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This paper develops general overtaking techniques for studying the asymptotic properties of 
portfolio policies optimal with respect to a terminal utility valuation. For a restricted class of 
utility functions the sequence of optimal constant (non-revised) portfolio policies formed as the 
horizon recedes into the future is shown to converge. Furthcrmorc, for utility functions un- 
bounded above and below, this turnpike policy need not be the policy associated with the 
minimal constant relative risk aversion function that bounds the valuation function from 
ahovc. Finally, an analogy between the portfolio turnpike problem and the turnpike problem 
of growih theory is studied. 

Introduction 

The interplay bctwecn uncertainty and dynamics provides some of the most 
difTicult and important problems in financial economics. The dynamics of port- 
folio policies is at the core of this area and has been examined by a number of 
authors. ’ This paper will study a subclass of dynamic portfolio problems coming 
untlcr the heading qf turnpike theory. 

In its most gcncral form, the portfolio turnpike problem seeks the accumula- 
tion of wealth so as to mnximizc some critcria,applicd to wealth at ;1 terminal 
date. The path of approach to the tcmminal wealth is of concern only in so far as 
it Icads to a higher terminal valuation. The virtue of the turnpike problem lies 
largely in the fact that it is the simplest context within which serious dynamic 
problems about optimality under uncertainty an bc posed and its solution 
often provides the basic intuition for more complex problems. 

To explicate all of this, the gcncral portfolio turnpike problem takes the 
following form. WC seek to mnximizc the cxpcctcd (von Neumann-Morgcnstcrn) 
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Pennsylvania and by National Science Foundation Grant GS-35780. 7% author is grateful to 
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‘Referencing selectively but not exhaustively, Brcim,m (1961) and Latane (1957) and more 
recently Hakansson (1971 b), Markowitz (1972). Samuclson (1971) and Samuclson and Mcrton 
(1972) have studied the propertics of the policy which maximize the cxpectcd log return, the so- 
called maximal growth cri:eria. Mossin (1968) and Hakansson (1971~1) have looked at station- 
ary portfolio policies and Mcrton (1971) has analyzed the optimal consumption withdrawal 
policy when returns are govcmed by dilfusion processes. 
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utility, U,(e), of random terminal wealth. k,. over a horizon of T periods. 
Thus, if A, denotes the feasible set of portfolio policies, (a), available in the T 
period problem, we seek 

max E(Ur(C;,)}. 
<I> E AT 

(I) 

Turnpike theory is largely devoted to the study of the asymptotic behavior and 
properties of the solution to (1) for large T, and that will be the central focus of 
this paper. Sect. 1 specializes our problem still further. In particular, we will be 
exclusively concerned with constant portfolio policies, i.e., policies that are 
unchanging in each period for a given horizon, and we will also assume that the 
stochastic environment is independently and identically distributed across 

periods. In a second paper, Ross (1974), we develop the general portfolio 
turnpike problem. Sect. 2 studies some familiar stationary solutions to the 
general turnpike problem that coincide with the constant solutions of our 
problem. Sect. 3 develops the central theorems of the paper and sect. 4 relates 
our findings to the turnpike literature of growth theory. Sect. 5 summarizes and 
concludes the paper and describes some areas of future research. 

Section 1 

The problem WC will concern ourselves with is that of examining the asymp- 
totic propcrtics of the solution to (I) for Iargc T. To facilitate this, we will begin 
by assuming that (up to a cardinal cquivalcncc) 

w4 = U(w), 

so that the tcrminnl criterion can alter by at most some discount factor and a 
location factor as the horizon is altcrcd. The stochastic investment environment 
is conccivcd of as follows. Thcrc arc two assets, one of which is risklcss and offers 

a return factor of 

f> 1, 

so that r - 1 is the interest rate. The other asset is risky and offers a random return 

of 

i.e., 2 is the random return premium over the riskless asset. The individual is 
assumed able to form portfolios of arbitrary amounts in these two assets, 
although generally no borrowing (or short sales) will be permitted. The random 
return is then given by 

(1 -a)r+a(r+.?) = r+aZ, 

where a is the proportion of wealth placed at risk. 
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Proceeding recursively, we have 

v7’r = WI_i[r+aTZZ], 

where subscripts indicate time periods, and the horizon is superscripted. 
The general portfolio turnpike problem can now be written as 

(2) 

where 

= w fi (f + a,‘%,). 
I 

The two basic simplifying assumptions of this paper are: 

(i) (2,) is a vector of independently and identically distributed random 
variables, 

(ii) the set of policies we shall deal with are constant portfolio policies, i.e., 

a,’ = aT, a predetermined constant for each horizon. 

Assumption (i) needs little explanation. Its principal weakness is that it 
abstracts from intertemporal dependence and we shall have more to say about it 
further on. Assumption (ii) abstracts from a somewhat more serious induced 
depcndencc. In gcncral, we would cxpcct that for any finite horizon a;, the 
optimal policy for the 7th period, will be dependent on the wealth inherited from 
the previous period. Thus, 

a,’ = aT(w,_,). 

(With a stochastically interdcpcndcnt environment a: would also depend on the 
current state of the world but assumption (i) permits us to ignore any such 
dependcncc). Nevertheless, it is our contention that assumption (ii) is a useful 
starting point for the development of a complete turnpike theory. For one thing, 
in a complex problem, where the computational costs associated with finding the 
true optimal policy sequence might be exorbitant, this simpler problem is of 
interest. More importantly, it permits us to develop a class of policies analogous 
to the proportionate turnpike paths of economic growth theory. In effect, we 
might conjecture that solving the portfolio turnpike problem under assumption 
(ii) is a technique for finding the turnpike2 

The central problem of turnpike theory is that of analyzing the behavior of 
a: for large T, and in our problem we examine the optimal aT for large T. As we 
shall see, the solution to this latter problem, as for turnpike analysis in general, is 

‘Of course, this conjecture rests heavily on the assumption that for very long periods the 
optimal initial policy for the T period problem a ,T should be quite insensitive to the current 
wealth level. Unfortunately. this need not be the case in the neighbourhoods of the origin. 
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a sufficient justification for posing the problem in the first place; the solution will 
provide us with some deep insights into the dynamic behavior of optimal 
stochastic programs. 

We conclude this section, then, with our specific problem 

where 

max E{ U(Er)}, 
S 

(3) 

wy = w fi (r+aZr). 
_ 

(4) 
1 

The solution to (3) is denoted a’, and we will study how a’ behaves for large T. 

Section 2 

There are a number of specific cases for which the solution to (2) is known. In 
particular, if the utility function is a power function of the form 

LT(H.) = (l//I)& /3 < 1, 

or 
U(w) = log w, 

then [see Mossin (1968)] the constant solution is unaltered by the horizon and is, 
in fact, the solution to the general turnpike problem. 

To see this, we have 

= (l//3)wPE{t (r+af.?.,)P} 

where 

Ap(a) = E,,{(r +a-f,)b}. 

Now, (l//?)As(a) is concave, since 

A;(a) = E{(P-- I)(r+aX’)B-2Z2 } < 0, 

(5) 

(6) 

and has a unique maximum attained at a,. (We will assume throughout that the 
maximum is attained in the interior of [O,l]; see the argument at the beginning 
of sect. 3.) Hence, by backwards induction 

T- ar - a#. 

and 

aT - r- ab;r= l,...,T. 

The argument for U(w) = log tv is similar. 
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The simplicity and tractability of the power functions have long commended 
them for study. Furthermore, it can be shown that they have desirable axiomatic 
properties associated with stationarity as well. This suggests that a useful way to 
study the turnpike problem is to consider combinations of these ‘good’ 
functions. 3 

secti 3 

Leaving the logarithmic case for last, we will begin by considering terminal 
utility functions of the form 

U(w) = c a*d‘, 
1 

(7) 

where the /I, are ordered, 

For (strict) concavity and monotonicity, we must have 

B1 < 1. 

and monotonicity will require both 

=, 2 0 as B1 2 0, (8) 

and 

a, >< 0 as j?. 5 0. (9) 

If (8) did not hold, U(w) would decrease for large w, and if (9) were violated, it 
would decrease for w near 0. As a final point we will define U(w) only on the 
positive orthant and assume that it is an improper function taking the value - 03 
on the negative orthant. This will immediately bound the portfolio weight, a, 
from above, if there is mass to negative values of 2. By monotonicity and con- 
cavity it can be shown that if i > 0, then a will always be positive so that without 
loss of genemlity, we will assume that a is restricted to the half-open unit 
interval, (O,l].* 

Our study of the turnpikes associated with functions of the form of eq. (7) will 

‘A second class of functions for which the solution 10 (2) is well-known is the exponential or 
constant absolute risk aversion functions, 

U(w) = -e-“w. 

While the problem of this paper can be examined with such functions, the techniques are little 
different than the ones we employ and. as such, we will not treat this case explicitly. A forth- 
coming paper, Ross (1974), treats this case within the context of the general turnpike problem. 
See, also, the discussion of sect. 5 of the present paper. 

This is tantamount to assuming that for any positive c. F can attain a value less than e-r 
with positive probability. 
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depend on an understanding of the behavior of the functions An(z) introduced in 
sect. 2. From eq. (6) it is easy to see that 

AB(a) is 
I 

concave for 0 < /3 K 1, 

convex for /? < 0. 

Depending on the values of j31 and fl., the work divides naturally into three cases 
and we will prove a preliminary lemma that covers each of these cases. The 
lemma tells us that the /I1 and /$ components dominate the intermediate values. 

Lemma 1: If 

P‘ ’ Pz ’ B,V 

then (Va E [O,ll) 

4&) -C A&) v A,&).’ 

In particular, setting pJ = 0 (33 > 0) such that 

Ab,(a)+S < A@,(a) v 1, 

and setting j?, = 0 yields 

Ap,(a)+6 < A,,,(a) v 1. 

(10) 

(11) 

(12) 

Proof: For any : > 0, ; P is a strictly convex function of /?. This can be verified 
by diflcrentiation, 

-$(;q = z~(logzy > 0. (13) 

Since A,(a) is [by definition (5)] an average of such functions it, too, must be a 
strictly convex function of 8. Proposition (10) is a conscqucnce of this convexity. 

Compactness now assures that (Vc < 1) (11) and (12) will hold on [0, c], and 
this result extends directly for (11) to [0, 11. A special argument is required for 
(12) since B, < 0 implies that Apl(a) + 00 as a + 1. In this case, however, by 
Jensen’s inequality 

AB,(a) s E{(r +aZ)B’} 

= E{[(r + aZ)p2]BJ’p1} (14) 

> [~p&W’P’, 
which guarantees (12) for Aal bounded above unity. Q.E.D. 

‘WC will employ the convenient notation 

xvy = max {x,y). 
and 

xAy = min (x.Y). 
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Now, consider solving the constant turnpike problem (3) for a utility function 
of the form 

U(W) = a,HJ’+a,n+ (15) 

For a constant policy, a, we have 

E{U(G,,)} = a&{@ }+a,E{ti$}. 

= a,w81[AB,(a)]T 

+a2WP*[A&)]T. 

Differentiating with respect to a yields 

(‘A,, 
+ Tf12wP’[~,,(a>l’- ’ =, (16) 

and the first order condition for a maximum is given by 

a,d~[A,,(ar)]T-’ ‘~+cz2wP’[Ap2(ar)]T-’ ‘2 = 0. 

From ea. (16) it is easy to see that if A,,,(a) > A,,(a), then for large T the 
behavior of dE{U(GT)}/da is governed by JA,,/Ja and, conversely, if A@,(a) < 
A,,,(a), then the behavior is governed by dAB2/Ja for large T. This observation 
will enable us to find the turnpikes for functions of the class (15). 

Figs. 1 and 2 display two typical cases of A,, functions from which composite 
expected utility functions are formed. In Fig. I we have I > /I, > /I1 > 0 and 
the assumption is made here as it is throughout the paper that a8, and aBl are 
both internal to the unit interval. Consider a utility function of the form (15), 
where A,, and A,, are as in tig. I and where, for the moment, we assume that 
a’ does indeed converge to a turnpike a*. Could a* be outside of [zBI, a@,]? 
Clearly not, since, outside of this range, by eq. (16), both terms of aE{U(Gj,)}/c7a 

are positive for a < aP1 and negative for a > aI,. Could a* be less than an,? 
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Fig. 1. One period cxpccted utility as D function of the portfolio policy (a) for two utility 
functions with constant relative risk aversion coefficients (1 -PI < I -/&) less than unity. 

Fig. 2. One period expected utility BS a function of the portfolio policy (a) for utility functions 
with constant rcla:ivc risk aversion coclA&mts, 1 -PI c 1. and 1 -j12 > 1. 
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Lemma 1 assures that A,,,(z) > A,,,(z) for a E [zpl, a,,,] as in fig. 1. It follows 
that for large T, dE{U(Gr)}/dr has the sign of dA@,/da which is positive every- 
where except at ab, . If there is a turnpike, then it must be 

a* = a#,. 

A similar line of reasoning applies for the situation of fig. 2 where /I1 > 0 > j2. 
Recall that we will have (I* < 0 so that our interest is in minimizing rather than 
maximi:ing the A,, contribution. Clearly then we must have a* < asI since we 
will always set ar Q a@, , and, as before, we must in fact set 

a* = ap,. 

The analysis is even more direct than the use of the first order condition would 
suggest. In either figs. 1 or 2, it can be seen that if a* # a@, , then we can improve 
E{U(G$)} by moving closer to a@, . This will raise A,,(a) which can be thought of 
as the growth factor associated with the tiJ1 portion of the utility function and, 
consequently, E{U(Er)} will asymptotically grow at a higher rate. This view- 
point is exploited in our first theorem. 

Theorem 1: Let 

U(w) = i a# 
1-l 

with /I, >O,/?, >...>j?,,,andwith 

A* 3 Aa,(ap,) > Adap, )* (17) 

if p. < 0. It follows that 

aT + a* = aa,, (18) 

uniformly on compact intervals of w not containing 0. 
Before proving Theorem 1, we should note that assumption (17) simply 

assures that A,, and A,_ are as in fig. 2 for fi. < 0. For /I. > 0, Lemma 1 proves 

(17). 

Proof: Suppose, to the contrary, that (3s > 0) such that on a subsequence 

IaT- %,I ’ s* (19) 

By the strict concavity of A,,, (33 > 0) such that (Va) la-aB,) > E implies 

A,,(a) < A,,(a,,)-6 E A*-6. 

In other words, if the policy is bounded away from a#, , then its growth factor is 
bounded below the maximum growth factor. 
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It follows that on the subsequence 

E{U(+)} = x a,E{G$’ ) 
‘ 

T 
= ~ Ui”B’E{4 (r + a’,~,)B’ ) 

= C aiwa’[A@,(a’)l’ 

= alkl[Agr(a’)]T 

+ C aiwa’EAfl,(aT)lT 
if1 

< u,~~[A*-G]~+ 1 u,d’[ABI(aT)]‘. 
if1 

From Lemma 1, for pi > 0, (36i > 0) such that 

AB,(aT) G ABIG+,) < A*-Si, 

and for /I, < 0, (~ai > 0) such that 

Ma’) < [Ap.(aT)--il V [I -Oil 

4 ~~~,(*Tw,l ” L-l*--0,1, 

where we may take 0, c 3,. 
Hence, along the subsequence, 

,im sup E{tl(~~)} A*-8 r 
[A*]’ 

< lim sup u,d - 
[ 1 A * 

+ u ,p. AdaT) + 
n 

[ 1 A* [/1& [A*--0,1 1 
T t 

= lim sup u,dn 
4&y") ' 

[ 1 7 

(20) 

= lim sup a,+ of&') ' 
[ 1 A*' < 0. 
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Asymptotically, then, on the subsequence Ef U(w,)} does not grow as rapidly 
as [A*]*. On the other hand, if we follow a policy of setting 

aT = a bl’ 

we have 

Ci UiE{~,Tb’) 1 

LMaB,)IT = L-4&9,)1+ { 
a,@‘L$,&9,)1’ 

A&f, ) 

[ 1 T = u,d’+ c UiWB’ A , 
i#l 4l(%,) 

(21) 

-+ Ql w@l . 

Thus (21) violates optimality and we must have 

aT + an, 

pointwise. To prove uniform convergcncc WC could simply take a subsequence of 
was well and the proof would be unaltered with (21) cxcccding 

lim infa,HrP1 > 0. 

Q.E. D. 

It can be seen from the proof of Theorem 1 why convergence is not uniform on 
all of R+. As w + 0, the relative weight @‘/dI + co and the a’ policies can be 
kept arbitrarily close to ag. by choosing a rapidly enough falling w sequence 

Theorem 1, however, far from finishes the story. Fig. 3 depicts a case where 

/?, > 0 > /12 and 

Clearly now the turnpike can no longer be at a@, since that would imply that 
,!?{(I($.)} -+ -co! Where then? 

It is tempting to guess that a* is the point where the vertical distance Ah,(a)- 
A#,(a) is maximized, but a little thought reveals that this cannot be. Raising a 
closer to the a value where A,, and A,, cross clearly raises the major growth 
factor As,(a) and causes E{LI($)} to grow at an asymptotically faster rate. In 
general, then, we can prove the following theorem. 
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Fig. 3. One period cxpcctcd utility as ;1 function of the portfolio policy (a) for two utility 
functions. This figure difTcrs from fig . 2 in that it displays 3 situation whcrc at the optimal 
policy, an,, for the utility function with a cocfiicicnt of relative risk aversion lcsr than unity the 

cxpcctcd value for the more risk avcrsc function is dominant. 

with/l, > O,j?, z= . . . > lJ,,/l” < Onndwith 

-&(a/l,) > ~#,(a@* ). 

It follows that 

a’ + a*, 

(22) 

where A* z A@,(a*) = Ap,(r*), uniformly on compact intervals bounded away 
from the origin. (Notice that a* is unique.) 

Proofi We first show that (Va E [0, I]) 

4,(a) 5 A+.l,(a) ” &(a); 

with a uniform strict bound if i # 1, N. 

By (22) we have 

A,,(a) v APO(a) > Ap,(0) = r8’ > 1, 

and from Lemma 1, (23) must hold for all p, 3 0. 

(23) 
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Suppose, now, contrary to the theorem, that (3~ Y 0) such that on a sub- 
sequence of optimal constant policies 

Ia’- a*1 > E. (24) 

By the strict concavity of A,, and the strict convexity of A,_ there exists 
S > 0 and A^ E A@,(Q) < A* such that (Vcc)Ia-a*[ > E implies either 

.4,,(a) < A-b, 
or 

A&) < AB,(a)-6, 
(25) 

depending on whether a 5 a*. 
It follows that 

E{U(GT)l = T aiE{G*P’}9 

= a,w4'[Au,(aT)]T+u,wu"[Au~(ar)]r 

+ C wW&41'~ 
i#l.ll 

< {~*wJcgl[~-J]‘+ ,T, Uid’[Aa,(Ctr)]‘} 

v ~~~~~'[Ap~(~T)-~]T+u.wB~[~u.(ar)]r 

+ C w%$&*'>l* I. 
I# I.n 

Applying (23) and (25) we have 

Our task now is to display a superior alternate 
letting a r = ~9 yields 

policy sequence (a’), but 



IS-4 S.A. Ross. Portfdio turnpike theorems 

This contradicts the optimality of the original policy and we must have 

ZT --, a* 

pointwise. Uniform convergence is proved as in Theorem 1. Q.E.D. 

The case depicted in fig. 3 is important for several reasons. To begin with it 
disproves an appealing conjecture that grows out of some results of Mossin 
(1968). Mossin shows that for utility functions with linear risk tolerance, 

-U’IU” = aw+b, 

the optima1 general turnpike solution a: converges to the turnpike associated 
with the constant relative risk aversion function 

-V/U” = aw, 

for a > 0. This is simply the power function and log class we have been analyz- 
ing. One might conjecture, then, that the same result would hold for 

-W/U” = CWfj(W)), 

where in the sup norm, 

ll/(~N < b < 00, 

(26) 

on the positive orthanth That this is not the case can bc seen by constructing a 
countcrcxnmplc of the form (IS) with /I, > 0 > fi,. It is possible to choose 
values of /I, and /J2 such that (26) is satislicd but, ncvcrthclcss, lig. 3 obtains. 
The constant a is now (I --PI ). the cocflicicnt of rclativc risk aversion associated 
with wPI. By focusing on this term, howcvcr, WC arc concentrating only on the 
behavior of li(~p) for large w and ignoring the losses associated with .4Z for w 
small. Under the postulated conditions thcsc losses swamp the gains for the 
policy aB,. 

Second, tig. 3 illustrates a lack of closure for the class of optimal constant 
policies with a* :IS the turnpike and Jn,l > a, . In this case, although the optimal 

policies approach a*, it would bc folly to actually get on the turnpike since 

a,[AIl,(a*)IT+a,[Ag,(a*)l+ = (0, +~,)[~~,(a*~l”~ 

+ --oo. I 

In other words, it is best to converge to a path whose utility goes to -co. By 
contrast. in Theorem I a straight-down-the-turnpike constant a* policy daes as 
well in an asymptotic utility sense as the optimal policy. This is not, however, a 
valid argument for following such a policy - see Goldman (1974). 

6Lel~nd (1971) has tlcnlt with this class, but he imposed an additional assumption whose 
etTcct on limiting the class of terminal utility functions is difkult to assess. It should also be 
strcrscll that the countcrcxamplc is valid for the constant turnpike problem, but not for the 
gcncral problem. 
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The final case we consider, were all /3, < 0, is depicted in fig. 4. Once again we 

require (I~, a, < 0 for monotonicity, and now our objective is to cut losses. The 
appropriate turnpike policy is that one which asymptotically minimizes the 

maximum A,, loss. 

Theorem 3: Let 

U(W) = 

Formally, we have the following theorem. 

with0 > B, > . . . > /?.. It follows that 

aT + a*, 

vvhere a* is set so that (Vr) 

A* s sup Ap,(a*) < sup ~!~,(a). 
i 

Convergence is uniform on compact intervals bounded away from the origin. 

Proofi By Lemma I, we have that for all i # I, II and all z E [0, I] 

A/&) < Afl,(a) ” A@,,(r)9 

and we can equivalently dcfinc a* by 

A,,(a*) v Alr,,(x*) .-: A,,(z) v APn(r). 

T 

Fig. 4. 

I I I 
I I I 

* 

“a, a- aa 
I I a 

One pxiod cxpcctcd utility as ;I function of the portfolio policy for thrse utility functions 
with constant relative risk aversion cocfficienrs grcatcr than unify. 
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Suppose, as before, that (3~ > 0) such that on a subsequence 

~orQc*~ > E. 

By the strict convexity of A,,, (36 > 0) such that if 

la-a*1 > E, 
then 

A(X) = A&) v A,,(z) > A*+S. 

By (14), from Lemma 1 we have that 

E{WGT)l 
GW)I’ 

= 5 uiwf!&]T, 

+ a,w 81 v a,w8”, 

< 0. 

On an alternative path where we keep a’ a constant at a*, however, 

E{WCT)J = 1 upfA#]r ( 

[4a’>lT , 

> (a,w~l+u”w~“) 
A* T 

[ 1 
- 
A*+S 

- ,& la,l@ [ 1 
y$ T, 

[ 1 
-& 

T > (u,wp’+andn) 

- ,& bilWB' [ 1 
& =* 

-+ 0, 

contradicting optimality. This result implies pointwise convergence and the 
argument of Theorem 1 establishes uniform convergence. Q.E. D. 

The results obtained above seem very restrictive but fortunately they can be 
easily and substantially generalized. There are several routes to such generaliza- 
tions. One method is to pass directly from finite sums to infinite sums and then 
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to their closure, the integral form. When we do this we obtain functions of the 

form 

(27) 

where U(m) is now the Mellin-Stieltjes transform of a function F(e) (of bounded 
variation on compact sets) which assigns zero mass above b 6 1 and below 
somea > --co. ’ Little is known about the class of utility functions admitting of 
this representation, and which we will call Mellin functions, but it is clearly 

extensive. 
There are essentially two ways to establish the turnpike results for the Mellin 

class. We can verify the stability of the convergence to the turnpike as we con- 
verge to integrals, or we can work directly with (27) and this latter approach is 
the easiest. Analogous to the discrete form, the mass function, F(e), cannot 
assign neg;ltive mass in a neighborhood of its highest power b, if b > 0, and if 
b < 0, it cannot assign positive mass in a neighborhood of b. Similarly, it cannot 
assign negative mass in a neighborhood of the lowest power (I, if a > 0, nor 

positive mass if a < 0. We can now prove that any policy sequence that fails to 
converge to a* will be dominated exactly as in the previous theorems. 

The fundamental constant turnpike thcorcrn for Mcllirl utility functions 

Let U(e) be a Mellin function rcpresentablc as 

W(w) = I!: w” dF,, 

where 

--a3<a<b<l. 

and define 

1 

(i) CQ, if b > 0 and ,I,(?r,) > n,(a,), 

(ii) the crossing point where AJa*) = A,(a*) 
a+ 3 if b > 0 and A,(a,) < A,,(a,,), (28) 

(iii) otherwise the point where 

&(a*) v A,(P) < A,(a) v A*(a). 

It follows that a’ -+ a* uniformly on compact sets bounded from the origin. 

ProoJ The proof of the theorem is greatly simplified at little cost, if we 
slightly strengthen the requirement on F(e) SO that dFassigns positive mass in a 
neighborhood, [b-A,,, b] of b and negative mass on [a. a+ A,] (A, or Ab could 

‘See Widdcr (1341) for a detailed study of this transform. Unfortunately, neither the trun- 
cated form nor the relationship between the inversion problem and Ihe class of concave 
functions appear to have been well studied in the mathematical literature. 
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be zero). Since the modifications of the proofs of Theorems 1, 2 and 3 are all 
very similar, we will only do the first case. 

Suppose, then, that the case (i) conditions are satisfied (see the statement of 
Theorem 1) and assume, contrary to the theorem, that (24) holds on a sub- 

sequence. Using the strict concavity of A,Jz) (in a neighborhood of 6) and the 
continuity of AB(aa) in /I?, (38 > 0 and cr E [0, Ab]) such that 

EM@,,)] = j: ++%$(~r>lT dF, 

< &mo, d[A*-b]‘dF, 

+Ip-“‘- d[Aa(aT)]r dF#. 

Choose /?’ E [6-a, 61 such that 

B* = Ap,(ap,) E (A*-& A*]. 

As in Theorem 1, we have 

E{W%)] 
lim sup [B*]T < hm SUp{j;b-,,, d[G3’dFI 

+ L 
(a+A.) ,+.B ‘da’) 

[ 1 ’ dF, 

B* 

1 1 ’ dlF , 

’ 
9 

where we have used the convergence theorem for Lebesgue-Stieltjes integrals. 
Now, consider the alternative policy, aT = a@, ; 

> j;, wb dF,, 

> 0, 

byp’o(b-Ab,b]. 
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The contradiction establishes pointwise convergence and uniform convergence 
is done as in Theorem 1. Theorems 2 and 3 are similar extensions. Q.E. D. 

Notice that, as before, the key to the proof techniques is the use of a dominat- 
ing alternative path that lies close to the turnpike. 

A further generalization can be obtained by considering appropriate perturba- 
tions of the Mellin utility functions. For example, suppose under the conditions 
of Theorem 1, we consider 

U(w) = i lqw~‘-t-f(w), (29) 
I=1 

where (3, m, k,, k, and K > 0) such that 

[k, -a,]~~‘--mw8”-K <f(w) 

< rndl-(a,+k,)ti+K. (30) 

(Notice that we might as well assume that k, < a,.) These constraints onf(w) 
insure both that it will not ‘undo’ the influence of wpI or wpn by simply cancelling 
them and that/(w) will not ‘overpower’ them on their respective asymptotically 
dominant domains.* 

We can now prove an extended version of Theorem 1. 

Theorem 1* . Assunre that U(w) is giwn by (29) ad satisjcs the coalitions of 
Thcorcm I nnrlJ(w) sati.&*s (30). It follows that 

aT -+ a* 

urriformly ou compact sets boudd away from the origirr. 

Prooj The proof is nearly identical to that of Theorem 1. By (30), if (19) is 
satisfied, then 

E{j-(Gr)} =< E{mO/I -(a, + k,)C+‘“} + K, 

I mdl[A*-JS]‘--(a,+k,)[Ap,(af)]‘+K, 

and (20) will still be satisfied. 
Similarly, along the a* turnpike we will still have 

,im sup E{W%-)l > o 
-- 

[A*y ’ 

‘While conditions (30) are sullicient, they may not be necessary since it is possible to find 
functions/(w) such that, for example, 

/(W)/dl + 00 as w--*00, 

but 
/(w)/I++~ + 0 as w -+ 00, 

for any d > 0. One example is 

/(Iv) = da log w. 
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since 

a k, +W(W~ A&&*) = I - - 
M*lT 

2 a,@+(-mmwb.) 
[ 1 A* 

Q.E. D. 

+(k,- 
A* ’ 

u,)wp’ - 
[ 1 K 

A* -[A*lTr 

-+ k@‘l > 0. 

Extended versions of Theorems 2 and 3 can also be proved and, in summary, it 
is possible to extend the fundamental theorem. Since the techniques are straight- 
forward at this stage we will simply state the appropriate conditions and the 
extended theorem without proof. 

Thejimdamental constant turnpike theory for extended Mellin utility functions 

Let U(.) be an extended Mellin utility function 

U(W) = I; w” dF,+f(w), 

where 
-co<asbbl, 

(31) 

and define the turnpike policy, u*, in the three regimes as in (28). Furthermore, 
in cases (i) and (ii), f(w) must satisfy (30) with /J. = a and /I, = b, and in case 
(iii), wc rcquirc 

-m(w”+w*) 6 f(w) 6 -(a, +k,)Wb-(a,+k,)w”, 

where u, and a, arc now interprctcd as the mass assigned by Fp at a and b 
respectively, and where WC may set k, or k, at zero, if FP assigns mass of the 
same sign as a+ or b- on deleted neighborhoods of a or b respectively.’ 

ProoJ See the proof of Theorem I*. Q.E.D. 

‘The additional generality of the perturbed form comes from the fact that not all admissible 
perturbations will possess Mcllin-Stieltjcs transforms. A slightly greater increase in generality 
can be had by considering the class of utility functions for which (36) 

U(W)/W” -+ k, (fl) 
as w -+ 00 with similar conditions as w -+ 0. These conditions and their relation to the general 
turnpike problem are discussed in Ross (1974). The proofs of the turnpike theorems for utility 
satisfying (fl) are still straightforward extensions of the arguments of the text with condition 
(fl) guaranteeing that no portfolio policy can asymptotically dominate the turnpike and 
assuring the asymptotic growth of the turnpike policy. These results permit us to directly treat 
utility functions of the form (l/B)(w+c)b where b c 0, but despite the increased generality, the 
constructive approach of the text was considered of greater interest in the present context. 
Alternatively. much of the analysis can be carried out directly on the class of functions of the 
form (w+ c# developing sums, integral forms and perturbed forms from this base, as in the 
text. 
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The reader can easily verify, for example, that functions of the form 

(l/j?)(~‘+ c)“, /i > 0, where c is a constant, belong to the extended Mellin family 
and therefore have turnpikes a#. phis last result was obtained by Mossin (1968) 
for the general turnpike problem.] In sect. 5, we will discuss the generality of 

these results. 
We will conclude this section with a turnpike theorem for the Bernoulli 

logarithmic case. The special role assumed by the logarithmic utility function 
has warranted that it be examined separately [although it has a representation in 
the topological closure of (31)]. Intuitively, if not mathematically, it can be 
treated as the power function with the lowest /I > 0 and the largest /I < 0. It is 
not surprising, then, that the only new wrinkle it presents in the turnpike theory 
is that it dominates suboptimal policies in an additive fashion rather than 
multiplicatively. Define the additive growth factor in the logarithmic case as 

L(a) = E{log (f + a.?)}, 

and assume its maximum is attained at a,; 

L* z L(aJ 1 L(a). 

Thcorm 4. If 

U(w) = log w+/(w), 

where for some concave If(-) and some convex G(e), 

j-(~‘) o (G(w), II(4). (32) 

and for any a 2 0 

G(ar) H(ar) ~ o 

-7-F ’ 
(33) 

then a‘ has the turnpike property. 

Proo/: Since the proof is similar to our previous ones we will only outline it. 
From (33), it follows that H(a) is increasing. To see this note that by concavity, if 
H’(a) < 0 for some a, then we can take a > 1, and 

NUT) < H(a) + H’(a)[a’- a] 

T T 

violating (33). Similarly, G(m) must be a decreasing function. 
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Now, if aL does not have the turnpike property, then 
quence and on this subsequence (36 > 0) such that 

(24) holds on a subse- 

E{U(&-)} 1 

T 
= $log w+T&‘)+E{f(~,)}], 

S &log w+TL(aT)+E{H(k,):], 

1 
5 T [log w + TL(sr’) + H(E{+ })], 

H(w(r + arz)r) 

T - 

where 
n = [r+X] v [H’(f+,r)]. 

On the altcrnativc path whcrc aT = a,, we have 

E{ lrl(t?,.)} log w Etf(sT)) 

T = -+L*+-F T ’ 

This result violates optimality und, since uniform convergence is as in the proof 

of Theorem I, aL possesses the turnpike property. Q.E.D. 

The bounds onJ(‘(n3 are interesting in their own right because they suggest a 
direction of generalization of our earlier results. For large W(W > I), If(.) might 

be of the form (I//I)(log w)~, /I < I and 

I [log (a7)]P I 
---= 
11 T 

p (log a)P q + 0. 

By compounding the power functions and the logarithm in this fashion, further 
turnpike results might emerge. 
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Section 4 

We have already remarked on the similarity between the turnpike literature 
of growth theory and the results developed above. lo The intent of this section is 

to draw attention to this analogy and to illustrate it. Its full exploration, how- 
ever, is really the subject of another paper. For the sake of a concrete example 
consider a 2-form terminal utility function, 

U(w) = a,WflL+a2W8*; 1 > /?I > /?Z > 0. (34) 

If we allow only constant policies (a,, . . . , z,), where rr is a predetermined 
constant (not functionally dependent on w,_ ,) then the portfolio turnpike 
problem is 

r 

(As we have already seen, the solution to this problem sets czr = aT, for each 5). 
To establish the analogy with growth turnpike theory wc only have to regard 

E{K$’ } and E{Gp} t d’ff as wo I ercnt goods. The terminal utility function tells us 

that they are priced at a, and a2 respectively, i.e., the terminal utility valuation 
is simply a linear price valuation. If /?d < 0, then WC might set some a, c 0 
indicating that the associated power function is a ‘bad’ rather than a ‘good’. 

The technology of our problem can bc dcscribcd in a fashion quite similar to 
that of an ordinary production set. At the beginning of a period inputs (x, , _r2) 
go into the production process whcrc thcsc rcprcscnt KJ’~ and bvcl rcspcctivcly. ’ ’ 

“‘For an cxccllcnt bibliography on tr:ldition;ll growth theory the rcadcr is rcfcrrctl to 
Burmcistcr and Dobcll (1970). 

“An altcrnotivc spccilication of the technology is to adopt n kinkcd production schcmc 
which more closely mimics the inputs-as-wealth analogy. Given inputs /.r, . x2> WC would find 
the maximum w subject to (Vi) 

wP1 s x,. 

Output is then dcfincd as 

~1 5 wfliAg,(a) 5 x&,(a). 

This approach has some appealing fcaturcs and. in particular, the production cnvclopc Y 
(deAral below) is now convex. The price of this convexity, however, is to sacrilicc const;mt 
returns IO scale. To see this Ict w and (x> be such that 

WP‘ = x,. 

Now a change of scale, by L > 0, to Ix will require the existence of 4 such that (Vi) 

IWPlS GP, 6 Iw,, 

or W’i) 
1 

WPl = Aq, 

which cannot in general be satisticd. 
Thus, the production set will not bc shifted in scale by ;1 scale change in inputs. The analysis 

now becomes significantly complicated and it seemed prefernblc to pursue the analogy in the 
text. 
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Output, (y+, y, >, is then defined 3s the expected next period values of the 
&-power function, and admitting free disposal we have 

Yi 6 XiA#,(z)9 

where a is the particular portfolio policy chosen for the period. The policy z is 
the analogue of 3 variable that indexes the activity set in ordinary production 
theory. Formally, we can define the production technology set as 

S z {<x, Y)I(jx)(A+)J’i 5 -rJip,(a)). 

If a particular good is to be valued as 3 bad, then free disposal will be turned 
around to allow 

.“i 1 xiAa,(a). 

In this sense, unlike ordinary production theory, the valuation will influence 
the definition of the production possibility set. To avoid the tedium of obvious 
qualifications we will not consider this case. Assume, then, that ni, /II > 0. 

We can show that S has many of the properties of an ordinary production set. 
First, S exhibits constant returns to scale. Clearly, if (x, JJ) E S, then (V’n 2 0) 
(AX, 2~) ES. Second, it satisfies the no Land of Cockaigne assumption; if 
inputs x = 0, then y 5 0. Third, the continuity of n,,(a) implies that S is closed. 
It should also bc noted that these last two propcrtics assure that Si is bounded 
for fixed x. The final critical neoclassical property is that of convexity. Notice 
that since S admits of constant returns, it cannot bc strictly convex. 

It is easily shown that the analogue of the classical production possibility set, 

is convex. To see this Ict 3”. y2 E SL. Taking a convex combination we have that 

Pi) 

J@, z ;._r;+(l-Il)$, 

5 J.x,n,(a+)+(l -I)x,A,(a’), 

= x,[%Ai(a’)+(l -A)Ai(a2)], 

2 -~,A ,(a), 

where a E Ia’ +(l -).)a* and we have made use of the concavity of A,(*). The 
convexity of SX, however, is only necessary and not suffrcicnt for S to be convex. 
In fact, we can show the rather surprising result that in an appropriate pro- 
jective space, the complement of S rather than S is convex! 

We will illustrate this point with the 2-form. Since S admits of constant 
returns to scale it is easiest +.o normalize and we will do so by setting the input 

sum, 

x,+x, = 1. 
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Figure 5 illustrates two ways to conceive of S under this restriction. The set of 

possible outputs, Y, is defined as 

YqJ&, (35) 
I 

where the union is taken over normalized input pairs. Thus, Y is bounded by the 
outer envelope of the individual convex production possibility sets. The union 
of convex sets, however, is not necessarily (or usually in a category sense) 
convex and Y is no exception. An equivalent definition of I-is to take the union 
over policies and from (35) 

The set in square brackets, though, is simply the set of fcasiblc outputs for a 
fixed portfolio policy, a. As is shown in fig. 5, this set is simply bounded by a 
line much like an ordinary budget or cost set. Since ,41,(a) and A,,(a) arc mono- 
tone in diffcrcnt directions in the rclcvant undominatcd rang bctwccn aB1 and 
a#,, the budget sets do not dominntc and the outer envelope will be concave 
rather than convex. I2 

This considerably complicates matters if WC wish to invoke Radner’s (1961) 
beautiful lemma and the resulting turnpike theorem to verify that a’ -B a* where 
a* is the maximal steady state growth rate, CQ,, in the case considered above. 
(The argument becomes more dilficult still with ‘bads’ bccausc of the possible 
non-existence of a turnpike in the usual scnsc due to lack of closure as in the 
case of Theorem 2.) There are, however, two further reasons why we chose not 
to attack the problem through this analogy. 

First, such an approach would not have made USC of two special features of 
our problem. On the one hand, WC can adopt a constant policy for each horizon 
and this simplifies our problem. In the eonomy-wide problem, resources cannot 
be assumed to be costlessly shiftable in each period and we must drop the price 
taking assumption we have employed. The analogue of our results would, thus, 
not use this property, since it is lacking in ordinary turnpike theory. Second, and 
more importantly, our technology is completely decomposable and this feature 

‘*The argument is reminiscent of the ndysis of the factor price frontier. See Burmeistcr and 
Dobell (1970). 
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Fig. 5. Two altcrnativc W~niqucs for constructing malogs to Ihc production possibility set of 
ncoclassicnl theory by taking lhc cnvclop of ;t(ktinahlc cnpcctcd utilities. The top graph holds 
inputs constant and varies the portfo!io policy (a) and [hc ho(lom figure holds the policy fixed 

and writs the inputs. 

allows us to study the structure of the problem in dctuil. The /I,-good or sector 
in the above cast grows more rapidly than any other and, asymptotically, the 
other sectors become negligible. [Warning! Caution must be used with notions 
of convergence in utility space, see Goldman (1974).] This is a characteristic 
feature of a decomposable system and we have exploited it in all of our earlier 
results. 

The second reason for not relying too heavily on the analogy is that it does not 
generalize very easily. The techniques and results of sect. 3 are used extensively 
in a forthcoming paper, Ross (1974), to analyze the general turnpike problem, 
but it is dillicult to extend the traditional growth turnpike theory to the general 
portfolio turnpike problem. In general, the optimal policy in period T, a,, will 
be functional in the random wealth level, G,_ , , inherited from the previous 
period, i.e., 

a, = a,(G,_ ,). 
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The state variables which define the current position must therefore include the 

past realization of GZ_ 1, and, conversely, it would be inadequate merely to store 

(A,,(a)) as we were able to do in the above. As the horizon increases, though, 
the number of feasible terminal wealth realizations will become i&mite (even if 
G’r is finitely discrete) and the commodity space of our analogue must be infinite 
dimensional. Radner’s elegant development, however, breaks down in infinite 
dimensional spaces. 

To make all this explicit consider our concrete 2-form function (34). In the 
general T-period turnpike problem, there will be an optimum initial portfolio 
policy a0 for given w. This will lead to a random return 

fil = w[f +a,:]. 

The second period optimal policy will now depend on the realized G, value, 
and not simply on the ex utlte ApI and AB,(aO) expected outputs. If T = 2, 
then our final outputs will be 

wS’E{(r+a,Z)B’(r+a,(~,,)~,)8’}, 

rather than 

waE{(r+aoi)P’}E{(r+a,S)P’}.lJ 

Section 5 

There seem to bc two broad avenues of generalization that are of intcrcst.‘* 
First, within the confines of the model as it is currently stated, WC would like a 
more complctc undcrstnnding of the class of tcrminnl utility valuations that 
admit turnpike results. WC have introduced and cxamincd one class, the extcndcd 
Mcllin family (including the log function), in some detail in this paper and in 
Ross (1974) it is shown that an analogous Laplacc class of the form 

I.” e -wp dF,; a > 0, 

can bc analyzed in a similar fashion. Thcsc two classes arc quite broad, but at 
prcscnt it is not known whcthcr they arc ncccssary as well as sufficient for a 
turnpike theory. [A ncgativc conjecture on this issue is spcllcd out in Ross 
(1974).] 

Second, as is shown in Ross (1974). the general turnpike problem introduced 
earlier can bc studied within the same framework as the current paper. In 
particular, by drawing on the methods developed here, WC can show that in 

“It is possible. though, to incorporate some limited probability slate dependence. For 
cxamplc, if there is a finite number of states in each period, then zx. could bc permitted to dcpcnd 
on any linite number of realized past states or, cquivalcnrly. mtes of return. 

I411 should bc clear that nothing WC: have done so far depcndcJ crilicnlly on the assumption 
of n single risky asset and the cxtcnsion lo many risky assets can. gcncrally speaking. bc accom- 
plishcd by simply rcintcrpreting a lo bc ;L portfolio of risky assets and i to bc a vcctor of random 
returns premiums. 
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many of our cases the turnpikes for the constant policies and the true optimal 
sequence are the same. The induced dependence of the optimal policy on the 
past realized wealth level (see sect. 1) does not prevent such an analysis. A much 
more serious complication is introduced if the exogenously given rates of return 
are permitted to be stochastically dependent. Nevertheless, we might hope that 
our present findings will serve as a guide to the solution of turnpike problems 
with stochastic interdependence. 

In general, the findings of this paper indicate that the study of the dynamic 
properties of stochastic portfolio problems can be greatly facilitated by an 
appropriate treatment of the valuation of uncertain payoffs. By generalizing 
from the stationary cases which admit of closed form analysis we have been 
able to derive solutions for a large class of valuation criteria. Furthermore, the 
techniques employed have stressed overtaking principles that promise to be 

robust across many different problems. 
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