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Abstract

In the constructive programming community it is commonplace to see formal developments
of textbook algorithms. In the algorithm design community, on the other hand, it may be well
known that the textbook solution to a problem is not the most efficient possible. However, in
presenting the more efficient solution, the algorithm designer will usually omit some of the
implementation details, thus creating an algorithm gap between the abstract algorithm and its
concrete implementation. This is in contrast to the formal development, which usually proceeds
all the way to the complete concrete implementation of the less efficient solution. We claim that
the algorithm designer is forced to omit some of the details by the relative expressive poverty
of the Pascal-like languages typically used to present the solution. The greater expressiveness
provided by a functional language would allow the whole story to be told in a reasonable
amount of space. In this paper we use a functional language to present the development of
a sophisticated algorithm all the way to the final code. We hope to bridge the algorithm gap
between abstract and concrete implementations, and thereby facilitate communication between
the constructive programming and algorithm design communities. (©) 1999 Elsevier Science B.V.
All rights reserved.
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1. Introduction

The paragraph formatting problem [13] is a favourite example for demonstrating
the effectiveness of formal methods. Two particularly convincing derivations can be
found in [1, 15]. The algorithms derived in these references are applications of dynamic
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programming, and their time complexity is O(min(wn,n?)), where w is the maximum
number of words on a line, and » is the number of words to be formatted.

Among algorithm designers it is well-known that one can solve the paragraph prob-
lem in O(n) time, independent of w [8—11]. Typical presentations of these linear algo-
rithms do however ignore some details (for instance, that the white space on the last
line does not count), thus creating an algorithm gap between the abstract algorithm and
its concrete implementation. This contrasts with the formal developments cited above,
which present concrete code, albeit for a less efficient solution.

This paper is an experiment in bringing formal methods and algorithm design closer
together, through the medium of functional programming. It presents a linear-time al-
gorithm for paragraph formatting in a semi-formal style. The algorithm is given as
executable code; in fact, the WTEX file used to produce this paper is also an exe-
cutable Haskell program. In writing this paper we hope to convince the reader that
a functional style can be suitable for communicating non-trivial algorithms, without
sacrificing rigour or clarity or introducing an algorithm gap.

Of course, there exist algorithms that are difficult to express functionally. In fact, it
came as a surprise to us that the algorithm presented here can indeed be implemented
without resorting to any imperative language features. One of us (OdM) first attempted
to explain the algorithm (which is very similar to that in [9]) in 1992, and then
implemented it in Modula-2; when that program was discussed at the Oxford Problem
Solving Club, it met with a lot of disappointment because of the need for destructive
updates. Only recently we realised how the algorithm could be expressed functionally.
This paper is therefore also a contribution to the ongoing effort of determining what
can be done efficiently in a purely functional style.

1.1. Preliminaries

We do not assume that the reader is an expert in functional programming; we explain
the necessary syntax and standard functions of Haskell as we go. (Of course, some
familiarity with a modern lazy functional language such as Haskell, Miranda' or Hope
would be helpful; but we trust that the notation is fairly self-evident.) In addition to
the standard functions of Haskell, we use a number of other primitives, which are
explained in this section.

foldl: The function fold1 is related to the standard function foldr, but it operates
on non-empty lists. Informally, we have

foldl step start [a0,al,...,an]
= a0 ‘step‘ (al ‘step® (... ‘step‘ start an))

(Here, ‘[20,al,...,an]” denotes a list, and writing the binary function f inside
backwards quotes, ‘f°, allows it to be used as an infix operator.) In words, fold1
traverses a list from right to left, applying start to the last element, and ‘adding in’ the

' Miranda is a trademark of Research Software Ltd.
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next element at each stage using the function step. The formal definition of foldl is

>foldl :: (a->b->b) -> (a->b) -> [a] -> b
>foldl f g [al = ga
>foldl f g (a:x) = f a (foldl f g x)

(The first line is a type declaration, stating that fold1l takes three arguments — a
binary function of type a->b->b, a unary function of type a->b, and a list of type
[a] — and returns a value of type b. The binary operator ‘:’ is ‘cons’, prepending an
element onto a list. The definition of fold1l is by pattern matching: the first equation
that matches the argument applies. Because neither equation matches the empty list,
foldl is undefined there.)

scanl: The function scanl records all intermediate results of the computation of
foldl in a list:

>scanl :: (a->b->b) -> (a->b) -> [a] -> [b]
>scanl f g = foldl £’ g’

> where g’ a = [g a]

> f> as=1f a (head s) : s

(Here, the function head returns the first element of a non-empty list.) For example,
the function tails, which returns all non-empty suffixes of its argument, can be defined

>tails :: [a] -> [[a]]
>tails = scanl (:) (:[1)

(The second argument (:[]) to scanl is the binary operator ‘:’ already supplied

with its second argument, in this case the empty list; the function (:[]) that results

is the function taking an element into a singleton list containing just that element.)
The relationship between foldl and scanl is succinctly expressed in the so-called

scan lemma:
scanl f g = map (foldl f g) . tails (D)

(Here, the higher-order function map applies the function which is its first argument
to every element of the list which is its second argument; the binary operator .’ is
function composition.) The scan lemma will be useful towards the end of this paper.

single: The operator single tests whether its argument is a singleton list:

>single :: [a] -> Bool
>single [a] = True

>single - = False

(The pattern ‘_” matches any argument, thereby acting as a kind of ‘else’ clause.) It
is thus similar to the standard Haskell function null, which tests for emptiness.
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minWith: The function minWith f takes a list x and returns an element of x whose
f-value is minimal. Formally, minWith can be defined in terms of fold1:

>minWith:: (a->Int) -> [a] > a

>minWith f= foldl choice id
> where choice ab | fa<fb = a

> | otherwise = b

(The expression ‘f a < f b’ here is a guard. The first equation for choice applies
if the guard holds, and the second equation applies if it does not.)

2. Specifying the problem

In the paragraph problem, the aim is to lay out a given text as a paragraph in a
visually pleasing way. A text is given as a list of words, each of which is a string,
that is, a sequence of characters:

>type Txt= [Word]
>type Word=String

A paragraph is a sequence of lines, each of which is a sequence of words:

>type Paragraph= [Line]
>type Line= [Word]

The problem can be specified as

>par0Q :: Txt -> Paragraph
>par0 = minWith cost . filter feasible . formats

or informally, to compute the minimum-cost format among all feasible formats. (The
function filter p takes a list x and returns exactly those elements of x that satisfy
the predicate p.) In the remainder of this section we formalise the three components
formats, feasible and cost of this specification. The result will be an executable
program, but one whose execution takes exponential time.

2.1. Paragraph formats

The function formats takes a text and returns all possible formats as a list of
paragraphs:

>formats :: Txt -> [Paragraph]

>formats = foldl next_word last_word

> where last_word w=1[ [[w]] ]

> next_word w ps = map (new w) ps ++ map (glue w) ps
>new w 1s = [w] :1s

>glue w (1:1s) = (w:1) :1s
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(Here, the binary operator ++ is list concatenation.) That is, for the last word alone
there is just one possible format, and for each remaining word we have the option
either of putting it on a new line at the beginning of an existing paragraph, or of
gluing it onto the front of the first line of an existing paragraph.

2.2. Feasible paragraph formats

A paragraph format is feasible if every line fits:

>feasible :: Paragraph -> Bool
>feasible = all fits

(The predicate all p holds of a list precisely when all elements of the list satisfy
the predicate p.)
We define a global constant maxw for the maximum line width:

>maxw :: Int
>maxw = 70

Of course, for flexibility many of the functions we develop should be parameterized
by maxw; however, a global constant makes the presentation of the algorithm less
cluttered. It is straightforward to make maxw a parameter throughout.

A line fits if its width is at most the maximum line width:

>fits ::Line -> Bool
>fits xs = (width xs <= maxw)

In formatting a text as a paragraph, the maximum line width should never be ex-
ceeded. Our programs will halt with a run-time error if an individual word exceeds
the maximum line width; in practical applications one would need to deal with such
pathological inputs more graciously.

The width of a line is defined to be its total length when the words are printed
next to each other, with one space character between each consecutive pair of words:

>width :: Line -> Int
>width = foldl plus length
> where plus wn = length w + 1 + n

The function length returns the number of elements in a list. This notion of width is
appropriate for displaying paragraphs on a device where every character has the same
width. The programs presented below can easily be modified to deal with proportional
spacing, where different characters may have different widths. In traditional typesetting,
proportionally spaced fonts still conform to an underlying ‘unit’ system, whereby the
different character widths are all integer multiples of some common unit; we could
cope with this generalization by counting units instead of characters. However, in
modern digital typesetting, there need be no unit system; in that case, one would need
constant-time access arrays, which are not available in all functional languages.
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2.3. The cost of a paragraph format

In addition to the maximum line width maxw, the problem also depends upon an
optimum line width optw, another global constant:

>optw :: Int
>optw = 63

The optimum line width should of course be at most the maximum line width.

A visually pleasing paragraph is one in which the width of each line in the paragraph
is as close to the optimum line width as possible. More precisely, we wish to minimise
the total cost, the sum of the squares of the deviations of the line widths from the
optimum line width:

>cost :: Paragraph -> Int

>cost = foldl plus (const 0)

> where plus 1 n=1linc 1 + n

> linc 1= (optw - width 1)"2

Note that the last line gets treated as a special case: it does not count towards the
total cost of the paragraph. This is achieved by the function const, which satisfies the
equation const a b = a for any b.

3. The standard algorithm

The specification in Section 2 makes an inefficient program because it maintains too
many candidate solutions. It is a generate and test algorithm, of the form

best . filter ok . generate

The standard technique for improving algorithms of this form is to promote the test
filter ok and the selection best inside the generator, so as to avoid generating
unnecessary candidates. Standard theory [1-3] tells us what properties of generate,
ok and best this requires. In our particular case it is sufficient that new is monotonic
in its second argument:

cost 1s < cost 1s’ = cost (new w 1s) < cost (new w 1ls’) 2)

and furthermore, that glue is monotonic in its second argument in a slightly weaker
sense — namely, for paragraphs with the same first line:

cost (1:1s) < cost (1:1s’)
= cost (glue w (1:1s)) < cost (glue w (1:1s’))

3)

Note that neither of these two properties depends on the precise definition of the cost
of individual lines, as returned by the function linc; all that matters is that the total
cost is the sum of the costs of the individual lines.
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Using the above two monotonicity properties, the standard theory alluded to above
concludes that the following dynamic programming algorithm is a valid solution to
the specification par0. This is a well-rehearsed development, so we do not repeat it
here.

>parl

>= minWith cost . foldl step start

> where

> step w ps=filter fitH (new w (minWith cost ps) : map(glue w) ps)
> start w=filter fitH [ [[w]] ]

>fitH=fits . head

Note that parl is not equal to parO; in particular, if there is more than one opti-
mal paragraph, parO and parl may return different (but still optimal) paragraphs. To
express this refinement property formally we would have to generalize from functional
programming to relational programming [4], a step that is beyond the scope of this
paper.

For efficiency, we can benefit from performing a tupling transformation [17, 6] to
avoid recomputing the width of the first line and the cost of the remaining candidate
solutions. We represent the paragraph (1:1s) by the triple

(1:1s, width 1, cost 1s)

(Because 1s may be empty, we stipulate also that cost [] = 0.) The program re-
sulting from this data refinement is as follows.

>parl’

> = the . minWith cost . foldl step start

> where

> step w ps = filter fitH (new w (minWith cost ps) :map (glue w) ps)
> start w = filter fitH [([[w]], length w,0)]

> mnew w ([1],n,0) = ([w]:[1], length w, 0)

> new w p = ([w]:1s, length w, cost p) where (1ls,n,m)=p
> glue w (1:1s,n,m) = ((w:1):1ls, length w + 1 + n, m)

> the (1s,n,m) = 1s

> width.hd (1s,n,m) = n

> cost_.tl (Is,n,m) =m

> linc.hd p = (optw - width hd p)™2

> cost ([1,_,.) =0

> cost p = linc_hd p + cost_tl p

> fitH p = width_hd p <= maxw
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4. Improving the standard algorithm

The algorithm at the end of Section 3 is the standard dynamic programming solution
to the paragraph problem, and its time complexity is O(min(wn,n?)) where w is the
maximum number of words on a line and # is the number of words in the paragraph.
Computational experiments confirm that this is an accurate estimate of the program’s
behaviour. This algorithm is the final product of the typical textbook derivation. It does
not make use of any special properties of linc, the function that returns the cost on
an individual line. Indeed, if nothing more is known about linc, it is not possible to
improve upon this algorithm, as noted in [10]. However, as we shall show in Sections
5-8, for our particular choice of linc, namely

linc 1 = (optw - width 1)72

substantial improvements are possible; in fact, we will end up with a program linear
in n and independent of w.

In Section 5 we determine a dominance criterion, whereby some candidate solutions
can be discarded because they are dominated by other ‘better’ solutions. After process-
ing each word of the paragraph, this justifies ‘trimming’ the collection of candidate
solutions to remove the dominated ones.

To obtain a linear-time solution we can afford to do at most an amortized constant
amount of work for each word in the paragraph. Precisely, one new candidate solution
is added for each word, so it suffices that the amount of work performed with each
word is proportional to the number of candidate solutions discarded. The obvious im-
plementation of the trimming operation introduced in Section 5 involves reconsidering
every candidate solution for each word in the paragraph. In Section 6 we show that
this is not necessary: trimming in fact results in removing some candidate solutions
from the beginning of the list and some others from the end. Crucially, the solutions
in the middle of the list need not be considered; at the beginning and at the end of
the list, as soon as one undominated solution is found the trimming can stop.

That still leaves the filter and the map in the definition of the function step, each
of which inspects all candidate solutions for each word of the paragraph. In Section 7
we replace the filter with a function that performs work proportional to the number
of solutions discarded, independently of the number of solutions retained. In Section 8
we eliminate the map (glue w), by making a change of representation under which
glue w is the identity function. The resulting algorithm is linear in the paragraph
length and independent of the line width.

5. Dominance criteria

In this section we determine a dominance criterion whereby some paragraph for-
mats can be discarded because they are dominated by others; thus, fewer candidate
solutions need be maintained at each step. Dominance criteria are the basis for most
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improvements over straightforward dynamic programming. In our case, the dominance
criterion is a consequence of the fact that the function linc is concave, in the sense
that

linc (1++m) - linc 1 < linc (k++1++m) - linc (k++1)

Consequently, the monotonicity property of glue (Eq. (3)) can be strengthened to

cost (1:1s) < cost ((1++m) :ms)

= cost (glue w (1:1s)) < cost (glue w ((1++m):1s)) 4)

In words, the concavity property says that appending a line m onto a line 1 has no worse
an effect than appending m onto a longer line k++1, and the strengthened monotonicity
property says that if a paragraph with a shorter first line is better than another paragraph,
it will remain better when more words are glued to the first lines of both paragraphs
— a cheaper paragraph with a shorter first line dominates a costlier paragraph with a
longer first line.

5.1. Exploiting concavity

We can exploit the dominance criterion to arrive at an improved definition of step.
Note that step w maintains the property ‘is in strictly increasing order of width of
first line’ of the list of candidate solutions. Now suppose that we have two formats
p and q, in that order, in the list of candidate solutions; the first line of q is wider
than the first line of p. Suppose also that cost p < cost q. Then p dominates q:
by the monotonicity property of new (Eq. (2)) and the strengthened property of glue
(Eq. (4)), it follows that q may be safely discarded, because any candidate solution
generated from q will be no better than the candidate solution generated in the same
way from p. So we may improve the definition of step to

step w ps =trim (filter fitH (new w (minWith cost ps):
map (glue w) ps))
where the function trim discards the dominated candidate solutions (namely, the

formats q for which there is a format p appearing carlier in the collection with
cost p < cost q):

trim [] (]

trim [p] (p]

trim (ps++[p,ql) | cost p <= cost q = trim (ps++[p])

trim (ps++[pl) ++ [q]

| otherwise

This is not a valid definition in Haskell, because patterns involving ++ are not allowed.
However, the pattern-matching is easily re-expressed in terms of the standard functions
last and init, which return the last element and the remainder of a list, respectively;
we omit the details.
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Note that we could trim from the back, as here, or from the front. In Section 6 we
will see that trimming from the back is the better choice, because we will develop a
criterion for stopping trimming early.

5.2. Trimming introduces order

Now note further that the result of a trim is in strictly decreasing order of cost,
so the cheapest candidate solution is the last in the list. We can therefore improve the
definition of step further, by using last instead of minWith cost:

step w ps = trim (filter fitH (new w (last ps):map (glue w) ps))

The resulting algorithm is an improvement over the standard solution, but it is still not
linear because at each step the whole list of intermediate solutions is traversed.

6. Forecasting the future

To avoid having to traverse the whole list of candidate solutions at each step, we
will develop a criterion for stopping trimming early. Observe that we maintain a list
of paragraph formats with strictly increasing first line widths, and strictly decreasing
costs.

Say that a candidate solution element is bumped by its predecessor when it is elimi-
nated by trim. Can we forecast how much gluing is needed before a particular format
q is bumped by its predecessor? If so, we may be able to stop trimming early: if
a word shorter than the width forecasted for q has been glued, then q need not be
considered for trimming.

6.1. The bump factor

We introduce a function cg :: Paragraph -> Int -> Int (for ‘cost-glue’) such
that

cost (glue w p) = cg p (length w + 1)
One suitable definition of cg is

cg [11 n =0
cg (1:1s) n= (optw - (n + width 1))" 2 + cost 1s

In words, cg p (n+1) is the total cost of the paragraph formed after a sequence of
words whose width is n has been glued to the first line of paragraph p. Note that
we do not check whether the maximum line width is exceeded, and so the notion of
cost may be meaningless in terms of paragraphs. We allow negative values of n as
arguments of cg.
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Using the function cg, we can forecast when a paragraph p will bump a paragraph
q in the process of gluing more words to both paragraphs. Define the function bf (for
‘bump factor’) by

bf p q

setmin {n | cg p n <= cg q n} ‘min‘ (maxw - width (head q) + 1)

(This is not a Haskell definition — Haskell does not have sets, and besides, the quan-
tification is over a potentially infinite set — but it does completely determine bf.) After
increasing by bf p q the widths of the first lines of both p and q, paragraph p will
be at least as good as g; furthermore, if we increase the first line widths by more than
bf p q, paragraph p will still be as good as q (by concavity), so q can be discarded.
The second term in the definition of bf reflects the fact that after increasing the first
line widths by more than maxw - width (head q) + 1, paragraph p is always better
than paragraph q, because the first line of q exceeds the maximum line width. It can
happen that bf returns a negative number, namely when p is better than q to start
with.

6.2. Using the bump factor
Let us now formalise these observations as properties of glue. Starting with cg, we
have that
cg (glue wp) n = cgp (n+ 1+ length w)
Consequently, bf satisfies
bf (glue w p) (glue w q) = bf p q - (1 + length w)

and therefore

bf pg<bfrs
=
bf (glue w p) (glue w q) < bf (glue w r) (glue w s) %)

Finally, define the predicate better by

better w p q= cost (glue w p) <= cost (glue w q) ||
not (fitH (glue w q))

so that ‘better w p q’ is equivalent to ‘1 + length w = bf p q’. (The binary op-
erator || is boolean disjunction; later on we use &&, which is boolean conjunction.) In
words, better w p q states that, after gluing a word w, paragraph p will be better than
paragraph q, either on grounds of cost or because the first line of q has become too
wid. Suppose p = 10:1s0, q = (10++11):1s1l, r = (10++11++12):1s2, and
bf p q<bf q r. We have the following property:

better w g r = better w p g A better wp r
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In words, this property says that whenever q gets better than r by gluing a word w,
then p is better than both q and r after gluing the same word. It follows that q can
never be useful, and therefore, if we had a triple like p, q and r in the list of candidate
solutions, q could be safely discarded.

6.3. Tight lists of solutions

We shall exploit this observation by maintaining the list of candidate solutions so
that, as well as the properties

(1) the widths of the first lines are in strictly increasing order, and
(i) the costs of the candidate solutions are in strictly decreasing order,
holding as before, also the property
(iii) the bf-values of consecutive adjacent pairs of candidate solutions are in strictly

decreasing order.

We call such a list of candidate solutions tight.

To see how we can keep the list of candidate solutions tight, recall the definition of
step from Section 5.2:

step w ps = trim (filter fitH (new w (last ps):map (glue w) ps))

We argued in Section 5.1 that step w maintains properties (i) and (ii). We now show
how property (iii) is maintained.

Notice that all three properties are preserved when taking a subsequence of (that
is, deleting some elements from) the list of candidate solutions. For properties (i) and
(i1) this is obvious. For property (iii) it follows from the fact that bf p q > bf p r
> bf q r, provided that bf p q > bf q r and p, q and r are in strictly increasing
order of width of first line; this fact is not too hard to establish.

Suppose that ps satisfies property (iii). Because glue respects the bf order (Eq. (5)),
the list map (glue w) ps also satisfies property (iii). It is however not necessarily the
case that new w (last ps) : map (glue w) ps satisfies property (iii): the presence
of the new element at the beginning may require some of the initial elements of
map (glue w) ps to be removed. So, the cons operator (:) in the definition of step
is replaced by a smart constructor add, which does the required pruning — by the
argument at the end of Section 6.2, if we have three consecutive candidate solutions
p, 9 and r with bf p q < bf q r, solution q can be discarded.

add p ([q,r]++rs) | bf p g <= bf q r = add p ([r]++rs)

| otherwise [p,q,r]++rs

Now the list of candidate solutions new w (last ps) ‘add‘ map (glue w) ps sat-
isfies property (iii). Note that p ‘add‘ ps is a subsequence of p:ps, so properties (i)
and (ii) are still maintained; for the same reason, all three properties are maintained
by the filter fitH too.
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Now, however, property (iii) permits an optimization of trim, whereby we can stop
trimming early. This was the reason for introducing bump factors in the first place.
Suppose that ps satisfies property (iii); we claim that trim ps can be written

trim [1 = []

trim [p] = [pl]

trim (ps++[p,ql) | cost p <= cost q = trim (ps++[pl)
| otherwise ps++[p,ql

without a recursive call in the last clause. Here is the justification. Suppose that r, s
are adjacent candidate solutions in ps, and p, q are adjacent candidate solutions in
ps, and r is before p in the list. Then bf r s > bf p q, by property (iii). Suppose
also that cost p > cost q. Then the word w that has just been processed was too
short for p to bump q, and so was also too short for r to bump s (because of the
bf ordering); that is, cost r > cost s too, and the initial segment ending with
solution q of the list of candidate solutions already satisfies property (ii). Thus, we
have trim (ps++[p,ql) = ps++[p,q]l — the second recursive call to trim can be
omitted.

Because we are now manipulating the list of candidate solutions at both ends, it
will be profitable to use a symmetric set of list operations, where head and last are
equally efficient. Such an implementation of lists is summarized in an appendix to this
paper. Below, whenever we use symmetric lists, the familiar list operations are written
using a prime — head’, init’, and so on — and the type of symmetric lists over a is
written SymList a.

In outline, the program now is

par2 = last . foldl step start
step w ps = trim (filter fitH (new w (last ps) ‘add‘ map (glue w) ps))

(Note that we have made use again of the fact that a tight list of paragraphs is in
strictly decreasing order of cost, replacing the minWith cost in par2 by last.) This
new program is in fact quite efficient: computational experiments show that at each
step of the computation, only a very small number of candidate solutions is kept. Still,
all candidate solutions get inspected each time step is evaluated, and this remains a
source of inefficiency. To make progress, we shall have to remove the subexpressions
filter fitH and map (glue w) from the definition of step; we do this in Sections
7 and 8.

6.4. Computing the bump factor

One point that we have not touched upon is how bf can be efficiently implemented.
This is an exercise in high-school algebra. Note that, when p and q appear in that
order in the list of candidate solutions, p cannot be a singleton: there is just one way
of formatting a paragraph into a single line, and if that line fits it will be the last
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candidate solution because it has the widest first line. Therefore, there are just two
cases to consider in computing bf p q: when q is a singleton, and when q is not.
Recall the definition of bf:

bf p q
= setmin {n | cg p n <= cg q n} ‘min‘
(maxw - width (head q) + 1)

Note that the second term rgh = maxw - width (head q) + 1 is always greater
than zero.

Case q is a singleton: Then cg q n is zero for any n. Thus, the only value of n for
which cg p n<cg q n would be one for which cg p n is zero; this can only happen
when n = optw - width (head p) and cost (tail p) = 0. This case therefore
splits into two subcases: if cost (tail p) is zero, then bf p q is the smaller of
rgh and optw - width (head p); otherwise, there are no suitable values of n, and
bf p q is simply rqgh.

Case q is not a singleton: Note that, for non-singleton p,

cg pn=cost p + n'2 - 2*xn*(optw - width (head p))
and so cg p n < cg q n precisely when

n > (cost p-cost q)/(2*(width (head q)-width (head p)))
(the divisor is non-zero, because of the ordering on widths of first lines). Therefore,
the first term in bf p q is the ceiling of this quotient, and bf p q itself is the smaller

of this first term and rqh.
Thus, we can implement bf as follows:

bf p q
| single q && cost pt == 0 = (optw - wph) ‘min‘ rgh
| single q = rqgh
| otherwise = ceildiv (cost p - cost q)

(2% (wgh - wph))

‘min‘ rqgh
where
ph:pt = p
gh:qt = q
wph = width ph
wgh = width gh
rgh = maxw - wgh + 1

where ceildiv x y rounds the fraction x/y up to the next integer.
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7. Filtering

Because the list of candidate paragraphs is kept in increasing order of width of the
first line, the filter is easily dealt with. The net effect of filtering is that the last few
formats (namely, those with the widest first lines) are discarded, and the remainder are
retained. Therefore, we can use drop_nofit = droptail (not . fitH) instead of
filter fitH, where

droptail :: (a->Bool) -> [a] -> [al
droptail p [] = [
droptail p xs

droptail p (xs++[x]) | p x
| otherwise = xs ++ [x]

Informally, droptail p x discards elements from the end of the list x, stopping
when the list is empty or the last element does not satisfy predicate p.

8. Differencing

In this section we will get rid of the map from the definition of step, by making a
change of representation under which glue w is the identity function. If we assume that
the list operations head, tail, init and last take amortized constant time, then
this gives an amortized linear-time algorithm for paragraph formatting. Every word
of the paragraph contributes at most one new candidate solution, and the amount of
work performed (by add, trim and drop_nofit) on the list of candidate solutions
is proportional to the number of candidate solutions discarded.

8.1. A data refinement

Elimination of glue can be achieved by computing only the tail of each paragraph.
As long as we have the original text available (which is the concatenation of the
paragraph), all necessary quantities can be computed in terms of the tail alone:

length (head p)
width (head p)

length (concat p) - length (concat (tail p))

| single p = width (concat p)

| otherwise = width (concat p) - width (concat (tail p)) - 1
cost p

| single p =0

| otherwise = (optw - width (head p))"2 + cost (tail p)

(Recall that we stipulated that cost [] = 0.) The exploitation of this type of equation
is known as differencing. We shall represent a paragraph p by the triple rep p where
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rep p = (width (concat (tail p)),
cost (tail p),
length (concat (tail p)))

It will be useful to have a type synonym for the new representation of paragraphs:

>type Par = (Width,Cost,Length)
>type Width = Int

>type Cost = Int

>type Length = Int

>width tl = fst3

>cost_tl = snd3

>lentl = thd3

Here, the functions fst3, snd3 and thd3 return the first, second and third compo-
nents of a triple, respectively:

>fst3 (a,b,c) = a
>snd3 (a,b,c)
>thd3 (a,b,c)

C

On this representation, the function glue w is the identity function, as required:

rep (glue w p) = rep p
8.2. The overall structure

Before we go into the details of the implementation of other operators on paragraphs,
we outline the structure of the final program.

The program presented below is based on the fact that a solution to par0 is returned
by par3, where

par3 :: Txt -> Paragraph
par3 ws
= tile ws (map (length.concat.tail.par0) (tails ws)) (length ws)

The function tile xs produces the required solution by exploiting the differencing
equation for length . head:

>tile :: Txt -> [Length] -> Length -> Paragraph

>tile ws [] n =0

>tile ws (m:ms) n = wsl : tile ws2 (drop 1 (m:ms)) (n-1)
> where 1 = n - m

> (wsl,ws2) = splitAt 1 ws

(Here, splitAt 1 x is a pair of lists, the first element of the pair being the first 1
elements of x and the second element being the remainder; drop 1 x is the second
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component of splitAt 1 x.) The proof that this works is an induction over all tails
of the argument, and a detailed exposition can be found in [3]. The crucial observation
is that in each occurrence of tile ws ms n, we have

ms = map (length.concat.tail.par0O) (tails ws)
length ws
length ms

n

It is perhaps interesting to note that a program involving tile is the starting point for
the paper by Hirschberg and Larmore [10]; for us, it is part of a final optimisation.

Adapting the algorithm developed in previous sections to the new representation of
paragraphs, one can find functions stepr and startr — data refinements of step and
start — such that

foldl stepr startr (map length ws)

(map rep (foldl step start ws), width ws, length ws)

and so, by the scan lemma (Eq. (1)), which showed how the computation of
foldl f g on all tails can be written in terms of scanl f g,

scanl stepr startr (map length ws)

zip3 (map (map rep . foldl step start) (tails ws),
map width (tails ws),
map length (tails ws))

(The function zip3 ‘zips’ in the obvious way a triple of lists, all of the same length,
into a list of triples.)

Let zs = scanl stepr startr (map length ws). Then

length ws = thd3 (head zs)

and

map (length . concat . tail . par0) (tails ws)

= {rep)
map (len_tl . rep . par0) (tails ws)

= { par0 = last . foldl step start }

map (len_tl . last . map rep . foldl step start) (tails ws)
{ scan lemma }

map (len_tl . last . fst3) zs

The resulting program is below. (Recall that the primed list operations are the opera-
tions on symmetric lists, defined in Appendix A.)

>par3d :: Txt -> Paragraph

>par3d ws

> = tile ws (map (len_tl.last’.fst3) zs) (thd3 (head zs))
> where zs = scanl stepr startr (map length ws)
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8.3. Implementing the data refinement

It remains to give appropriate definitions of stepr and startr. The definition of
startr is

> startr :: Length -> (SymList Par, Width, Length)
> startr a | a <= maxw = (cons’ (0,0,0) nil’,a,1)

The definition of stepr mirrors that in the preceding section, except that all oper-
ations on paragraphs have been data-refined to the new representation of paragraphs.
Those modifications are justified by the differencing equations stated above, and the
following definitions are immediate consequences of those identities:

>stepr :: Length ->

> (SymList Par, Width, Length) ->
> (SymList Par, Width, Length)
>stepr w (ps,tw,tl)

> = (trim (drop_nofit (new (last’ ps) ‘add‘ ps)), tot_width, tot_len)
> where

> single p =lentl p==0

> cost p

> | single p =0

> | otherwise = cost_tl p + (optw - width_hd p)"2
> width_hd p

> | single p = tot_width

> | otherwise = tot_width - width tl p - 1

> tot_width =w+ 1+ tw

> tot_len =1+1tl

The operator new adds a new line to the front of a paragraph. It is important that, in
computing the cost of the tail of the newly created paragraph, we use the old width
of the head, that is, without taking the new word w into account:

new p | single p (tw,0,t1)
| otherwise = (tw,cost_tl p + (optw-old width hd p)"2,tl)
old_width hd p | single p = tw
| otherwise= tw - width_tl p - 1

vV V V V

The definition of trim is not changed at all:

> trim ps_.pq | null’ ps_pq = ps_pq

> | single’ ps_pq = ps_pq

> | cost p <= cost q = trim ps_p
> | otherwise = ps_pq

> where ps_p = init’ ps_pq

> q = last’ ps_pq

> P = last’ ps_p
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whereas drop_nofit is an implementation of droptail (mot . fitH), using the
new implementation width_hd of width . head.

drop_nofit ps_p | null’ ps_p = ps_p
| width_hd p > maxw = drop_nofit ps
| otherwise = ps_p

where ps = init’ ps_p
p = last’ psp

V V V V V

The definition of add is similarly unaffected.

> add p qr_rs | single’ qr_rs || null’ gr.rs = cons’ p Qqr._rs
> | bf pgq<=bf qr = add p r_rs
> | otherwise = cons’ p qr._rs
> where r_rs = tail’ qr._rs
> q = head’ qgr._rs
> r = head’ r_rs
Finally, the data-refined version of bf becomes
> bf p q
> | single q && cost_tl p == 0 = (optw - wph) ‘min‘ rqh
> | single q = rgh
> | otherwise = ceildiv (cost p-cost q)
> (2% (wgh-wph))
> ‘min‘ rqgh
> where
> wph = width_hd p
> wgh = width_hd q
> rgh = maxw - wgh + 1

>ceildiv n m = (n+m-1) ‘div‘ m

It is not hard to check that program par3 does indeed have (amortised) linear-time
complexity. This theoretical bound is confirmed in computational experiments, and for
all but the smallest inputs, par3 outperforms the standard algorithm paril.

9. Haskell vs. C++

We now have the ingredients for writing a program that has the same functionality
as the Unix utility fint, although its output will be far superior (standard Unix’s fint
uses a naive greedy strategy, and the resulting paragraphs are not visually pleasing;
however, the Gnu version of fimt uses the algorithm from [13]). We shall make use
of the functions

parse :: String -> [Paragraph]
unparse :: [Paragraph] -> String
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which are well-known text-processing primitives in functional programming [5]. Their
definitions are included in an appendix to this paper. Using these primitives, our im-
plementation of fint takes a single line:

>fmt = unparse . map (par3 . concat) . parse

Joe Programmer may not be happy about this implementation of a high-quality fint.
Although there is no algorithm gap, one might expect a performance gap between the
Haskell program and an implementation of the same algorithm in a more conventional
language. To measure the performance gap we compared the Haskell program for fmt
to a hand-coded C++ implementation that is in close correspondence to the program
presented here. The conventional program in C+-+ does make extensive use of de-
structive updates, however, and the implementation of symmetric lists is replaced by
an array implementation. Because the program only adds candidate solutions at one
end of the list, we can implement it by declaring an array whose size is an upper-
bound on the number of words in a paragraph, with two pointers that indicate the
beginning and end of the symmetric list. (If we also added solutions at the other end,
we would need to use the folklore circular array code for queues.) All data structures
in the conventional program are therefore of fixed size. Appropriate size bounds were
determined by experimentation. The conventional program is of course longer than the
Haskell program, but this is mostly due to the unwieldy syntax, as the difference is
only a factor of one third. Personally we found the conventional code much harder
to write because it uses a lot of indexing in arrays, as opposed to the standard list
processing functions in Haskell.

In writing the C++ code, we attempted to apply all the standard tricks that good
C++ programmers employ to speed up their programs. For example, index calculations
were avoided through use of pointers, and we provided ample hints to the compiler
through const declarations and inline directives. To check that we did indeed conform
to good practice in writing the C++ program, we compared its performance to that
of the Gnu fmnt utility: for longer line lengths (over 90 characters), our code for the
sophisticated algorithm is faster than fint. (As explained before, the running time of the
standard dynamic programming solution, as used in fint, increases with the maximum
line length.) By contrast, the Haskell program in this paper has not been fine-tuned for
performance at all, and we directly compiled the IA[EX source of this paper. It follows
that the performance measurements reported give an edge to C++-.

All three programs were compiled on a 400 MHz Pentium II processor, with 128MB
of RAM, running RedHat Linux with a 2.0.35 kernel. For Haskell we used version
4.01 of the Glasgow compiler ghc, because it produces the best code of all Haskell
compilers available. The same code was also compiled with hbc (version 0.9999.4),
which also has a good reputation for speed and reliability. For C++ we used the Gnu
compiler g++, version 2.90.27. All three executables were reduced in size using the
utility strip. The Haskell executables are, as expected, vastly larger than the C++
code — they differ by about a factor of 25. In all cases we switched on all optimizers.
This has a spectacular effect for the ghc program: it ran more than four times faster
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Table 1

Lines Chars Size (kb) Time (s)
Haskell (hbc) 183 4676 196 10.34
Haskell (ghc) 183 4676 453 4.72
C++ 416 6310 8 0.43
Haskell (hbe)/(ghc) 1.00 1.00 231 2.19
Haskell (ghc)/C++ 0.44 0.74 24.50 11.27

than without the optimisation switch. Indeed, this is where we claw back some of
the gains obtained by hand-coded optimisations in the C++ code: the ghc compiler
aggressively applies optimising program transformations [18].

To compare the performance of the two executables, we formatted the full text of
Thomas Hardy’s Far from the Madding Crowd, an ASCII file of approximately 780Kb
[20]. The three programs were run to format this file for a maximum line width of
70 characters and an optimum width of 63. The CPU time was measured using the
time command provided by the Linux bash shell. The ghc executable is about twice
as fast as the hbc program, which shows how much can be achieved by automatic
transformation of Haskell programs. The C++ program is eleven times faster again,
which reflects the effort put into the respective compilers, and the fact that we did not
bother to fine-tune the Haskell code.

Table 1 summarises the above comparison: the first two columns compare the pro-
grams with respect to their textual length (lines and characters), the third column is
the size of the executable (in kbytes), and the last column shows their execution time
(in CPU seconds).

In summary, the performance gap is not all that great; it furthermore seems likely
that advances in compiler technology (illustrated by the difference between hbc and
ghc) will cancel the remaining advantages of languages like C++ over Haskell in the
next few years.

10. Discussion

This paper was an experiment in using a functional language for presenting a non-
trivial algorithm in a semi-formal style. We personally believe that for a large class
of problems, this style of presentation is adequate, at once closing the algorithm gap
and reconciling algorithm design with formal methods. The comparison with the hand-
coded conventional implementations indicates that for non-trivial algorithms like the
one presented here, the performance gap is rather small too. There are, however, two
unsatisfactory aspects of the material presented here:

e First, we are not entirely satisfied with the semi-formal style of this paper. Up to the
introduction of trim, the program derivation is absolutely standard, and no invention
is involved in synthesizing the program. That part of the paper could easily be cast
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in calculational form, given the right machinery. The invention of the ‘bump factor’,
and its role in ‘forecasting the future’, is however rather ad hoc, and escapes, at
present, an elegant calculational treatment. This is unsatisfactory, especially since the
technique seems more generally applicable.

e Second, we are very dissatisfied with the way one has to program differencing in a
functional language. In a sense this is the least interesting part of the programming
process, and yet it is quite error-prone. Moreover, differencing destroys some of
the delightful elegance that characterises the functional expression of the standard
algorithm. Meta-programming features in the spirit of Paige’s invariant construct
[16] such as those espoused by Smith [19] and Liu [14] might be used to circumvent
this problem, but unfortunately we do not know of any modern functional language
that supports those ideas.

Finally, the algorithm presented here is representative of a large class of ingenious

algorithms, collectively known under the name sparse dynamic programming [8]. Tt

would be nice to see whether a generic treatment of this class of algorithms is possible,
in the style of De Moor [7]. It seems that such a generic approach is within reach, but
we have not investigated this in any depth.

Appendix A. Symmetric lists

The implementation of symmetric lists given below is explained in some depth in
[12]. Briefly, a list x is represented as a pair of lists (y,z) such that abs (y,z) = x,
where the abstraction function abs is defined by

abs (y,z) = y ++ reverse z

Moreover, the following invariant is maintained: if either of the two lists is empty, the
other is empty or a singleton.
The operations below implement their non-symmetric counterparts in the sense that

head’ = head . abs
abs . tail’ tail . abs

and so on. The implementation is such that each operation takes amortised constant
time.

>type SymList a = ([al, [al)
>single’ (x,y) = (null x && single y) || (single x && null y)

>null’ ([1,[]) = True
>null’_ = False

>nil’ = ([1,[1)

>head’ (x,y) | not (null x) = head x
> | otherwise

head y
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>last’ (y,x) | not (null x) = head x
> | otherwise = head y

>cons’ a (x,y) | not (null y) = (a:x,y)

|
> | otherwise = ([al,x)
>snoc’ a (y,x) | not (null y) = (y,a:x)
> | otherwise = (x,[aD)
>tail’ (x,y) | null x = (01,
> | single x = (reverse y1, y0)
> | otherwise = (tail x, y)
> where (y0,y1l) = splitAt (length y ‘div‘ 2) y
>init’ (y,x) | null x = (01,0
> | single x = (y0, reverse yl1)
> | otherwise = (y, tail x)
> where (y0,yl) = splitAt (length y ‘div‘ 2) y

Appendix B. Text processing

The text processing package given below is explained in [5]. It provides primitives
for converting between strings and lines, lines and words, and paragraphs and lines.
In each case, the forward direction can be programmed using the generic solution
format, and the backward conversion using unformat. The definitions of unlines,
lines, unwords and words have been commented out because they are already defined
in the standard Haskell prelude. The function id is the identity function.

>unformat :: a -> [[a]] -> [a]
>unformat a = foldl insert id
> where insert xs ys = xs ++ [a] ++ ys

>format :: Eq a => a -> [a] -> [[al]
>format a [] = [[]]
>format a x = foldl (break a) (start a) x

> where break a b xs | a == = []:xs

> | otherwise = (b:head xs):tail xs
> start a b = break a b [[]]

xunlines :: [String] -> String

*unlines = unformat ’\n’

*lines :: String -> [String]
*lines = format ’\n’

*xunwords :: [String] -> String
*unwords = unformat ’ ’
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*words :: String -> [String]
xyords = filter (/=[]) . format °’ ’

>unparas :: [[[String]]] -> [[String]]
>unparas = unformat []

>paras :: [[Stringl] -> [[[Stringl]l]
>paras = filter (/=[]) . format []

>parse :: String -> [[[Stringl]]
>parse = paras . map words . lines

>unparse :: [[[Stringl]]l] -> String
>unparse = unlines . map unwords . unparas

References

[1] R.S. Bird, Transformational programming and the paragraph problem, Science of Computer
Programming 6 (2) (1986) 159—189.

[2] R.S. Bird, A calculus of functions for program derivation, in: D.A. Turner (Ed.), Research Topics in
Functional Programming, University of Texas at Austin Year of Programming Series, Addison- Wesley,
Reading, MA, 1990, pp. 287-308.

[3] R.S. Bird, O. De Moor, List partitions, Formal Aspects Comput. 5 (1) (1993) 61-78.

[4] R.S. Bird, O. De Moor, Algebra of Programming, International Series in Computer Science, Prentice-
Hall, Englewood Cliffs, NJ, 1996.

[5] R.S. Bird, P.Wadler, Introduction to Functional Programming, International Series in Computer Science,
Prentice-Hall, Englewood Cliffs, NJ, 1988.

[6] W.N. Chin, Automatic methods for program transformation, Ph.D. Thesis, Imperial College, London,
1990.

[7] O. De Moor, A generic program for sequential decision processes, in: M. Hermenegildo, D.S. Swierstra
(Eds.), Programming Languages: Implementations, Logics, and Programs, Lecture Notes in Computer
Science, Vol. 982, Springer, Berlin, 1995.

[8] D. Eppstein, Z. Galil, R. Giancarlo, G.F. Italiano, Sparse dynamic programming II: Convex and concave
cost functions, J. ACM 39 (3) (1992) 546-567.

[9] Z. Galil, R. Giancarlo, Speeding up dynamic programming with applications to molecular biology,
Theoret. Comput. Sci. 64 (1989) 107-118.

[10] D.S. Hirschberg, L.L. Larmore, The least weight subsequence problem, SIAM J. Comput. 16 (4) (1987)
628—-638.

[11] D.S. Hirschberg, L.L. Larmore, New applications of failure functions, J. Assoc. Comput. Mach. 34 (3)
(1987) 616—-625.

[12] R.R. Hoogerwoord, A symmetric set of efficient list operations, J. Funct. Programm. 2 (4) (1992)
505-513.

[13] D.E. Knuth, M.F. Plass, Breaking paragraphs into lines, Software: Practice and Experience 11 (1981)
1119-1184.

[14] Y.A. Liu, T. Teitelbaum, Systematic derivation of incremental programs, Science of Computer
Programming 24 (1) (1995) 1-39.

[15] C.C. Morgan, Programming from Specifications, International Series in Computer Science, 2nd edition,
Prentice-Hall, Englewood cliffs, NJ, 1994.

[16] R. Paige, Programming with invariants, IEEE Software 3 (1) (1986) 56—69.



0. de Moor, J. Gibbons| Science of Computer Programming 35 (1999) 3-27 27

[17] A. Pettorossi, Methodologies for transformations and memoing in applicative languages, Ph. D. Thesis,
Department of Computer Science, Edinburgh, 1984.

[18] S.L. Peyton Jones, A.L.M. Santos, A transformation-based optimiser for Haskell, Science of Computer
Programming 32 (1-3) (1998) 3—47.

[19] D.R. Smith, KIDS: A semi-automatic program development system, IEEE Trans. Software Eng. 16 (9)
(1990) 1024-1043.

[20] T. Hardy, Far from the Madding Crowd, Gutenberg Project, 1994. Available at http://www.promo.net/pgl.



