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1HHOW WE SHOULD MEASURE “CHANGE”—OR SHOULD WE?

LEE J. CRONBACH? anp LITA FURBY?

Stanford Undversity

Procedures previously recommended by various authors for the estimation of
“change’ scores, “‘residual’”’ or ‘‘basefree’”’ measures of change, and other kinds of
difference scores are examined. A procedure proposed by Lord is extended to obtain
more precise estimates, and an alternative to the Tucker-Damarin-Messick pro-
cedure is offered. A consideration of the purposes for which change measures have
been sought in the past leads to a series of recommended procedures which solve re-
search and personnel-decision problems without estimation of change scores for

individuals,

A persistent puzzle in psychometrics has
been ‘“the measurement of change.” Many in-
vestigators have felt, for reasons good or bad,
that their substantive questions required a
measure of gain in ability or shift in attitude.
“Raw change” or “raw gain” scores formed by
subtracting pretest scores from posttest scores
lead to fallacious conclusions, primarily be-
cause such scores are systematically related to
any random error of measurement. Although
the unsuitability of such scores has long been
discussed, they are still employed, even by
some otherwise sophisticated investigators.

At the end of this paper the authors argue
that gain scores are rarely useful, no matter
how they may be adjusted or refined. The
authors also distinguish four kinds of inquiry
for which such scores have been used, and con-
clude that only one of these purposes is well
served by any kind of gain score. This argu-
ment applies not only to changes over time,
but also to other differences between two vari-
ables.

The first part of the paper proposes superior
ways of estimating true change and true resid-
ual change scores. It may seem pointless to
discuss such matters when in the end we rec-
ommend against their use (save in a few kinds
of investigation). However, the development
of formulas clarifies the model, providing a
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base for the final recommendations, and allows
us to explain the limitations of previous papers
on the subject. Furthermore, it develops supe-
rior estimators for the kinds of problem where
we do recommend using a measure of change.
Very likely some investigators will decide to
obtain change or difference scores, even for
problems where we consider such measures in-
appropriate. Such a person will often find one
of our estimation formulas better than those
now suggested in the literature.

Methods of handling data from successive
measurements have been offered by several
writers (Harris, 1963). We shall be particularly
interested in the related proposals of Lord
(1956, 1958, 1963) and McNemar (1958), who
estimate an individual’s “true change”; their
approach is clearly superior to conventional
techniques. This paper extends the Lord-
McNemar reasoning to get a still better
estimate.

DuBois (1957) and other investigators rec-
ommend a “residual gain” score as a substitute
for the “raw gain” score. A gain is residualized
by expressing the posttest score as a deviation
from the posttest-on-pretest regression line.
The part of the posttest information that is
linearly predictable from the pretest is thus
partialled out. Tucker, Damarin, and Messick
(1966) draw attention to the “true residual
gain,” which they refer to as a “basefree mea-
sure of change.”

ForMuLATION

The Lord-McNemar argument considers
measures X and ¥, obtained by applying the
same operation to the subject on two occasions.
The subject has an observed difference score
D =Y —X. Scores X,, and Y, represent-
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ing the person’s ‘“‘true” status at these times,
are postulated. The “true difference” D, equals
Y, — X, The key topic of the McNemar
paper and the Lord papers is the determination
of regression coefficients for an estimator of the

form:
D, = 1X + B2¥ + constant 1]

As Lord has written more extensively than
McNemar on this matter, we shall refer only
to Lord hereafter, though many of the com-
ments also apply to what McNemar has said.

The development holds so long as X and ¥V
are referred to the same numerical scale. That
is to say, the investigator must be willing to
say what score on ¥ (or V,,) is comparable to a
given score on X (or X,,). The relation must be
reciprocal in the sense that, if the given X is
mapped into a certain ¥, that value of ¥ is
mapped into the given X. It is particularly
important to note that this formulation side-
steps the philosophically troublesome question,
Are pretest and posttest “measuring the same
variable”? A common metric is the only re-
quirement. Even this requirement is dispensed
with when we turn to a regression estimate of
outcome.

The model applies to any two measures that
can be sensibly expressed on the same numeri-
cal scale. This might be, for example, a stan-
dard-score scale or an age-equivalence scale.
The data might be ratings of two distinct traits
expressed on the same reference scale. Hence
statements made about change scores can be
extended to any kind of difference score.
Among the more famous lines of research em-
ploying difference scores are work on ‘“‘over-
achievement,” “empathy and insight,” “self-
concept” versus “ideal self,” and ‘“‘differential
aptitudes.” Indices of the same psychometric
character are also involved in studies of re-
tention and transfer.

Assumptions. There are two variables and X
Y. For each variable, the expected value over
independent observations of the same person
defines a true score: E(X) = X, and E(Y)
= ¥, Then D, = ¥, — X,. The investigator
who identifies ¥ with X as “the same opera-
tion” must keep the true scores distinct. In a
study of change, X, is the person’s average
score over measurements of X that might be
made at Time 1; ¥V, is the average over ob-
servations by the same procedure at Time 2.

Errors are uncorrelated with true scores.
But we do not assume that all correlations pxy
are equal. Sometimes X and ¥V observations are
“linked,” as when the two scores are obtained
from a single test or battery administered at
one sitting, or when observations on different
occasions are made by the same observer. The
correlation between linked observations will
ordinarily be higher than that between inde-
pendent observations. This distinction has not
been made in the literature on change, but it
does appear in a paper by Stanley (1967) on
difference scores.

We develop a formal mathematical model
so that some parts of our argument can be ex-
plicit rather than intuitive. We retain the
classical concept of strictly parallel observa-
tions, but modify the classical concept of in-
dependence, as suggested above.

1. Let X,; represent the observed score of
person p on the X wvariable observed under
condition 4. The condition ¢ may be, for ex-
ample, a particular form of the test that mea-
sures X. In studies where there are several
sources of “error” such as test form, observer,
and short-term fluctuations in the state of the
person, we assume that these sources are com-
pletely confounded in the design used to deter-
mine reliability coefficients and correlations.

2. Where the classical theory considers true
score as the sum of observed score and error, we
introduce two random errors: X, = Xep
~+ eyi + foi- Likewise, Vi = Vop + €5 + £
This is required to formalize the concept of
independence adequately.

If, as in the classical concept of parallel mea-
sures, one assumes that the several measures of
X (or Y) are strictly interchangeable, there
can be no linkage, Machinery for explicitly de-
fining independence can be developed with
some concepts from generalizability theory.
There is a universe of possible conditions of
observation of X. (While observations may
vary with respect to test form, occasion, ob-
server, etc., we shall avoid here the complica-
tions of multifacet theory [Gleser, Cronbach,
& Rajaratnam, 19657 That theory recognizes,
as this paper does not, that one may have two
measurements with the same test form on
different occasions, or two measurements on
different test forms on the same occasion, or
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two measurements where both form and oc-
casion differ.) There is a universe of observa-
tions of ¥, and we shall assume that these may
be made under the same set of conditions ¢ that
are used for X observations. Then observations
X; and ¥; made under the same condition 7 are
said to be linked, and observations X; and V.
made under different conditions are said to be
independent.

Formally, the model specifies that conditions
of observations are drawn from the universe.
If a single ¢ is drawn and used to obtain both
scores X ,; and ¥V, for person p, we have link-
age; if ¢ and ' are drawn independently to give
scores X,; and V,y, we have independence.
Errors are random and independent, except
that when X and ¥ are both observed under
condition 4, the f and f components are sampled
simultaneously. It will #of be true, in general,
that o (fpi,fpd) = 0. The following assumptions
are made regarding all e components: Their
mean over persons is zero for every condition;
their variance over persons is the same for
every condition; their intercorrelations with
other components are zero. The e components
satisfy the same assumptions and o(eyiep)
= ¢(fpiep;) = 0. With regard to the f com-
ponents, zero means, equal variances, and zero
correlations with true scores are assumed
(likewise for f). Also, o(fpifpir) = 0 for all
pairs where ¢ is not identical to ¢'.

3, The measures of X made under different
conditions are parallel. It follows from the as-
sumptions above that the measures have equal
means, equal variances, and equal intercor-
relations. The same is true for ¥ measures.

4, It follows, now, that

U'(Xm')yzn") = G'(Xoop: pr):

hence this covariance is the same for all in-
dependent observations of X and V.
For linked observations the covariance

‘T(Xpi)Ypi) = G'(Xoopxywp) + ”(fm'sfm')

We assume that o (f,,f,:) is the same for all 4,
hence that the linked covariance is the same
for all linked X, ¥ observations. The covari-
ance of f with f may be large or small, depend-
ing on the extent to which the condition
influences the X and ¥ performances.

We shall simplify and compress notation in
several convenient ways. We write pxx: for a
reliability coefficient, and pxy for a correlation.

For emphasis, when linked observations are
correlated or used to form a difference score we
may refer to X, and ¥, ; their covariance and
correlation we shall designate ®oxy and ®pxy.
We shall similarly write X, and Y3 (or the like)
for a pair of independently observed scores, and
for the covariance and correlation shall write
Ooxy and Opxy.

Ordinarily, | ®oxy| > |Opxy|. It is possible
that ®pxy < Opxy, where X, and ¥, have some
complementary relation. For instance, if rate
of reading and comprehension are measured on
the same selections simultaneously, one score is
likely to rise at the expense of the other and
o (fpi,fps) will be negative.

3. It is assumed that the population param-
eters are known. All parameters considered
must be for the same population.

A regression estimate of a true score is usu-
ally improved if the data permit one to derive
an equation for a subpopulation—for example,
for ninth-grade boys in a certain school rather
than for the national ninth-grade population.
The investigator using actual data will often
have made no reliability study on his sample.
If he uses a reliability coefficient or a value of
pxy from the published study he must adjust
it to take into account the variance of his
sample.

RELIABILITY OF A DIFFERENCE SCORE

As Stanley (1967) pointed out, linkage must
be taken into account in defining a reliability
coefficient for differences. Classical theory,
ignoring linkage, defines a reliability

) opp  oxpxx+odrpyy —20x0vpxy
DD = —_—
o? o*x+o?y —2axoypxy

» [2]

where D = ¥ — X. The reliability coefficients
pxx. and pyy. are correlations of independent
observations. Likewise, because of the inde-
pendence assumption, classical theory can only
interpret oxy as what we have called Opxy.

The reliability of a difference score is defined
as the correlation of the score with an indepen-
dently observed difference. Unlike the classical
papers, Stanley distinguishes py,—x,) @sxp
from py, x,)v,xa+ These are distinct kinds of
reliability, one for a difference of linked X and
Y and one for a difference of independent X
and V.

If the observed difference is Dy = V4 — X3
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(i.e.,, if X and V are experimentally indepen-
dent), the covariance with an independently
observed difference D,y is

o*xpyxr + o*vpryr — 20x0¥Opxy.  [3]
Evenit D,, =V, — X, (i.e., X and V are ex-
perimentally linked), the covariance with a
similar but independently observed linked
difference Dy, = ¥ — X, is the same. Hence
. Formula 3 is the appropriate numerator for

Formula 2 in both cases.
The variance of D for the independent case is

[4]

For the linked case, however, D,, = ¥V, — X,
and the variance equals

o’ + o — 20x0vOpxy.

(5]
Hence for the linked case the reliability co-
efficient py,—x,)(ry,—xy 18 obtained by dividing
Formula 3 by Formula 5:

0% + oy — 2oxor®pxy.

oxpxx +olypyy —20x0yOLxy
o’ +oy—20x0y®pxy

[6]

whereas for the independent case the reliability
coefficient pw,—x,¥.x, 18 Formula 3 divided
by Formula 4:

.PDD’ E=

0'2XPXXI +O'2YPYYI — ZO'XO'YOPXY
o’x+o%y—20x0yCpxy

[7]

Since Opxy < ®pxy in most Instances, Oppp-
for the independent case will most likely be
smaller than ®ppp. for the linked case. Both
reliability coefficients are meaningful. They
describe the correlation between differences
observed according to different experimental
designs. Distinctions like that between Equa-
tions 6 and 7 have to be made in considering
the reliability of any composite, weighted or
unweighted.

In the discussion that follows formulas are
written in terms of the linked case; the sub-
stitution to fit the fully independent case will
be obvious.

OpDDI ==

EstimaToRrs oF TRUE CHANGE
Primitive Formulas

Among the possible estimators of D, are
three simple formulas.

Raw gain. The simplest formula is:

D=V -X [81[1]

Correction by simple regression for error in X.
If X, is a regression estimate of X, from X,

D.=V~X,=Y—pxxX+constant  [9][2]

In this and all other equations through Equa-
tion 20, the constant is one that makes the
mean (over persons) of the estimates equal to
the mean raw gain, The foregoing estimate has
occasionally been suggested (e.g., Trimble &
Cronbach, 1943), but it has seen little use.
Closely related concepts appear in Lord’s
comments on analysis of covariance (1960) and
in a series of Swedish papers on the effect of
schooling on intelligence (see Hirngvist, 1968).

Correction by simple regression for error in X
and in Y. To take a further step, let ¥, be an
estimate of ¥, from V. Then

Py

D= 17'“, -X.= pyy' Y —pxx' X +constant

(10][3]

This procedure does not take the X, ¥ correla-
tion into account.

The Lord Procedure

Lord pointed out that unless px_y, =0,
both X and ¥ yield information about X.. A
multiple regression procedure can be used to
obtain

Xo=pxx X+Bx vx,(V - X)+ (1 —pxx)X [11]

Here V- X is a partial variate, the deviation of
Y from the value predicted by the regression of
Y on X in the population to which the other
parameters in Equation 11 apply.

For the linked case we have

. -
VoXe=YV,— (X, - %)= 7 [12]
o’x
We know that
Brx_voxy = IX o (VaXa) [13]

2
4 (Ya-Xq)

Now ox vy = 0x,v, = Ooxy (not .ny). Using
Equations 12 and 13, the numerator of 8 be-
comes

0X (voXy) = 0x0v(Opxy — ®pxvpyy) [14]
and the denominator becomes
[15]

Substituting in the regression equation, we

oty x, = o%r(1 — p’y)



72 LEE J. CRONBACH AND LITA FURBY

arrive at
xx' — ®pxyOpxy
2, = B______£7r____
1 — op’xy
ox (Opxy — ®pxypxx’)
ay(1 — ®piyy)

Y + constant [16]

Then . .
-Doo =Y, Xw; [17] [4]

where the estimates on the right-hand side
come from Equation 16 and its analog for Y.
Expanding the expression we have

D.

1 )4
=1 eptey ;(prwf —0oy®pxyOpxy

+ax ®pxvoxx —oxOpxy) “ox (oxpxx

—0ax®pxyOpxy+oy®pxypry —UYOPXY):I

+constant [17a7][4]

For independent observations, one substitutes
Opyy wherever ®pxy appears in Equation 17a;
this is Lord’s estimator of D,. In an experi-
ment, all calculations must be made within a
treatment group.

Estimator 4 is as good or better than any of
those listed ahead of it, giving a smaller mean
square of (D, — D,,) and a larger correlation
between estimate D,, and true score D,. Ordi-
narily Estimator 3 is better than Estimator 2
and both are better than Estimator 1. Our
main point in presenting Estimators 2 and 3 is
to show the Lord estimator as an elaborated
form of a more conventional estimator. This
lays a base for the further refinement.

It may seem anachronistic in Formulas 11
and 16 to use a posttest score to “predict” a
pretest score. But the logic is clear. Within a
treatment, persons higher on the posttest than
others having the same observed pretest score
tend to be those for whom the true pretest
score is higher than the observed score. The ¥
receives at least nominal weight in the regres-
sion equation when pxy is not zero or one, and
pxxr < 1.00. The weight given to ¥ increases
with larger pxy and smaller pxx-.

Taking group membership into account. Pre-
vious papers have implicitly assumed that all
persons come from a single population, but
often there are several distinct subgroups.
These groups may be distinguished by demo-

graphic characteristics or by past experience,
or they may be groups receiving different
treatments between the X and Y observations.
One could pool all groups and determine a
single within-group value for each parameter in
the equations above, but parameters calcu-
lated within subgroups will give a better esti-
mate of X, Y, and D,. There is a limit to
how far subdivision of samples can profitably
be carried, however.

Correlations and Regression Slopes for D,

Sometimes an investigator wishes to know
the correlation of D, with another variable,
say Q. He should note, then, that the correla-
tion of D, with Q is not a sound estimate of the
correlation of D, with Q. The correlation should
be determined directly from the covariance of
D, with the second variable of interest. This
covariance takes a form such as

0D,Q = 0y, Q — 0X,Q = 0vQ — 0XxqQ.

To get the correlation coefficient one divides by
ogandop_ (notep,). Since D, equals Vo, — X,
its variance is given by Equation 3. All param-
eters must be those for the same group.

The investigator is often interested in the re-
gression of D, (or ¥,) on another variable.
The slope of the regression of D, on (e.g.) X
iS GDwa/”zxw'

Attention must be paid to linkages. Let us
write Q. to indicate that the observation of Q
is independent of X,, ¥,, and V5.

[18]

This cannot be determined from data where Q
is linked to X or V.

A variance-covariance algorithm. A simple
computational routine can be suggested for
problems of this character. One may form a
variance-covariance matrix of observed values
as in Figure 1. Linked and independent covari-
ances are carefully distinguished. The matrix
may be augmented as shown, adding rows and
copying forward covariances. Reliability in-
formation is taken into account at certain
points. Columns may be added to the matrix
also, in a symmetric manner. Thus all entries
in the X, row can be copied into the X, col-
umn. The full extension carried out in this way
gives a square matrix, from which such values
as op g, and o?p_ can be read out.

ID,Qe = OYpQs — 0XaQ, = 0V4Q, — 0X;Q,
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Xa Ya Qa Yb Qo X ®
Row 1 X, o’x ®oxy ®rxo Ooxy Ogzxg o xpxx l
Row 2 7V, Ooxy o’y ®oyq o’rpry: Ocvg Ocxy
Row 3 Q. ®sx ®syg alp Ocyg aopgor
Row 4 T, Ooxy o’ypyyr Oovg iy Ocyg
Row 5 Q. Ocxq Ocye aopger  Oovyg o’
Copy independent Row 6 X, | ofxpxx |' Ooxy Ooxeq Ooxy Ocxgq Expxx
covariances corre- |
sponding to Row 1 _J
Copy independent Row 7 Y. | Ooxvy a’ypyy: Ocyg o’vpyy: Ogyg Ooxy
covariances corre-
sponding to Row 4
Fill in by sub- Row 8 D
tracting Row 1
from Row 2
Fill in by sub- Row 9 Dg
tracting Row 1
from Row 4
Fill in by sub- Row 10 D,
tracting Row 6
from Row 7
Copy independent Row 11 Q.
covariances from
Row 5

F106. 1. Algorithm for constructing covariances and variances. (Covariances tor linked observations are identified
by the symbol ®¢, and those for independent observations by Oc .The broken line separates the original data from

entries added later.)

A Better Estimate of True Change

Lord’s formula uses only X and V¥ data, but
we shall bring in two further categories of
variables, W and Z. The W and X are Time-1
measures, but need not be simultaneous. Al-
though we write W without vector notation,
there are, in principle, any number of W vari-
ables that can be used singly or in combination.
Our statements apply to any W or any weighted
composite of the W.

A W might be any score describing the
subject as he was prior to the treatment under
study or W might be an index based on his life
history. The scores ¥ and Z are posttreatment
measures—again, not necessarily simultane-
ous. The ¥ might, for example, be a measure of
performance at the end of training, and Z a re-
tention test a month later, Where we are ex-
amining a difference score rather than a change

score, no distinction between W and Z vari-
ables is needed.

The steps taken in going from Estimate 2 to
Estimate 4 above can be extended to make use
of W and Z information so as to reach an even
better estimate of D..

The complete estimator. If W is univariate and
there is no Z information,

OX (V.X)

Lo=pxx X+—222(V - X)
7r.X)

%M(W~X,Y)+constant [19]
TYw.X.Y)
Here W-X, Y is a partial variate, the deviation
of W from the value predicted by the regression
of WonXand V.
If the W information is multivariate, a whole
series ofPpartial variates enters. The order of
partialling is arbitrary; one might write terms
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for X; W-X; V-W, X; etc. Where there is Z
information, one adds further terms, again
employing partial variates; W, as well as X
and ¥, is partialled out. The estimation pro-
cedures must take into account any linkage
between X, ¥V, W, and Z variables as in Equa-
tion 16.

A similar equation is written for ¥,.
Finally, one comes to an equation of the form

D, = B:X + BV
+ BsW + B4Z + constant [207][5]

Here 8;I stands for a string of several terms of
the form B,W; if there are many W (likewise
for 8.2). This estimator is superior to [Formula
4, provided that the sample size is large enough
to justify assigning a large number of weights.
Where sample size is insufficient, the number of
predictors must be held down, most likely by
employing the first one or more principal com-
ponents of the W set as predictors (likewise
for Z).

When the problem becomes complicated, it
is better to use efficient computing routines
than to write out elaborate formulas. The
within-treatment covariance matrix for X, Y,
W, Z is written. Additional rows and columns
for X, and Y, are formed as in Figure 1, with
care to enter independent or linked covariances
as required. The X, column is subtracted from
the ¥, column to form the D, column. When
the symmetric matrix is complete, one applies
a multiple-regression program, treating entries
in the Dy, column as ‘““test-criterion covari-
ances” and the appropriate X, ¥, W, and Z as
predictors. If the observed scores have X and
V linked, for example, then X, and ¥V, are
used as predictors, and covariances for ¥ are
ignored.

Demographic information and information
ahout experience can and should be considered
as W variables. With a variable such as sex, one
has a choice of entering it directly as a variable
coded 1 and 0, or of performing a separate re-
gression analysis for each sex. Both procedures
regress the person’s score toward the mean
for his own sex rather than toward the mean for
all cases. The second procedure allows for the
possibility that the regression surface for males
differs from that for females. Separate within-
subgroup regressions would seemingly be pre-
ferred when samples are truly large.

The difficulty is that the argument can be
repeated for every other noncontinuous vari-
able and for all combinations of them. Indeed,
it applies to continuous variables also; for
example, a regression surface for more anxious
children may differ from that for the less anxi-
ous. These remarks amount to entertaining the
possibility of nonlinear relationships. While
this possibility is real enough, one can rarely
get usable estimates of nonlinear functions
from samples of practical size (Burket, 1964;
Goldberg, 1969). Hence, after one has divided
the sample into a few salient subgroups, each
having a suitably large size, the dummy-
variable technique seems to be the only feasible
way to handle a variety of nonquantitative
information.

RESIDUALIZED GAINS

Developments parallel to those above lead to
so-called “residual gains” or ‘“‘basefree mea-
sures of change.”

Alternative Estimators

The raw residual-gain score is defined by

D X=V—-EW)|X=YV—-Y—Byrx(X—-X)

[21][1"]
We designate this Formula 1’ to emphasize that
it is comparable to Formula 1, the raw gain. If
Y, and X, define the difference score, By.x
equals ®pyyoy/ox. If V), rather than ¥, is used,
Cpxy replaces ®pyy. The traditional definition
given by Equation 21 is ambiguous; the resid-
ual (Yo — X,)- X, is conceptually different
from the residual (¥, — X,)-X,.

Residualizing removes from the posttest
score, and hence from the gain, the portion that
could have been predicted linearly from pretest
status. One cannot argue that the residualized
score is a “‘corrected” measure of gain, since in
most studies the portion discarded includes
some genuine and important change in the per-
son. The residualized score is primarily a way
of singling out individuals who changed more
(or less) than expected.

True residual gain could be defined either as
the expected value, over many observations on
the same person, of D-X (defined in either of
the two possible ways), or as the partial variate
Dy X., the part of the true gain not predict-
able from true pretest status. Dy-X,, is more
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likely to be of interest. Certainly if we intend
to pick out superior learners or persons whose
self-concept falls far below the self-ideal, we
would like to base the discrimination on a true-
score disparity. Likewise, if we have correla-
tional questions—for example, Does anxiety
predict overachievement?—the variable seems
better specified by D, X.. Hence we consider
only the definition:

D, X,=D,—Bp x X -constant

=Y, —%Xw—}-constant [22]

ox

No ambiguity arising from possible linkage of
the observed X and ¥ enters this definition,
though linkage must be considered in any esti-
mation procedure.

Successive estimators of true residual change
can be constructed on the same principles as
before, but it will suffice to move directly to the
estimator formed by the multiple-regression
principle in the manner of Lord:

D/-}( I 0. <00 6 S Opxy
® 7% (pxx:Opxv) (1—®py)
.
X < Vo— GYU 'PXYXG>-{—constant [237[47]
X

This and other constants in this section are de-
fined to make the mean of estimated residual
gain equal zero. This estimate turns out to be
proportional to the raw residual gain. (If the
estimate is made from independent ¥ and X,
Opxy replaces ®pxy).

If there is W or Z information, a still better
estimator is

P
Doo : Xoc =B’1X+B,2Y
+8 s W+p'1Z+constant  [247][5]

Only in rare cases will this be proportional to
the observed D-X.

The computational algorithm used before
can be extended to obtain the desired weights
for Formula 4’ or 5’. Suppose we have filled out
the square matrixfor X, V, X, V,, Doy . . . .
Then we can form the covariance of any vari-
able with Dy - X, very simply. For example,

[25]

Hence we may multiply every entry in the X,

Dwxw

[
a-(Dov'Xoo)Q = UDwQ - 0-2X o'XwQ

column of the matrix by ep_x /0%, entering
this in a column to one side. Subtracting the
entry in this side column from the entry in the
corresponding row of the D, column gives a
covariance to be entered in a D,- X, column.
This column is now taken as a set of covari-
ances of predictors with the criterion, and a
multiple-regression program is applied.

The Tucker-Damarin-Messick Proposals

This analysis puts us in a position to review
and clarify the rather puzzling paper entitled
“A base-free measure of change” (Tucker,
Damarin, & Messick, 1966; hereafter, referred
to as TDM). They start much as we do by
noting that the psychometrics of a change score
applies to all kinds of difference scores. They
suggest, as Lord did, that one should be most
interested in the true difference score. They
propose to divide this difference into two com-
ponents, “one entirely dependent on the true
score of the first or base-line test” and one “‘en-
tirely independent of it.” That is, they are
interested in a true predicted gain and a true
residual gain. As their abstract says, “equa-
tions for estimating both components are
given.” Since we shall recommend against use
of their equations, we shall not go into details of
their argument.

It might appear that TDM are concerned
with estimating E(D.)| X, and D, — E(D,)|
Xo(= Dy, X,). The former, of course, is a
linear function of X,,. TDM arrive at an equa-
tion (their Equation 26) that, in a form con-
sistent with the present paper, is

®
ya_anl

Pas PXX'0X
Do X, = or -+constant  [26]
Yb _ Opxyoy X J
PXX'0X

It is rather startling to find that this agrees
with none of our formulas. It differs from
Formula I’ in that X is replaced by X/pxx-. It
differs by a further constant of proportionality
from Formula 4’. The marked departure from
Formula 4’ is made the more puzzling by the
favorable references of TDM to the Lord and
McNemar papers and by their recommenda-
tion of Formula 4 for the gain score itself.
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Personal communication with the authors
verified that a failure of communication had
occurred®. As readers, we had given too little
weight to one key phrase: The measures are
“primarily intended for correlational work.”
That is to say, TDM have no intention of inter-
preting “basefree’” scores for individuals. Such
scores are intended only as an intermediate
step toward correlations. TDM offer an esti-
mator that does not give the best least-squares
estimate of individual “basefree” scores be-
cause they seek instead estimates that correlate
zero with X,.

Their intention is to determine correlations
so as to learn what kinds of person show gains
larger than would be predicted from the true
pretest score. Correlating the estimated true
residual gain from Equation 23 or 24 with an-
other variable does not give the correlation
TDM desire (unless pxx- is 1.00). To under-
stand this, consider for a moment the simple
correlation of ¥V with Q. If we do not know ¥
scores but do know pxy, we might estimate ¥
from X scores by the usual regression equation.
Then pfqe will not be a good approximation to
pro; it will actually equal pxq. In general, one
who wants to interpret correlations, covari-
ances, or regression slopes ought not to work
from estimated scores. TDM intended to rec-
ommend that in such a line of research one
calculate special-purpose scores by Formula 26
and then determine correlations. This appears
to be unsound. TDM desire to obtain correla-
tions with various Q of v and ¢, which in their
notation are the residual and predictable por-
tions of true gain, respectively. But the TDM
formulas generate fallible values g and w; g
equals ¥ plus an error. Obviously pye < pqg
and puwo < pro. As this is not explained by
TDM, their paper is likely to mislead the
reader. The confusion is reflected, and to some
degree intensified, when Traub (1967) and
Glass (1968) comment on the TDM formula.

While one might adapt the TDM statements
to get pyq, pro, etc., this is unnecessary. A
straightforward manipulation of the matrix of
observed covariances for X, ¥, and Q (along
with pxx- and pyy) yields the covariance of Q
with D, X,, (i.e., with ¥). The 0% _.x_(= o%)
needed to reach a correlation is simply the co-

4 L. R. Tucker, F. Damarin, and S. Messick, personal
communication, September 1968 and April 1969.

variance of D, with D, - X, that we have al-
ready obtained. To get covariances for D,
— D, X, (i.e., for {), one need only subtract
column D,-X, of the covariance matrix from
column D,. And % = o%, + o%.°

A MULTIVARIATE CONCEPTION

The older statement of the problem as “the
measurement of gain” or of “residual gain”
implies a special affinity between X and ¥—
they are seen as ‘“‘the same variable’” in some
sense. But change is multivariate in nature.

Even when X and V are determined by the
same operation, they often do not represent the
same psychological processes (Lord, 1958). At
different stages of practice or development
different processes contribute to performance
of a task. Nor is this merely a matter of in-
creased complexity; some processes drop out,
some remain but contribute nothing to indi-
vidual differences within an age group, some are
replaced by qualitatively different processes.
This does not rule out purely empirical studies
of changes in the operationally defined variable.
To assess such changes, even when one cannot
describe them qualitatively, may be practically
important. One must be careful not to fall into
the trap of assuming that the changes are in a
particular psychological attribute.

We may illustrate by referring to Fleish-
man’s well-known studies of psychomotor
scores at successive stages of practice (see
Fleishman, 1966). On the first few trials, scores
tend to correlate with cognitive measures; the
usual speculation is that the high-cognitive
subjects gain fastest because they most rapidly
comprehend the instructions, display, strategy,
etc. In a second stage, certain pretests of psy-
chomotor ability correlate highest with scores,
and the correlation of scores with cognitive
pretests becomes rather small. One could easily
conclude that cognitive ability is unimportant
to learning in this second stage. But the drop in
correlation (assuming no great rise in SD)
demonstrates something more striking: that
cognitive ability is negatively correlated with
change {rom the first to second stage. And one
can suggest a good reason. If bright persons

5 This matrix-extension procedure is entirely consist-
ent with the TDM rationale. In fact, TDM tell us that
their_formula was arrived at by analytic treatment of
this extended matrix.
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catch on fastest, by some trial ¢ they have com-
pleted what can be done intellectually with the
task. On trials ¢ + / and later, their cognitive
abilities produce no further gains. But by our
hypothesis the dull have not comprehended
fully by trial 4, and therefore they have cogni-
tive work left todoon trials/ 4 1,4 2, . . .
During this stage, any gain in performance that
comes from improved comprehension will be a
gain by those low in cognitive aptitudes, hence
those aptitudes have a negative correlation
with gains. The Fleishman studies have not
been processed in terms of gain scores, but it
has been commonly said that they indicate
cognitive abilities to be “important during the
early stages of practice on psychomotor tasks,”
or the like. It seems more accurate to say that
cognitive abilities make their contribution at
different times for different persons and that
gains at any one time are due to different pro-
cesses for different persons.

Something similar is to be said about the re-
lation of mental age (MA) at one age to sub-
sequent gains in MA or achievement. A positive
relation would result insofar as the high scorers
understand new material better, or are more
efficient learners. But there would also be a
negative relation, insofar as the high scorers are
those who have already mastered some highly
valuable technique (e.g., mediation) that the
low scorers have yet to master. As they re-
structure their behavior, the persons with low
scores at the start of the period may make large
gains—gains the high scorers had previously
made. Positive and negative elements are prob-
ably both present, which should make us much
less surprised than we have been by reports of
near-zero correlation of MA (in a constant-age
group) with subsequent gain in MA (Ander-
son, 1939; Bloom, 1964, p. 26 ff., 62 fi.).

We reduce emphasis on the special role of X
as precursor of ¥, and regard the whole WX
set as a vector describing the person’s initial
status. Then one may ask how ¥ varies as a
function of the Time-1 data. To single out for
intensive study persons who do better (or
worse) than predicted, for example, it is wise to
define expected outcome as the forecast of V
on the basis of all Time-1 information. Instead
of D, X, (=Y,-X,) one would estimate
DX, Wo (= Vi Xy W), The machinery
suggested above for partialling out X, would

be used, but extended by partialling the W,
also out of D,. The entire set of W and X mea-
sures constitute the “base.” There are optional
targets for investigation: Do,; Do Xo; Do Xooy
We; etc.

Learning or growth is multidimensional;
many measures could be taken at each point in
time. To select one particular ¥ as somehow
integrating a variety of subcriteria is to sacri-
fice information and possible insight. A per-
son’s change is better described by a vector of
true scores Wy, X3 Yoy Zoo. Each of these can
be estimated by the methods used in Equations
19 and 20. One who wants to examine predicted
and residual change will estimate Y, from W.
and X, and also from all variables together.
He will obtain these scores:

V. |WxyZz (estimated true final status)
VWX, (predicted true final status)
Difference (estimate of unpredicted true

residual)

The estimates of W, and X, come from W, X,
Y, and Z. There would be estimates like those
for ¥ for each Z or for orthogonal components
of the ¥, Z,, space.

We can rearrange the vectors W, X and ¥, Z
in a great variety of ways. Which farget to
choose can be decided only in the light of the pur-
poses of the study.

PurproskEs oF ESTIMATING
GAINS OR DIFFERENCES

Just why gains or differences are thought to

be worth estimating can perhaps be inferred .~

from the studies where estimates of some sort
have been made in the past. The following aims
may be noted:

1. To provide a dependent variable in an
experiment on instruction, persuasion, or some
other attempt to change behavior or beliefs.

2. To provide a measure of growth rate or
learning rate that is to be predicted, as a way of
answering the question, What kinds of persons
grow (learn) fastest? Here, the change measure
is a criterion variable in a correlational study.

3. To provide an indicator of deviant de-
velopment, as a basis for identifying individuals
to be given special treatment or to be studied
clinically.

4. To provide an indicator of a construct
that is thought to have significance in a certain
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theoretical network. The indicator may be
used as an independent variable, covariate,
dependent variable, etc. An example is the
interference score needed on the Stroop Color
Word Test to represent the decline in reading
rate when color names are printed in colors in-
congruous with the names.

Much of the confusion in the literature arises
from a failure to distinguish these purposes
and to match distinct methodological recom-
mendations to them.

Gains as a Consequence of Treatments

There appears to be no need to use measures
of change as dependent variables and no virtue
in using them. If one is testing the null hy-
pothesis that two treatments have the same
effect, the essential question is whether postiest
Y, scores vary from group to group. Assuming
that errors of measurement of ¥ are random, ¥
is an entirely suitable dependent variable.

The randomized experiment. Suppose that
cases are assigned to treatments in a random or
stratified-random manner. The X scores will
vary within groups. An analysis of covariance
to take this variation into account is advan-
tageous so long as pxv is large. (If p < 0.4, block-
ing is probably to be preferred, according to
Elashoff, 1969.) The usual adjustment esti-
mates the ¥ scores expected under the null hy-
pothesis and then expresses each observed ¥V
as a deviation from the estimate. Ordinarily it
is desirable to base the adjustment, not on X,
but on whatever linear combination of X and
W best predicts ¥ within groups.

Where within-treatment regressions are
linear but significantly different in slope, the
difference between effects of treatments de-
pends on the level of X. The “main effect” is
not interpretable. The most meaningful report
consists of regression functions for ¥V on the
X, W, space, computed with the aid of the
covariance matrix for true scores within each
group in turn.

Nowhere in this section have we made use of
a change score. We consider it likely that
change will vary systematically with X,.
Where this is the case, the essential result is a
regression function, not a mean gain. The ad-
justed ¥ score of the significance test is a sort
of residual gain, but the procedure does not

involve calculating residual gain scores for
individuals.

Comparison of treatment groups not formed al
random. When treatments are applied to groups
differentiated by a nonrandom process, the X,
distributions within the subpopulations repre-
sented by the groups are generally not the
same. Consequently, the same observed X
score implies a different level of true pretest
ability, depending on the group.

If analysis of covariance is to be made, it is
advisable to regress the covariate toward the
mean of the treatment group before entering
it in the analysis (Lord, 1960). If there is W
information as well as X it also contributes to
the estimate. So does V and Z information.
Here is a paradox: A proposal to use the post-
test score to estimate the pretest true score
which will then be used to adjust posttest
scores! The crucial point is that the estimator
of the covariate is determined from within-
group data. Since the estimate of any linear
function of X, and W, has the same within-
group mean as that function of X and W, the
procedure does not introduce bias nor does it
reduce any effect truly attributable to the
treatment.

Application of analysis of covariance to
studies where initial assignment was nonran-
dom, which was widely recommended 10 years
ago, is now in bad repute. Even the elaborate
technique just suggested is no more than a
palliative. If the treatment groups differed
systematically at the start of the experiment
with respect to any relevant characteristic
other than the covariate, even a perfect mea-
sure of the covariate cannot remove the con-
founding. To quote Lord (1967), “there simply
is no logical or statistical procedure that can be
counted on to make proper allowances for un-
controlled preexisting differences between
groups [p. 305].” And Meehl (1970) calls such
corrections “inherently fallacious [in press].”

The findings of the study can be usefully
summarized by calculating within-group re-
gression functions relating ¥, to X,,, W, using
the covariance matrix for true scores. What
cannot be done is to “compare treatment
effects.”

One-group designs. A third kind of experi-
ment is the simple one-group study where one
wishes to learn whether a treatment produces
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significant change, or to describe the magnitude
of the effect. An estimate of true gain might ap-
pear to be pertinent. But it is not. For if one
were to estimate D, for each individual, and
average, he would arrive back at the sample
mean of observed gain. A significance test need
only ask whether uy is reliably different from
px- The difference in sample means for X and
Y is the best available estimate of the mean D,,.

Criteria in Correlational Studies.

Correlational studies are often intended to
investigate a question such as this: Among per-
sons with a given pretest score, what attributes
distinguish those who profit most from the
treatment? This may seem to ask about ppw or
pp w,, or perhaps about pw.xyw or pw, .x )w-
It is more straightforward to ask about the re-
gression of ¥ on X,, and W, the corresponding
correlation for ¥ or V., or related partial cor-
relations. It appears that nothing is gained by
referring to change measures in this context.
The relationships of true scores can be investi-
gated without estimating true scores for indi-
viduals,

Selecting Individuals on the Basis of Gain or
Difference Scores.

Many who calculate difference scores are
interested in making decisions about individ-
uals—identifying underachievers for clinical
attention or fast learners for special opportuni-
ties, for example. One can scarcely defend
selecting such individuals on a raw-gain or
raw-difference score, especially as these scores
tend to show a spurious advantage for persons
low on X. Selecting cases whose estimated ¥,
is higher than that of others with similar X'
and I/f/'“7 seems more sensible. To do this, re-
gressmn equations should be called into play.
That is, one selects persons for whom Y 1
WXYZ is much larger (or smaller) than 7,

w0

The persons with positive deviations are
those who did better than predicted. This
means either that they started with some valu-
able attribute the W and X variables did not
encompass, that their pretest true scores are
underestimated or their posttest scores are
overestimated, or that their success on ¥ was
an accidental effect arising from some tactic
casually adopted during learning or some se-
quence of lucky trials. It is very hard to dispose

of the hypothesis that these unexpected gains
were fortuitous.

Here, the focus of attention is on an esti-
mated re51dual gain: not D+ X, not Dy,* X, but
V.- X W, or, what is equlvalent D.-X.W..
Where X alone is available as a predictor, the
raw residual gain selects the same persons as
Formula 23 does. But Formula 24 is to be to
preferred.

It is possible of course, given before-and-
after scores on the same instrument, to esti-
mate true gains of individuals and to identify
those who did and did not gain. But to what
purpose? This has no clear bearing on decisions
about the future of these persons, and the de-
cision rule for fresh cases is to be inferred from
the regression surface.

Differences and Gain Scores as Constructs.

One of the most common uses of difference
scores is to operationalize a concept: For ex-
ample, self-satisfaction is sometimes defined as
the difference between the rating of self and
ideal-self on an esteem scale. One might like-
wise think of a gain score as reflecting “learn-
ing ability” on a certain task. Operational
definitions will often take the form of linear
combinations of operations.

But there is little a priori basis for pinning
one’s faith on ¥, — X, as distinct from the
more general Y, — aX,. Just what weight to
assign the “correcting” variable is an empirical
question. To arbitrarily confine interest to D,
(which means that a is fixed at 1.00) is to rule
out possible discoveries. This argues, then, for
discovering what function of ¥, and X, has
the strongest relationships with variables that
should connect with the construct.

The claim that an index has validity as a
measure of some construct carries a consider-
able burden of proof. There is little reason to
believe and much empirical reason to disbe-
lieve the contention that some arbitrarily
weighted function of two variables will properly
define a construct. More often, the profitable
strategy is to use the two variables separately
in the analysis so as to allow for complex re-
lationships.

One example of an “obvious” but question-
able use of a subtractive correction is provided
by a study in which skin conductance is a vari-
able. At the start of the experiment a “base-
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line” measure of the subject’s galvanic ckin
response is taken. Then stress is applied and a
second measure is taken. During a rest period
the subject receives a drug or a placebo, Stress
is again applied and a third measure taken.
Call the measures, in order, W, X, and V.
Simple correction would use ¥V — W as de-
pendent variable and X — W as covariate.
We, however, would prefer to use X and W as
separate covariates, with ¥ as dependent vari-
able. This should give a more precise analysis
when W is unreliable. (As suggested earlier, it
would generally be still better to use X,
WXY and W,|WXY as covariates.)

SUMMARY

Where true scores for individuals are de-
sired, multiple regression procedures outlined
herein make use of more information than do
procedures hitherto advanced. There seems to
be no occasion to estimate true gain scores. In
the experiment where treatment groups are
formed nonrandomly, estimates of true scores
on the covariate can reduce the resulting bias.

Where individuals who have exceptionally
high or low residual gains are to be identified,
the raw residual gain serves as well as the alter-
nate formulas hitherto advanced. To estimate
the individual’s true residual gain, however, a
superior formula is available.

Where correlations and regression functions
relating true gains or true residual gains to
other variables are desired, a calculating routine
is available that makes it unnecessary to esti-
mate gain scores for individuals.

It appears that investigators who ask ques-
tions regarding gain scores would ordinarily
be better advised to frame their questions in
other ways.
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