c) α = 5, λ = 0.6 (d) α = 10, λ = 0.3 (e) α = 10, λ = 0.6

Fig. 3 Line patterns. The input sphere and line are shown (a), followed by the effect of the deformation for various combinations of α and λ (b–e)

3.2 Line pattern function

Let a 3D line be defined by a point A on the line and a unit

vector m that points in the direction of the line. For any given

point P , let d(P) denote the minimum distance from P to

the line. We can then define the deformation function

f (P) = P + αλd(P)m. (3)

This function displaces a vertex P in the direction m by

an amount that decreases exponentially with d. It is con-

trolled by two constants α and λ, with the constraint λ < 1.

As α increases, the central axis of the deformation (i.e. the

line itself) is displaced by a greater amount. As λ decreases,

the bend in the deformation becomes sharper. Figure 3b–e

shows the results of deforming along the same line for dif-

ferent values of α and λ. Previous mathematical marbling

techniques [19,20] used hyperbolic approximations to model

displacement relative to a line. In “Appendix 2”, we explain

why the exponential approximation can better simulate the

fluid-like effects of marbling.

3.3 Comb pattern function

In marbling, a comb tool is a set of evenly spaced parallel

lines that move through the paint layer in tandem. While it

might be possible to simulate a line set by composing mul-

tiple instances of Eq. 3, it is much more efficient to define a

modified distance function that encapsulates the periodicity

of the lines, simulating an infinite sequence in a single step.

Accordingly, we apply a modified version of Eq. 3 in which

the distance function d(P) has been replaced by the function

dcomb(P) = k/2 − |fmod(d(P), k) − k/2|. (4)

Here, k is used to control the spacing between the lines, and

the base function d(P) is used to measure the distance to an

arbitrary reference line defined as in Sect. 3.2.

3.4 Spherical and cylindrical shell patterns

In addition to displacing space in the direction of a line, we

can swirl space around that line. For any vector v, let Rv(θ)

represent a rotation by angle θ about v. The matrix form of

this rotation can be computed using the standard axis-angle

representation [16, Sect. 11.2.3]. Let A and m define a 3D

line, as before. We define two related tools that rotate about

this line, where the rotation is maximized for points that lie

on a spherical or cylindrical shell.

To rotate relative to a cylindrical shell, we imagine a cylin-

der of radius r centred on the axis defined by A and m. Once

again, let d(P) denote the minimum distance from P to this

axis, from which dshell(P) = |d(P)− r | is the unsigned dis-

tance to the surface of the cylinder. We can now define the

deformation function

f (P) = A + Rm(αλdshell(P)/d(P))(P − A), (5)

where α and λ control the amount of rotation in a similar

manner to Sect. 3.2. We can also define a tool with maximum

rotation on a spherical shell centred at A simply by replacing

the distance function above with d(P) = ||P − A||. The

effect of the spherical shell tool is visualized in Fig. 4b.

3.5 Spherical and cylindrical vortex patterns

The shell functions of the preceding section measure unsigned

distance to a cylinder axis or sphere centre, causing the

swirling direction to reverse abruptly on the surface of the

shell. That behaviour is reasonable as a simulation of a knife

cutting through paint along a circular trajectory.

If we instead use a signed distance function, that is, if we

substitute dvortex(P) = d(P)−r for dshell in Eq. 5, we obtain

a vortex tool in which the swirling continues smoothly across

the shell. This style of deformation is a valuable addition in

the context of creative modelling. Figure 4c illustrates the

effect of the spherical vortex tool.
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Fig. 4 An initial environment consisting of three spheres (a), together with the results of applying a spherical shell tool (b) and a spherical vortex

tool (c) to the environment

Fig. 5 2D pattern-welded bars with 0, 1/2, 1, 2, and 4 full twists (a–e) respectively

3.6 Wave displacement pattern function

Let g(x, y) be a function that represents displacement in the

z direction of points in the xy plane. There are several ways

to define functions of this sort that produce waves in space.

For example,

g(x, y) = a sin(ω1x + φ1) + b sin(ω2 y + φ2) (6)

defines a pattern of bumps resembling an egg carton, and

g(x, y) = a sin

(

ω

√

x2 + y2 + φ1

)

(7)

defines a pattern of evenly spaced concentric rings. We can

now define a deformation function that offsets points using

g. For any point P = (x, y, z), we define

f (P) = f (x, y, z) = (x, y, z + g(x, y)). (8)

If R represents any orientation in space via a rotation matrix,

then the composition R · f · R−1 applies waves in the ori-

entation given by R instead of the z axis. Figure 9c shows

the result of applying a wave pattern function after a comb

pattern function.

3.7 Welding pattern function

In pattern welding, different metals are welded together by

heating and hammering, and the resulting composite is bent

and twisted (not unlike marbling) so that a pattern is formed

by the alternation of the metals. The patterns create attractive

surfaces for knife blades and swords, perhaps most famously

in the form of Damascus steel.

Inspired by pattern welding, we introduce a helical twist-

ing deformation as a new 3D marbling operation. As always,

let the axis of the helix be represented by a point A and a

direction m. Let π(P) denote the orthogonal projection of

P onto the line defined by A and m. Relying again on the

axis-angle rotation Rm(θ), we define

f (P) = A + Rm(c||π(P) − A||)(P − A). (9)

Here, c is the twist parameter, and larger c values twist tightly.

Figure 5 visualizes the effect of pattern welding by showing

2D slices through simulated pattern-welded bars with 0, 1/2,

1, 2 and 4 full twists. The results are generated by twisting

the XZ plane ([−250, 125, 250], [250, 125, 250]) along the

axis by setting A = (0, 0, 0), and m = (0, 0, 1). Figure 9b

is the 3D result by applying welding pattern function on an

initial sphere.

4 Adaptive remeshing

The deformation patterning tools described in Sect. 3 are

essentially volume preserving and intersection-free. Because

they are continuous and one to one, continuous surfaces will

be mapped to continuous surfaces. However, when surfaces
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Fig. 6 Remeshing. a A deformed mesh with severe artefacts around

the newly created geometry, b the final surface after remeshing

Fig. 7 The performance comparison of our method with CPU and GPU

implementation

are sampled discretely via triangle meshes, the mesh ver-

tices may not sample the underlying smooth surface densely

enough to capture the details of the new shape that emerges

after applying a deformation (Fig. 6a). The curved results

associated with the shell and vortex tools may suffer from

especially bad undersampling artefacts. We address this

problem using an adaptive remeshing algorithm, inspired by

the work of Brochu and Bridson [8].

We represent a triangle mesh M as a set of n vertices

P1, . . . , Pn, m edges e1, . . . , em , where each edge is an

ordered pair of integers in 1 . . . n representing a choice of

two vertices, and a set of triangular faces t1, . . . , tk , each one

an ordered triple of integers in 1 . . . n. We can naturally apply

a deformation f (which could be a composition of multiple

tool applications) to a mesh by constructing a new mesh M ′

with vertices P
′
i = f (Pi ) for all i and the same edges and

faces as M . We must now process M ′ to account for any arte-

facts introduced during deformation. We use the following

steps:

1. Estimate a normal vector ni for all vertices P
′
i in M ′, by

averaging the face normals at faces of M ′ incident on P
′
i .

2. Consider every edge e j = (a j , b j ) of M ′ in increas-

ing order by length. If either the length of the edge

exceeds a threshold dmax or the angle between the ver-

tex normals exceeds an angle threshold θmax, we refine

the edge. Specifically, we compute the midpoint P =
(Pa j

+ Pb j
)/2 of the corresponding edge of M . We then

add P to M and P
′ = f (P) to M ′ and update the edges

and faces of both meshes to take the new vertex and its

deformed counterpoint into account.

3. The preceding step may eventually produce meshes sam-

pled more finely than necessary, so we also include a

simplification step. As we are considering the edges of

M ′ above, if either the length of the edge falls below

a threshold dmin or the angle between its vertex normals

falls below a threshold θmin, we collapse the edge onto its

midpoint. Simultaneously, we perform the same collapse

on the original mesh to maintain the correspondence and

update the edges and faces of both meshes to take the

collapse into account.

4. Repeat the loop over all edges in Steps 2 and 3 until no

further splits or collapses occur.

Fig. 8 A step-by-step demonstration of the construction of a flower shape using marbling tools
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Fig. 9 Results of our

marbling-based creative shape

design. These complex objects

are all created from simple ones
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The angle between two vertices P
′
a and P

′
b is given by

cos−1(na · nb), where na and nb are the vertex normals esti-

mated above. We also compute the lengths of edges in a

way that takes into account estimated curvature at vertices.

If ca and cb are the estimated curvatures at P
′
a and P

′
b, then

we estimate the length of an edge joining these vertices as

||P
′
a − P

′
b||(ca + cb)/2.

Figure 6 shows the effect of remeshing on a deformed

bunny model.

5 Results and discussion

The running time of our marbling process depends on the

number of mesh vertices used to represent all the geome-

try in the environment and the number of tools applied in the

modelling session. Fortunately, much of the mesh processing

is highly parallel and can take advantage of GPU accelera-

tion. We store initial mesh vertices in individual kernels in

CUDA, to be deformed by pattern functions.

To test the performance of our system, we ran it on a 3.2-

GHz Intel Core i5-3470 CPU, with an NVIDIA GeForce

GTX 660 GPU. Figure 7 shows the performance of our

system with different mesh sizes and numbers of pattern func-

tions. In the graph, the horizontal axis refers to the number

of mesh vertices used, and the different curves correspond

to different numbers of deformations applied. The solid lines

give times for our CPU implementation, and the lower dashed

lines are the corresponding GPU-based times. Clearly, hard-

ware acceleration provides a speed boost of about two orders

of magnitude.

Figure 8 shows an example of generating a rose shape

starting with a simple sphere. Two sweeps of a comb tool

in (b) and (c), in perpendicular directions, produce the four

lobes on the right-hand side of the sphere. In (d), the line tool

draws out a single sharp branch on the left. Finally, the vortex

tool swirls the lobes together, producing the form shown from

three different angles in (e).

Past research in deformation-based modelling has pro-

duced tools that deform 3D shapes in a volume-preserving,

collision-free way. Typically, they define weight functions to

control the amount of deformation on a surface. However,

these past approaches tend to be computationally expensive.

For example, vector field-based shape deformation [28] can

be used interactive only on small numbers of samples [11].

As shown in Fig. 7, our method is highly efficient.

Compared to previous mathematical marbling meth-

ods [19,20] which are used for 2D and solid texture gen-

eration, we improve them to enable creative shape design in

this paper. We enlarge the expressive vocabulary of tools with

a new welding deformation (Sect. 3.7), as shown in Figs. 5

and 9b. In addition, we offer an alternative exponential decay

mode instead of the earlier hyperbolic one. It is proven to

be a closer approximation of the fluid flow simulation that

underlies mathematical marbling (see “Appendix 2”) and is

able to achieve smooth deformation results. Figure 9 shows

some representative results of our method. In (a–c), tools are

applied to an initial sphere or spheres. The deformed shape

in (d) is the result of applying deformations to the annulus

shown on the left. Figure 9b is the result without remeshing.

6 Conclusions

The techniques presented in this paper can generate impres-

sive 3D shapes through the application of tools inspired by

mathematical marbling. The results are obtained by trans-

forming the original shapes through explicit surface tracking.

To achieve high-quality results, the deformation functions are

designed to be volume preserving. Moreover, the deformed

shapes are refined through an adaptive remeshing algorithm.

The performance is also improved by porting the deformation

algorithms to the GPU with CUDA, boosting speed by two

orders of magnitude compared to a CPU implementation.

Our method has limitations. Our approach can generate

meshes with fine details. The mesh refinement operation is

done after all the pattern functions are applied onto the origi-

nal mesh. Thus, users may cannot expect how the final shape

looks like especially when severe artefacts occur in the design

process. There are several avenues for future research. First,

we will apply the method to other mesh representations since

it does not rely on the connectivity information in a mesh.

Second, we plan to develop more deformation patterning

tools to achieve a wider variety of marbling-like 3D shapes.
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Appendix 1: Volume-preserving deformations

In this section, we argue that the tools we define lead to

volume-preserving deformations of space. We adopt seven

transform functions. Of these, the line, comb, shell, vortex,

wave and welding patterns are homeomorphisms (i.e. con-

tinuous bijections) of R
3, but the sphere insertion tool is not.

For a continuously differentiable vector field u, the volume

form is preserved under the flow of a solenoidal vector field

� · u = 0 [1].

We can regard our tools as vector fields by considering the

vector by which they displace every point in space. That is,

we define a vector field u(x, y, z) = f (P) − P . For each of

the first five tools mentioned above, it is easy to prove that

its divergence equals zero.
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Fig. 10 Sphere insertion tool satisfies the volume-preserving property

The divergence of the welding function is not well defined

as x , y or z goes to infinity. So we cannot use the divergence

test for the welding function. But it is volume preserving for

bounded x, y, z. Slice 3-space into infinitesimally thin slices

perpendicular to the twist axis. Each slice is then simply

rotated around the twist axis. Because the rotation does not

change the areas in each slice, the volumes are preserved.

The sphere insertion function is not continuously differ-

entiable around the injection point C, so its divergence is

not well defined. However, we can show that this transform

preserves the volume of all neighbourhoods not containing

C. As shown in Fig. 10, consider the neighbourhood having

solid angle Ω of the spherical shell centred on C having inner

radius a and outer radius b. Its volume is (4/3)πΩ(b3 −a3).

If a sphere of radius e is injected at C, the new spherical

region centred on C will have volume (4/3)πe3 and increase

the radius from C of all other points. The radially sym-

metric expansion does not change the solid angle Ω . The

radius of the outer shell increases from b to
3
√

b3 + e3; the

inner shell radius increases from a to
3
√

a3 + e3. Because

(b3 + e3) − (a3 + e3) = b3 − a3, the volume of this neigh-

bourhood remains (4/3)πΩ(b3 −a3). Neighbourhoods with

other shapes can be assembled from these shell fragments,

each preserving its volume under injection, so long as each

fragment does not include C. Therefore, the sphere insertion

function is volume preserving at all locations except the point

of injection, C.

Appendix 2: Exponential decay mode

Consider an unbounded plane containing a two-dimensional

incompressible laminar flow. Given x, y as the coordinates

of the point P , associated with f (x, y) is a vector field

H(x, y) = F(x, y) − (x, y) returning the vector displace-

ment at each coordinate. Along the y axis, we introduce a

displacement α, H(0, y) = (0, α) [F(0, y) = (0, y + α)].
This displacement will not affect points far away from the x

axis; so the limit of H(x, y) tends to zero as the magnitude of

x grows. Because the fluid is incompressible, the divergence

of H is zero everywhere. Because its flow is laminar, it is

uniform in the direction of motion, y:
∂ Hy

∂y
= 0.

Thus, H(x, y) depends only on x . Furthermore, only the y

component of H(x, y) depends on x . Let f (x) = Hy(x, 0);

then, f (0) = α. f (x) is even; the displacements to either

side of x = 0 will be equal and in the same direction. So

we will consider f (x) for x ≥ 0 only. Because the flow is

laminar, displacements induced by α travel along the x axis

should be proportional to α. Let A = f (b). Then, f (2b) will

be reduced from A by the same proportion as A was reduced

from α: f (2b) = A2

α
. Thus,

f (2b)
f (0)

= A2

α2 = f (b)2

f (0)2 .

The only continuous real functions satisfying these con-

straints are f (x) = αλ|x | with independent parameter 0 <

λ < 1 related to the viscosity.
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