
The Nature and Transfer of Cognitive Skills

Niels A. Taatgen
University of Groningen

This article presents the primitive elements theory of cognitive skills. The central idea is that skills are

broken down into primitive information processing elements that move and compare single pieces of

information regardless of the specific content of this information. Several of these primitive elements are

necessary for even a single step in a task. A learning process therefore combines the elements in

increasingly larger, but still context-independent, units. If there is overlap between tasks, this means the

larger units learned for 1 task can be reused for the other task, producing transfer. The theory makes it

possible to construct detailed process models of 2 classic transfer studies in the literature: a study of

transfer in text editors and 1 in arithmetic. I show that the approach produces better fits of the amount

of transfer than Singley and Anderson’s (1985) identical productions model. The theory also offers

explanations for far transfer, in which the 2 tasks have no surface characteristics in common, which I

demonstrate with 2 models in the domain of cognitive control, where training on either task-switching

or working memory control led to an improvement of performance on other control tasks. The theory can

therefore help evaluate the effectiveness of cognitive training that has the goal to improve general

cognitive abilities.

Keywords: cognitive transfer, skill acquisition, cognitive control, cognitive architecture, cognitive

training

Supplemental materials: http://dx.doi.org/10.1037/a0033138.supp

The goal of this article is to develop a theory and model of how

cognitive skills are acquired, and how transfer between skills can

be explained. The ability to learn and carry out complex cognitive

skills is critical to human intelligence, yet is still poorly under-

stood. There are many reasons to believe skills are not independent

of each other, but are closely interrelated, and build upon each

other. It is, however, hard to characterize this interrelationship

precisely. The representation of skills presented in this article is a

proposal for such an account, and thereby offers explanations for

situations in which skills overlap.

With a few exceptions, the representation of choice to model

skill acquisition is the production rule (Anderson, 1982; Newell,

1990). Typically, the knowledge necessary for a particular task is

encoded as a set of rules, each with a number of conditions that

match the current state of (working) memory and information from

the senses, and a number of actions that modify working memory

or initiate motor output. Even models that do not employ produc-

tion rules as such either use a similar condition-action paradigm

(e.g., Botvinick & Plaut, 2004), or abstract away the complexities

involved (e.g., the role of the algorithm in instance theory; Logan,

1988). Despite their past successes in explaining complex human

behavior, production rules have a number of disadvantages. A first

problem is that productions rules are fairly complex representa-

tions. This presents a challenge when we try to answer the question

of how these representations can be learned, and how they are

represented in the brain. A second problem is that production rules

are usually highly specific for a particular task, making it hard to

characterize how skills are interrelated. The high specificity of

rules can be attributed to two separate aspects. The first is that a

production rule typically specifies multiple elementary compari-

sons and elementary actions. The second is that production rules

incorporate specific knowledge elements. For example, production

rules for doing multi-column addition may refer to columns, to the

number one as something that has to be carried from one column

to the next, to the addition of two digits and to shifting attention

one column to the left. A set of rules to represent multi-column

subtraction would therefore refer to a slightly different set of

specifics, and multi-column multiplication would be different still.

There are common elements between the three, in fact, iterative

procedures occur in many other tasks, as we will see later on, but

the specifics are different. How and when, then, does transfer

occur?

In this article I propose the primitive elements theory, a way to

break down production rules into their smallest possible elements,

some of which are specific to the task but most of which are

general. The resulting task-general elements control the flow of

information in the mind, regardless of the specific content. When

these smallest units are used to carry out tasks, a learning process

combines them and eventually builds the productions rules that are

typically used to implement task models. However, on the way the

learning mechanism produces partial task-general rules that can

This research was supported by European Research Council Starting

Grant MULTITASK 283597. I thank Stefani Nellen, Marieke van Vugt,

and Fokie Cnossen for comments on drafts of this article, and Rick Lewis,

Wayne Gray, Kevin Singley, and John Anderson for their helpful reviews.

Correspondence concerning this article should be addressed to Niels A.

Taatgen, Institute of Artificial Intelligence, University of Groningen,

Nijenborgh 9, 9747 AG Groningen, the Netherlands. E-mail: n.a.taatgen@

rug.nl

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

Psychological Review © 2013 American Psychological Association
2013, Vol. 120, No. 3, 000 0033-295X/13/$12.00 DOI: 10.1037/a0033138

1

also be used by other tasks. This generates the potential for

transfer.

A Computer Analogy

There is always a danger in drawing analogies between human

cognition and computers, but in this case it may help to improve

understanding of the model I propose. At the lowest level, a

computer program is built out of machine code. Machine code

consists of a fixed set of instructions, each of which performs

primitive actions within the computational system. The function

these instructions have to perform is to move around information

between the different components in the computer. These compo-

nents can be external, like peripheral devices and memory, or

internal to the central processing unit (CPU), like the arithmetic

unit and internal registers that store intermediate information (ac-

cumulators), or serve a function in task control (program counters,

the instruction register, a pointer to the stack, etc.). With a small

and finite set of instructions, computers are capable of implement-

ing any algorithm. One of the challenges of CPU design is to

formulate a good instruction set, which should neither be too large

or small, and be comprised of instructions that are neither too

simple nor too complex.

The primitive elements model has similarities to the machine

code model. It assumes that cognition has several specialized units

for perception, output and memory, which have to be coordinated

by atomic “machine level” instructions. Similar to the CPU, there

is also a need to store intermediate results, that is, a working

memory, and to keep track of task control. The chief conceptual

difference, though, is that the instruction set of a CPU is fixed, but

the set of primitive skills within the cognitive system evolves

through a learning process. Starting from the smallest possible

skills, combinations are built that recur often, and are therefore

useful in many different tasks. This will be the basis for explaining

transfer: Training on a particular task evolves the available set of

operators toward that task, and if those operators and their partial

predecessors are also useful for a new task, there will be transfer.

Theories and Models of Skill Acquisition and Transfer

The dominant idea in models of skill acquisition is that the

starting point of learning a skill is a set of problem-solving strat-

egies, often called weak methods, which are very general, but also

very inefficient. The process of skill acquisition involves some

form of specialization that creates efficient knowledge specific for

a particular task. Different theories have proposed different mech-

anisms to accomplish this, but they all share this basic principle

(Anderson, 1982, 1987; Laird, Newell, & Rosenbloom, 1987;

Logan, 1988; Taatgen & Anderson, 2002; Taatgen & Lee, 2003).

Models based on these theories have been very successful in

explaining many aspects of skill acquisition, but their limitation is

that they divide knowledge into two categories: a fixed set of

general strategies, and learned, task-specific strategies. This divi-

sion raises a number of questions. The first concerns the origin of

the general strategies. Anderson (1982) assumed they are innate.

Newell (1990) expressed uncertainty about the status of general

strategies, but did not offer mechanisms that explain how they can

be learned. A second question is whether this division is accurate,

because if it were, the consequence would be that all learned skills

are independent of each other. This is at odds both with the

intuition that skills build upon each other, and, as we see later in

this article, with experimental evidence.

The idea that skilled knowledge consists of general strategies

and task-specific knowledge is not unique to production system

theories. Several neural network models of complex tasks employ

the same paradigm, albeit in different terms. For example, models

of learning the past tense (Rumelhart & McClelland, 1986) and the

balance scale task (McClelland, 1995) employ task-specific net-

works with task-general learning mechanisms (associative learning

and back-propagation, respectively). An exception, to some extent,

is the model of routine sequential action by Botvinick and Plaut

(2004), which can model how actions related to making tea can

intrude during making coffee. Their model selects actions mainly

based on the current context instead of a particular goal.

The division of knowledge into fixed task-general and learned

task-specific also influences how we think about transfer. Already

the term transfer suggests that we have to take something from one

task and “transfer” it to another task. An assumption about transfer

is that it is a rather limited phenomenon. The supposedly limited

role of transfer has a long tradition, going back to Thorndike

(1922; Woodworth & Thorndike, 1901). Thorndike was critical of

the doctrine of formal discipline: the idea that by learning Latin

and Mathematics the brain is trained like a muscle, enabling it to

do a variety of other things unrelated to the topics that were

studied. The idea of formal discipline has a long tradition, and was

first formulated by Plato in The Republic. Thorndike introduced

the theory of identical elements as a replacement. According to this

theory, transfer between two tasks only occurs insofar as knowl-

edge elements are identical. For example, the only reason why it is

easier to learn French after Latin, is that many words in Latin are

similar in French. Thorndike demonstrated limited transfer in

several experiments, for example in mathematics (Thorndike,

1922; but see Singley & Anderson, 1989, for criticism on

Thorndike’s experiments).

Singley and Anderson (1985) developed a modern version of the

theory. They argued that Thorndike’s (1922) theory lacked preci-

sion: What exactly is an element of knowledge, and when are two

elements truly identical? They proposed the production rule as the

element of transfer, and used the number of identical productions

between two tasks as a measure of potential transfer. As a dem-

onstration of this approach, they examined transfer between text

editors. In one of their experiments, subjects had to learn to edit

text using one of three editors, and then switched to a different text

editor. The experiment, which I discuss in detail later on, demon-

strated substantial transfer between text editors. At approximately

the same time, Kieras and Bovair (1986) outlined a similar theory

of transfer with production rules, showing that the amount of extra

time needed to learn extensions to particular procedures can be

predicted by the extra number of productions needed for that

extension. In all these cases, transfer was a matter of taking

task-specific knowledge from one task and using it for another,

semantically similar, task.

To predict the exact amount of transfer, Singley and Anderson

(1985) encoded each of the three editors in a production system

model based on a task analysis by Card, Moran, and Newell

(1983). The three models had several identical production rules,

especially those involving the higher level planning of the edits.

More specific rules, in particular the specific keystrokes control-

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

2 TAATGEN

ling the edits themselves, differed between editors. In addition, the

two line editors showed a larger overlap with each other than with

the screen editor. To account for transfer, they calculated the

percentage of overlap in production rules between two editors,

taking into account the frequency in which a particular rule was

used. On this basis, they were able to account for a large amount

of the transfer, but not all of it. In particular, the model was only

able to account for half of the transfer between the line editors and

the screen editor: Whereas transfer in the data amounted to 62%,

the model only showed 33% transfer. The model was clearly

missing something.

In addition to this shortcoming, the identical productions model

is underspecified in that it does not explain how different levels of

generalization can be represented and learned. In all currently

popular cognitive theories based on production rules, productions

are from the outset either specific to a task, or task-general.

Task-specific productions match a particular goal, so in the case of

text editors, the choice is between a production that applies to a

specific editor, or one that is used for text editing in general.

However, when learning a particular text editor it is impossible to

tell in advance whether a particular piece of knowledge is specific

to that editor, or can be generalized to other editors.

A further complication of assessing transfer between tasks is

that the level of transfer is not necessarily fixed, but may change

with level of expertise. For example, it makes intuitive sense that

the basic skills acquired in learning Latin may transfer very well to

other languages, but as skills becomes more specific their overlap

decreases. There is some limited experimental evidence for this.

Frensch and Geary (1993) found little transfer from varying

amount training on simple additions to multicolumn additions,

even though subjects became slightly faster at both. They ex-

plained this with by assuming that their subjects were already very

skilled at simple additions, so that additional training had very

little general benefit. Anderson and Fincham’s (1994) study with

an analogical reasoning task revealed diminishing transfer with

practice between different types of problems within the task.

If transfer is so hard to explain through procedural knowledge,

maybe we should look at declarative knowledge as the main source

of transfer. Many theories are centered on analogical transfer

(Forbus, Gentner, & Law, 1995; Gentner, 1983; Holland, Holyoak,

Nisbett, & Thagard, 1986; Hummel & Holyoak, 1997). The idea is

that to carry out a new task, knowledge about a similar task is

retrieved from memory, and adapted to fit the new situation.

Analogy is potentially a general strategy that can become increas-

ingly powerful as the number of available examples in memory

increases. If all transfer can be based on analogy, procedural

knowledge might not be involved in transfer at all.

One of the problems with declarative transfer through analogy is

that there are many studies that show that it is not a particularly

dominant strategy in human reasoning. The most infamous exam-

ple of this is the failure of people to solve an analogy problem in

which they are first told a story about a general who captures a

fortress by breaking up his army into smaller groups of soldiers to

avoid setting off explosives that are only triggered by a large force.

Only a few of the subjects in studies by Gick and Holyoak (1980)

managed to use this example to solve an analogous problem about

a surgeon who wants to use radiation to treat a stomach tumor, but

wants to avoid burning healthy tissue. Similarly, Reed, Ernst, and

Banerji (1974) found no transfer between the Missionaries and

Cannibals problem and an analogous Jealous Husbands problem.

However, a study by Day and Goldstone (2011) did find positive

transfer between a task in which subjects had to control a ball that

oscillated between two elastic bands and a task in which the

population of a city had to be stabilized. The tasks were very

different on the surface, but they did share the same underlying

principle. According to Day and Goldstone, transfer was success-

ful in this case not because subjects made an explicit analogy, but

because they could reuse parts of the mental model from the ball

task for the population control task.

Another set of studies by Rickard and colleagues (Bajic, Kwak,

& Rickard, 2011; Rickard & Bourne, 1996; Rickard, Healy, &

Bourne, 1994) have shown that people favor the use of facts from

memory exactly as they are learned. For example, people do not

use the fact that 3 � 5 � 8 to calculate the answer to 5 � 3, but

have a separate memory trace for that reverse fact, a model they

called the Identical Elements Model.

Even though analogical reasoning may be a partial explanation

for transfer, it does not seem to be the full story. Apart from the

question regarding the extent to which people use analogical

transfer, there is also the issue that it serves a different purpose than

transfer in cognitive skills. The goal of analogical transfer is typi-

cally to find solutions to novel problems, whereas the goal of this

article is to understand how the acquisition of an entirely new skill

is helped by existing skills.

A type of transfer that is hard to explain through any current

theory of transfer is far transfer. Far transfer refers to cases in

which the two tasks involved are very dissimilar (Barnett & Ceci,

2002). Although similarity between tasks can be defined in several

ways, we will speak of far transfer if the specifics involved are

different between tasks (we will characterize this more precisely

later on). Several recent studies show transfer between tasks that

are certainly not similar. Jaeggi, Buschkuehl, Jonides, and Perrig

(2008) found that training on the N-back task improves scores on

the Raven Progressive Matrices Task (Raven, 1990). In addition,

Karbach and Kray (2009) found that training task-switching im-

proves performance on the Stroop task, a working memory task,

and the Raven’s test. Other studies also found positive transfer

between dissimilar tasks (Chein & Morrison, 2010; Mackey, Hill,

Stone, & Bunge, 2011), but others did not: Several attempts to

replicate Jaeggi et al.’s study failed (see Redick et al., 2013), and

a large study by Owen et al. (2010) also failed to find transfer

despite similarities to earlier studies.

The key proposal in this article is that the smallest elements of

skill are smaller than what is typically represented in a production

rule. A production rule typically performs several functions at the

same time. The theory presented here breaks down these rules into

their basic information processing units, and splits them into

task-specific information and general information processing pat-

terns. This separation between the specific and the general allows

automatic reuse of the general components of a skill. This solves

the problem that Singley and Anderson (1985) had in accounting

of the editor data: By having smaller units, more transfer can be

accounted for, and by separating out the specific values, knowl-

edge that is learned in the context of a specific editor can still be

used for a different editor.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

3THE NATURE AND TRANSFER OF COGNITIVE SKILLS

More generally, the theory can explain cases in which there is

transfer between skills that are structurally similar but completely

different in content.

Overview of the Article

The first question I try to answer is as follows: What are the

smallest elements of skill, and how are these elements combined

into more complex units? Part of this question is how the task-

specific elements can be separated from the general items in order

to promote maximal reuse of knowledge. This is first illustrated

with a choice reaction task, which is broken down into eight

elementary steps.

The next questions are as follows: How are the appropriate skill

elements sequenced, how do learning processes combine elemen-

tary steps into bigger units, and how can these be used to explain

transfer? I illustrate this with an example of counting, and I show

how this transfers to semantic inference.

In the second part of this article, I go through a real example of

transfer between similar tasks: Singley and Anderson’s (1985)

editor experiment. The models involved are relatively elaborate,

but are nevertheless simple in structure. The primitive elements

model not only provides a better prediction for the amount of

transfer between the editors than Singley and Anderson’s original

model does, but also reproduces the learning process itself.

In the third part, I develop methods for task control and hierar-

chy. Task control is not considered a separate mechanism or

module, but instead consists of a set of strategies for handling

goals and elements in working memory. I demonstrate this idea

using an arithmetic task developed by Elio (1986). In her experi-

ment, subjects had to memorize a set of formulas, and then

perform calculations using these formulas. Subjects then trans-

ferred to a phase in which some or all of the formulas were

replaced by new ones. Key in this task is that it requires some form

of subgoaling. We therefore need provisions in the model for task

control, which, I argue, are not architectural but strategical.

In the fourth and final part, I show how the model handles far

transfer. Both the editor and Elio tasks show large semantic and

structural overlap. Now we explore how sharing key components

of cognitive control between tasks that are superficially very

different can explain transfer. More in particular, I look at the

proactive and reactive strategies to cognitive control, and how

training proactive control transfers to other tasks in which this type

of control is beneficial. A first demonstration of this is an exper-

iment by Chein and Morrison (2010), in which training on a

complex working memory task led to a gradual improvement of

working memory capacity, but also to an improvement on the

Stroop task. A second example is an experiment by Karbach and

Kray (2009), in which several days of practice in task switching

not only improved performance on a different task-switching task,

but also on the Stroop task and a working memory task.

The Smallest Elements of Skill

Beyond the strong ties of the formalism of the production rule to

symbolic theories, there is a much broader agreement that some

form of condition-action mapping is necessary to explain human

sequential behavior (Botvinick & Plaut, 2004; Cooper & Shallice,

2000; O’Reilly & Frank, 2006). Stocco, Lebiere, and Anderson

(2010) made an effort to bridge the gap between symbolic archi-

tectures and a neural implementation with a neural network model

of the basal ganglia. This model implemented a symbolic produc-

tion execution and learning system. The general assumptions of

Stocco et al.’s model, which is consistent with both the symbolic

Adaptive Control of Thought–Rational (ACT-R; Anderson, 2007)

and connectionist Leabra (O’Reilly & Munakata, 2000; see also

Lebiere, O’Reilly, Jilk, Taatgen, & Anderson, 2008) theories, are

as follows.

Cortical areas have specific functions, such as vision, motor

output, declarative memory, working memory, time perception,

and so forth. Each of these systems has particular inputs and

outputs. For example, the output of the visual system can be a

representation of the object in the fovea, whereas the input consists

of oculomotor commands that direct the gaze. On a more cognitive

level, the input to declarative memory can be a partial pattern of

what we try to recall, after which the output is the completed

pattern. All the outputs of the cortical areas are placed in a

common workspace (e.g., the global workspace proposed by

Baars, 1988; Dehaene, Kerzberg, & Changeux, 1998) or, in terms

of ACT-R, a set of buffers. In both the ACT-R and Stocco et al.’s

(2010) model, the workspace is not a single area but rather a

collection of areas distributed throughout the cortex. According to

Stocco et al.’s model, the role of the basal ganglia is to match

patterns in this workspace, and carry out actions by routing infor-

mation elements from one place to another in the workspace.

Cortical areas connected to these elements of the workspace then

carry out the associated actions.

Stocco et al.’s (2010) model uses a type of production rule that

is much more restricted than the rules that are used in most

production systems. First, a production can only inspect the fixed-

format output of specialized cognitive modules, and is restricted to

simple comparisons (equality and inequality). Second, the action

of the production itself is restricted to moving information within

the workspace. Cortical modules then perform meaningful actions

with that information. Figure 1 shows a global outline of the

general architecture inspired by these ideas.

Stocco et al.’s (2010) model suggests that the basic elements of

cognitive skills are either comparisons between pieces of informa-

tion in the workspace, or moving (or copying) information within

the workspace. I call these basic elements primitive information

processing elements (PRIMs). The basic idea of PRIMs is best

explained using an example.

Example: A Choice Reaction Task

In choice reaction tasks, subjects perceive a stimulus, retrieve an

appropriate response from memory, and then make that response.

For example, they are instructed to press their index finger if they

see the letter “A,” their middle finger if they see the letter “B,” or

their ring finger if they see the letter “C.” The example in Figure

2 assumes that perception, memory retrieval, and output are car-

ried out by dedicated modules that retrieve and deposit their inputs

and outputs in a central workspace.

The two productions necessary for this task have to move the

information (the letter “C” in the example) from the perceptual

system to memory, and from memory to the output module (the

“Ring” finger in the example). If we look at it in more detail, the

productions do more than move information. First, they are trig-

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

4 TAATGEN

V
is
ua

l
M

od
ul

e

Declarative

M
em

ory
M

odule

W
o
rk

in
g

M
e
m

o
ry

M

o
d
u
le

Task Control

Module

M
a
n
u
a
l

M
o
d
u
le

Cortical

Modules

Workspace

(cortex or striatum)

Baars and Dehaene’s Global Workspace model Anderson’s ACT-R architecture

Production rules

(Basal Ganglia

and Thalamus)

Comparisons

between two elements in

the workspace

Copying an element

from one place to

another in the workspace

The PRIM model

Figure 1. Global outline of the primitive elements model of skills, inspired on the neural network model by

Stocco et al. (2010), the global workspace model (Dehaene et al., 1998), and the Adaptive Control of

Thought–Rational (ACT-R) architecture (Anderson, 2007). Specialized modules (the boxes on the outside)

provide input to the workspace (the central ring in the figure) or carry out actions placed in the workspace. The

production rules in the center make comparisons between items in the workspace (indicated by circles here), and

copy them. For example, a comparison can be made between a visual item and an item retrieved from memory,

and another visual item can be copied to working memory. See also Jackendoff (1987) for another version of

this general idea. PRIM � primitive information processing element; DLPFC � dorsolateral prefrontal cortex;

VLPFC � ventrolateral prefrontal cortex. Bottom left figure reprinted with permission from “A Neuronal Model

of a Global Workspace in Effortful Cognitive Tasks,” by S. Dehaene, M. Kerszberg, and J. P. Changeux, 1998,

Proceedings of the National Academy of Sciences, USA, 95, p. 14530. Copyright 1998 by the National Academy

of Sciences.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

5THE NATURE AND TRANSFER OF COGNITIVE SKILLS

gered by the context of this task, and not otherwise. Second, they

add information: in the case of Production 1, the rule specifies that

we are looking for a particular mapping of the letter to a finger, not

just any fact in memory that relates to the letter. In the case of

Production 2, the rule specifies that it is a press action that is to be

carried out, and not any other possible motor output involving the

ring finger. In this view, Production 1 consists of four elementary

elements: checking that the task is choice reaction task (CRT),

checking that there is a perceptual input, moving “mapping” to

memory retrieval, and moving the perceptual input to memory

retrieval. These are the atomic elements of skill that we are after.

The first production is activated by a visual input, which is its

first PRIM (see Figure 3). Subsequently, it has a declarative

retrieval that consists of two PRIMs: the constant “mapping” and

the visual input. Similarly, the second production is broken down

into a match of the declarative retrieval and two action elements.

There is still one problem: There are PRIMs that match or copy

specific values, in our example “mapping” and “press.” Moreover,

Productions 1 and 2 only fire in the context of the choice reaction

task, which means they have to check the current task. PRIMs

cannot check values in the workspace against specific constants,

because that would require an infinite number of PRIMs. The

solution is to bring specific values into the workspace, and then use

general PRIMs to compare these values against other slots in the work-

space. For this, we need an additional PRIM that puts these specifics

into the workspace (by retrieving them from memory). Figure 4

shows how this is done. In Figure 4, as in Figure 3 and all

subsequent figures, I use the convention that colored nodes repre-

sent task-specific knowledge, white nodes represent general con-

ditions, and gray nodes general actions.

In addition to showing how the specifics are entered into the

workspace, Figure 4 also gives an impression of the learning

process. PRIMs are themselves production rules, but lack a control

component (i.e., in what order are they carried out). I discuss this

control component in the next section. To graphically preview this

distinction, I depict the PRIMs as consisting of two components:

the elementary production rule (the arrows in the figure) and a

control component (the circles in the figure). A production com-

pilation process (Anderson, 1982; Taatgen & Anderson, 2002)

combines PRIMs that fire in sequence into new larger production

rules. For example, copying the specific to the retrieval and copy-

ing the visual to the retrieval can be combined into a new produc-

tion that accomplishes both. This means that instead of only one

primitive comparison or action, multiple are carried out in parallel.

Because we have separated out the specific elements, many of the

new productions that are learned are task-general rules. In Figure

4, these are the rules with only white and gray nodes.

The advantage of the task-general productions is that they can

be used for other tasks. If another task has the same structure as a

task learned earlier, it does not need to start the learning process

with just PRIMS, but can already use learned productions that

incorporate several PRIMs, resulting in a faster learning process,

or, in other words, transfer.

The total number of PRIMs is a finite set, and depends on the

size and composition of the workspace. More specifically, the

workspace is subdivided in a fixed set of buffers (perception,

declarative memory, working memory, etc.), each of which has a

fixed number of slots to store information. Buffers can be input-

only, output-only, or both input and output. The current imple-

mentation has 10 input slots, 7 output slots, and 14 both slots. The

input slot includes slots that store specific values (e.g., “mapping”

and “press”) in the workspace.

For each non-output-only slot in the workspace there is a PRIM

that checks whether it is empty, and one that checks whether it is

not empty. Moreover, for each combination of two non-output-

only slots there is a PRIM that checks whether the values in the

two slots are the same, and a PRIM that check whether the two

values are different. This adds up to (10 � 14) � (10 � 14 � 1) �

2 � (10 � 14) � 2 � 1,188 elementary comparison PRIMs (the

white nodes). Furthermore, for each combination of a non-output-

only and non-input-only slot there is a PRIM that copies the value

in one slot to the other slot, so (10 � 14) � (14 � 7) � 504

elementary action PRIMs (the gray nodes). This means that there

are already 1,430,586 possible combinations of two PRIMs, and

805,896,780 combinations of three. These combinations cannot

possibly be all useful, but a subset of them is, and it is up to

Mapping

C

Ring

Memory

retrieval Output

Mapping
C

Ring

Memory module

Perceptual

Input

C

C

production 1 production 2

Perception module Output module

Press
Ring

Finger

Workspace

Figure 2. Outline of a choice reaction task. The perception module

perceives the letter “C” and retrieves from memory that this letter is

associated with the ring finger, and then presses the ring finger. Three

cognitive modules (perception, memory, and output) carry out specific

subtask, but Production 1 and Production 2 control the flow of information

between the modules at appropriate moments.

check

for

visual

input

copy

“mapping”

to

retrieval

copy

visual

input to

retrieval

check

for

retrieval

copy

“press”

to

output

copy

retrieval

to

output

production 1

(on visual input

retrieve mapping)

production 2

(on retrieval

press retrieved finger)

Figure 3. The two productions needed for the choice reaction task broken

down into elementary comparisons and actions.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

6 TAATGEN

long-term learning to discover and acquire these. Finally, there is

one last PRIM, which is the step that checks the task and sets the

specifics (represented by the colored nodes).

An observation that can be made regarding productions built out

of PRIMs is that they do not seem to refer to variables, or variable

binding. This is a consequence of the fact that ACT-R can only

match items in buffers, and therefore variable binding means

making a connection between two fixed locations, which is exactly

what PRIMs do.

Although the size of the workspace can be adjusted in the

implementation to accommodate additional modules, in particular

perception and motor modules that are represented rather sparsely

in the current implementation, the assumption of the theory is that

the human global workspace has a fixed size.

Sequencing Elementary Skills

An aspect of “normal” production rules that PRIMs lack is

control. A production rule typically combines a number of com-

parisons and actions because they perform a meaningful cognitive

operation together. Because PRIMs carry out only single informa-

tion processing steps, some other mechanism is needed to se-

quence them properly.

In order to accomplish this declarative memory is used to

store the sequences of PRIMs. This fits general theories of skill

in which a skill is first represented declaratively, and is then

gradually proceduralized through training (e.g., Anderson,

1982). It is also analogous to computer programs, because in

machine language, instructions in a program are stored in

memory, and executing a program means retrieving these in-

structions from memory one at a time. However, the computer

does not learn, and will therefore never become smarter at

executing its programs.

The assumption is that knowledge to carry out a particular

task is first encoded in declarative memory using what we call

operators, the counterpart of productions in procedural memory.

An operator consists of a number of linked memory items, each

of which corresponds to a PRIM: a root item that represents the

specific values, a list of conditions and a list of actions. Figure

5 shows one of the two operators for the choice reaction task.

A psychological reason for the split between a declarative

operators and a procedural PRIMs is that procedural learning is

very slow (e.g., Anderson & Fincham, 1994), and is therefore

incapable of accomplishing the human ability to quickly acquire

new tasks. Declarative memory, in which learning can be fast or

even instantaneous, can therefore serve as a scaffold to build skills.

In design as well as skill learning it can make a huge difference

whether what we build can be made out of ready-made pieces, or

has to be designed completely from scratch.

Set specific

to “mapping”

and check

task is “CRT”

check

for

visual

input

copy

specific

to

retrieval

copy

visual

input to

retrieval

check

for

retrieval

copy

specific

to

output

copy

retrieval

to

output

copy

specific &

input

to retrieval

production 1

(on visual input

retrieve mapping)

copy

specific &

retrieval

to output

production 2

(on retrieval

press retrieved finger)

On visual input

copy specific and that

input to retrieval

On a retrieval

copy specific and that

retrieval to output

Learning

Set specific

to “press”

and check

task is “CRT”

Figure 4. The choice reaction task (CRT) productions in which specific knowledge is moved to the front of

each sequence. The figure also shows how a learning process produces the task-specific rules, and the

intermediate products, each of them incorporating two or three primitive information processing elements.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

7THE NATURE AND TRANSFER OF COGNITIVE SKILLS

Each of the items in an operator is retrieved and carried out by

a corresponding PRIM, one at a time. First, the root of an operator

is retrieved, and any specific items are placed in the workspace

(the figures refer to them with item1, item2, etc.). If one of the

condition PRIMs does not match, the process is aborted, and

process proceeds with another operator in memory. A gradual

speedup of this process is achieved by the production compilation

mechanism (Taatgen & Anderson, 2002). More specifically, this

mechanism combines two consecutive productions into one, while

incorporating the contents of any declarative retrieval that hap-

pened in between these two productions into the new rule. In the

context of carrying out operators, this means that parts of the

operator are gradually incorporated into new production rules that

are combinations of PRIMs.

As learning progresses, fewer memory retrievals are necessary.

Figure 6 illustrates this process step-by-step. In the intermediate

examples, PRIMs are combined into productions that carry out

several PRIMs in one step. Therefore, fewer components of the

operator need to be retrieved until only the root of the operator is

left. In the final expert stage, a task-specific rule is learned, and

memory retrievals are no longer necessary at all.

Two specific choices were made in the representation of oper-

ators. The first is to split the conditions and the actions into

separate lists, and not put them conditions and actions in one list.

CRT

item1: mapping

Visual stimulus

is present

Copy item1
to retrieval

Copy visual

to retrieval
Set specific

to “mapping”

and check

task is “CRT”

check

for

visual

input

copy

specific

to

retrieval

copy

visual

input to

retrieval

Operator

PRIMs

Retrieve root check visual perform item1-

retrieval copy
perform visual-

retrieval copy

Figure 5. The order in which primitive information processing elements (PRIMs) are carried out is determined

by operators in declarative memory. To depict this graphically, the original PRIMs are shows as arrows with a

“slot” that needs to be “filled” by the operator to control the order in which PRIMs are carried out. The root of

the operator (colored) contains the name of the task (choice reaction task [CRT] in the example), and any specific

values (“mapping” in the example), and pointers to the list of conditions and actions. The operators represent the

order in which PRIMs have to be carried out, but are otherwise passive structures in memory. The PRIMs, on

the other hand, do carry out the actions but do not know the order.

Novice:

Each component of

the operator is

carried out by

the corresponding

PRIM

Intermediate:

PRIMs are clustered

into productions that

carry out multiple

PRIMs.

Retrieve root check visual perform specific-

retrieval copy
perform visual-

retrieval copy

Retrieve root check visual specific/visual-

retrieval copy
Retrieve root check visual and

specific/visual-

retrieval copy

check visual and

specific/visual-

retrieval copy

Expert:

Task-specific productions no

longer require retrieval from

declarative memory.

Figure 6. Novice (mirroring Figure 5), three intermediate, and expert stages of acquiring rules. The colored

nodes represent task-specific knowledge, white nodes conditions, and gray nodes actions. Arrows with just an

empty slot represent primitive information processing elements (PRIMs); arrows with one or more nodes

represent learned rules in which part (or all, in the case of the expert rule) of the operator has been incorporated.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

8 TAATGEN

Splitting up the two will, as we will see, promote separate pro-

ductions for testing groups of conditions and carrying out groups

of actions, which in turn promotes transfer, and this is necessary to

capture the transfer found in the experiments discussed later. The

second choice was to arrange control of PRIMs through lists. The

alternative would have been to represent them as a set, and not care

about the order in which they are tested or carried out, improving

overall flexibility. However, increased flexibility has a price: Ad-

ditional resources have to be devoted to keep track of which

conditions and actions have already been accessed, and assessing

the overlap between operators, which I discuss shortly, would

become harder.

There is no hard size constraint on the number of conditions and

actions in an operator. However, module actions, such as declar-

ative retrieval of facts, perception or motor output only take place

between operators, creating natural boundaries between them.

Building Models

All models discussed in this article contain the following com-

ponents. The first is the complete set of all possible PRIMs: 1,188

condition PRIMs, 504 action PRIMs, and one PRIM to retrieve the

root of an operator. Because these are always the same, they are

predefined in the system. The second is a set of operators for each

of the tasks, specified by the modeler and specific to that model.

Each operator consists of a root item, and lists of conditions and

actions. Root items are always unique for a tasks, but the condi-

tions and actions can be shared, even partially, within and between

tasks. The learning process is simulated by repeated execution of

a particular task. Production compilation produces within task

speedup by combining productions. Transfer between tasks is

achieved by training the model on one task, and then testing it on

a transfer task. If the training task produced intermediate task-

general rules that are also useful for the transfer task, the model

predicts transfer between the two tasks. In the discussion of the

models, I often call operator components PRIMs, even though they

are only supply the control components for the PRIMs.

The choice of a list representation for the condition and action

components has one unfortunate consequence: The order of the

conditions or actions has a huge impact on the amount of transfer.

If two operators have C1 and C2 as conditions then there will be

transfer if they appear in the same order, but not if the order is

reversed in one of the operators. To reduce this lack of constraint,

and not give the modeler arbitrary control over the amount of

transfer, the implementation of the model tries to match the con-

dition and action lists of new operators with existing condition and

action lists. It then tries to reorder the lists to maximize the

overlap. The reasoning behind this is that this is what people will

try to do as well. Although they do not have detailed conscious

access to the PRIMs, it is likely that the process of constructing a

strategy for a task tries to reuse as much existing knowledge as

possible.

An Example of Transfer:

From Counting to Semantic Reasoning

We will now look at the example of counting, and how counting

can transfer to another iterative task. Counting in this example

means: counting from a starting number to an end number, for

example, count from 2 to 5. This model consists of three operators:

one that initiates the count, one that proceeds through the counting

steps until the final number is reached, and a third operator that

finalizes the count. Figure 7 shows a representation of these three

operators. In discussing this and future examples, I mainly look at

the operators because they are the representations that are different

in each model, whereas the PRIMs are always the same.

As was already suggested in Figure 1, the workspace is divided

into areas that connect to the different modules, and each area is

further subdivided into a number of separate slots. In the counting

example, we need two input slots: one to represent the starting

number, and one for the end number. We need one slot in working

memory to store the counter and two slots to specify the output.

Finally, we need three slots for declarative memory, because we

need to retrieve the order of numbers from memory, and these are

represented in triplets such as “order, 2, 3,” “order, 3, 4,” and so

forth.

Counting is now carried out as follows. The model starts with an

empty working memory, and a visual input consisting of the start

and end number. It will first retrieve one of the three root opera-

tors. Let us assume it immediately retrieves the right operator: “Init

Count Init

item 1: Say

item 2: Order

Visual input

is present
WM is empty

Copy first visual

input to WM

Copy WM to

Output

Copy item 2 to
retrieval

Copy WM to

retrieval

Count Step

item 1: Say

item 2: Order

Retrieved item
is not second
visual input

Copy retrieved

item to WM

Count Final

item 1: Say

Retrieved item
equals second
visual input

Copy
retrieved item
to Output

End Task

Copy item1

to Output

Copy item1

to Output

Figure 7. The three operators to do the counting task. Each of the three operators has a colored root node that

identifies the task and the specific items. Each of the connected white nodes refers to a condition primitive

information processing element (PRIM), and each of the gray nodes refers to an action PRIM. Note that the “Init

count” and the “Count step” operator have a partial overlap in their action PRIMs. WM � working memory.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

9THE NATURE AND TRANSFER OF COGNITIVE SKILLS

count,” which consists of two specific items (“Say” because that is

will be part of the output, and “Order,” because it will later retrieve

a fact of that type from memory), and a reference to the first

element in the condition and action lists. The condition list consists

of two PRIMs that are checked in order: Is there a visual input, and

is working memory empty? (Both are true.) After checking the

conditions, the action PRIMs will be carried out one at a time: The

first visual (so the starting number) is copied to working memory

(so we keep a counter), Item 1 (“Say”) is copied to the output,

along with the contents of working memory (so the model says the

first number), then the second item (which is “Order”) is copied to

declarative memory retrieval, and finally the number in working

memory is copied to declarative memory retrieval. If the starting

number is 2, this means we effectively ask declarative memory to

complete the pattern “Order, 2, . . .”.

The second operator, Count Step, is triggered by a successful

retrieval of an order fact (so the next number) from memory in

which the retrieved number is not yet equal to the end number (the

second item in the visual input). It then stores this number in

working memory, and proceeds as in the first operator: say the

number, retrieve the next number. Because these steps are identical

between the two operators, the same action PRIMs are used. The

third and final operator, Count Final, has as condition that the

retrieved number equals the end number. It says that number and

ends the task. It is important to stress that PRIMs only move

around information within the workspace. It is up to the different

modules—vision, declarative, and output—to do the actual work.

The counting procedure is initially very slow, because every

item in the operator has to be retrieved and executed separately.

Fortunately, the production compilation process will, like in Figure

6, learn productions that can carry out multiple PRIMs in one step.

Eventually, this learning process will produce three task-specific

rules that no longer require the operator.

The task-general rules that it has learned during that process can

be useful for other tasks, though. What the count model essentially

performs is a form of iteration. Iteration is common in many tasks,

even though these may not share the same content. One task with

the same iterative structure as counting is a task of semantic

reasoning, in which questions need to be answered like “Is a

canary an animal?” This question can be answered by iterating

through a semantic network of living things. In the example, first

“A canary is a bird” has to be retrieved, followed by “A bird is an

animal.” This is a bit like counting, with canary as the starting

point, and animal as the end point. The only difference is that there

is no guaranteed end to the iteration, because if we ask “Is a shark

a mammal?” the iteration ends at the root of the semantic tree. To

accommodate this, the model should respond with “yes” when it

retrieves the end point, but should respond with “no” if any

retrieval fails. Figure 8 shows the operators necessary for this task

when they are added to memory after the count task.

The first two operators in the semantic reasoning model are

structurally the same as in the count model, even though they

operate on different information. Instead of iterating through num-

bers (“2,” “3,” “4”), they now iterate through category relation-

ships between animals (“canary,” “bird,” “animal”). Only the last

two operators are different, in that the model says “yes” when it

iterates to the category it is looking for, whereas it says “no” after

a retrieval failure. If the model has to learn the semantic task after

first learning the counting task, there will be transfer, because

productions learned in the counting task can be reused for the

semantic task. Figure 9 illustrates this for the first operator in both

models.

When the model has to learn counting from just the PRIMs, it

has to go through an elaborate learning process, illustrated on the

left side of Figure 9, before it finally learns the “count init” rule.

As partial products, it learns several intermediate rules. Because

Count Init

item 1: Say

item 2: Order

Visual input

is present
WM is empty

Copy first visual

input to WM

Copy WM to

Output

Copy item 2 to
retrieval

Copy WM to

retrieval

Count Step

item 1: Say

item 2: Order

Retrieved item
is not second
visual input

Copy retrieved

item to WM

Count Final

item 1: Say

Retrieved item
equals second
visual input

Copy
retrieved item
to Output

End Task

Copy item1

to Output

Copy item1

to Output

Semantic Init

item 1: Say

item 2: Category

Semantic Step

item 1: Say

item 2: Category

Semantic
Match
item1: Answer
item2: “Yes”

Copy item2
to output

Semantic
Mismatch
item1: Answer
item2: “No”

Retrieval
Failure

Copy item1

to Output

*

* *

Figure 8. Memory structure of the operators after the semantic task has been added to the operators for the

counting task (see Figure 7). The addition of the semantic task requires four task-specific root nodes (green), and

three additional condition and action nodes (marked by an asterisk). WM � working memory.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

10 TAATGEN

the first operators in counting and in semantic are so similar, the

semantics model starts at an intermediate level (cf. Figure 6), and

only needs to do one compilation step to become an expert.

Details of the Simulation

The description of the primitive elements model as outlined in

the previous sections does not contain many details on the specific

mechanics of the system. The model is implemented in a system

called Actransfer, which is an extension and partial modification of

the ACT-R architecture (Anderson, 2007), and therefore inherits

many of the mechanics of that architecture. Actransfer constrains

ACT-R, because it has a fixed set of initial productions (i.e.,

PRIMs) that the modeler cannot and should not extend. In addition

to the PRIMs, a small fixed set of productions coordinates module

activity. It makes a few modifications that are necessary for the

implementation and are not important on the level of the theory,

and it makes some modifications that are detailed below. A full

description and downloadable models are available in the online

supplemental materials. Because Actransfer already has all the PRIMs

predefined, a model of a particular task just contains the declarative

operators to do the task. Actransfer does not limit the expressive

power of ACT-R, because any well-formed production can be

expressed as a set of PRIMs.

The workspace and connected modules. The cortical mod-

ules and the workspace are inherited directly from ACT-R, with a

few modifications. As is already shown in Figure 1, each module

connects to a number of slots in the workspace (this is called a

buffer in ACT-R).

In the current implementation of Actransfer, perception and

motor control have been simplified to an input module and an

output module. The input module has a fixed number of slots,

allowing it to represent multiple items, or multiple aspects of a

particular stimulus. For example, in the count model I used the first

slot to represent the starting number, and the second slot the end

number. But in later models, I use multiple slots to represent

different properties of an object; for example, in a model of the

Stroop task, a slot will be used for the identity of the word, and

another slot for the color of the ink. Output consists of three slots,

which can be used to represent compound actions, for example to

press a particular key, or to say a particular word. Furthermore,

there are four slots for working memory, four slots for declarative

memory, six slots to store the specific items, and four slots for task

control. The simplification of perception and output, and the fact

that more cognitive modules probably have to be included (e.g.,

time perception; Taatgen, van Rijn, & Anderson, 2007), means

that this workspace has to be expanded in the future, along with the

necessary PRIMs. However, the workspace should in theory re-

main fixed, even though its precise composition still has to be

established.

Production compilation. The key mechanism in the model is

production compilation: combining two rules into one. As Figure

9 illustrates, multiple combinations are required to build a task-

specific rule from the elementary productions. To ensure a gradual

learning process, a new production initially receives a very low

utility that only gradually builds up every time the production is

reproduced. This ensures that only combinations of rules that recur

check

for

visual

input

copy

visual

to

WM

copy

WM

to

output

check

for

empty

WM

copy

item2

to

retrieval

copy

WM

to

retrieval

copy

specific &

input

to visual

copy WM to

output &

item2 to

retrieval

All actions combined

Learning

copy visual to

WM &

item1 to

output

On Visual input and empty WM

copy visual to WM, item1 and

WM to output and item2

and WM to retrieval

Init count rule

Init semantic rule

Set specifics

to “say” & “order”

and check

task is count

Set specific

to “say” &“category”

and check

task is semantic

copy

item1

to

output

On Visual input and empty WM

copy visual to WM, item1 and

WM to output and item2

and WM to retrieval

Figure 9. Illustration of transfer between counting and semantic. Left: illustration of learning the Init Count

rule. Right: Learning the Init Semantic rule after first learning the Init Count rule. Note that the penultimate rule

in the learning of each rule is the same (shown as one blank slot, two whites, and five grays). Therefore, the

learning of the Init Count rule shortcuts the process of learning (i.e., positively transfers to) the Init Semantic

rule. WM � working memory.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

11THE NATURE AND TRANSFER OF COGNITIVE SKILLS

often end up as rules with a high enough utility to actually be used.

This utility learning process is a form of reinforcement learning

and follows the standard mechanism that is part of ACT-R.

Declarative memory. The operators are stored in declarative

memory, from which they have to be retrieved to be carried out.

The process of finding an operator of which all conditions are

satisfied can be very slow, because in the worst case all non-

matching operators are retrieved and tested first. The assumption

of the model is that the ACT-R mechanism of spreading activation

helps in finding the right operator. The idea is that the contents of

the workspace spread activation to all items in declarative memory

with which it has associations. If associations have the right

values, they can help retrieve the right operator at the right time.

For the purposes of the models discussed in this article, I have

chosen to take a short cut, and have automatically defined positive

associative strengths between elements in the workspace and op-

erators with conditions that match the workspace. This ensures that

the model will retrieve the right operator most of the time (not all

the time, because there is a noise component in the activation).

This short cut needs to be replaced by something more principled

in the future. For example, the way in which operators are learned

poses some linear structure on the order in which they are carried

out, so a particular operator can spread activation to the most likely

next candidate (Cooper & Shallice, 2000). Other than that, the

standard ACT-R mechanisms for activation are used (in particular

decay that will become important in working memory tasks).

Task control. The workspace has four slots for task control.

In the models in this article, each of these slots has a particular

function assigned to it, but the general assumption is that the

cognitive system is free to use the control slots in different ways,

and that it is indeed possible that individuals differ in the way they

handle task control. In the examples we have seen up to now the only

task control slot that was implicitly used was one to represent the task

itself (CRT, counting, semantic). The model implementation assumes

that only operators relevant to the current task are retrieved, and

therefore does not require explicit checks, but the current task can be

inspected and modified. The three other slots are used to store the

current internal control state, the parent goal, and a pointer into

declarative memory to maintain the context of the current task. I

discuss each of these in the context of particular models.

Transfer in Text Editing

Singley and Anderson’s (1985) experiment was a 6-day exper-

iment in which subjects worked with a text editor for 3 hr per day.

Subjects were subdivided into six conditions, a typing control

condition, which I ignore for our purposes here, and five condi-

tions in which subjects used different sequences of text editors.

The three editors that were used were ED and EDT, two line-based

editors, and Emacs, a screen-based editor. The main difference

between the two types of editors is that the screen-based editor is

similar to editors that are still commonly used (including Emacs

itself), in which part of the text is displayed on a page on the

screen. Editing typically involves moving around the cursor on

the screen, inserting text by typing, and deleting text by pressing

the delete key. Particular key combinations for moving, selecting

and deleting larger chunks of text can speed up the process. Line

editors are an older type of editor in which only a single line of text

is shown. Specific commands have to be entered to manipulate the

current line of text, or to move to a different line of text. There is no

concept of the current position of the cursor, instead particular com-

mands are needed to modify a particular part of a line (e.g., in ED the

command “s/is/was/p” replaces “is” by “was” in the current line).

In the one-editor condition, subjects used the Emacs text editor

on all 6 days. In the two-editor conditions, subjects used either ED

or EDT for 4 days, and then switched to Emacs on the last 2 days.

In the three-editor conditions, subjects started with one of the two

line editors (ED or EDT), then switched to the other line editor

after 2 days, and ended with 2 days of Emacs. I denote the five

conditions as follows: Emacs-Emacs-Emacs, ED-ED-Emacs,

EDT-EDT-Emacs, ED-EDT-Emacs, and EDT-ED-Emacs.

Subjects had no prior experience in text editing, so on each day,

they received instructions (or a refresher) for the editor that they

were going to use that day. The set of instructions was not the

complete set for that particular editor, but just enough to be able to

perform the editing tasks that they had to do in the experiment. In

the editing task itself subjects received printed pages of text (see

Figure 10 for an example). Each page consisted of 18 lines, and

contained 6 marked edits that the subjects had to perform using the

text editor for that day. Edits were either insertions, deletions, or

replacements and had to be performed on either a character, word,

string, or whole line of text.

The overall results of the experiment are shown in Figure 11. A

general result is that Emacs was the fastest editor, followed by ED

and finally EDT. Subjects became faster at text editing as they

gained more experience with a text editor, but there were also clear

Figure 10. Sample page in the editor experiment: text with to-be-made

edits. Reprinted with permission from “The Transfer of Text-Editing

Skill,” by M. K. Singley and J. R. Anderson, 1985, International Journal

of Man-Machine Studies, 22, p. 408. Copyright 1985 by Elsevier.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

12 TAATGEN

signs of transfer. One piece of evidence for transfer is that using

Emacs on Day 1 (in the Emacs-Emacs-Emacs condition) was

much slower than any of the other conditions on Day 5, where

subjects also used Emacs for the first time. Having used the other

editors clearly provided an advantage. The second piece of evi-

dence is even stronger: transfer among the line editors. On Day 3

of the ED-EDT-Emacs and EDT-ED-Emacs conditions, subjects

started using a different line editor. However, in both cases they

were much faster at using the new editor than subjects that started

with that editor on Day 1. The effect of transfer is so strong that

switching to a different line editor only produced a small decre-

ment in performance compared to subjects who had used that

editor all along, and by Day 4 the difference had disappeared all

together. Before looking at more detailed analyses of the data, I

first discuss the models of the three editors.

The Primitive Elements Model of Text Editing

The approach in this, and all primitive elements (PRIM) models,

is that each task has its own specific model. ED, EDT, and Emacs

therefore each receive a separate set of task operators. As a

consequence, all the root nodes of the operators are specific to a

Figure 11. Results of Singley and Anderson’s (1985) experiment. The Day 1 scores are in some cases not plotted

to not obscure the more subtle effects and to make it easier to compare the figure to the model results presented later.

The dashed lines are three-editor conditions, whereas the solid lines are two- and one-editor conditions.T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

13THE NATURE AND TRANSFER OF COGNITIVE SKILLS

particular editor, but editors may and do share the task-general

condition and action PRIMs. Text editing is a complex task, so

requires a fairly elaborate model. Fortunately, in this particular

experiment subjects received minimal instructions that were just

sufficient to carry out the task, therefore largely avoiding the

possibility of multiple strategies. Nevertheless, I made a few

simplifying assumptions:

1. The assumption that task instructions are memorized per-

fectly. Even though the instructions were presented and rehearsed

quite extensively in the experiment, it is likely that subjects have

forgotten or misinterpreted some of them. We dealt with this issue

in a different model (Taatgen, Huss, Dickison, & Anderson, 2008),

and have chosen not to add this to the present model. As we will

see, the model therefore initially outperforms the subjects.

2. The perception and action parts of the model are fairly

coarse-grained, for example looking up and interpreting the next

edit that needs to be made, typing a whole word, and finding the

cursor and reading the word directly after the cursor. This means

the model does not learn within these actions, and assumes they

take a fixed amount of time. This is not a large problem, as Singley

and Anderson (1985) established that there was only a small

amount of learning in typing, and the majority of the learning was

in all other aspects of the task.

3. Only half of the tasks in the experiment were modeled. In the

experiment, letters, word, strings, and whole lines could be in-

serted, deleted, or replaced. The model can only insert, delete, or

replace words and whole lines. The added complexity of handling

characters and strings would only increase the number of actions

and operators, but would not change the way the model operates.

The structure of the models closely follows the task analyses by

Card et al. (1983) of text editing that were also used by Singley and

Anderson (1985) in their analysis of the task. However, adjust-

ments had to be made to stay within the constraints of the ACT-R

theory: For example, no explicit subgoaling was used. Instead one

of the task control slots, the control state, was used to keep track

of the state of the model. This state represents the current subtask

the model is pursuing, for example, looking up the next edit,

moving to the right line in the editor, or performing the edit.

Furthermore, the model read parts of the next edit to be made at the

moment that they were needed instead of memorizing the full edit

ahead of time. (That is, the model will look at the instruction to

determine the line to edit. Once it is at the right line, it will look

at the instruction again to determine what needs to be done.)

The Emacs model’s strategy to do a particular edit is relatively

straightforward. First, it looks up what the next edit is, and remembers

what line the edit is in. It then moves the cursor down until it is at the

line in which the edit has to be made. When it is on the right line, there

are two options: either it is a word edit or a line edit. If it is a word edit,

the model searches for that word and moves the cursor forward word

by word until it has found it. Then, depending on the type of edit, it

deletes the current word and/or inserts a new word. If it is a line edit,

it will delete the line and/or type a new line.

The overall structure of the ED and EDT editors is similar to

Emacs, but slightly more complex. In the restricted command set

of Emacs there is only one method to move the cursor to the next

line, but the line editors each have a unique additional method to

skip multiple lines. Line editors require an additional working

memory slot to keep a representation of where in the text the

current line is, whereas in Emacs this can be inferred perceptually

by inspecting the screen. Because of this, the two line editors are

more similar to each other than to Emacs. Let us examine a few

examples of where the editors overlap and differ.

In order to make the next edit, the right line to edit has to be

found first. In Emacs, the page to be edited is on the screen, so

moving to the right line involves repeated pressing of control-n.

Checking whether the line has been reached is visual: The current

location (a visual item) has to be checked against the target (an

item in working memory). In both line editors the text is not

visible, so the model adapts the strategy of representing both the

current line and the target line mentally. The target is represented

in working memory, and the current line is updated through an

iteration process that is similar to the counting process, that is, by

retrieving the next position from declarative memory. In addition,

all editors have to check that stage of carrying out an edit is to

move to the right line. They keep track of the stage in the control

state. In this case, the state has to be “find-line.” The second

condition makes this check.

This example shows that good transfer is expected between the ED

and EDT editors because they can fully share the condition and action

PRIMs. The overlap with Emacs is only limited to one PRIM in the

condition and one in the action. This overlap is only small, but still

more than nothing, which would be the prediction of the identical

productions model. The second example in Figure 12 shows full

transfer between all three editors in the case of line deletion. These

operators for each of the editors are applicable when the model is

looking at the instructions and sees that the edit is a delete-line (a

visual check), and the current stage is to find out what the task is

(check that the control state is “find-task”). For all three editors the

operator is the same. If both conditions are satisfied, a manual output

is initiated to carry out a particular keystroke that is different for each

editor. In this case the model predicts full transfer, despite the differ-

ence in the particular keystroke that has to be carried out. It is not

completely clear whether the identical productions model would con-

sider the resulting productions identical.

Even if there is “full transfer” between models, the model for a

specific editor still has to learn the task-specific rules. In the

delete-line case, the model will learn a production for Emacs that

presses control-k, one for ED that presses period-d, and one for

EDT that presses d. In the case of full transfer this is only one

compilation step as opposed to many (similar to the counting and

semantic example in Figure 9).

The full model contains 23, 26, and 19 operators for the ED,

EDT, and Emacs models, respectively. To get a sense of the extent

of overlap between the three editors, I plotted operator represen-

tations for the three editors, except that labels for individual nodes

have been removed (see Figure 13). The graph layout was obtained

through a graph-plotting algorithm by Fruchterman and Reingold

(1991), which tries to optimize the layout such that the edges are

as short as possible. Colored nodes are again task-specific nodes,

and the white and gray nodes task-general nodes. The location of

the task-specific nodes in the graph gives a rough sense of overlap

between the three tasks. The fact that the central ED and EDT

nodes are closer to each other than to the Emacs node is a sign that

there is more overlap between those two editors. Closer inspection

reveals that many of the colored ED and EDT nodes point to the

same lists of gray and white lists of nodes, whereas the green

Emacs nodes have more lists of their own. This should also play

out in the amount of transfer the model predicts.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

14 TAATGEN

Results of the Model and Comparison to

Experimental Data

The model simulation is exactly like the real experiment: The

model is given all the operators for all three editors, and then

has to perform editing task for 6 simulated days using the

appropriate editor (depending on the condition). At the begin-

ning of each day the activations of the operators for the editor

of the current day are refreshed to simulate instructions at the

beginning of each day. The underlying ACT-R architecture

provides the appropriate execution times for the models, pro-

ducing predicted solution times. The amount of transfer is

mainly affected by the overlap on combinations of PRIMs

together with the speed (and amount) of learning. The precise

parameters can be found in the online supplemental materials.

Figure 14 shows the model fit of the experimental data.

Emacs go line
item1: find-line
item2: control-n

Visual item

WM item

Control state =

Item 1

Copy
item 2 to
output

Copy
item 3 to
retrieval

Copy WM to

retrieval

ED go line
item1: find-line
item2: enter
item3: order

Retrieved item

 WM item

Copy retrieved
item to WM

EDT go line
item1: find-line
item2: enter
item3: order

Emacs delete
item1: delete-line
item2: find-task
item3: control-k
item4: word-action

EDT delete
item1: delete-line
item2: find-task
item3: d
item4: word-action

Visual item =

item 1

Copy
item 4 to
Control state

Copy
item 3 to
Output

Control state =

item 2

ED delete
item1: delete-line
item2: find-task
item3: period-d
item4: word-action

Figure 12. Top: operators to move the cursor (in the case of Emacs), or the current line (in the case of ED and

EDT) to the line in which the next edit has to be made. Bottom: operators to delete the current line. Note that

each of these operators set multiple specifics: They are referred to as “Item x” in the relevant conditions and

actions. WM � working memory.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

15THE NATURE AND TRANSFER OF COGNITIVE SKILLS

A first observation of the model outcome is that it reproduces

the characteristic power law of learning. This is most obvious in

the Emacs-Emacs-Emacs condition, where the editor remains con-

stant throughout the experiment. The learning effect is mainly

caused by the ACT-R mechanisms of production compilation and

utility learning, which combine PRIMs into larger productions that

speed up processing.

What is more important is that the model exhibits clear evidence

of transfer. There is strong transfer between line editors and

Emacs, given that on Day 5 performance is better for all the two-

and three-editor conditions compared to Emacs on Day 1. But

transfer is even stronger among the line editors. When the model

switches from ED to EDT on Day 3, its performance is hardly

inferior to the condition that started with EDT, and on Day 4,

Figure 13. Operators of the editor model. Colored vertices are roots of operators for specific editors, whereas

white vertices are task-independent condition primitive information processing elements (PRIMs), and gray

vertices are task-independent action PRIMs. The ED and EDT “clouds” of operators (yellow and red nodes)

overlap more with each other than with the Emacs cloud (green nodes). The thicker lines represent the seven

nodes and their connections from the bottom graph of Figure 12.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

16 TAATGEN

performance is indistinguishable. The same is true for the reverse

case when switching from EDT to ED.

We can see that the model exhibits transfer, but we still have to

establish whether the amount of transfer is similar to the data, and

how this is related to the identical productions model of Singley

and Anderson (1985). To assess transfer, Singley and Anderson

(1987) used a score developed by Katona (1940). This score

compares performance of a subject who transfers to a particular

editor on Day n (after working with another editor on Day 1 to

n � 1) to Day 1 performance of subjects who start with that editor.

For example, if subjects start working with ED on Day 1, they

need 115 s per edit. After working with EDT for 2 days, they only

need 46 s per edit when they start using ED on Day 3, a difference

of 69 s. Subjects that used ED throughout Days 1–3, however,

need 44 s per edit on Day 3, so their improvement is slightly better,

71 s. Expressed as percentage transfer this amounts to (69/71)�100 �

97% transfer. More precisely, if Mlrn(1) is performance on that

editor on Day 1, Mtrans(n) is performance on Day n after using a

different editor on Day 1 to n – 1, Mlrn(n) is performance on Day

n after using the same editor on Day 1 to n – 1, then percentage of

transfer is given by the following equation:

%transfer �

Mlrn(1) � Mtrans(n)

Mlrn(1) � Mlrn(n)
* 100.

In order to factor out the effect of subjects becoming better

typists (subjects were students from a secretarial school, so were

already proficient typists), and also to pinpoint more clearly at

Figure 14. Results of the model of the editor experiment.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

17THE NATURE AND TRANSFER OF COGNITIVE SKILLS

what stages of an edit transfer was most pronounced, Singley and

Anderson (1985) performed a keystroke analysis that allowed

them to isolate two stages of an edit: to move to the line in which

the edit had to be made (including looking up the next edit in the

manuscript), and making the edit within the line. Each of these two

stages was further subdivided into a planning component and an

execution component. The execution component was defined as

the time between the first and last keystroke minus any inter

keystroke pauses of more than 2 s. The planning component was

defined as the remainder of the time spent in that stage. They found

that most of the learning took place in the respective planning

phases of the edit, and focused their transfer analysis on those.

Given that the model does not improve at all at typing, this also

presents the best opportunity for a comparison. Table 1 shows this

comparison, with the percentage transfer found in the experiment,

the transfer accounted for by Singley and Anderson, and transfer

accounted for by the model.

Overall, transfer between the line editors (ED and EDT), was

higher in editing a line than moving to a line, probably because

moving multiple lines involved quite different steps for each of

these editors. The editing of the line itself showed almost perfect

transfer, which can be attributed to the fact that the two editors

were indeed identical in that respect, except for the particular

keystrokes that needed to be carried out. Transfer from line editors

to Emacs was much lower, but still considerable, with no differ-

ence between the two components. As the table shows, the model

predicts more transfer than identical productions, and therefore

provides a better fit of the experimental data. In particular, iden-

tical productions poorly fit the transfer to Emacs.

There is another crucial difference between the models: The

identical productions model looks at the number of productions

that two editors share as proportion of the total number of

productions, which determines the transfer proportion. The

PRIM model simulates the process of learning, so transfer can

be determined by comparing simulated response times to re-

sponse times from the experiment, which is a much more direct

comparison. In the PRIM model, particular editors never share

task-specific rules, but do use each other’s task-general rules.

This means that transfer is possible in cases where the general

pattern is the same but the specifics are different. For example,

a different keystroke for a particular function only means that a

constant in the respective root PRIMs needs to be different

(e.g., for delete-line: period-d in ED, d in EDT, and control-k in

Emacs). Therefore, mastery of any editor enables learning the

delete-line production for a new editor in just one step. This is

especially important in the case of transfer to Emacs, where few

productions are identical to line editor productions, but many

share components (see Figure 14). But transfer goes beyond

particular actions. Each time multiple arrows point to one of the

white or gray nodes in Figure 14, there is potential for transfer.

If a particular operator shares a condition with another operator,

it benefits from transfer even if the action is different, and vice

versa.

The learning model has another advantage: It can predict trans-

fer with different amounts of training. Singley and Anderson’s

(1985) experiment has a number of potential (but probably not

critical) confounds. First, the transfer between line editors is as-

sessed on Day 3, while the transfer between the line editors and

Emacs is assessed on Day 5. It is possible that with more training,

the learned skill becomes more specialized, decreasing its potential

for transfer (Anderson & Fincham, 1994; Frensch & Geary, 1993).

Another problem is that subjects receive different numbers of

repetitions between conditions, because sessions last exactly three

hours, and editors require different amounts of time per edit. So, if

we compare subjects’ performance on Emacs on Day 5 after four

days of EDT, they have had much fewer repetitions than subjects

who used Emacs all along. The model allows us to experiment

with different amounts of training. To test this, the model was run

with different amounts of blocks of practice, each block consisting

of 240 edits. The model was run for one through four blocks of

practice on ED, after which is switched to one of the other editors

(Emacs of EDT). Learning was switched off in the transfer blocks

to make the comparison as precise as possible. Transfer perfor-

mance was compared to runs in which the model just performed

Emacs or EDT for several blocks, again with learning switched off

in the last block. The amount of transfer was calculated using the

Katona equation, and is plotted in Figure 15. Consistent with

earlier research, the model predicts that transfer will decrease as

the amount of training increases. The model’s explanation for this

is that it gradually transitions from learning new general combi-

nations of PRIMs that do produce transfer, to task-specific pro-

ductions that do not. The simulation also confirms the conclusion

that there is more transfer between line editors than between line

editors and Emacs, although the difference may not be as large as

the data in Table 1 suggest.

To summarize, the PRIM model provides a superior fit over the

identical productions model, but also has a major conceptual

advantage. It simulates the full learning process, and provides

concrete predictions of the time needed to make each edit. It

resolves the problem of determining the level of generality of

individual rules beyond the specific task context, an issue that the

identical productions model sidesteps. One thing that I have not

Table 1

Transfer Between Text Editors in Singley and Anderson’s (1985) Experiment, the Identical Productions Model, and the PRIM Model

Component Training editor Transfer editor Human data (%) Identical productions (%) PRIM model (%)

Planning to move to a line ED EDT (on Day 3) 87 68 81
EDT ED (on Day 3) 91 75 90
ED/EDT Emacs (on Day 5) 61 39 66

Planning to edit a line ED EDT (on Day 3) 105 90 90
EDT ED (on Day 3) 99 85 92
ED/EDT Emacs (on Day 5) 62 27 57

Note. PRIM � primitive information processing element; ED and EDT are line-based editors; Emacs is a screen-based editor.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

18 TAATGEN

developed in much detail yet is task control. In the next model, I

develop the notion of switching goals, and in yet later models, I

introduce working memory control.

Transfer in Arithmetic: Setting Subgoals

The general workspace of the PRIM model has four slots

reserved for task control. One of these slots is used to identify the

current task, and makes sure only relevant operators are retrieved.

As we have seen in the editor model, a control state, a second slot,

can be used to subdivide a task into several stages. Sometimes one

or more of these stages are meaningful tasks in themselves. For

example, multi-column addition is normally a separate task, but it

is also a subtask in multi-column multiplication. It is therefore

unlikely that multi-column addition as part of multiplication needs

its own set of operators that have as additional check whether it is

in the “addition” stage of the multiplication. A different option is

to temporarily change the task to multi-column addition, and

change it back after the addition has completed, a process normally

called subgoaling or subtasking.

A strategy to achieve a limited form of subtasking is to change

the current-task slot to the subtask, and the restore the main goal

after the subtask finalizes. For this, it is necessary to store the main

task for the duration of the subtask. This type of subtasking has

long been considered as an architectural mechanism (the goal

stack), but the current consensus is that it is a cognitive strategy

(Altman & Trafton, 2002; Anderson & Douglass, 2001). The

PRIM model treats it as such as well, because the strategy is

carried out by a particular combination of elementary productions

that are not particular to that purpose. Subtasking enables a more

direct type of transfer if particular separable components in a

larger task are truly identical to a separable component in another

task.

An experiment by Elio (1986) provides data to test these ideas.

Elio taught subjects to carry out a series of calculations. Each of

the steps in the calculation either used input that had to be read

from the screen, or results from earlier steps that had to be recalled

from memory. Figure 16 shows the interface to the experiment,

and Table 2 shows an example of one of the initially learned

instructions (Procedure A), and examples of instructions in the

various transfer conditions (Procedures B–D).

Table 2

Procedures in Elio’s (1986) Experiment

Step Calculation

Procedure A: Initially learned procedure
Particulate rating Solid � (lime4 � lime2)
Mineral rating greater of (algea/2) (solid/3)
Index 1 Particulate � Mineral
Marine hazard (toxinmax � toxinmin)/2
Index 2 Index 1/Marine
Overall quality Index 2 � Mineral

Procedure B: Transferred component condition
Particulate rating (toxinmax � toxinmin)/2
Mineral rating Solid � (lime4 – lime2)
Marine hazard greater of (algea/2) (solid/3)
Index 1 Mineral/Marine
Index 2 Particulate � Index 1
Overall quality Index 2 � Index 1

Procedure C: Transferred integrative condition
Particulate rating (limemin � 3) � algae
Mineral rating lesser of (solid � lime1) (algae � toxin3)
Index 1 Particulate � Mineral
Marine hazard solid/lime1

Index 2 Index 1/Marine
Overall quality Index 2 � Mineral

Procedure D: Control condition
Particulate rating (limemin � 3) � algae
Mineral rating lesser of (solid � lime1) (algae � toxin3)
Marine hazard solid/lime1

Index 1 Mineral/Marine
Index 2 Particulate � Index 1
Overall quality Index 2 � Index 1

Figure 15. Amount of transfer from ED to either EDT or Emacs after

training ED for 1–4 days.

Figure 16. Sample screen in Elio’s (1986) experiment. Reprinted with

permission from “Representation of Similar Well-Learned Cognitive Pro-

cedures,” by R. Elio, 1986, Cognitive Science, 10, p. 48. Copyright 1986 by

the Cognitive Science Society.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

19THE NATURE AND TRANSFER OF COGNITIVE SKILLS

In the experiment, subjects had to calculate a hypothetical

pollution rate based on a sample of water. For this, they had to

memorize the initial Procedure A, and were drilled on it until they

were perfect at recall. They were then trained on performing the

procedure. They were shown a screen like in Figure 16, and had to

carry out the memorized calculations and enter the results one line

at a time. Some of the calculations, like the first two in Procedure

A, are so-called component steps. In these steps the input for the

calculations could be read from the screen (with, e.g., lime2

referring to the second item in the lime column). Other steps, like

the third step in Procedure A, were integrative steps in which the

arguments of the calculation referred back to the earlier lines.

Because the answers disappeared from the screen, subjects had to

memorize the results of those steps that were needed later. For

example, after carrying out the third step in Procedure A, the

Particulate rating could be forgotten, but the Mineral rating still

needed to be retained, along with the newly calculated Index 1.

Subjects had to solve 50 problems in the training condition, and

were then transferred to one of three conditions, illustrated in

Table 2. In the transferred component condition (Procedure B), the

component steps remained the same as in training, but the way

they were integrated changed. In the transferred integrative con-

dition, on the other hand, the component calculations changed, but

the way they were integrated remained the same. Finally, in the

control condition both aspects were different. Subjects also solved

50 problems in the transfer condition.

Elio (1986) reported the results of the experiment by giving the

power law parameters of the training phase, and the solution times

in the first and second set of 25 problems in the transfer phase,

separated in solution times for component steps and integrative

steps. From this we can reconstruct the results shown in Figure 17.

The results show the two types of transfer. We see that if a

step is identical in the two procedures, it is carried out faster

than when the step is different. But there is also transfer from

the initial procedure to the transfer procedure in all conditions,

even in the control condition in which all calculations are

different. The model therefore has to capture both aspects of

transfer: the general transfer effect and the specific transfer

effect. For the general transfer effect, it will rely on the reuse of

general productions, as the previous models, but for the specific

transfer it will rely on subtasking.

The implementation of the model for this experiment poses two

challenges that we have not dealt with before. The first is to allow

the model to handle the division of the task into subtasks. What we

will do is to make each of the lines in the calculation a separate

task. Particular procedures then only have to specify the order in

which the subtasks have to be carried out. The second challenge is

working memory management: memorizing the appropriate partial

result while dropping the ones no longer needed. Elio’s (1986)

model deals with each of these, but here I only explain the issue of

subtasking and leave the discussion of working memory for the

specific working memory tasks later in the article.

The solution for subtasking is very simple, and is illustrated by

two example operators in Figure 18. At the start of a procedure, for

example Procedure A, an initial working memory step is carried

out, after which the current task (which is in the Task slot) is

copied to one of the other control slots, which is named Parent slot

in this figure for clarity. After copying the current task, the task

name in the Task slot is replaced with “solid-lime-diff.” As a

consequence, the model will now start carrying out operators for

the Solid-lime-diff subtask. At the end of that task, the contents of

Figure 17. Mean solution times for component and integrative steps in Elio’s (1986) experiment. Solution

times from Problem 1 to Problem 50 have been calculated on the basis of the power law parameters from Elio

(1986), whereas the data points for Trials 51–100 are from her reported data.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

20 TAATGEN

the Parent slot are copied back into Task slot, after which the

model will resume carrying out operators for Procedure A.

The complete model consists of operators that implement each

of the four procedures (A–D), and operators for each of the

subtasks (12 in total). There is considerable overlap in PRIMs

among the procedures and subtasks, which will produce the gen-

eral transfer. Moreover, the procedures also use each other’s

subtasks, which produce the specific transfer.

It is important to note that the choices we have made here for

implementing task control are not fixed. A different set of

strategies with a different representation may produce a similar

result. The way task control is handled in this model is very

light, and not sufficient for deeper goal structures. The choices

made here are sensible considering earlier empirical work re-

lated to ACT-R (Altmann & Trafton, 2002; Anderson & Doug-

lass, 2001), but it is important to stress that task control is not

an architectural mechanism, but based on strategies, which are

by their nature susceptible to individual differences. Indeed, the

assumption that processes of cognitive control are based on

skills is the key to explaining transfer in cognitive control.

With these additional aspects implemented, it is now fairly

straightforward to model Elio’s (1986) data. The full model can

be found in the online supplemental materials. The results are in

Figure 19. The models show the same main effects as the

experimental outcomes: a transfer effect in all conditions, but

more in particular in the steps that are identical between the two

procedures. The general transfer is due to learned general

productions that handle calculations and overall task control,

whereas specific transfer in the identical steps can be attributed

to the fact that the task-specific productions in subtasks can be

reused immediately.

Far Transfer in Cognitive Control

The theory of transfer presented here predicts that transfer is

possible between tasks that are quite different in content, but that

share the same underlying structure. The two examples we have

examined in the previous sections are both cases in which the tasks

involved are very similar. A number of recent studies have exam-

ined far transfer (Barnett & Ceci, 2002) in the context of cognitive

Figure 18. Two operators in Elio’s (1986) model: one that sets the subtask of calculating “solid-lime-diff,” and

a second that moves control back to the main task. Operators have different colors to represent that they are

considered as different tasks, even though one is a subtask of the other. Only the condition and action primitive

information processing elements that are important for the subtasking are shown.

Figure 19. Model fit of Elio’s (1986) data.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

21THE NATURE AND TRANSFER OF COGNITIVE SKILLS

control and general intelligence. A remarkable but also controver-

sial study by Jaeggi et al. (2008) showed that training on a complex

N-back task (the double N-back task) not only strongly improved

performance on N-back itself, but also on scores of fluid intelli-

gence (the Raven Progressive Matrices Task and variants of it).

Mackey et al. (2011) trained children on games that either stressed

reasoning skills or cognitive speed. Children in the reasoning

group significantly improved their fluid intelligence skills, as

measured by a test similar to the Raven test, whereas children in

the cognitive speed test improved on the Coding B task from the

Wechsler Intelligence Scale for Children IV (Wechsler, 2003; in

the Coding task, subjects have to translate digits into symbols by

identifying the corresponding symbol for a digit provided in a

legend).

Unfortunately, these two studies are not straightforward to

model. Both studies feature a test of general intelligence, which

requires an extensive modeling effort to capture (even though

Carpenter, Just, & Shell, 1990, modeled the Raven test in a much

less constrained modeling environment). Moreover, in Mackey et

al.’s (2011) experiment, it was not exactly clear which of the

games was effective in producing the improvement. Fortunately,

two other successful studies of far transfer did involve tasks of

cognitive control (working memory capacity, Stroop, task switch-

ing) that are comparatively easy to model, so I will focus the

discussion on them.

Training cognitive control and general intelligence is some-

times compared to training muscles: by regularly exercising

them, they become stronger. In the context of working memory

capacity this is a particularly attractive idea: by training work-

ing memory its capacity increases. Here, I would like to intro-

duce a different idea: cognitive training helps developing our

representations and strategies for strong cognitive control, and

improves the arsenal of skills available to deal with different

control situations. This training aspect is true in sports as well:

to be able to excel in for example the javelin, it is not sufficient

to have enough muscle power, but also the technical skill to

throw it appropriately.

In the two studies that I model here, the key element of

transfer is based on the choice on how tasks are executed:

proactive or reactive. This distinction was introduced by

Braver, Gray, and Burgess (2007). In, for example, the Stroop

task, a reactive strategy is to wait for the stimulus, process the

stimulus, and then focus on the color of the ink. A proactive

strategy is to already prepare for the upcoming stimulus and

focus on the color of the ink right away, reducing interference.

Proactive control requires planning before a particular event,

while reactive control waits for the event before making a

decision. This means that in reactive control the outside world

controls behavior, while in proactive control behavior is a

function of internal preparation and external input. As we will

see, proactive control leads to better performance, but also

requires more complex strategies. The choice between the eas-

ier reactive and harder proactive strategy is likely to be influ-

enced by how hard it is to learn the proactive strategy. If people

are trained on proactive strategies, they may therefore tend to

favor proactive strategies in new tasks, because they have

learned or strengthened task-general knowledge that supports

proactive strategies.

Improving Working Memory Capacity With

Transfer to Stroop

Chein and Morrison (2010) performed a study in which they

trained participants on two complex working memory tasks. It was

one of several studies aiming at the improvement of working

memory capacity (Klingberg et al., 2005; Klingberg, Forssberg, &

Westerberg, 2002; see Morrison & Chein, 2011, for an overview).

The tasks were originally designed by Kane et al. (2004), who

found that complex working memory tasks, as opposed to simple

working memory tasks, provide stronger correlations with each

other and other measures of cognitive control. Chein and Morrison

used the so-called Verbal-CWM (complex working memory) and

Spatial-CWM tasks. In the Verbal-CWM task, subjects were pre-

sented with a sequence of letters that they had to memorize, with

a starting length of four letters. In between each of the letters they

had to perform a lexical decision task for four seconds, making it

harder to memorize and rehearse the letters. At the end of the

sequence, subjects had to recall the whole sequence. If subjects

were correct for two sequences in a row, the length of the sequence

was increased by one. If they were incorrect for two sequences, the

length of the sequence was decreased by one. On each of the 20

sessions of the experiment, subjects performed 16 trials. The

Spatial-CWM task was identical in structure, but spatial positions

in a 4 � 4 grid had to be remembered instead of letters. Similarly,

instead of lexical decision, subjects had to give symmetry judg-

ments of presented abstract pictures. In the model of this experi-

ment, only the Verbal-CWM task was modeled. The results from

the Spatial-CWM task were, however, very similar to the result of

the Verbal-CWM.

Performance on the Stroop task and a reading comprehension

task (which I did not model) showed significant improvement

between pre- and posttest compared to a control condition in which

working memory was not trained. This indicates far transfer. Apart

from that, subjects also improved considerably on the working

memory tasks themselves. Figure 20 shows the results of training

on the Verbal-CWM task, and the pre/posttest comparison for the

Stroop task.

Modeling proactive (and reactive) control in the Verbal-

CWM task. In the Verbal-CWM task subjects have to juggle

two tasks: on the one hand the lexical decision task, and on the

other hand memorizing the list of letters. To be successful in

remembering long lists of letters, some form of rehearsal is likely

to be necessary. From the viewpoint of control this presents two

separate issues. The first is how to build a memory representation

of the list, because it is not possible to store all items in the

workspace. The second is how to maintain this memory represen-

tation and protect it from decay. This second issue involves pro-

active control, because cognitive actions have to be taken to ensure

successful future retrieval. It is also the component that will

transfer to the Stroop task and improve proactive control in that

task. I explain both in a bit more detail.

Our earlier studies showed that is most likely that only one item

can be stored in the workspace (Borst, Taatgen, Stocco, & van

Rijn, 2010; Borst, Taatgen, & van Rijn, 2010, 2011). With an

immediate capacity of only one item, any additional items have to

be kept in declarative memory. The assumption of the model is

that, as with task control, there is no fixed method for organizing

“extended” working memory, but that this is part of the task

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

22 TAATGEN

strategy. As soon as someone uses a particular working memory

strategy, this can be transferred to other tasks if the requirements

of those tasks are similar enough. For the Verbal-CWM model, I

specified a relatively simple strategy by building a list in memory

that works as follows:

The first item that needs to be remembered is just placed in

working memory. When a second or subsequent item has to be

remembered, the current contents of working memory is moved to

declarative memory, and are replaced with the new item. More-

over, in a second slot a link to the just-removed item is placed. In

addition, one of the task control slots keeps a link to the first item

(see Figure 21).

It is important to stress that this method of remembering items

is just a strategy, and not an architectural mechanism. It is accom-

plished by the same PRIMs that we have already discussed, with

the only addition that when something is placed in WM there is an

option to create a new WM element (bumping the old into declar-

ative memory), or just modifying the existing element. This

method can, however, build other structures in memory (trees,

directed graphs, etc.), each of which would require a different

combination of PRIMs (see Tenenbaum, Kemp, Griffiths, &

Goodman, 2011, for an account on how people build different

knowledge structures).

A critical property of elements that are bumped into declarative

memory is that they are susceptible to decay, and therefore need to

be rehearsed. Rehearsal is not a complex strategy in itself, and only

needs a simple operator that consists of a few PRIMs. The com-

plexity of rehearsal in the Verbal-CWM task is that it has to be

initiated at strategic moments during the task. Rehearsal is, after

all, a proactive strategy, because it involves cognitive processes in

the service of future demands.

In order to explore the need for internal control, I constructed

two models of the Verbal-CWM task, a proactive and a reactive

model. The reactive model (9 operators) does not use rehearsal,

and therefore also does not need any internal control state, because

the external input determines exactly what needs to be done. If a

word is presented, a word/non-word decision is asked for, if a

single letter is presented, it has to be memorized, and if a recall

prompt is given, the sequence of memorized letters has to be

reproduced. Whenever there is nothing to be done at a particular

moment, the model just waits for the next input.

The proactive model is more complex (14 operators), because it

has to integrate rehearsal into the procedure. It uses one of the task

control slots that stores the control state to keep track of what it is

currently doing: lexical decision, rehearsal or report. I refer to this

as the control state of the model (see Taatgen, 2005, 2007, for a

discussion on control states). The model determines the next action

on the basis of the control state and the input. The internal state is

necessary, because during rehearsal outside stimuli have to be

Figure 20. (A) Improvement in the Verbal-CWM (complex working memory) task over the 20 training

sessions. (B) Reduction in Stroop interference due to working memory (WM) training compared to a control

condition without training.

Figure 21. Working memory (WM) control in the Verbal-CWM (com-

plex working memory) task. DM � declarative memory.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

23THE NATURE AND TRANSFER OF COGNITIVE SKILLS

ignored temporarily until rehearsal can be suspended. Also, re-

hearsal and reporting use the same retrieval strategy, so they have

to be discriminated.

In terms of PRIMs, the key characteristic is that the proactive

model employs operators that use a combination of checking

the input against a particular value, and checking the control

state against a particular value, followed by an action in which

the control state is changed to a new value (and possibly some

more actions). For example, if the control state is to rehearse, and

input is still the letter we just added, the model should continue

rehearsing, but if a new word appears it should switch the control

state to lexical decision. The reactive model, on the other hand,

does not use the control state at all, but bases its action only on the

current input.

If we compare performance of the two models using the same 20

session training regimen as in the experiment, we see that, not

surprisingly, the proactive model captures the improvement in

working memory span that was found in the data, while the

reactive model does not (see Figure 22, left panel). This is a clear

indication that subjects, or at least most of the subjects, use a

proactive control strategy in the Verbal-CWM task.

Proactive and reactive control in the Stroop task. If the

particular combination of PRIMs for proactive control is important

to improve on the Verbal-CWM task, it is likely to also provide the

explanation for improvement on the Stroop task. The model for the

Stroop task builds upon a model by van Maanen, van Rijn, and

Taatgen (2012), which accumulates evidence from different

sources to make a decision. The approach to model differences in

Stroop performance is based on a model by De Pisapia and Braver

(2006) where proactive control helps suppressing irrelevant attri-

butes. The Stroop model implements both a proactive and a reac-

tive strategy. The reactive strategy waits for the stimulus, then

processes both the identity of the word and the color of the ink, and

then retrieves the word corresponding to the color of the ink from

memory. In the case of conflicting information, for example the

word red in blue letters, both the blue and the red concept receive

evidence, which slows down the decision compared to congruent

trials where both sources of evidence point in the same direction.

The proactive strategy tries to reduce the impact of the irrelevant

parts of the stimulus by preparing for the upcoming trial: It focuses

on the color of the ink, diminishing the impact of the word identity,

thereby reducing interference. In order to achieve this, the proac-

tive strategy alternates between two control states: one in which

the model prepares for the upcoming stimulus, and one “neutral”

state. Two operators are important concerning this state: one that

switches the state from “neutral” to “preparing” while waiting. The

other direct visual attention to the color of the ink if a stimulus

appears, and the control state has been set to “preparing.” In other

words, the first operator sets up proactive control, and the second

executes it once the stimulus appears. Both of these operators have

to compete with reactive operators that just wait during the fixation

cross, and just perceive all aspects of the stimulus as soon as it

appears. The proactive operators use the same combination of

PRIMs as the operator in the Verbal-CWM model that initiates the

rehearsal. As a consequence, training the Verbal-CWM task helps

learning and strengthening the task-general productions that sup-

port a proactive strategy. The reactive control strategy does not

need a control state at all, and is therefore much more simple.

Because the Stroop model implements both strategies, the model

tries each one equally often in the pretest. The pretest by itself is

not enough to settle on a strategy, and therefore there is no change

between pretest and posttest in the control condition (see Figure

22, right panel). If the model is then trained with the proactive

strategy for the Verbal-CWM task, the task-general productions

for the proactive strategy are learned and strengthened by the

training task. It will therefore also favor the proactive strategy for

the Stroop task, resulting in a reduction of interference. When the

model is trained on the Verbal-CWM with a reactive strategy,

Figure 22. Results of the model of Chein and Morrison’s (2010) experiment. Improvement in working memory

(WM) capacity over 20 training sessions (left), and Stroop interference (right) for both the proactive and the

reactive models.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

24 TAATGEN

reactive strategies are strengthened, which leads to an increase in

Stroop interference. We will see an example of such an increase in

the data in the next experiment, where control subjects are trained

on a reactive task.

Improving Task Switching With Transfer to Working

Memory Capacity and Stroop

A second example of how training proactive control can be

transferred to other tasks is a study by Karbach and Kray (2009).

Karbach and Kray investigated whether training on a particular

task-switching task transferred to different task-switching tasks

(near transfer), and also to other tasks of cognitive control and

general intelligence (far transfer). More specifically, they looked at

age differences in transfer, but because they found transfer in all

age groups, I collapse over their results for the purposes of the

simulation (the age groups were 8.1–10.1 years, 18.0–26.3 years,

and 62.3–76.8 years). In the training task, subjects had to switch

tasks on every second trial. They received no external cues for the

switch, so they had to keep track of this themselves. A block

consisted of 17 trials. In each trial, a picture of either one or two

cars or planes was presented. The two tasks that the subjects had

to alternate between were to respond to whether the picture was a

plane or a car, and whether there were one or two items on the

card. The same two keys were used for both tasks, and the

inter-stimulus interval was 1,400 ms. Besides blocks in which

subjects had to switch between tasks every two trials, they also had

to perform single-task blocks in which all trials required either the

car/plane or one/two response. On each of the four days of training

they performed eight single-task and 12 task-switching blocks.

Apart from this experimental condition there was a control condi-

tion in which subjects only performed single-task blocks, and two

additional experimental conditions with variations on the experi-

mental condition I will not discuss those, since they produced the

same amount of transfer as the standard experimental condition.

A battery of pretests that was repeated after training in the

posttest preceded training. This battery consisted of several tasks,

of which I model three in particular: another task-switching task,

the Stroop task, and a working memory task. The task-switching

task was identical to the training task, except that subjects had to

respond to pictures with vegetables or fruit on them that were either small

or large. The two tasks were to indicate whether the picture was a

fruit or a vegetable, and to indicate whether the picture was small

or large. The Stroop task was similar to the one in Chein and

Morrison’s (2010) version, except that conflict trials were con-

trasted with neutral trials instead of consistent trials. The working

memory task, also taken out of the collection of tasks from Kane

et al. (2004), was a complex working memory task called the

count-span task. In it, subjects were presented with a series of

pictures with green circles, blue squares and blue circles (approx-

imately 13 objects/picture). Subjects had count the number of blue

circles (between 3 and 9), and say the total, after which a next

picture would be shown after a blank screen of 500 ms. At the end

of a series of pictures, the number of which ranged from 2 to 6, the

list of all totals had to be recalled. The measure of performance

was the proportion of correctly recalled numbers, so if the subject

was only able to recall 3 out of 6 digits this would still be counted

as a 50% score.

The results show transfer on all three tasks in the experimental

condition: Subjects reduce their switch costs, which is the differ-

ence in reaction times between trials in which the task remains the

same and trials in which the task switched. Moreover, they reduced

their Stroop interference and increased their working memory span

in the count-span task. In the control condition where subjects only

practiced single tasks, they reduced their switch costs somewhat,

but did not improve on the other tasks (Figure 23 shows the results

along with the model fit).

Although the setup of the experiment is different from Chein

and Morrison’s (2010) study, the explanation for transfer is the

same: Task switching trains and promotes proactive control, and

this transfers to both the Stroop task and the count-span task. We

have already seen that the Stroop task and complex working

memory tasks benefit from proactive control, but what is the role

in task switching? As demonstrated by De Jong (1995), subjects

typically employ one of two strategies for task switching: They

either prepare for the upcoming stimulus before it appears, or the

wait for it to appear before determining the task. If the inter-

stimulus interval is long enough, preparing for a stimulus can

negate switch costs almost completely. Preparing for a stimulus is

a form of proactive control, while waiting for the stimulus is

reactive control, just as in the Stroop task. While task-switching

training may promote pro-active control, the control condition

might accomplish the opposite: In the single-task condition the

task can be carried out optimally by a reactive strategy. It is

possible that single-task training therefore produces negative trans-

fer.

The implementation of the model of task switching closely

follows the ACT-R model of Sohn and Anderson (2001). The

model that is used in the pre- and posttest (as opposed to the model

during training) has a choice between a proactive strategy that uses

the inter-stimulus interval to prepare for the upcoming task, or a

reactive strategy that waits for the stimulus before determining the

task. The proactive strategy requires an operator that matches the

perceptual input to a specific value, and an internal control state to

a specific value, just as in the proactive strategies for the other

tasks, while the reactive strategy does not.

The model of the experiment as a whole follows the same

paradigm as Chein and Morrison’s (2010) model. In the pre- and

posttest, all the task models have two options: a proactive and a

reactive strategy. During the training phase, the model is forced to

use a proactive strategy for task switching. The general memory

strategy of the model of the count-span task is similar to that of the

Verbal-CWM task, except that both the proactive and the reactive

strategy are incorporated in the model, allowing a choice.

Training on task switching builds and strengthens a rule that

combines both external input and an internal state to take actions,

while training on single tasks promotes a reactive strategy in which

responses are made just on input. This transfers to Stroop, count-

span, and task switching itself, where either proactive of reactive

strategies are favored based on training.

The kind of transfer in this, and also Chein and Morrison’s

(2010) experiment, differs from that of the earlier Editor and Elio’s

(1986) models. In those models, transfer was across-the-board in

that many of the condition and action sequences were reused,

because the differences between the tasks were small. In the

models of far transfer, the overlap is focused on a smaller but

critical overlap that promotes the use of a better strategy.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

25THE NATURE AND TRANSFER OF COGNITIVE SKILLS

The results of the model (see Figure 23) show that people do

indeed reduce their switch costs with training, even if it the tasks

are different. Although the switch costs are reduced in both con-

ditions, the improvement after training task switching is signifi-

cantly stronger. More interesting, and more pronounced, are the

improvements on far transfer. Stroop interference shows a strong

decrease after training on task switching, while showing an in-

crease after training on single tasks.

The count-span task shows a similar pattern of results. In the

single-task condition there is no improvement in proportion correct

in either the data or the model fit, but in the task-switching

condition there is a clear increase in performance. The model’s

improvement is due to an increase in the use of rehearsal, which is

again initiated by a combination of external input and internal

state.

In the model training on a reactive control task (i.e., the control

condition) does produce negative transfer. It is not clear in the data

whether that is also true for subjects. On the Stroop task there is an

increase of interference, supporting the model, especially because

in the Chein and Morrison experiment even the controls improved

on Stroop. However, the predicted decrease in performance on the

countspan task is not found in the data.

General Discussion

One of the central debates in the transfer of skill is between

Plato’s doctrine of formal discipline (see Lehman & Nisbett, 1990,

for a more modern defense) and identical element theories (Sin-

gley & Anderson, 1989; Thorndike, 1922). The primitive elements

theory is an identical elements theory, because transfer is achieved

by the overlap in combinations of PRIMs among skills. However,

by assuming identical elements that carry no intrinsic content

themselves, the model can explain the kind of transfer that is

envisioned by the formal discipline doctrine. It shows the two

theories are not necessarily at odds, because the doctrine specifies

phenomena of transfer, while identical elements specifies the

mechanism. The critical advantage of any identical elements the-

ory is that it, unlike analogical reasoning, requires no explicit

“transfer” of knowledge from one task to another. Learning one

task automatically produces general skills that are directly useable

by other tasks.

The primitive elements theory distinguishes between three

types of skills: innate skills that are just single PRIMs, task-

general skills that are combinations of PRIMs, and task-specific

skills that are combinations of PRIMs with instantiated specif-

ics. A single learning mechanism, production compilation, ex-

plicates the transition between these knowledge types. The

theory therefore provides an account of how complex knowl-

edge representations used in production system models can be

traced back to simple origins. In addition, it offers an explana-

tion why there is such a wide variety in the way people solve

problems, because it depends on our individual arsenal of

task-general skills.

Figure 23. Results of Karbach and Kray’s (2009) experiment, and the model fit.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

26 TAATGEN

The primitive elements theory increases the scope of the re-

search agenda of cognitive architectures. The goal of research in

cognitive architectures is to go beyond the study of individual

tasks, and provide an encompassing theory of the mind (Anderson,

2007; Newell, 1990). However, in practice cognitive architectures

have been used chiefly to model specific tasks or experiments,

offering often localized explanations for the particulars of those

experiments. The integrative part in such models in not completely

absent, because models within a particular architecture share the

same representations and mechanisms. But this kind of integration

remains limited, in the sense that the common components are

restricted to aspects of cognition that are assumed to be innate.

As a consequence, a common criticism of the cognitive archi-

tecture approach of modeling is that architectures afford too many

different models, many of which are wrong. The reason for this is

that the architecture offers only constraints that are based on innate

properties of the mind. The primitive elements theory offers an

additional source of constraint: if we assume that most people have

acquired common cognitive strategies (iteration, rehearsal, cogni-

tive control), then a model that uses elements of these strategies

can learn the task faster than an alternative model that does not.

Though it is not impossible for the alternative model to learn

the task, the model that uses common strategies is faster, and it is

therefore much more likely that people use a strategy that follows

that model.

One way to implement this idea is to create an augmented

version of Actransfer in which common strategies are already

added in both declarative and procedural form. This can be used to

test several alternative models for a new task. Models that show

overlap in their instructions with existing strategies should learn

faster than models in which everything needs to be learned from

scratch, potentially producing a better fit with the experimental

data.

Common strategies can be identified by careful analyses of

tasks, which has been the main approach in this article, but also by

a more data-driven method. We can implement a large set of

different models, and examine what the common strategic patterns

are. As a first illustration of the latter approach, consider the

following illustration. If we put all the declarative knowledge for

all the tasks discussed in this article together, we arrive at the

structure in Figure 24. Red and blue outlines identify the nodes and

edges supporting proactive and reactive strategies, respectively.

The proactive strategy is not only connected to the working mem-

ory, task switching and Stroop tasks, but also to the three editor

models, which is not surprising because in text editing the visual

stimulus alone is also not enough to determine the next action.

Although we have to be careful in over-interpreting this image,

there are many cross-connections among the tasks, and it is inter-

esting to see that the four cognitive control tasks take a central

position in the knowledge structure.

Limitations of the Models in This Article

Contrary to the ideas in the previous section, all models in

this article start with just the basic PRIMs, whereas we expect

people to already have an existing set productions that combine

several PRIMs. Without a clear idea about what the starting

point of knowledge is, this seemed to be the best approximation

of the learning process (note that almost all cognitive models

suffer from the problem of prior knowledge in some form).

Given the vast possible space of combinations of PRIMs, learn-

ing a new task probably involves a number of new combina-

tions, and some for which rules already exist. However, the

existence of a rule does not mean that it can be used right away.

In the example of Figure 9, the penultimate general rule consists

of a combination of seven PRIMs. However, this rule competes

with more general rules that are higher in the hierarchy, because

production compilation does not delete them. The more general

rules are applicable in many more situations, so they may win

the competition. The current implementation of ACT-R does

not include any decay on utility, even though an earlier version

did, but in the overall economy of a rule system the frequency

of use of a rule should also play a factor in its survival (indeed,

in some other cognitive architectures— e.g., Prodigy; Carbon-

ell, Knoblock, & Minton, 1991—the term utility is specifically

reserved for that purpose). Even without procedural decay the

more general rules may have gained a higher utility because

they are useful in more different tasks.

As a consequence, for many of the longer sequences of

PRIMs it is not unlikely that rules have to be relearned. This

process is faster than learning from the ground up, and this is

probably why it was necessary to employ different learning

speeds in the different models in this article. In the editor

model, the alpha parameter that controls the speed of learning

was set to 0.1, in Elio’s (1986) model to 0.2, in Chein and

Morrison’s (2010) model to 0.02, and in Karbach and Kray’s

(2009) model to 0.03. These values reflect the difference in

average initial skill level. The more knowledge subjects already

have at the start of the task in terms of useful general produc-

tions, the higher the learning rate for the model has to be to

catch up. In Elio’s task, many of the steps involved calculation,

something that most people are familiar with and proficient in.

The editor task was unfamiliar to the subjects (given that the

experiment was carried out in the eighties), but did involve a

fairly linear, procedural structure. Typical for Verbal-CWM and

task-switching tasks is that they are unusual, in the sense that

familiar processes like rehearsal have to be integrated in an

unfamiliar constellation, and that different tasks have to be

carried out on the same stimuli. This means that the real value

of alpha is probably closer to the lower values, concurring with

the idea that procedural learning is indeed very slow (Anderson

& Fincham, 1994; Anderson, Fincham, & Douglass, 1997).

A second reason why different models need different values

for other parameters concerns the composition of the work-

space. In the models in this article, the perception and motor

output parts of the workspace have been reduced to just single

sets of slots, which is obviously an oversimplification. If dif-

ferent perceptual and motor modalities are given their own

place in the workspace, more PRIMs are needed. As a conse-

quence, the current more limited version can lead to an over-

estimation of transfer, in particular when different modalities

are involved. For example, in all models, both visual shifts of

attention and manual outputs were handled by the same output

part of the workspace, while they probably should have had

their own separate parts. Given that this distinction was not

critical in any of the models, changing this aspect would only

produce slightly different model fits.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

27THE NATURE AND TRANSFER OF COGNITIVE SKILLS

Cognitive Control

The central point this article tries to make about cognitive

control is that many improvements in this function are due to

skill, and not to an increase in some inherent capacity. The

models of working memory, Stroop and task switching were all

based on existing ideas and models (Sohn & Anderson, 2001,

for task-switching, and van Maanen et al., 2012, for Stroop; see

also Lovett, 2005, for an alternative strategy-based model of

Stroop; Daily, Lovett, & Reder, 2001, for complex working

memory). However, all published models already presumed

particular existing control skills, whereas in the PRIM models

these strategies still had to be learned, with a choice between

simple reactive and complex proactive strategies. The choice

between reactive and proactive is not trivial: Despite their better

Figure 24. Graph of declarative memory with all tasks discussed in the article. In the case of task-switching

and the Elio task, only a single copy of similar tasks is included to avoid clutter. Also, some of the operators for

the editors were removed for the same reason. The two nodes with the red outline are the conditions that support

proactive strategies, whereas the node with the blue outline supports the reactive strategies. CWM � complex

working memory.

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

28 TAATGEN

performance, proactive strategies are more complex and there-

fore harder to learn. The learnability of a proactive strategy

depends on prior learning of proactive strategies for similar

tasks: The general productions learned for the other task make

it easier to learn a proactive strategy for a new task if there is

sufficient overlap.

In the examples in this article, the difference typically hinged on

a few combinations of PRIMs, so the question is justified whether

subjects have not already learned all of these combinations earlier

in life. This may be true, but this does not mean that they are

equally available with respect to utility, as was discussed in the

previous section. Typically, a reactive strategy is easier to learn, so

if a proactive and a reactive strategy compete the reactive strategy

has a higher probability of winning unless the proactive strategy

has been trained. In other words, the general gist of transfer of

control is correct in the models, even though the specific mecha-

nism is more elaborate. The consequence is, however, that ulti-

mately a different utility mechanism is required (with a reward and

a frequency of use aspect) than the one inherited from the current

version of ACT-R.

The two models for the Verbal-CWM illustrate that reactive

strategies are often more simple than proactive strategies: the

reactive model does not have to maintain an internal state and has

fewer operators. This is also true for many task-switching exper-

iments in which, for example, the location of the stimulus deter-

mines the task. In those versions of task-switching a reactive

control strategy is much more simple. In the task-switching para-

digm used by Karbach and Kray (2009), internal control is always

necessary, and this might be the reason why it is so effective in

training proactive control, because the reactive strategy is as com-

plex as the proactive strategy.

Strategies for control can also play a role in other areas of

cognitive control, like working memory control. The Verbal-

CWM improved on its WM performance because it improved

its strategy. The choice of a list structure was sufficient for that

and the count-span task, but has to be different for tasks in

which knowledge in working memory is organized differently.

For example, when building up a mental representation of a

text, a representation with a more hierarchical or network

structure is needed. Even for longer lists, Anderson and Matessa

(1997) have shown that subjects tend to break up the list in

smaller chunks, also creating a hierarchical representation. The

primitive elements theory allows the building of different struc-

tures in memory with different strategies. The implication is

that a strategy for list rehearsal may have limited transfer to

other contexts in which working memory is also necessary but

that require a different organization of knowledge. In other

words, there is no general capacity that can be increased by

working memory training, but there may instead be transfer

between working memory tasks if the requirements are suffi-

ciently similar.

Is cognitive control an innate skill, or is it determined for each

individual task? The primitive elements theory takes the middle

ground between theories that put few constraints on cognitive

control, therefore leaving it to individual models to implement

control (e.g., the executive-process/interactive control [EPIC] the-

ory; Meyer & Kieras, 1997), and theories that have very strong

architectural control (e.g., using a goal stack to implement a task

hierarchy; Altmann & Trafton, 2002; Anderson & Douglass,

2001). The theory does not impose any specific strategy of control,

but allows transfer of any strategy between tasks (through opera-

tors), making it unnecessary to reinvent the wheel for each new

situation.

Whereas skills probably play a role in individual differences in

cognitive control, it is certainly not the complete story. Differences

in how well the different components of the cognitive system work

also play a role. In particular, many aspects of control depend on

the performance characteristics of declarative memory (Daily et

al., 2001), but probably also on other functional modules.

The Origin of Operators

One of the questions that was not answered in this article is the

origin of the operators necessary to do all the tasks. Although this

is an obligation that no other symbolic model typically resolves, it

is an interesting question whether we are closer to a solution.

Explicit external instruction, but also reasoning from examples, or

analogical reasoning can be a source of operators. Several studies

have investigated how instructions and examples can be encoded

in declarative memory (for some explorations of that idea, see,

e.g., Anderson et al., 2004; Salvucci, 2013). Those models use

(complex) general production rules that interpret external instruc-

tions, but without a theory on how the general rules themselves

were learned. The primitive elements theory provides this missing

link.

One of the assumptions in all the model simulations that were

discussed here is that the models start with a set of basic produc-

tions for each of the PRIMs. Every individual probably already has

a large collection of productions in which several of these are

combined. However, the space of all possible combinations is vast,

so individuals probably only have a small subset of all possible

general productions at their disposal. Therefore, if a new task can

be built out of operators that use sequences of conditions and

actions that are already available, then it will be easier than a task

that requires the construction of new condition and action se-

quences (see also Kieras & Polson, 1985). For example, if some-

one has a rich experience with computers, he will need less time to

learn to use a new program (even without explicit instruction) than

a computer novice. An exciting new research paradigm that may

shed some light on these matters is rapidly instructed task learning

(Cole, Bagic, Kass, & Schneider, 2010; Cole, Etzel, Zacks, Sch-

neider, & Braver, 2011). In this experimental paradigm, subjects

receive a new instruction every few trials in the experiment. For

example, subjects would be given the instruction: “If the answer to

‘is it SWEET’ is the SAME for both words, press your LEFT

INDEX finger,” with the uppercase words varying among instruc-

tions. They would then have 2–6 s before two words would be

shown. In our framework, this would mean that subjects have 2–6

s to assemble the appropriate operators for the particular task

(presumably reusing existing lists of conditions and actions), be-

fore carrying them out in the subsequent phase. Cole et al. found

evidence that if a particular instruction has been practiced, it is retrieved

in the anterior prefrontal cortex (aPFC) before it is transferred to the

dorsolateral PFC (DLPFC). If an instruction is novel, on the other

hand, the new instruction is prepared in the DLPFC and then

transmitted to the aPFC. Based on this and other research, Chein

and Schneider (2012) proposed a triarchic theory of learning,

consisting of a metacognitive system that generates new behav-

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

29THE NATURE AND TRANSFER OF COGNITIVE SKILLS

ioral routines, a cognitive control network that carries out such

routines in a controlled manner, and a representation system for

automatic execution. The primitive elements model offers a pro-

cess theory for the second and third of these systems, and a

representation with which the first system can be explored.

Predictive Power and Studies That

Do Not Show Transfer

All experiments we discussed here showed evidence of transfer.

The primitive elements theory’s central tenet is that transfer can

occur between many different tasks. This raises the question how

strong the predictive power of the theory is, because there are

many studies that do not show transfer between tasks. In that

respect the theory still has to further prove itself, because it has not

made any predictions yet, but has only modeled existing data. The

quality of a prediction of transfer depends on a number of aspects.

As in cognitive modeling in general, the models of the individual

tasks have to be accurate in themselves, and this is why I have

based the individual models in this article on existing models when

they were available. The current system also allows some “wiggle-

room” for the modeler to manipulate transfer, because the assign-

ment of particular aspects of the model to slots in the workspace

are not prescribed. However, the assumption (that is honored by all

models in this article) is that the modeler attempts to maximize

overlap. This is already enforced by the implementation in that it

automatically reorders lists of PRIMs if that improves overlap with

existing lists of PRIMs. However, fixed mappings between work-

space slots and particular use of that slot would not be in the spirit

of the theory, because individuals may assign different uses to

specific slots.

Assuming properly tested models, there is a second aspect

influencing the quality of prediction if the skills involved contain

condition and action lists that are “common knowledge,” skills that

most people have already mastered. A research program that tries

to identify these common skills, as mentioned earlier in the dis-

cussion, could offer some sort of solution to this problem, or

studies that compare children to adults, where the assumption is

that adults have mastered particular reasoning skills while children

have not.

With these caveats in mind, the claim of the PRIM model is that

given two skills and validated models of those skills, transfer can

be predicted.

In the two successful far transfer studies, Chein and Morrison’s

(2010) model and Karbach and Kray’s (2009) model, the training

tasks that resulted in transfer did involve unusual combinations of

operations: inserting rehearsal while there was not enough time,

and switching tasks while the stimulus remained the same. More-

over, the explanation for the transfer phenomena consisted of

operators that enable proactive control, which led to a performance

improvement on the testing tasks. The training tasks themselves

were particularly encouraging proactive control: The version of

task-switching in Karbach and Kray’s study does not afford and

easy reactive strategy. The theory predicts that, if the training task

would be a more standard task-switching experiment in which the

location of the stimulus determines the task, the transfer effects

would be much smaller or even absent. The Verbal-CWM task

used by Chein and Morrison strongly encouraged a proactive

strategy because subjects could only improve their performance

with that strategy.

Karbach and Kray’s (2009) study also showed the possibility

of negative transfer, although this was not unambiguous in the

data. By training on a reactive strategy, subjects seemed to be

more drawn toward reactive strategies on at least the Stroop

transfer task. More strong cases of negative transfer, for exam-

ple the perverse Emacs (Singley & Anderson, 1989, Chapter 4),

a version of Emacs in which key bindings were changed,

require a different explanation. The most likely explanation is

that subjects considered perverse Emacs still as Emacs, but with

modifications. Instead of building new operators, they probably

created new operators that amended Emacs. Negative transfer

can therefore be attributed to competition between old and new

operators.

Another prediction the model makes is the diminishing return

of training, for which there is some evidence in studies of

transfer (Anderson & Fincham, 1994; Frensch & Geary, 1993).

This prediction shows the extra added value of a learning

model, because it would be hard to predict by a static model.

Can the model explain cases in which there is no transfer?

Not all of them, but it can shed some light on at least some.

Many studies of far transfer envision “brain-training” as if

training a muscle. The primitive elements theory states that the

main motor of transfer is growth of skills and strategies. There-

fore, if the focus of training is on raw capacity transfer might

fail. An large-scale example in that category is by Owen et al.

(2010). A total of 11,430 subjects were trained in two experi-

mental groups and one control group. In one of the experimental

groups, subjects trained on several reasoning, planning, and

problem-solving tasks. The second group trained on tasks of

short-term memory, attention, visuo-spatial processing and

mathematics. The control group answered trivia questions.

Transfer was tested on four tasks: a reasoning task and three

memory tasks. In the reasoning task, a picture and a sentence

were shown, and subjects had to verify the sentence as fast as

possible. The reasoning task produced a small but significant

effect of transfer when the experimental and control groups

were compared. Performance in the other three tasks, two

working memory tasks (digits and spatial) and a paired associ-

ates task, showed no effects of transfer. The two working

memory tasks, however, were simple working memory tasks.

They therefore lacked the key conflict between rehearsal and a

secondary task that was characteristic for both the digit-span

task and the Verbal-CWM task, and that were so important for

transfer. Moreover, standard working-memory rehearsal is

something that most people have probably already mastered.

According to the authors, the tasks were specifically chosen

because they are highly sensitive to pharmacological interven-

tions. That means that, in terms of the model, they measure the

proper operation of the various modules in the architecture

(declarative memory in particular), but do not tap into any new

general skills. The lack of transfer is therefore one that the

primitive elements theory would predict.

Even Jaeggi et al. (2008) designed their experiment, in which

training on the double N-back task produced improvements on the

Raven test, with the goal to increase capacity, not to train skills. It

is hard to explain why they did, and Redick et al. (2013) did not

find effects of transfer, but a first step in answering this question

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

30 TAATGEN

would be to investigate which strategies are trained exactly in the

double-N-back task, and whether or not there are alternative strat-

egies that lead to different amounts of transfer (see, e.g., Juvina &

Taatgen, 2009, for a discussion on different strategies for regular

N-back).

Extension to Individual Differences,

Development, and Education

One of the problems in researching complex human behavior is

that an increase in complexity typically means an even larger

increase in individual differences. This has always been a problem

for the weak-method based approaches to problem solving, be-

cause that approach would predict much more uniformity. If,

however, every individual has their own toolbox of generalized

skills, it also means that individuals differ in their optimal solution

for a particular problem or task (see also Howes, Lewis, & Vera,

2009, who made a similar point in the context of model parame-

ters).

Developing the individual toolbox of general strategies is part of

human development, and the primitive elements theory offers

opportunities to shed light on how strategies in children develop.

Chen and Klahr (1999) taught children the Control of Variables

strategy of scientific reasoning, and found that with proper instruc-

tion children transfer the strategy to other experiments. Van Rijn,

van Someren, and van der Maas (2003) developed a model of how

children learn the balance-scale task, in which a crucial assumption

is that children under a certain age cannot properly reason about

how two dimensions interact (weight and distance from the ful-

crum in the balance-scale task). Once children have mastered this

more general skill, they were also able to learn the more advanced

strategies for the task. This two-dimension reasoning skill can then

be applied in a completely different domain, as shown in a model

of reasoning about French determiners (Zondervan & Taatgen,

2003). It is also a skill that is necessary in some of the heuristics

for decision making, such as the Take the Best heuristic proposed

by Gigerenzer and Goldstein (1996).

A theory of transfer, finally, is important for research in educa-

tion (Bransford & Schwartz, 1999; Carraher & Schliemann, 2002).

If the goal of education is to teach skills that are optimally

transferrable, we need to determine what the important skills are

and how they can be taught most effectively. If the premise of the

primitive elements theory holds, this means that transfer in edu-

cation is not necessarily based on content and semantics but also

on the underlying structure of skills.

References

Altmann, E. M., & Trafton, J. G. (2002). Memory for goals: An activation-

based model. Cognitive Science, 26, 39 – 83. doi:10.1207/

s15516709cog2601_2

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological Re-

view, 89, 369–406. doi:10.1037/0033-295X.89.4.369

Anderson, J. R. (1987). Skill acquisition: Compilation of weak-method

problem situations. Psychological Review, 94, 192–210. doi:10.1037/

0033-295X.94.2.192

Anderson, J. R. (2007). How can the human mind occur in the physical

universe? doi:10.1093/acprof:oso/9780195324259.001.0001

Anderson, J. R., Bothell, D., Byrne, M. D., Douglass, S., Lebiere, C., &

Qin, Y. (2004). An integrated theory of the mind. Psychological Review,

111, 1036–1060. doi:10.1037/0033-295X.111.4.1036

Anderson, J. R., & Douglass, S. (2001). Tower of Hanoi: Evidence for the

cost of goal retrieval. Journal of Experimental Psychology: Learning,

Memory, and Cognition, 27, 1331–1346. doi:10.1037/0278-7393.27.6

.1331

Anderson, J. R., & Fincham, J. M. (1994). Acquisition of procedural skills

from examples. Journal of Experimental Psychology: Learning, Mem-

ory, and Cognition, 20, 1322–1340. doi:10.1037/0278-7393.20.6.1322

Anderson, J. R., Fincham, J. M., & Douglass, S. (1997). The role of

examples and rules in the acquisition of a cognitive skill. Journal of

Experimental Psychology: Learning, Memory, and Cognition, 23, 932–

945. doi:10.1037/0278-7393.23.4.932

Anderson, J. R., & Matessa, M. P. (1997). A production system theory of

serial memory. Psychological Review, 104, 728–748. doi:10.1037/0033-

295X.104.4.728

Baars, B. J. (1988). A cognitive theory of consciousness. Cambridge, MA:

Cambridge University Press.

Bajic, D., Kwak, J., & Rickard, T. C. (2011). Specificity of learning

through memory retrieval practice: The case of addition and subtraction.

Psychonomic Bulletin & Review, 18, 1148–1155. doi:10.3758/s13423-

011-0151-4

Barnett, S. M., & Ceci, S. J. (2002). When and where do we apply what we

learn? A taxonomy for far transfer. Psychological Bulletin, 128, 612–

637. doi:10.1037/0033-2909.128.4.612

Borst, J. P., Taatgen, N. A., Stocco, A., & van Rijn, H. (2010). The neural

correlates of problem states: Testing fMRI predictions of a computa-

tional model of multitasking. PLoS One, 5(9), e12966. doi:10.1371/

journal.pone.0012966

Borst, J. P., Taatgen, N. A., & van Rijn, H. (2010). The problem state: A

cognitive bottleneck in multitasking. Journal of Experimental Psychol-

ogy: Learning, Memory, and Cognition, 36, 363–382. doi:10.1037/

a0018106

Borst, J. P., Taatgen, N. A., & van Rijn, H. (2011). Using a symbolic

process model as input for model-based fMRI analysis: Locating the

neural correlates of problem state replacements. NeuroImage, 58, 137–

147. doi:10.1016/j.neuroimage.2011.05.084

Botvinick, M., & Plaut, D. C. (2004). Doing without schema hierarchies:

A recurrent connectionist approach to normal and impaired routine

sequential action. Psychological Review, 111, 395–429. doi:10.1037/

0033-295X.111.2.395

Bransford, J. D., & Schwartz, D. L. (1999). Rethinking transfer: A simple

proposal with multiple implications. Review of Research in Education,

24, 61–100.

Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Explaining the many

varieties of working memory variation: Dual mechanisms of cognitive

control. In A. R. A. Conway (Ed.), Variation in working memory (pp.

76–106). New York, NY: Oxford University Press.

Carbonell, J. G., Knoblock, C. A., & Minton, S. (1991). PRODIGY: An

integrated architecture for planning and learning. In K. VanLehn (Ed.),

Architectures for intelligence (pp. 241–278). Hillsdale, NJ: Erlbaum.

Card, S. K., Moran, T. P., & Newell, A. (1983). The psychology of

human–computer interaction. Hillsdale, NJ: Erlbaum.

Carpenter, P. A., Just, M. A., & Shell, P. (1990). What one intelligence test

measures: A theoretical account of the processing in the Raven Progres-

sive Matrices Test. Psychological Review, 97, 404–431. doi:10.1037/

0033-295X.97.3.404

Carraher, D., & Schliemann, A. (2002). The transfer dilemma. Journal of

the Learning Sciences, 11, 1–24. doi:10.1207/S15327809JLS1101_1

Chein, J. M., & Morrison, A. B. (2010). Expanding the mind’s workspace:

Training and transfer effects with a complex working memory span task.

Psychonomic Bulletin & Review, 17, 193–199. doi:10.3758/PBR.17.2

.193

Chein, J. M., & Schneider, W. (2012). The brain’s learning and control

architecture. Current Directions in Psychological Science, 21, 78–84.

doi:10.1177/0963721411434977

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

31THE NATURE AND TRANSFER OF COGNITIVE SKILLS

Chen, Z., & Klahr, D. (1999). All other things being equal: Acquisition and

transfer of the control of variables strategy. Child Development, 70,

1098–1120. doi:10.1111/1467-8624.00081

Cole, M. W., Bagic, A., Kass, R., & Schneider, W. (2010). Prefrontal

dynamics underlying rapid instructed task learning reverse with practice.

Journal of Neuroscience, 30, 14245–14254. doi:10.1523/JNEUROSCI

.1662-10.2010

Cole, M. W., Etzel, J. A., Zacks, J. M., Schneider, W., & Braver, T. S.

(2011). Rapid transfer of abstract rules to novel contexts in human lateral

prefrontal cortex. Frontiers in Human Neuroscience, 5, 142. doi:

10.3389/fnhum.2011.00142

Cooper, R., & Shallice, T. (2000). Contention scheduling and the control of

routine activities. Cognitive Neuropsychology, 17, 297–338. doi:

10.1080/026432900380427

Daily, L. Z., Lovett, M. C., & Reder, L. M. (2001). Modeling individual

differences in working memory performance: A source activation ac-

count in ACT-R. Cognitive Science, 25, 315–353. doi:10.1207/

s15516709cog2503_1

Day, S. B., & Goldstone, R. L. (2011). Analogical transfer from a simu-

lated physical system. Journal of Experimental Psychology: Learning,

Memory, and Cognition, 37, 551–567. doi:10.1037/a0022333

Dehaene, S., Kerszberg, M., & Changeux, J. P. (1998). A neuronal model

of a global workspace in effortful cognitive tasks. Proceedings of the

National Academy of Sciences, USA, 95, 14529–14534. doi:10.1073/

pnas.95.24.14529

De Jong, R. (1995). The role of preparation in overlapping-task perfor-

mance. The Quarterly Journal of Experimental Psychology Section A:

Human Experimental Psychology, 48, 2–25. doi:10.1080/

14640749508401372

De Pisapia, N., & Braver, T. S. (2006). A model of dual control mecha-

nisms through anterior cingulate and prefrontal cortex interactions. Neu-

rocomputing, 69, 1322–1326. doi:10.1016/j.neucom.2005.12.100

Elio, R. (1986). Representation of similar well-learned cognitive proce-

dures. Cognitive Science, 10, 41–73. doi:10.1207/s15516709cog1001_2

Forbus, K. D., Gentner, D., & Law, K. (1995). MAC/FAC: A model of

similarity-based retrieval. Cognitive Science, 19, 141–205. doi:10.1207/

s15516709cog1902_1

Frensch, P. A., & Geary, D. C. (1993). Effects of practice on component

processes in complex mental addition. Journal of Experimental Psychol-

ogy: Learning, Memory, and Cognition, 19, 433–456. doi:10.1037/

0278-7393.19.2.433

Fruchterman, T. J. M., & Reingold, E. M. (1991). Graph drawing by

force-directed placement. Software: Practice and Experience, 21, 1129–

1164. doi:10.1002/spe.4380211102

Gentner, D. (1983). Structure-mapping: A theoretical framework for anal-

ogy. Cognitive Science, 7, 155–170. doi:10.1207/s15516709cog0702_3

Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving.

Cognitive Psychology, 12, 306 –355. doi:10.1016/0010-

0285(80)90013-4

Gigerenzer, G., & Goldstein, D. G. (1996). Reasoning the fast and frugal

way: Models of bounded rationality. Psychological Review, 103, 650–

669. doi:10.1037/0033-295X.103.4.650

Holland, J. H., Holyoak, K. J., Nisbett, R. E., & Thagard, P. R. (1986).

Induction: Processes of inference, learning, and discovery. Menlo Park,

CA: Addison-Wesley.

Howes, A., Lewis, R. L., & Vera, A. (2009). Rational adaptation under task

and processing constraints: Implications for testing theories of cognition

and action. Psychological Review, 116, 717–751. doi:10.1037/a0017187

Hummel, J., & Holyoak, K. (1997). Distributed representations of struc-

ture: A theory of analogical access and mapping. Psychological Review,

104, 427–466. doi:10.1037/0033-295X.104.3.427

Jackendoff, R. (1987). Consciousness and the computational mind. Cam-

bridge, MA: MIT Press.

Jaeggi, S. M., Buschkuehl, M., Jonides, J., & Perrig, W. J. (2008). Im-

proving fluid intelligence with training on working memory. Proceed-

ings of the National Academy of Sciences, USA, 105, 6829–6833.

doi:10.1073/pnas.0801268105

Juvina, I., & Taatgen, N. A. (2009). Adding distractors improves perfor-

mance by boosting top-down control. In N. A. Taatgen & H. van Rijn

(Eds.), Proceedings of the 31st Annual Conference of the Cognitive

Science Society (pp. 353–358). Austin, TX: Cognitive Science Society.

Kane, M. J., Hambrick, D. Z., Tuholski, S. W., Wilhelm, O., Payne, T. W.,

& Engle, R. W. (2004). The generality of working memory capacity: A

latent-variable approach to verbal and visuospatial memory span and

reasoning. Journal of Experimental Psychology: General, 133, 189–

217. doi:10.1037/0096-3445.133.2.189

Karbach, J., & Kray, J. (2009). How useful is executive control training?

Age differences in near and far transfer of task-switching training.

Developmental Science, 12, 978–990. doi:10.1111/j.1467-7687.2009

.00846.x

Katona, G. (1940). Organizing and memorizing. New York, NY: Columbia

University Press.

Kieras, D. E., & Bovair, S. (1986). The acquisition of procedures from text:

A production-system analysis of transfer of training. Journal of Memory

and Language, 25, 507–524. doi:10.1016/0749-596X(86)90008-2

Kieras, D., & Polson, P. G. (1985). An approach to the formal analysis of

user complexity. International Journal of Man-Machine Studies, 22,

365–394. doi:10.1016/S0020-7373(85)80045-6

Klingberg, T., Fernell, E., Olesen, P. J., Johnson, M., Gustafsson, P.,

Dahlstrom, K., . . . Westerberg, H. (2005). Computerized training of

working memory in children with ADHD—A randomized, controlled

trial. Journal of the American Academy of Child and Adolescent Psy-

chiatry, 44, 177–186.

Klingberg, T., Forssberg, H., & Westerberg, H. (2002). Training of work-

ing memory in children with ADHD. Journal of Clinical and Experi-

mental Neuropsychology, 24, 781–791. doi:10.1076/jcen.24.6.781.8395

Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture

for general intelligence. Artificial Intelligence, 33, 1–64. doi:10.1016/

0004-3702(87)90050-6

Lebiere, C., O’Reilly, R., Jilk, D., Taatgen, N. A., & Anderson, J. R.

(2008). The SAL integrated cognitive architecture. In A. Samsonovich

(Ed.), Biologically inspired cognitive architectures: Papers from the

AAAI 2008 Fall Symposium (pp. 98–104). Menlo Park, CA: AAAI

Press.

Lehman, D. R., & Nisbett, R. E. (1990). A longitudinal study of the effects

of undergraduate training on reasoning. Developmental Psychology, 26,

952–960. doi:10.1037/0012-1649.26.6.952

Logan, G. D. (1988). Toward an instance theory of automization. Psycho-

logical Review, 22, 1–35.

Lovett, M. C. (2005). A strategy-based interpretation of Stroop. Cognitive

Science, 29, 493–524. doi:10.1207/s15516709cog0000_24

Mackey, A. P., Hill, S. S., Stone, S. I., & Bunge, S. A. (2011). Differential

effects of reasoning and speed training in children. Developmental

Science, 14, 582–590. doi:10.1111/j.1467-7687.2010.01005.x

McClelland, J. L. (1995). A connectionist perspective on knowledge and

development. In T. J. Simon & G. S. Halford (Eds.), Developing cog-

nitive competence: New approaches to process modeling (pp. 157–204).

Hillsdale, NJ: Erlbaum.

Meyer, D. E., & Kieras, D. E. (1997). A computational theory of executive

cognitive processes and multiple-task performance: I. Basic mecha-

nisms. Psychological Review, 104, 3–65. doi:10.1037/0033-295X.104

.1.3

Morrison, A. B., & Chein, J. M. (2011). Does working memory training

work? The promise and challenges of enhancing cognition by training

working memory. Psychonomic Bulletin & Review, 18, 46–60. doi:

10.3758/s13423-010-0034-0

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

32 TAATGEN

Newell, A. (1990). Unified theories of cognition. Cambridge, MA: Harvard

University Press.

O’Reilly, R. C., & Frank, M. J. (2006). Making working memory work: A

computational model of learning in the prefrontal cortex and basal

ganglia. Neural Computation, 18, 283–328. doi:10.1162/

089976606775093909

O’Reilly, R. C., & Munakata, Y. (2000). Computational explorations in

cognitive neuroscience. Cambridge, MA: MIT Press.

Owen, A. M., Hampshire, A., Grahn, J. A., Stenton, R., Dajani, S., Burns,

A. S., . . . Ballard, C. G. (2010, June 10). Putting brain training to the

test. Nature, 465, 775–778. doi:10.1038/nature09042

Raven, J. C. (1990). Advanced Progressive Matrices: Sets I, II. Oxford,

England: Oxford University Press.

Redick, T. S., Shipstead, Z., Harrison, T. L., Hicks, K. L., Fried, D. E.,

Hambrick, D. Z., . . . Engle, R. W. (2013). No evidence of intelligence

improvement after working memory training: A randomized, placebo-

controlled study. Journal of Experimental Psychology: General, 142,

359–379. doi:10.1037/a0029082

Reed, S. K., Ernst, G. W., & Banerji, R. (1974). The role of analogy in

transfer between similar problem states. Cognitive Psychology, 6, 436–

450. doi:10.1016/0010-0285(74)90020-6

Rickard, T. C., & Bourne, L. E. (1996). Some tests of an identical elements

model of basic arithmetic skills. Journal of Experimental Psychology:

Learning, Memory, and Cognition, 22, 1281–1295. doi:10.1037/0278-

7393.22.5.1281

Rickard, T. C., Healy, A. F., & Bourne, L. E. (1994). On the cognitive

structure of basic arithmetic skills: Operation, order, and symbol transfer

effects. Journal of Experimental Psychology: Learning, Memory, and

Cognition, 20, 1139–1153. doi:10.1037/0278-7393.20.5.1139

Rumelhart, D. E., & McClelland, J. L. (1986). On learning the past tense

of English verbs. In D. E. Rumelhart & J. L. McClelland (Eds.), Parallel

distributed processing: Explorations in the microstructure of cognition

(pp. 216–271). Cambridge, MA: MIT Press.

Salvucci, D. D. (2013). Integration and reuse in cognitive skill acquisition.

Cognitive Science. Advance online publication. doi:10.1111/cogs.12032

Singley, M. K., & Anderson, J. R. (1985). The transfer of text-editing skill.

International Journal of Man-Machine Studies, 22, 403– 423. doi:

10.1016/S0020-7373(85)80047-X

Singley, M. K., & Anderson, J. R. (1987). A keystroke analysis of learning

and transfer in text editing. Human-Computer Interaction, 3, 223–274.

doi:10.1207/s15327051hci0303_2

Singley, M. K., & Anderson, J. R. (1989). The transfer of cognitive skill.

Cambridge, MA: Harvard University Press.

Sohn, M. H., & Anderson, J. R. (2001). Task preparation and task repeti-

tion: Two-component model of task switching. Journal of Experimental

Psychology: General, 130, 764–778. doi:10.1037/0096-3445.130.4.764

Stocco, A., Lebiere, C., & Anderson, J. R. (2010). Conditional routing of

information to the cortex: A model of the basal ganglia’s role in

cognitive coordination. Psychological Review, 117, 541–574. doi:

10.1037/a0019077

Taatgen, N. (2005). Modeling parallelization and flexibility improvements

in skill acquisition: From dual tasks to complex dynamic skills. Cogni-

tive Science, 29, 421–455. doi:10.1207/s15516709cog0000_23

Taatgen, N. A. (2007). The minimal control principle. In W. Gray (Ed.),

Integrated models of cognitive systems (pp. 368–379). doi:10.1093/

acprof:oso/9780195189193.003.0025

Taatgen, N. A., & Anderson, J. R. (2002). Why do children learn to say

“Broke”? A model of learning the past tense without feedback. Cogni-

tion, 86, 123–155. doi:10.1016/S0010-0277(02)00176-2

Taatgen, N. A., Huss, D., Dickison, D., & Anderson, J. R. (2008). The

acquisition of robust and flexible cognitive skills. Journal of Experi-

mental Psychology: General, 137, 548–565. doi:10.1037/0096-3445

.137.3.548

Taatgen, N. A., & Lee, F. J. (2003). Production compilation: A simple

mechanism to model complex skill acquisition. Human Factors, 45,

61–76. doi:10.1518/hfes.45.1.61.27224

Taatgen, N. A., van Rijn, H., & Anderson, J. (2007). An integrated theory

of prospective time interval estimation: The role of cognition, attention,

and learning. Psychological Review, 114, 577–598. doi:10.1037/0033-

295X.114.3.577

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., & Goodman, N. D. (2011,

March 11). How to grow a mind: Statistics, structure, and abstraction.

Science, 331, 1279–1285. doi:10.1126/science.1192788

Thorndike, E. L. (1922). The effect of changed data upon reasoning.

Journal of Experimental Psychology, 5, 33–38. doi:10.1037/h0072415

van Maanen, L., van Rijn, H., & Taatgen, N. (2012). RACE/A: An

architectural account of the interactions between learning, task control,

and retrieval dynamics. Cognitive Science, 36, 62–101. doi:10.1111/j

.1551-6709.2011.01213.x

van Rijn, H., van Someren, M., & van der Maas, H. (2003). Modeling

developmental transitions on the balance scale task. Cognitive Science,

27, 227–257. doi:10.1207/s15516709cog2702_4

Wechsler, D. (2003). Wechsler Intelligence Scale for Children–Fourth

Edition (WISC-IV). San Antonio, TX: The Psychological Corporation.

Woodworth, R. S., & Thorndike, E. L. (1901). The influence of improve-

ment in one mental function upon the efficiency of other functions.

Psychological Review, 8, 247–261. doi:10.1037/h0074898

Zondervan, K., & Taatgen, N. A. (2003). The determiners model: A

cognitive model of macro development and U-shaped learning in a

micro domain. In F. Detje, D. Dörner, & H. Schaub (Eds.), Proceedings

of the Fifth International Conference on Cognitive Modeling (pp. 225–

230). Bamberg, Germany: Universitätsverlag Bamberg.

Received July 16, 2012

Revision received February 27, 2013

Accepted March 4, 2013 �

T
h
is

d
o
cu

m
en

t
is

co
p
y
ri

g
h
te

d
b
y

th
e

A
m

er
ic

an
P

sy
ch

o
lo

g
ic

al
A

ss
o
ci

at
io

n
o
r

o
n
e

o
f

it
s

al
li

ed
p
u
b
li

sh
er

s.

T
h
is

ar
ti

cl
e

is
in

te
n
d
ed

so
le

ly
fo

r
th

e
p
er

so
n
al

u
se

o
f

th
e

in
d
iv

id
u
al

u
se

r
an

d
is

n
o
t

to
b
e

d
is

se
m

in
at

ed
b
ro

ad
ly

.

33THE NATURE AND TRANSFER OF COGNITIVE SKILLS

