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We are given an integer n and a real-valued function w(i, j) defined for integers 
0 5 i <j 5 n and with the property that w(i,-,, j,,) + w(il, jl) I w(iO, jl) + 
w( il, J,-J for 0 5 i, < il < j,, < j, I n. The concave least-weight subsequence problem 
istofindanintegerkrlandasequenceofintegersO=I,<I,~ ... <I,-,< 
1, = n such that Zf:iw(/,, li+l) is minim&d. One application of this problem is 
determining optimal line breaks in a text formatting system. D. S. Hirschberg and 
L. L. Larmore (SIAM J. Comput. 16 (1987), 628-638) showed that the concave 
least-weight subsequence problem can be solved in 0( n log n) time and that if a 
certain extra condition is imposed it can be solved iu O(n) time. Here we show that 
the concave least weight subsequence problem can always be solved in 0(n) time, 
without any extra conditions. Q 1988 .ademi~ press, Inc. 

1. INTRODUCTION 

Hirschberg and Larmore [2] define the lea+weight subsequence problem 
(henceforth called the LWS problem) as follows. Given an integer n, and a 
real-valued weight function w( i, j) defined for integers 0 -< i < j 5 n, find 
anintegerk~landasequenceofintegersO=I,<Z,< **. <I,-,<Zk 
= n such that Cf:tw(lj, Zi+i) is minimized. The weight function is concaue 
if 

w(i,, jo) + w(i,, jl) I w(i,, jl> + w(i,, j,), 

forOIi,<i,<j,<j,In. (1) 

If the weight function is concave then we have an instance of the concaoe 
L WS problem. 

An important instance of the concave LWS problem is the problem of 
optimally breaking up the text of a paragraph into lines in a text formatting 
system [2, 31. The text to be formatted is given as a sequence of syllables 
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Sl, - - * , s,, with the space or punctuation following a word being considered 
to be part of the last syllable of the word. We wish to break up the syllables 
into one or more lines so that each line other than the last one is filled with 
“one line’s worth” of text-neither too little nor too much. In this case 
w(i, j) is the penalty associated with a line that starts at syllable ++I and 
ends at syllable fj. Typically w(i, j) would be defined as something like 
(len(i, j) - parwrdth)2, where len(i, j) is the “natural length” of a line 
starting at syllable si + 1 and ending at syllable sj and pat-width is the width 
of the paragraph being formatted. (There are additional complications, such 
as handling the last line and adding in penalties for hyphenation.) The 
weight function can be computed in constant time because len(i, j) can be 
computed as length(j) - length(i), where length(i) is the natural length of 
a line with syllables s1 through si. The values for length can be computed at 
the start in O(n) time. Reasonable weight functions for this problem are 
concave. 

Other applications described by Hirschberg and Larmore where the 
concave LWS problem arises are an airplane refueling problem and mini- 
mixing the height of B-trees [2]. 

The LWS problem can be solved by dynamic programming in 0( n2) time 
(with or without the concavity constraint). Hirschberg and Larmore [2] give 
an O(n log n) time algorithm for the concave LWS problem. They also 
show that the concave LWS problem can be solved in O(n) time if the 
weight function meets an additional dif,f erence-of-weight constraint. The 
weight function satisfies the difference-of-weight constraint if w(i, k) = 
diff(i, j, scale(k)) + w(j, k), for 0 I i -z j < k I n, where: 

(i) Scale(i) is a real-valued strictly monotone increasing function de- 
fined for integers i E [0, n]. 

(ii) Diff(i, j, x) is a real-valued function defined for integers 0 I i < j 
< n and real x > scale(j), and is monotone increasing in x for fixed i and 

J 
(iii) For fixed i and j the equation diff(i, j, x) = 0 can be solved for 

x in constant time. 

The first two conditions can always be met by, for example, defining 
w(i, i) = W, where W is a very large value, scale(i) = i, diff(i, j, x) = 
w(i, x) - w(j, x) when x is an integer, and linearly interpolating between 
diff(i, j, lx]) and diff(i, j, [xl) w  h en x is not an integer. However, with 
this definition for diff there might not be any more efficient way of finding 
roots than using an O(log n) time binary search. Hirschberg and Larmore 
show that for the line breaking problem and the other problems they 
describe a reasonable choice can be made for the weight function so that it 



420 ROBERT WILBER 

satisfies the difference-of-weight constraint, and thus their linear time 
algorithm can be used. 

For the sake of both generality and aesthetics it is desirable to avoid the 
need for the difference-of-weight constraint, and use only the concavity 
property. Here we show that the concave LWS problem can always be 
solved in O(n) time. 

2. ‘IkE CONVENTIONAL ih3ORITHM 

We first review the standard O(n2) algorithm for the LWS problem. Let 
f(0) = 0 and for 1 I j 5 n let f(j) = the weight of the lowest weight 
subsequence between 0 and j. For 0 < i < j I, n define g(i, j) as the 
weight of the lowest weight subsequence between 0 and j whose next to the 
last index is i. (That is, the lowest weight subsequence of the form 
O=I,-zl,< ... <I,-,=i<I,=j.)Thenwehave 

f(i) = o$ydiT j), for1 ljln, (24 

g(i, j) =f(i) + w(i, j), forOli<jln. (2b) 

We may represent g by an upper triangular matrix indexed by row from 0 
to n - 1 and by column from 1 to n. Equations (2a) and (2b) tell us that we 
can compute g one column at a time-once the values of g are known for 
column j we can compute f(j) and then we can compute the values of g 
for column j + 1. In practice when the value of f(j) is determined we also 
store the value of i for which g(i, j) is minim&A; with this information we 
can recover the optimal sequence in O(n) time after f has been computed. 
This programmin g detail will be ignored. The standard algorithm requires 

entries of g so it takes O(n’) time. 

3. THE NEW ALGORITHM 

The linear time algorithm for the concave LWS problem also computes 
all values of f but does this while computing only O(n) values of g. 

Let M be an n X m real-valued matrix, and let i(j) be the smallest row 
index such that M(i( j), j) equals the minimum value in the jth column of 
M. Matrix M is man&me if for all 1 < j, < j, I m we have i(jo) I i( j,). 
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M is tofu& monofone if every submatrix of M is monotone. It is easy to 
see that this is equivalent to the condition that every 2 x 2 submatrix of 
M is monotone. Aggarwal et al. [l] describe an algorithm that, given an 
n X m totally monotone matrix, computes i(j) for each j E [l, m] in only 

O(m + n) time.’ We will use this algorithm as a subroutine (and will call it 
the SMAWK algorithm). In applications the n X m matrix is not repre- 
sented explicitly; instead there is a subroutine that given i and j computes 
the value of M(i, j). The proof of the linear time bound assumes that this 
subroutine works in O(1) time. 

If we add f(i,) + f(il) to both sides of (1) and apply (2b) we get 

tdi0, AJ + dk A) 22 gGo, A) + gh j,), 

for05i,<i,<j,<j15n. (3) 

Let W be some large value (1 + n * maxi, jw(i, j) will do). We may extend 
the definition of g by setting 

gk j> = w, forl5jsi<n-1. (4) 

Now g can be regarded as an n X n matrix and (3) and (4) imply that it is 
totally monotone. The goal is to determine the row index of the minimum 
value in each column of g, so we would like to simply apply the SMAWK 
algorithm. But we cannot, because for i < j the value of g(i, j) depends 
upon f(i) which depends upon all values of g(l, i) for 0 s 1 < i. So we 
cannot compute the value of an arbitrary cell of g in O(1) time. 

The trick is to start in the upper left comer of g and work rightwards and 
downwards, at each iteration learning enough new values for f to be able to 
compute enough new values of g to continue with the next iteration. 
Actually, during one step of each iteration the algorithm operates on the 
basis of wishful thinking-it “pretends” to know values of f that it really 
does not have. At the end of that step the assumed values of f are checked 
for validity. If the assumed values are correct we win by learning some new 
values of f. If one of the assumed values is wrong we win anyway by 
eliminating from further consideration some of the rows of g. 

In discussing the algorithm we revert to regarding g as an upper 
triangular matrix; the values of g defined by (4) are used when needed by 
the SMAWK algorithm and are otherwise ignored. We use f(j) and g(i, j) 
to refer to the correct values of f and g, as defined by (2a) and (2b). The 
currently computed value for f(j) is denoted by F[ j], and will sometimes 

‘Aggarwal et af. defined monotonicity in terms of the position of the maximum in each row 
rather than the minimum in each column; we simply exchange the roles of rows and columns 
and reverse the direction of some of the comparisons in their algorithm. 
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F[O] + c + r + 0. 

while (c < n) 

begin 

Step 1: p + min(2c - f + l,n) 

Step 9: Apply the SMAWK algorithm to find the minimum in each column of submatrix 

G[r,c;c+ l,p]. For j E [c + l,p] let Fb] = the minimum value found in G[r,c; j]. 

Step 3: Apply the SMAWK algorithm to find the minimum in each column of submatrix 

G[c+l,p-l;c+2,p].Forj~[c+2,pJletH~]=theminimumvaluefoundin 

G[c + Lp - 1; j]. 

Step 4: If there is an integer j E [c + 2,p] such that Hlj] < F/j] then set j, to the 

smallest such integer. Otherwise j,, + p + 1. 

Step 5: if (j0 = p + 1) 

then c + p. 

end 

else Flj,] +- Hlj,]; r + c + 1; c + jO. 

FIG. 1. The linear time algorithm for the concave LWS problem. 

be incorrect. The currently computed value of g(i, j) is denoted by G[i, j], 
and for i -zj is always computed as P[i] + w(i, j) (there is no need to 
explicitly store the G matrix). So G[i, j] = g(i, j) iff F[i] = f(i). We use 
G[i,, i,; jr, j,] to denote the submatrix of G consisting of the intersection 
of rows i, through i, and columns j, through jz. G[i,, i,; j] denotes the 
intersection of rows i, through i, with column j. 

The algorithm is shown in Fig. 1. (Remember that rows are indexed from 
0 and columns are indexed from 1.) Each time we are at the beginning of 
the loop the following invariants hold: 

(1) r 2 0 and c r r. 

(2) For each j E [0, c], F[ j] = f(j). 

(3)Allminimaincol~sc+1throughnofgareinrows 2r. 

These invariants are clearly satisfied at the start when r = c = 0. 
Let S denote the submatrix G[r, c; c + 1, p] (used in Step 2) and let T 

denote the upper triangular submatrix G[c + 1, p - 1; c + 2, p] (used in 
Step 3). Figure 2 shows matrix G and submatrices S and T during a typical 
iteration of the algorithm. 

Invariant (2) implies that G[i, j] = g(i, j) for all j and all i E [0, c] so 
the entries of submatrix S are the same as the corresponding entries of g. 
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FIG. 2. Matrix G during a typical iteration of the algorithm, with r = 3 and c = 7. 

Therefore S is totally monotone and for j E [c + 1, p], Step 2 sets F[j] to 
the minimum value of subcolumn g(r, c; j). Also, since submatrix S 
contains ah cells in column c + 1 of g that are in rows 2 r we have 
F[c + l] = f(c + 1) at the end of Step 2. On the other hand, we do not 
necessarily have F[ j] = f(j) for any j E [c + 2, p], since g has cells in 
those columns that are in rows 2 r and not in submatrix S. 

In Step 3 we proceed as if F[j] = f(j) for ah j E [c + 1, p - 11. Since 
this may be false, some of the values in T may be bogus. However, T is 
always totally monotone, for if we add F[i,] + F[i,] to both sides of (1) 
we get G[i,, j,] + G[i,, jr] I G[i,, j,] + G[i,, &]-it does not matter 
whether or not F[i,] = f(i,) and F[iJ = f(iJ. Thus the SMAWK algo- 
rithm works correctly and H[j] is set to the minimum value of subcolumn 
G[c + 1, p - 1; j] (which is not necessarily the same as the minimum 
value of subcolumn g( c + 1, p - 1; j)). (If r = c then T has 0 rows and 0 
columns. In that case Step 3 does nothing and Step 4 sets j,, to p + 1.) 

In Step 4 we verify that F[ j] = f(j) for j E [c + 2, p], or else find the 
smallest j where this condition fails. The first column of T has just one 
cell, G[c + 1, c + 21. Since F[c + l] = f(c + 1) we have G[c + 1, j] = 
g(c + 1, j) for alI j and, in particular, for j = c + 2. So H[c + 21 is the 
minimum value in subcohunn g(c + 1, p - 1; c + 2). Thus if H[c + 21 2 
F[ c + 21 then F[c + 21 = f( c + 2). If that is the case then G[c + 2, j] = 
g(c + 2, j) for ah j so both cells in the second column of T are correct, 
and H[c + 31 is the minimum value in subcolumn g( c + 1, p - 1; c + 3). 
Continuing in the same way we see that if H[c + 31 2 F[c + 31 then 
F[c+ 3]=f(c+ 3)andalIcelIsinthethirdcolumnof Tarecorrect,and 
so on. So if for ah j E [c + 2, p] we have H[j] 2 F[j] then for all 
j E [0, p] we have F[j] = f(j). In that case the then clause of the if 
statement in Step 5 is executed. Since c is set to p invariant (2) is satisfied 
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at the start of the next iteration. Since r is not changed in this case 
invariant (3) and the first part of invariant (1) are still satisfied. Also since 
p > r we have c > r and the second part of invariant (1) is satisfied. 

The other case is that we find j, E [c + 2, p] such that H[j,] < F[ j,] 
and H[j] 2 F[ j] for j E [c + 2, j,, - 11. Then by the reasoning above at 
the end of Step 4 we have F[ j] = f(j) for all j < j, and H[j,] = the 
minimum value in subcolumn g(c + 1, p - 1; j,,). In Step 5 the else clause 
is executed and after F[j,,] is set to H[j,] we have F[j] = f(j) for all 
j I j,, so invariant (2) still holds after c is set to j,. The minimum value in 
column j,, of g was found in a row 2 c + 1, so since g is totally monotone 
we know that all minimaincolumns >j, areinrows kc+l.Thus 
invariant (3) holds after r is set to c + 1 and c is set to j,,. The value of r is 
increased so r > 0 and the first part of invariant (1) is satisfied. Since 
j, 2 c + 2 (using the old value of c) we have the new value of c > r, so the 
second part of invariant (1) is satisfied. 

The then clause of Step 5 leaves c = p I n and the else clause leaves 
c = j, I n so when the while loop terminates we must have c = n. Then 
invariant (2) implies that F[j] = f(j) for all j E [0, n] and we are done. 

4. THE TIME BOUND 

We show that the algorithm terminates within O(n) time. On any given 
iteration submatrix S has c - r + 1 rows and at most c - r + 1 columns. 
Submatrix T has at most c - r rows and c - r columns. The SMAWK 
algorithm runs in linear time so the time taken by a single iteration can be 
bounded by b . (c - r + l), for some constant b. Say that an iteration is 
ubnormul if p z 2c - r + 1 and the then clause of Step 5 is executed, and 
is normal otherwise. In an abnormal iteration we have p = n and at the end 
c is set to p, so that c = n. Thus the algorithm terminates after the first 
abnormal iteration (if any) and the total time used by abnormal iterations is 
O(n). To bound the cost of normal iterations let +(i) = the value of r + c 
at the end of the i th iteration (+(O) = 0). Since at the end of each iteration 
r I c I n we always have e(i) zz 2n. We claim that if the ith iteration is 
normal +(i) 2 $(i - 1) + c - r + 1, where the values of c and r are from 
the start of the ith iteration. This claim implies that for all i the total time 
used by the first i normal iterations is at most b . +(i), so the time taken by 
all normal iterations is at most 26~2. To prove the claim, consider first the 
case where the then clause of Step 5 is executed. Since the iteration is 
normal p = 2c - r + 1 so c is replaced by 2c - r + 1, an increase of 
c - r + 1, and r is unchanged. Thus +(i) = +(i - 1) + c - r + 1. If in- 
stead the else clause is executed c is increased by at least 2 (since 
j,, 1 c + 2) and r is increased by c - r + 1, so G(i) 2 $(i - 1) + c - r + 

3. So the total time taken by all iterations is O(n). 
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5. PRACTICAL EFFICIENCY CONSIDERATIONS 

If one has an instance of the concave LWS problem for which the 
difference-of-weight constraint can be satisfied (and the constant bounding 
the time to solve diff(i, j, x) = 0 is reasonably small) then Hirschberg and 
Larmore’s [2] O(n) time algorithm is the method of choice. Otherwise the 
best method depends on the value of n. Hirschberg and Larmore’s general 
O(n log n) time algorithm is simple and has a small constant factor buried 
in the “0,” whereas the theoretically superior linear time algorithm given 
here uses the SMAWK algorithm, which has a fairly large constant factor. 

For each j E [l, n] let prev( j) be the value of i E [0, j - l] that 
minim&s g(i, j), and let w  = mai.j..(j - prev(j)). For the line- 
breaking problem n is the number of syllables in the paragraph to be 
formatted and w  is roughly the maximum number of consecutive syllables 
that fit on a single line without crowding. Hirschberg and Larmore’s 
algorithm [2} can easily be modified to run in O(n log w) time. There is a 
simple divide-and-conquer procedure for finding the minima of an I x m 
totally monotone matrix iu time O(1 log m), with a small constant factor 
inside the “0.” For values of w  that are not very large the algorithm 
described here will run faster if the calls to the SMAWK procedure are 
replaced by calls to the divide and conquer procedure. This version of the 
algorithm runs in O(n log w) time, because c - r I w  at each iteration. It 
is quite different from Hirschberg and Larmore’s algorithm, and like their 
algorithm it has a moderate sized constant factor. 
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