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Are Ideas Getting Harder to Find?†

By Nicholas Bloom, Charles I. Jones, John Van Reenen,  

and Michael Webb*

 Long-run growth in many models is the product of two terms: the 
effective number of researchers and their research productivity. We 
present evidence from various industries, products, and firms show-
ing that research effort is rising substantially while research pro-
ductivity is declining sharply. A good example is Moore’s Law. The 
number of researchers required today to achieve the famous dou-
bling of computer chip density is more than 18 times larger than the 
number required in the early 1970s. More generally, everywhere we 
look we find that ideas, and the exponential growth they imply, are 
getting harder to find. (JEL D24, E23, O31, O47)

This paper applies the growth accounting of Solow (1957) to the production 

 function for new ideas. The basic insight can be explained with a simple equation, 

highlighting a stylized view of economic growth that emerges from  idea-based 

growth models:

   Economic growth   
e.g., 2% or 5%

     =   Research productivity   
↓(falling)

    ×  Number of researchers   
↑(rising)

    .

Economic growth arises from people creating ideas. As a matter of accounting, 

we can decompose the  long-run growth rate into the product of two terms: the 

effective number of researchers and their research productivity. We present a wide 

range of empirical evidence showing that in many contexts and at various levels of 

 disaggregation, research effort is rising substantially, while research productivity is 
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declining sharply. Steady growth, when it occurs, results from the offsetting of these 

two trends.

Perhaps the best example of this finding comes from Moore’s Law, one of the 

key drivers of economic growth in recent decades. This “law” refers to the  empirical 

 regularity that the number of transistors packed onto a computer chip doubles 

approximately every two years. Such doubling corresponds to a constant exponen-

tial growth rate of 35 percent per year, a rate that has been remarkably steady for 

nearly half a century. As we show in detail below, this growth has been achieved by 

engaging an  ever-growing number of researchers to push Moore’s Law forward. In 

particular, the number of researchers required to double chip density today is more 

than 18 times larger than the number required in the early 1970s. At least as far as 

semiconductors are concerned, ideas are getting harder to find. Research productiv-

ity in this case is declining sharply, at a rate of 7 percent per year.

We document qualitatively similar results throughout the US economy, provid-

ing detailed microeconomic evidence on idea production functions. In addition to 

Moore’s Law, our case studies include agricultural productivity (corn, soybeans, 

cotton, and wheat) and medical innovations. Research productivity for seed yields 

declines at about 5 percent per year. We find a similar rate of decline when study-

ing the mortality improvements associated with cancer and heart disease. Finally, 

we examine two sources of  firm-level panel data, Compustat and the US Census 

of Manufacturing. While the data quality from these samples is coarser than our 

case studies, the case studies suffer from possibly not being representative. We find 

substantial heterogeneity across firms, but research productivity declines at a rate 

of around 10 percent per year in Compustat and 8 percent per year in the Census.

Perhaps research productivity is declining sharply within particular cases and yet 

not declining for the economy as a whole. While existing varieties run into dimin-

ishing returns, perhaps new varieties are always being invented to stave this off. 

We consider this possibility by taking it to the extreme. Suppose each variety has a 

productivity that cannot be improved at all, and instead aggregate growth proceeds 

entirely by inventing new varieties. To examine this case, we consider research 

productivity for the economy as a whole. We once again find that it is declining 

sharply: aggregate growth rates are relatively stable over time,1 while the number of 

researchers has risen enormously. In fact, this is simply another way of looking at 

the original point of Jones (1995), and we present this application first to illustrate 

our methodology. We find that research productivity for the aggregate US economy 

has declined by a factor of 41 since the 1930s, an average decrease of more than 

5 percent per year.

This is a good place to explain why we think looking at the macrodata is insuf-

ficient and why studying the idea production function at the micro level is cru-

cial. Section II discusses this issue in more detail. The overwhelming majority of 

papers on economic growth published in the past decade are based on models in 

1 There is a debate over whether the slower rates of growth over the last decade are a temporary phenomenon 
due to the global financial crisis or a sign of slowing technological progress. Gordon (2016) argues that the strong 
US productivity growth between 1996 and 2004 was a temporary blip and that productivity growth will, at best, 
return to the lower growth rates of 1973–1996. Although we do not need to take a stance on this, note that if frontier 
TFP growth really has slowed down, this only strengthens our argument.
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which research productivity is constant.2 An important justification for assuming 

constant research productivity is an observation first made in the late 1990s by a 

series of papers written in response to the aggregate evidence.3 These papers high-

lighted that composition effects could render the aggregate evidence misleading: 

perhaps research productivity at the micro level is actually stable. The rise in aggre-

gate research could apply to an extensive margin, generating an increase in product 

variety, so that the number of researchers per variety, and thus  micro-level research 

productivity and growth rates themselves, are constant. The aggregate evidence, 

then, may tell us nothing about research productivity at the micro level. Hence, the 

contribution of this paper: study the idea production function at the micro level to 

see directly what is happening to research productivity there.

Not only is this question interesting in its own right, but it is also informative 

about the kind of models that we use to study economic growth. Despite large 

declines in research productivity at the micro level, relatively stable exponential 

growth is common in the cases we study (and in the aggregate US economy). How is 

this possible? Looking back at the equation that began the introduction, declines in 

research productivity must be offset by increased research effort, and this is indeed 

what we find.

Putting these points together, we see our paper as making three related contribu-

tions. First, it looks at many layers of evidence simultaneously. Second, the paper 

uses a conceptually consistent accounting approach across these layers, one derived 

from core models in the growth literature. Finally, the paper’s evidence is informa-

tive about the kind of models that we use to study economic growth.

Our selection of cases is driven primarily by the requirement that we are able to 

obtain data on both the “idea output” and the corresponding “research input.” We 

looked into a large number of possible cases to study, only a few of which have 

made it into this paper; indeed, we wanted to report as many cases as possible. For 

example, we also considered the internal combustion engine, the speed of air travel, 

the efficiency of solar panels, the Nordhaus (1997) “price of light” evidence, and 

the sequencing of the human genome. We would have loved to report results for 

these cases. In each of them, it was relatively easy to get an “idea output” measure. 

However, it proved impossible to get a series for the research input that we felt cor-

responded to the idea output. For example, the Nordhaus price of light series would 

make a great additional case. But many different types of research contribute to the 

falling price of light, including the development of electric generators, the discovery 

of compact fluorescent bulbs, and the discovery of LEDs. We simply did not know 

how to construct a research series that would capture all the relevant R&D. The 

same problem applies to the other cases we considered but could not complete. For 

example, it is possible to get R&D spending by the government and by a few select 

companies on sequencing the human genome. But it turns out that Moore’s Law 

is itself an important contributor to the fall in the price of gene sequencing. How 

should we combine these research inputs? In the end, we report the cases in which 

2 Examples are cited after equation (1).
3 The initial papers included Dinopoulos and  Thompson (1998), Peretto (1998), Young (1998), and Howitt 

(1999); Section II contains additional references.
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we felt most confident. We hope our paper will stimulate further research into other 

case studies of changing research productivity.

The remainder of the paper is organized as follows. After a literature review in 

the next subsection, Section I lays out our conceptual framework and presents the 

aggregate evidence on research productivity to illustrate our methodology. Section II 

places this framework in the context of growth theory and suggests that applying 

the framework to microdata is crucial for understanding the nature of economic 

growth. Sections III through VI consider our applications to Moore’s Law, agricul-

tural yields, medical technologies, and  firm-level data. Section VII then revisits the 

implications of our findings for growth theory, and Section VIII concludes.

Relationship to the Existing Literature

Other papers also provide evidence suggesting that ideas may be getting harder 

to find. A large literature documents that the flow of new ideas per research dollar 

is declining. For example, Griliches (1994) provides a summary of the earlier liter-

ature exploring the decline in patents per dollar of research spending; Kogan et al. 

(2017) has more recent evidence; and Kortum (1993) provides detailed evidence on 

this point. Scannell et al. (2012) and Pammolli, Magazzini, and Riccaboni (2011) 
point to a  well-known decline in pharmaceutical innovation per dollar of pharma-

ceutical research. Absent theory, these seem like natural measures of research pro-

ductivity. However, as explained in detail below, it turns out that essentially all the 

 idea-driven growth models in the literature predict that ideas per (real) research 

dollar will be declining. In other words, these natural measures are not really infor-

mative about whether research faces constant or diminishing returns. Instead, the 

right measure according to theory is the flow of ideas divided by the number of 

researchers ( perhaps including a quality adjustment). Our paper tries to make this 

clear and to focus on the measures of research productivity that are suggested by 

theory as being most informative.

Second, many earlier studies use patents as an indicator of ideas. For example, 

Griliches (1994) and Kortum (1997) emphasize that patents per researcher declined 

sharply between 1920 and 1990.4 The problem with this stylized fact is that it is no 

longer true! For example, see Kortum and Lerner (1998) and Webb et al. (2018). 
Starting in the 1980s, patent grants by the USPTO began growing much faster than 

before, leading patents per capita and patents per researcher to stabilize and even 

increase. The patent literature is very rich and has interpreted this fact in different 

ways. It could suggest, for example, that ideas are no longer getting harder to find. 

Alternatively, maybe a patent from 50 years ago and a patent today mean differ-

ent things because of changes in what can be patented (algorithms, software) and 

changes in the legal setting; see Gallini (2002), Henry and Turner (2006), and Jaffe 

and Lerner (2006). In other words, the relationship between patents and “ideas” may 

itself not be stable over time, making this evidence hard to interpret, a point made 

by Lanjouw and Schankerman (2004). Our paper focuses on  nonpatent  measures 

4 See also Evenson (1984, 1991, 1993) and Lanjouw and Schankerman (2004).
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of ideas and provides new evidence that we hope can help resolve some of these 

questions.

Gordon (2016) reports extensive new historical evidence from throughout the 

nineteenth and twentieth centuries to suggest that ideas are getting harder to find. 

Cowen (2011) synthesizes earlier work to explicitly make the case. Benjamin Jones 

(2009, 2010) documents a rise in the age at which inventors first patent and a general 

increase in the size of research teams, arguing that over time more and more learn-

ing is required just to get to the point where researchers are capable of pushing the 

frontier forward. We see our evidence as complementary to these earlier studies but 

more focused on drawing out the tight connections to growth theory.

Finally, there is a huge and rich literature linking firm performance (such as 

productivity) to R&D inputs (see Hall, Mairesse, and Mohnen 2010 for a survey). 
Three findings from this literature are that (i) firm productivity is positively related 

to its own R&D, (ii) there are significant spillovers of R&D between firms, and (iii) 
these relationships are at least partially causal. Our paper is consistent with these 

three findings and our  firm-level analysis in Section VI is closely tied to this body of 

work. We go beyond this literature by using growth theory to motivate the specific 

micro facts that we document and discuss these links in more detail in Section VII.

I. Research Productivity and Aggregate Evidence

A. The Conceptual Framework

An equation at the heart of many growth models is an idea production function 

taking a particular form:

(1)    
  A ˙   t   _ 
 A   t  

   = α  S   t    .

Classic examples include Romer (1990) and Aghion and Howitt (1992), but many 

recent papers follow this approach, including Aghion, Akcigit, and Howitt (2014); 
Acemoglu and Restrepo (2016); Akcigit, Celik, and Greenwood (2016); and Jones 

and Kim (2018). In the equation above,    A ˙   t   /  A   t    is total factor productivity growth in 

the economy. The variable   S   t    (think “scientists”) is some measure of research input, 

such as the number of researchers. This equation then says that the growth rate of 

the economy, through the production of new ideas, is proportional to the number of 

researchers.

Relating    A ˙   t   /  A   t    to ideas runs into the familiar problem that ideas are hard to mea-

sure. Even as simple a question as “What are the units of ideas?” is troublesome. 

We follow much of the literature, including Aghion and Howitt (1992), Grossman 

and Helpman (1991), and Kortum (1997), and define ideas to be in units so that a 

constant flow of new ideas leads to constant exponential growth in  A . For example, 

each new idea raises incomes by a constant percentage, on average, rather than by 

a certain number of dollars. This is the standard approach in the quality ladder lit-

erature on growth: ideas are proportional improvements in productivity. The patent 

statistics for most of the twentieth century are consistent with this view; indeed, this 

was a key piece of evidence motivating Kortum (1997). This definition means that 

the left-hand side of equation (1) corresponds to the flow of new ideas. However, this 
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is clearly just a convenient definition, and in some ways a more accurate title for this 

paper would be “Is Exponential Growth Getting Harder to Achieve?”

We can now define the productivity of the idea production function as the ratio of 

the output of ideas to the inputs used to make them:

(2)  Research productivity ≔    
  A ˙   t   /  A   t   _ 

 S   t  
   =   number of new ideas  __________________  

number of researchers
    .

The null hypothesis tested in this paper comes from the relationship assumed 

in (1). Substituting this equation into the definition of research productivity, we see 

that (1) implies that research productivity equals  α , that is, research productivity is 

constant over time. This is the standard hypothesis in much of the growth literature. 

Under this null, a constant number of researchers can generate constant exponential 

growth.

The reason this is such a common assumption is also easy to see in equation (1). 
With constant research productivity, a research subsidy that increases the number 

of researchers permanently will permanently raise the growth rate of the economy. 

In other words “constant research productivity” and the fact that sustained research 

subsidies produce “permanent growth effects” are equivalent statements.5 This clar-

ifies a claim in the introduction: testing the null hypothesis of constant research 

productivity is interesting in its own right but also because it is informative about the 

kind of models that we use to study economic growth.

B. Aggregate Evidence

The bulk of the evidence presented in this paper concerns the extent to which a 

constant level of research effort can generate constant exponential growth within a 

relatively narrow category, such as a firm or a seed type or Moore’s Law or a health 

condition. We provide consistent evidence that the historical answer to this question 

is no: research productivity is declining at a substantial rate in virtually every place 

we look.

This finding raises a natural question, however. What if there is sharply declining 

research productivity within each product line, but growth is sustained by the cre-

ation of new product lines? First there was steam power, then electric power, then 

the internal combustion engine, then the semiconductor, then gene editing, and so 

on. Maybe there is limited opportunity within each area for productivity improve-

ment and  long-run growth occurs through the invention of entirely new areas. An 

analysis focused on microeconomic case studies might never reveal this to be the 

case.

The answer to this concern turns out to be straightforward and is an excellent 

place to begin. First, consider the extreme case where there is no possibility at all 

for productivity improvement in a product line and all productivity growth comes 

from adding new product lines. Of course, this is just the original Romer (1990) 

5 The careful reader may wonder about this statement in richer models: for example, lab equipment models 
where research is measured in goods rather than in bodies or models with both horizontal and vertical dimensions 
to growth. These extensions will be incorporated below in such a way as to maintain the equivalence between 
“ constant research productivity” and “permanent growth effects.”
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model itself, and to generate constant research productivity in that case requires the 

equation with which we started the paper:

(3)    
  A ˙   t   _ 
 A   t  

   = α  S   t    .

In this interpretation,   A  t    represents the number of product varieties and   S  t    is the aggre-

gate number of researchers. Even with no ability to improve productivity within 

each variety, a constant number of researchers can sustain exponential growth if the 

 variety-discovery function exhibits constant research productivity.

This hypothesis, however, runs into an important  well-known problem noted by 

Jones (1995). For the US economy as a whole, exponential growth rates in GDP 

per person since 1870 or in total factor productivity since the 1930s, which are 

related to the left side of equation (3), are relatively stable or even declining. But 

 measures of research effort, the right side of the equation, have grown tremendously. 

When applied to the aggregate data, our approach of looking at research productiv-

ity is just another way of making this same point.

To illustrate the approach, we use the decadal averages of TFP growth to mea-

sure the “output” of the idea production function. For the input, we use the NIPA 

measure of investment in “intellectual property products,” a number that is primarily 

made up of research and development spending but also includes expenditures on 

creating other nonrival goods like computer software, music, books, and movies. As 

explained further below, we deflate this input by a measure of the average annual 

earnings for men with four or more years of college so that it measures the “effec-

tive” number of researchers that the economy’s R&D spending could purchase. 

These basic data are shown in Figure 1. Note that we use the same scale on the two 

vertical axes to reflect the null hypothesis that TFP growth and effective research 

should behave similarly. But of course the two series look very different.

Figure 2 shows research productivity and research effort by decade. Since 

the 1930s, research effort has risen by a factor of 23, an average growth rate of 

4.3  percent per year. Research productivity has fallen by an even larger amount, by a 

factor of 41 (or at an average growth rate of −5.1 percent per year). By construction, 

a factor of 23 of this decline is due to the rise in research effort and so less than a 

factor of 2 is due to the  well-known decline in TFP growth.

This aggregate evidence could be improved on in many ways. One might ques-

tion the TFP growth numbers: how much of TFP growth is due to innovation versus 

reallocation or declines in misallocation? One might seek to include international 

research in the input measure.6 But reasonable variations along these lines would 

not change the basic point: a model in which economic growth arises from the 

discovery of newer and better varieties with limited possibilities for productivity 

growth within each variety exhibits  sharply-declining research productivity. If one 

wishes to maintain the hypothesis of constant research productivity, one must look 

6 Online Appendix Figure 1 reports alternative R&D measures using  full-time equivalent researchers rather than 
deflated spending. It also looks at R&D measures that include the whole OECD (rather than just the United States) 
and also Russia and China. Although the exact numbers change (our baseline is in the middle of the pack), there has 
been a substantial increase in the volume of R&D no matter which series we use.
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elsewhere. It is for this reason that the literature, and this paper, turns to the micro 

side of economic growth.

II. Refining the Conceptual Framework

In this section, we further develop the conceptual framework. First, we explain 

why the aggregate evidence just presented can be misleading, motivating our focus 

on microdata. Second, we consider the measurement of research productivity when 

Figure 1. Aggregate Data on Growth and Research Effort

Notes: The idea output measure is TFP growth, by decade (and for  2000–2014 for the latest observation). For the 
years since 1950, this measure is the Bureau of Labor Statistics (2017) Private Business Sector multifactor produc-
tivity growth series,  adding back in the contributions from R&D and IPP. For the 1930s and 1940s, we use the mea-
sure from Gordon (2016). The idea input measure, Effective number of researchers, is gross domestic investment 
in intellectual  property products from the National Income and Product Accounts (Bureau of Economic Analysis 
2017), deflated by a measure of the nominal wage for  high-skilled workers.

Figure 2. Aggregate Evidence on Research Productivity

Notes: Research productivity is the ratio of idea output, measured as TFP growth, to the effective number of 
researchers. See Notes to Figure 1 and the online Appendix. Both research productivity and research effort are 
 normalized to the value of 1 in the 1930s.

0% 

5% 

10%

15%

20%

25%

US TFP growth

(left scale)

Effective number of

researchers (right scale)
G

ro
w

th
 r

a
te

0 

5 

10

15

20

25

F
a
c
to

r in
c
re

a
s
e
 s

in
c
e
 1

9
3
0

1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s

1930s 1940s 1950s 1960s 1970s 1980s 1990s 2000s

 1/64

 1/32

 1/16

  1/8

  1/4

  1/2

   1

Research productivity

(left scale)

Effective number of

researchers (right scale)

In
d
e
x
 (

1
9
3
0
 =

 1
)

1 

2 

4 

8 

16

32

In
d
e
x (1

9
3
0
 =

 1)



1112 THE AMERICAN ECONOMIC REVIEW APRIL 2020

the input to research is R&D expenditures (i.e., “goods”) rather than just bodies or 

researchers (i.e., “time”). Finally, we discuss various extensions.

A. The Importance of Microdata

The null hypothesis that research productivity is constant over time is attractive 

conceptually in that it leads to models in which changes in policies related to research 

can permanently affect the growth rate of the economy. Several papers, then, have 

proposed alternative models in which the calculations using aggregate data can be 

misleading about research productivity. The insight of Dinopoulos and Thompson 

(1998), Peretto (1998), Young (1998), and Howitt (1999) is that the aggregate evi-

dence may be masking important heterogeneity, and that research productivity may 

nevertheless be constant for a significant portion of the economy. Perhaps the idea 

production function for individual products shows constant research productivity. 

The aggregate numbers may simply capture the fact that every time the economy 

gets larger we add more products.7

To see the essence of the argument, suppose that the economy produces   N  t    diff-

erent products, and each of these products is associated with some quality level   A  it   . 
Innovation can lead the quality of each product to rise over time according to an idea 

production function,

(4)    
  A ˙   it   _ 
 A  it  

   = α  S  it    .

Here,   S  it    is the number of scientists devoted to improving the quality of good  i , and in 

a symmetric case, we might have   S  it   =  S   t   /  N  t    . The key is that the aggregate  number 

of scientists   S   t    can be growing, but perhaps the number of scientists per product   S   t   /  N  t    
is not growing. This can occur in equilibrium if the number of products itself grows 

endogenously at the right rate. In this case, the aggregate evidence discussed earlier 

would not tell us anything about the idea production functions associated with the 

quality improvements of each variety. Instead, aggregation masks the true constancy 

of research productivity at the micro level.

This insight provides one of the key motivations for the present paper: to study the 

idea production function at the micro level. That is, we study equation (4) directly 

and consider research productivity for individual products:

(5)  Research productivity ≔   
  A ˙   it   /  A  it   _ 

 S  it  
    .

B. “Lab Equipment” Specifications

In many applications, the input that we measure is R&D expenditures rather 

than the number of researchers. In fact, one could make the case that this is a 

more  desirable measure in that it weights the various research inputs according 

to their relative prices: if expanding research involves employing people of lower 

 talent, this will be properly measured by R&D spending. When the only input into 

7 This line of research has been further explored by Aghion and Howitt (1998),  Li (2000), Laincz and Peretto 
(2006), Ha and Howitt (2007),  Kruse-Andersen (2016), and Peretto (2016a, b).
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ideas is researchers, deflating R&D expenditures by an average wage will recover a 

 quality-adjusted quantity of researchers. In practice, R&D expenditures also include 

spending on capital goods and materials. As explained next, deflating by the nom-

inal wage to get an “effective number of researchers” that this research spending 

could hypothetically purchase remains a good way to proceed.

In the growth literature, these specifications are called “lab equipment” models, 

because implicitly both capital and labor are used as inputs to produce ideas. In lab 

equipment models, the endogenous growth case occurs when the idea production 

function takes the form

(6)    A ˙   t   = α  R   t    ,

where   R  t    is measured in units of a final output good. For the moment, we discuss 

this issue in the context of a  single-good economy; in the next section, we explain 

how the analysis extends to the case of multiple products.

To see why equation (6) delivers endogenous growth, it is necessary to specify 

the economic environment more fully. First, suppose there is a final output good that 

is produced with a standard  Cobb-Douglas production function:

(7)   Y  t   =  K  t  
θ    ( A   t   L)    1−θ   ,

where we assume labor is fixed, for simplicity. Next, the resource constraint for this 

economy is

(8)   Y  t   =  C   t   +  I   t   +  R   t    .

That is, final output is used for consumption, investment in physical capital, or 

research.

We can now combine these three equations to get the endogenous growth result. 

Dividing both sides of the production function for final output by   Y    θ   and rearranging 

yields

(9)   Y  t   =   (  
 K  t   _ 
 Y  t  

  )    
  θ _ 
1−θ

  

   A   t   L  .

Then, letting   s  t   ≔  R  t   /  Y  t    denote the share of the final good spent on research, the 

idea production function in (6) can be expressed as

(10)    A ˙   t   = α  R   t   = α  s   t    Y  t   = α  s   t     (  
 K   t   _  Y  t  

  )    
  θ _ 
1−θ

  

   A   t   L  .

And rearranging gives

(11)    
  A ˙   t   _ 
 A   t  

   =  α   (  
 K   t   _  Y  t  

  )    
  θ _ 
1−θ

  

    

research productivity

  ×   s   t   L  
“scientists”

   .

It is now easy to see how this setup generates endogenous growth. Along a 

 balanced growth path, the  capital-output ratio  K / Y  will be constant, as will the 

research investment share   s  t   . If we assume there is no population growth, then 
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 equation (11) delivers a constant growth rate of total factor productivity in the  long 

run. Moreover, a permanent increase in the R&D share  s  will permanently raise the 

growth rate of the economy.

Looking back at the idea production function in (6), the question is then how to 

define research productivity there. The answer is both intuitive and simple: we deflate 

the R&D expenditures   R   t    by the wage to get a measure of “effective  scientists.” 

Letting   w  t   =  θ 
–
    Y  t   /  L   t    be the wage for labor in this economy,8 (6) can be written as

(12)    
  A ˙   t   _ 
 A   t  

   =   
α  w  t   _ 
 A   t  

   ×   
 R   t   _  w  t      .

Importantly, the two terms on the  right-hand side of this equation will be constant 

along a balanced growth path (BGP) in a standard endogenous growth model. It is 

easy to see that    S ̃   t   ≔  R   t   /  w  t   =  ( R   t  / Y  t  )  ⋅  ( Y  t  / w  t  )  =  s  t   L /   θ 
–
   . And of course   w  t   /  A   t    is 

also  constant along a BGP.

In other words, if we deflate R&D spending by the economy’s wage rate, we 

get    S ̃   t    , a measure of the number of researchers the R&D spending could purchase. 

Research labs spend on other things as well, like lab equipment and materials, but 

the theory makes clear that    S ̃   t    is a useful measure for constructing research produc-

tivity. Hence, we will refer to    S ̃   t    as “effective scientists” or “research effort.”

The idea production function in (12) can then be written as

(13)    
  A ˙   t   _ 
 A  t  

   =   α ̃   t     S ̃   t   

where both    α ̃   t    and    S ̃   t    will be constant in the long run under the null hypothesis of 

endogenous growth. We can therefore define research productivity in the lab equip-

ment setup in a way that parallels our earlier treatment:

(14)  Research productivity ≔   
  A ˙   t   /  A   t   _ 

  S ̃   t  
    .

The only difference is that we deflate R&D expenditures by a measure of the nom-

inal wage to get   S ̃   . An easy intuition for (14) is this: endogenous growth requires 

that a constant population, or a constant number of researchers, be able to generate 

constant exponential growth. Deflating R&D spending by the wage puts the R&D 

input in units of “people” so that constant research productivity is equivalent to the 

null hypothesis of endogenous growth.

Equation  (12) also makes clear why deflating R&D spending by the wage is 

important. If we did not and instead naively computed research productivity by divid-

ing    A ˙   t   /  A   t    by   R   t   , we would find that research productivity would be falling because 

of the rise in   A   t    , even in the endogenous growth case. In other words,  virtually all 

 idea-driven growth models in the literature predict that ideas per research dollar 

is declining; theory suggests that ideas per researcher is a much more informative 

measure.

8 The bar over  θ  allows for the possibility, common in these models, that labor is paid proportionately less than 
its marginal product because of imperfect competition.
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As a measure of the nominal wage in our empirical applications, we use mean 

personal income from the Current Population Survey for males with a bachelor’s 

degree or more of education.9

C. Heterogeneous Goods and the Lab Equipment Specification

In the previous two subsections, we discussed (i) what happens if research pro-

ductivity is only constant within each product while the number of products grows 

and (ii) how to define research productivity when the input to research is measured 

in goods rather than bodies. Here, we explain how to put these two together.

Among the very first models that used both horizontal and vertical research to 

neutralize scale effects, only Howitt (1999) used the  lab-equipment approach. In 

that paper, it turns out that the method we have just discussed, deflating R&D expen-

ditures by the economy’s average wage, works precisely as explained above. That is, 

research productivity for each product should be constant if one divides the growth 

rate by the effective number of researchers working to improve that product.10 This 

is true more generally in these horizontal/vertical models of growth whenever prod-

uct variety grows at the same rate as the economy’s population. Peretto (2016a) 
cites a large literature suggesting that this is the case: product variety and population 

scale together over time and across countries.11 The two previous subsections then 

merge together very naturally.

D. Diminishing Returns at a Point in Time

One other potential modification to the idea production function that has been 

considered in the literature is a duplication externality. Specifically, perhaps the idea 

production function depends on   S  t  
λ  , where  λ  is less than 1. Doubling the  number of 

researchers may less than double the production of new ideas because of  duplication 

or because of some other source of diminishing returns.

We could incorporate this effect into our analysis explicitly but we choose instead 

to focus on the benchmark case of  λ = 1  for several reasons. First, our  measurement 

9 See the online Appendix for more details. A shortcoming of using the college earnings series is that the increase 
in college participation may mean that less talented people are attending college over time. To the extent that this is 
true, our deflator may understate the rise in the wage for a  constant-quality college graduate and hence overstate the 
decline in research productivity. As an alternative, we redid all our results using two alternative deflators: first by 
adding 1 percent per year to the  high-skilled nominal wage growth as a coarse adjustment and second using nom-
inal GDP per person to deflate R&D expenditures, which according to the discussion surrounding equation (12) is 
a valid way to proceed. The results are shown in the online Appendix and are broadly similar, in part because the 
decreases in research productivity that we document are so large.

10 The main surprise in confirming this observation is that   w  t   /  A   it    is constant. In particular,   w  t    is proportional 
to output per worker, and one might have expected that output per worker would grow with   A   t    (an average across 
varieties) but also with   N   t   , the number of varieties. However, this turns out not to be the case: Howitt includes a 
fixed factor of production (like land), and this fixed factor effectively eats up the gains from expanding variety. 
More precisely, the number of varieties grows with population while the amount of land per person declines with 
population, and these two effects exactly offset.

11 Building on the preceding footnote, it is worth also considering Peretto (2016b) in this context. Like Howitt, 
that paper has a fixed factor and for some parameter values, his setup also leads to constant research productiv-
ity. For other parameter values (e.g., if the fixed factor is turned off), the wage   w  t    grows both because of quality 
improvements and because of increases in variety. Nevertheless, deflating by the wage is still a good way to test the 
null hypothesis of endogenous growth: in that case, research productivity rises along an endogenous growth path. 
So the finding below that research productivity is declining is also relevant in this broader framework.
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of research effort already incorporates a  market-based adjustment for the depletion 

of talent: R&D spending weights workers according to their wage, and less talented 

researchers will naturally earn a lower salary. If more of these  workers are hired over 

time, R&D spending will not rise by as much. Second, adjusting for  λ  only affects 

the magnitude of the trend in research productivity, not the overall qualitative fact 

of whether or not there is a downward trend. It is easy to deflate the growth rate of 

research effort by any particular value of  λ  to get a sense for how this matters; cut-

ting our growth rates in half, an extreme adjustment, would still leave the nature of 

our results unchanged. Finally, there is no consensus on what value of  λ  one should 

use: Kremer (1993) even considers the possibility that it might be larger than one 

because of network effects and Zeira (2011) shows how patent races and duplica-

tion can occur even with  λ = 1 . Nevertheless, the Appendix shows the robustness 

of the main results in the paper to our baseline assumption by considering the case 

of  λ = 3 / 4 .

The remainder of the paper applies this framework in a wide range of different 

contexts: Moore’s Law for semiconductors, agricultural crop yields, pharmaceutical 

innovation and mortality, and then finally at the firm level using Compustat data.

III. Moore’s Law

One of the key drivers of economic growth during the last half century is Moore’s 

Law: the empirical regularity that the number of transistors packed onto an inte-

grated circuit serving as the central processing unit for a computer doubles approx-

imately every two years. Figure 3 shows this regularity back to 1971. The log scale 

of this figure indicates the overall stability of the relationship, dating back nearly 50 

years, as well as the tremendous rate of growth that is implied. Related formulations 

of Moore’s Law involving computing performance per watt of electricity or the cost 

of information technology could also be considered, but the transistor count on an 

integrated circuit is the original and most famous version of the law, so we use that 

one here.

A doubling time of two years is equivalent to a constant exponential growth 

rate of 35 percent per year. We therefore measure the output of the idea production 

for Moore’s Law as a stable 35 percent per year. Other alternatives are possible. 

For example, we could use decadal growth rates or other averages, and some of 

these approaches will be employed later in the paper. However, from the stand-

point of understanding steady, rapid exponential growth for nearly half a century, 

the  stability  implied by the straight line in Figure 3 is a good place to start. And 

any slowing of Moore’s Law would only reinforce the finding we are about to 

document.12

If the output side of Moore’s Law is constant exponential growth, what is 

 happening on the input side? Many commentators note that Moore’s Law is not 

a law of nature but instead results from intense research effort: doubling the tran-

sistor density is often viewed as a goal or target for research programs. We measure 

research effort by deflating the nominal semiconductor R&D expenditures of all the 

12 For example, there is a recent shift away from speed and toward  energy-saving features; see Flamm (2017) 
and Pillai (2016). However, our analysis still applies historically.
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main firms by the nominal wage of  high-skilled workers, as discussed above. Our 

semiconductor R&D series includes research spending by Intel, Fairchild, National 

Semiconductor, Motorola, Texas Instruments, Samsung, and more than two dozen 

other semiconductor firms and equipment manufacturers. More details are provided 

in the notes to Table 1 and in the online Appendix.

The striking fact, shown in Figure 4, is that research effort has risen by a factor 

of 18 since 1971. This increase occurs while the growth rate of chip density is more 

or less stable: the constant exponential growth implied by Moore’s Law has been 

achieved only by a massive increase in the amount of resources devoted to pushing 

the frontier forward.

Assuming a constant growth rate for Moore’s Law, the implication is that research 

productivity has fallen by this same factor of 18, an average rate of 6.8  percent 

per year. If the null hypothesis of constant research productivity were correct, the 

growth rate underlying Moore’s Law should have increased by a factor of 18 as well. 

Instead, it was remarkably stable. Put differently, because of declining research 

 productivity, it is around 18 times harder today to generate the exponential growth 

behind Moore’s Law than it was in 1971.

The top panel of Table 1 reports the robustness of this result to various assump-

tions about which R&D expenditures should be counted. No matter how we measure 

R&D spending, we see a large increase in effective research and a corresponding 

large decline in research productivity. Even by the most conservative measure in the 

table, research productivity falls by a factor of 8 between 1971 and 2014.

The bottom panel of Table  1 considers an alternative to Moore’s Law as the 

“idea output” measure, focusing instead on TFP growth in the “ semiconductor 

and related device manufacturing” industry (NAICS 334413) from the  

Figure 3. The Steady Exponential Growth of Moore’s Law

Source: Wikipedia (2017)
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NBER/CES Manufacturing Industry Database. Because of an acceleration in 

 average TFP growth from around 8 percent per year to around 20 percent per year 

in the late 1990s, approximately a  three-fold increase in the growth rate, these 

 calculations show a slightly smaller decline in research productivity. Still, though, 

the increases in research effort are much larger than the increase in TFP growth, so 

research productivity falls substantially even using this alternative.

Caveats

Now is a good time to consider what could go wrong in our research produc-

tivity calculation at the micro level. Mismeasurement on both the output and input 

sides are clearly a cause for concern in general. However, there are two specific 

measurement problems that are worth considering in more detail. First, suppose 

there are “spillovers” from other sectors into the production of new ideas related to 

semiconductors. For example, progress in a completely different branch of materials 

Table 1—Research Productivity for Moore’s Law

Factor 
decrease

Average  
growth (%)

Implied 
half-life (years)

Moore’s Law, 1971–2014
Baseline 18 −6.8 10.3

1. Narrow 8 −4.8 14.5

2. Narrow (downweight conglomerates) 11 −5.6 12.3

3. Broad (downweight conglomerates) 26 −7.6 9.1

4. Intel only (narrow) 347 −13.6 5.1

5. Intel + AMD (narrow) 352 −13.6 5.1

TFP Growth in Semiconductors, 1975–2011

6. Narrow (no equipment R&D) 5 −3.2 21.4

7. Narrow (with equipment R&D) 7 −4.4 15.8

8. Broad (no equipment R&D) 11 −5.6 12.3

9. Broad (with equipment R&D) 13 −6.1 11.3

Notes: Research productivity is the ratio of idea output, either a constant 35 percent per year for the first panel 
or TFP growth in semiconductors for the second, to the effective number of researchers. The effective number 
of researchers is measured by deflating the nominal semiconductor R&D expenditures of key firms by the aver-
age wage of high-skilled workers. The R&D measures are based on Compustat (2016) data and PATSTAT data, 
assembled with assistance from Unni Pillai and Antoine Dechezlepretre. We start with the R&D spending data on 
30 semiconductor firms plus an additional 11 semiconductor equipment manufacturers from all over the world. 
Next, we gathered data from PATSTAT on patents from the US patent office. The different rows in this table differ 
in how we add up the data across firms. There are two basic ways we treat the R&D data. In the Narrow treatment, 
we recognize that firms engage in different kinds of R&D, only some of which may be relevant for Moore’s Law. 
We therefore weight a firm’s R&D according to a (moving average) of the share of its patents that are in semicon-
ductors (IPC group “H01L”). For example, in 1970, 75 percent of Intel’s patents were for semiconductors, but by 
2010 this number had fallen to just 8 percent. In the Broad category, we include all R&D by semiconductor firms 
like Intel and National Semiconductor but use the patent data to infer semiconductor R&D for conglomerates like 
IBM, RCA, Texas Instruments, Toshiba, and Samsung. The downweight conglomerates label means that we further 
downweight the R&D spending of conglomerates and newer firms like Micron and SK Hynix that focus on mem-
ory chips or chips for HDTVs and automobiles by a factor of 1/2, reflecting the possibility that even their semicon-
ductor patenting data may be broader than Moore’s Law. Rows 4 and 5 show results when we consider the Narrow 
measure of R&D but focus on only one or two firms. Rows 6 through 9 undertake the calculation using TFP growth 
in the “semiconductor and related device manufacturing” industry (334413) from the NBER/CES Manufacturing 
Industry Database; see Bartelsman and Gray (1996). We smooth TFP growth using the HP filter and lag R&D by 
5 years in this calculation. In addition to the narrow/broad split, we also include and exclude R&D from semicon-
ductor equipment manufacturers in this calculation (equipment is captured in a separate 6-digit industry, but there 
may be spillovers). See the online Appendix for more details. The implied half life is the number of years that it 
takes research productivity to fall in half at the measured growth rate. 
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science may lead to a new idea that improves computer chips. Such positive spill-

overs are not a problem for our analysis; instead, they are one possible factor that 

our research productivity measure captures. Of course, other things equal, positive 

spillovers would show up as an increase in research productivity rather than as the 

declines that we document in this paper. Alternatively, if such spillovers were larger 

at the start of our time period than at the end, then this would be one possible story 

for why research productivity has declined.13

A type of measurement error that could cause our findings to be misleading is if 

we systematically understate R&D in early years and this bias gets corrected over 

time. In the case of Moore’s Law, we are careful to include research spending by 

firms that are no longer household names, like Fairchild Camera and Instrument 

(later Fairchild Semiconductor) and National Semiconductor so as to minimize this 

bias: for example, in 1971, Intel’s R&D was just 0.4 percent of our estimate for total 

semiconductor R&D in that year. Throughout the paper, we try to be as careful as 

we can with measurement issues, but this type of problem must be acknowledged.

IV. Agricultural Crop Yields

Our next application for measuring research productivity is agriculture. Due partly 

to the sector’s historical importance, crop yields and agricultural R&D spending are 

relatively  well measured. We begin in Figure 5 by showing research  productivity for 

the agriculture sector as a whole. As our “idea output” measure, we use (a smoothed 

13 Lucking, Bloom, and Van Reenen (2017) provides an analysis of R&D spillovers using US  firm-level data 
over the last three decades. They find evidence that knowledge spillovers are substantial, but have been broadly 
stable over time.

Figure 4. Data on Moore’s Law

Notes: The effective number of researchers is measured by deflating the nominal semiconductor R&D expenditures 
of key firms by the average wage of  high-skilled workers and is normalized to 1 in 1970. The R&D data include 
research by Intel, Fairchild, National Semiconductor, Texas Instruments, Motorola, and more than two dozen other 
semiconductor firms and equipment manufacturers; see Table 1 for more details.
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version of ) total factor productivity growth over the next five years. TFP growth 

declines slightly in agriculture, while effective research rises by about a factor of 

two between 1970 and 2007. Research productivity therefore declines over this 

period by a factor of nearly four, or at an average annual rate of 3.7 percent per year.

We now turn to the main focus of this section, research productivity for various 

agricultural crops. Ideally, we would use total factor productivity by crop as our idea 

output measure. Unfortunately, such a measure is not available because farms are 

“multiple input, multiple output” enterprises in which capital, labor, materials, and 

energy inputs are not easily allocated to individual crops. Instead, we use the growth 

rate of yield per acre as our measure of idea output. For the agriculture sector as a 

whole, growth in yield per acre and total factor productivity look similar.

For each of corn, soybeans, cotton, and wheat, we obtain data on both crop 

yields and R&D expenditures directed at improving crop yields. Figure 6 shows the 

annualized average  5-year growth rate of yields (after smoothing to remove shocks 

mostly due to weather). Yield growth has averaged around 1.5 percent per year since 

1960 for these four crops, but with ample heterogeneity. These  5-year growth rates 

serve as our measure of idea output in studying the idea production function for 

seed yields.

The green lines in Figure 6 show measures of the “effective” number of research-

ers focused on each crop, measured as the sum of public and private R&D spend-

ing deflated by the wage of  high-skilled workers. Two measures are presented. 

The  faster-rising number corresponds to research targeted only at  so-called bio-

logical efficiency. This includes  cross-breeding (hybridization) and genetic mod-

ification directed at increasing yields, both directly and indirectly via improving 

insect resistance, herbicide tolerance, and efficiency of nutrient uptake, for exam-

ple. The  slower-growing number additionally includes research on crop protection 

Figure 5. TFP Growth and Research Effort in Agriculture

Notes: The effective number of researchers is measured by deflating nominal R&D expenditures by the average 
wage of  high-skilled workers. Both TFP growth and US R&D spending (public and private) for the agriculture 
 sector as a whole are taken from the US Department of Agriculture Economic Research Service (2018a, b). The 
TFP series is smoothed with an HP filter. Global R&D spending for agriculture is taken from Fuglie et al. (2011),  
Beintema et al. (2012), and Pardey et al. (2016).
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and  maintenance, which includes the development of herbicides and pesticides. The 

effective number of researchers has grown sharply since 1969, rising by a factor that 

ranges from 3 to more than 25, depending on the crop and the research measure.14

It is immediately evident from Figure  6 that research productivity has fallen 

sharply for agricultural yields: yield growth is relatively stable or even declining, 

while the effective research that has driven this yield growth has risen tremendously. 

Research productivity is simply the ratio of average yield growth divided by the 

number of researchers.

Table 2 summarizes the research productivity calculation for seed yields. As 

already noted, the effective number of researchers working to improve seed yields 

rose enormously between 1969 and 2009. For example, the increase was more than 

a factor of 23 for both corn and soybeans when research is limited to seed effi-

ciency. If yield growth were constant (which is not a bad approximation across 

the four crops as shown in Figure 6), then research productivity would on average 

14 Our measure of R&D inputs consists of the sum of R&D spending by the public and private sectors in the 
United States. Data on private sector biological efficiency and crop protection R&D expenditures are from an 
updated USDA series based on Fuglie et al. (2011), with the distribution of expenditure by crop taken from Perrin, 
Kunnings, and Ihnen (1983);  Fernandez-Cornejo et al. (2004); Traxler et al. (2005); Huffman and Evenson (2006); 
and Centre for Industry Education Collaboration (2016). Data on US public sector R&D expenditure by crop are 
from the US Department of Agriculture National Institute of Food and Agriculture Current Research Information 
System (2016) and Huffman and Evenson (2006), with the distribution of expenditure by research focus taken from 
Huffman and Evenson (2006).

Figure 6. Yield Growth and Research Effort by Crop

Notes: The blue line is the annual growth rate of the smoothed crop yields over the following 5 years; national real-
ized yields for each crop are taken from the US Department of Agriculture National Agricultural Statistics Service 
(2016). The two green lines report effective research: the solid line is based on R&D targeting seed efficiency only; 
the dashed lower line additionally includes research on crop protection. Both are  normalized to 1 in 1969. R&D 
expenditures are deflated by a measure of the nominal wage for  high-skilled  workers. See the online Appendix for 
more details.
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decline by this same factor. The last 2 columns of Table 2 show this to be the case. 

On average, research productivity declines for crop yields by about 6 percent per 

year using the narrow definition of research and by about 4 percent per year using 

the broader definition.

A potential source of mismeasurement for this case relates to the quality of 

land inputs. What if researchers are devoting their efforts to bringing  lower-quality 

land into production? This could show up as a decrease in average yields, even as 

research is increasing yields for any given quality of land. First, at a high level, it’s 

worth noting that the total acreage of cotton and wheat planted in the United States 

has declined over our time period. (By contrast, acreage devoted to soybeans has 

doubled, while that for corn has increased slightly.) The declining acreage for cotton 

and wheat, and roughly constant acreage for corn, does not suggest on the face of it 

that changes on the extensive margin for those crops are crucial. Moreover, in order 

for what we find to be consistent with constant research productivity, we’d need 

average yields in the absence of research to be falling (due to lower land quality, 

say) at a rate that is growing exponentially in magnitude. This also seems unlikely. 

As an additional robustness check, we calculated our measures of research produc-

tivity using  state-level estimates of seed yield growth as our idea output measure 

(maintaining our broad research effort measure, since the nonrivalry of ideas means 

that research everywhere could be relevant for seed yields in each state). We found 

that, for each crop, the vast majority of individual states experienced declines in 

research productivity over our time period, mirroring the  national-level results.

V. Mortality and Life Expectancy

Health expenditures account for around 18 percent of US GDP, and a healthy life 

is one of the most important goods we purchase. Our third collection of case studies 

examines the productivity of medical research.

Table 2—Research Productivity in Agriculture, 1969–2009

Effective research Research productivity

Factor increase Avg. growth (%) Factor decrease Avg. growth (%)

Research on seed efficiency only
 Corn 23.0 7.8 52.2 −9.9
 Soybeans 23.4 7.9 18.7 −7.3
 Cotton 10.6 5.9 3.8 −3.4
 Wheat 6.1 4.5 11.7 −6.1

Research includes crop protection
 Corn 5.3 4.2 12.0 −6.2
 Soybeans 7.3 5.0 5.8 −4.4
 Cotton 1.7 1.3 0.6 +1.3
 Wheat 2.0 1.7 3.8 −3.3

Agriculture
 US research, 1970–2008 1.9 1.8 3.9 −3.7
 Global research, 1980–2010 1.6 1.6 5.2 −5.5

Notes: Research productivity is the ratio of idea output, yield growth, to the effective number of researchers, mea-
sured as R&D expenditures deflated by the nominal wage for high-skilled workers. In the first panel of results, 
the research input is based on R&D expenditures for seed efficiency only. The second panel additionally includes 
research on crop protection. See the online Appendix for more details. 
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A. New Molecular Entities

Our first example from the medical sector is a fact that is  well known in the litera-

ture, recast in terms of our research productivity calculation. New molecular entities 

(NMEs) are novel compounds that form the basis of new drugs. Historically, the 

number of NMEs approved by the Food and Drug Administration each year shows 

little or no trend, while the number of dollars spent on pharmaceutical research 

has grown dramatically; for example, see Akcigit and Liu (2016). We reexamine 

this fact using our measure of research productivity, i.e., deflating pharmaceutical 

research by the  high-skilled wage. The details of this calculation are reported in 

the online Appendix. The result is that research effort rises by a factor of 9, while 

research productivity falls by a factor of 11 by 2007 before rising in recent years 

so that the overall decline by 2014 is a factor of 5. Over the entire period, research 

effort rises at an annual rate of 6.0 percent, while research productivity falls at an 

annual rate of 3.5 percent. Of course, it is far from obvious that simple counts of 

NMEs appropriately measure the output of ideas; we would really like to know how 

important each innovation is. In addition, NMEs suffer from an important aggre-

gation issue, adding up across a wide range of health conditions. These limitations 

motivate the approach described next, where we turn to the productivity of medical 

research for specific diseases.

B. Years of Life Saved

To measure idea output in treating diseases, we begin with life expectancy. Figure 

7 shows US life expectancy at birth and at age 65. This graph makes the important 

point that life expectancy is one of the few economic goods that does not exhibit 

exponential growth. Instead, arithmetic growth is a better description. Since 1950, 

US life expectancy at birth has increased at a relatively stable rate of 1.8  years 

each decade, and life expectancy at age 65 has risen at 0.9 years per decade. Linear 

increases in life expectancy seem to coincide with stable economic growth.15

Also shown in the graph is the  well-known fact that overall life expectancy grew 

even more rapidly during the first half of the twentieth century, at around 3.8 years 

per decade. This raises the question of whether even arithmetic growth is an appro-

priate characterization. We believe that it is for two reasons. First, there is no sign 

of a slowdown in the years gained per decade since 1950, either in life expectancy 

at birth or in life expectancy at age 65. The second reason is a fascinating empir-

ical regularity documented by Oeppen and Vaupel (2002). That paper shows that 

“record female life expectancy,” the life expectancy of women in the country for 

which they live the longest, has risen at a remarkably steady rate of 2.4 years per 

decade ever since 1840. Steady linear increases in life expectancy, not exponential 

ones, seem to be the norm.

For this reason, we use “years of life saved,” that is, the change in life expectancy 

rather than its growth rate, as a measure of idea output. Because the growth rate of 

life expectancy is declining, our results would be even stronger under that alternative.

15 For example, see Nordhaus (2003), Hall and Jones (2007), and  Dalgaard and Strulik (2014).
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C. Years of Life Saved from Specific Diseases

To measure the years of life saved from reductions in  disease-specific  mortality, 

consider a person who faces two  age-invariant Poisson processes for dying, with 

arrival rates   δ 1    and   δ 2   . We think of   δ 1    as reflecting a particular disease we are 

 studying, such as cancer or heart disease, and   δ 2    as capturing all other sources of mor-

tality. The probability a person lives for at least  x  years before succumbing to type  i  

mortality is the survival rate   S   i   (x)  =  e   − δ i   x  , and the probability the person lives for 

at least  x  years before dying from any cause is  S (x)  =  S  1   (x)   S   2   (x)  =  e   − ( δ 1  + δ 2  ) x  . Life 

expectancy at age  a ,  LE (a)   is then well known to equal

(15)  LE (a)  =  ∫ 
0
  
∞

  S (x)  d x =  ∫ 
0
  
∞

   e   − ( δ 1  + δ 2  )  x  d x =   1 _ 
 δ 1   +  δ 2  

    .

Now consider how life expectancy changes if the type  i  mortality rate changes 

slightly. It is easy to show that the expected years of life saved by the mortality 

change is

(16)  dLE (a)  =   
 δ i   _ 

 δ 1   +  δ 2  
   ⋅ LE (a)  ⋅  (−   

d δ i   _ 
 δ i  
  )   .

That is, the expected years of life saved from a decline in, say, cancer mortality is the 

product of three terms. First is the fraction of deaths that result from cancer. Second 

is the average years of life lost if someone dies from cancer at age  a , and the final 

term is the percentage decline in cancer mortality.16

16 Our measures of life expectancy and mortality from all sources by age come from the Human Mortality 
Database (2016) (http://mortality.org). To measure the percentage declines in mortality rates from cancer, we use 
the  age-adjusted mortality rates for people ages 50 and over computed from  5-year survival rates, taken from the 
National Cancer Institute’s Surveillance, Epidemiology, and End Results program (http://seer.cancer.gov/).

Figure 7. United States Life Expectancy

Sources:  National Center for Health Statistics (2014) and Clio Infra (2016)
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Vaupel and   Canudas Romo (2003) shows that this expression generalizes to a 

much richer setting. In particular, the expected years of life saved is the product of 

three terms with the same interpretation. For example, they allow for an arbitrary 

number of causes of death each of which has a mortality rate that varies arbitrarily 

with age.17

The research input aimed at reducing mortality from a given disease is at first 

blush harder to measure. For example, it is difficult to get research spending bro-

ken down into spending on various diseases. Nevertheless, we implement a poten-

tial solution to this problem by measuring the number of scientific publications in 

PubMed that have “Neoplasms,” for example, as a MeSH (Medical Subject Heading) 
term. MeSH is the National Library of Medicine’s controlled vocabulary thesau-

rus.18 We do this in two ways. Our broader approach (publications) uses all pub-

lications with the appropriate MeSH keyword as our input measure. Our narrower 

approach (trials) further restricts our measure to those publications that according to 

MeSH correspond to a clinical trial. Rather than using scientific publications as an 

output measure, as other studies have done, we use publications and clinical trials as 

input measures to capture research effort aimed at reducing mortality for a particular 

disease.19

Figure 8 shows our basic “idea output” and “idea input” measures for mortality 

from all cancers, from breast cancer, and from heart disease. Heart disease and can-

cer are the top two leading causes of death in the United States, and in the spirit of 

looking as narrowly as possible, we also chose to look at breast cancer mortality. 

For the two cancer types, we use the  5-year mortality rate conditional on being diag-

nosed with either type of cancer and see an  S-shaped decline since 1975. This trans-

lates into a  hump-shaped Years of life saved per 1,000 people, the empirical analog 

of equation (16). For example, for all cancers, the years of life saved series peaks 

around 1990 at more than 100 years of life saved per 1,000 people before declining 

to around 60 years in the 2000s. For heart disease, a substantial part of the decline in 

deaths comes from people not contracting the disease in the first place, so we focus 

on the (smoothed) crude death rate for people aged 55 to 64. The death rate declines 

at different rates in different periods, leading to a series of humps in years of life 

saved, but overall there is no large trend in this measure of idea output.

The right panels of Figure 8 show our research input measure based on PubMed 

publication statistics. Total publications for all cancers increased by a factor of 3.5 

between 1975 and 2006 (the years for which we’ll be able to compute research 

productivity), while publications restricted to clinical trials increased by a factor of 

17 Their formula involves an extra covariance term as well. In particular, the covariance between the  age-specific 
percentage decline in mortality associated with cancer and the years of life saved at age  a  when cancer is averted. 
When the percentage decline in mortality rates is the same across ages, this covariance is zero. More generally, it 
can differ from zero, but in many of the calculations in their paper, the covariance is small.

18 For more information on MeSH, see https://www.nlm.nih.gov/mesh/. Our queries of the PubMed data use 
the webtool created by the Institute for Biostatistics and Medical Informatics (IBMI) Medical Faculty, University 
of Ljubljana, Slovenia (available at http://webtools.mf. uni-lj.si/). 

19 In independent work, Lichtenberg (2017) takes a similar approach in an econometric framework for the years 
1999–2013. He uses a  difference-in-differences specification to document an  economically-significant correlation 
between research publications related to various cancer sites and subsequent mortality and years of life saved. 
Lichtenberg (2018) extends this approach further back in time to the period 1946–2015 and continues to find a 
relationship between publications and  5-year survival rates.
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14.1 during this same period. A similar pattern is seen for research on breast cancer 

and heart disease.

Research productivity for our medical research applications is computed as 

the ratio of years of life saved to the number of publications. Figure 9 shows our 

research productivity measures. The hump shape present in the  years-of-life-saved 

measure carries over here. Research productivity rises until the mid-1980s and then 

falls. Overall, between 1975 and 2006, research productivity for all cancers declines 

by a factor of 1.2 using all publications and a factor of 4.8 using clinical trials. The 

declines for breast cancer and heart disease are even larger, as shown in Table 3.

Figure 8. Mortality, Years of Life Saved, and Research Effort

Notes: For the two cancer panels, the mortality rate is computed as negative the log of the (smoothed)  five-year sur-
vival rate for cancer for people ages 50 and higher, from the National Cancer Institute’s Surveillance, Epidemiology, 
and End Results program at http://seer.cancer.gov/. For heart disease, we report the crude death rate in each year for 
people aged 55–64. Years of life saved per 1,000 people is computed using equation (16), as described in the text. 
Research effort is measured by the number of related publications and clinical trials, taken from the PubMed publi-
cations database. For publications, the research input is based on all publications in PubMed with “Neoplasms” or 
“Breast Neoplasms” or “Heart Diseases” as a MeSH keyword. The lines for “clinical trials” restrict further to pub-
lications involving clinical trials.
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Several general comments about research productivity for medical research 

deserve mention. First, for this application, the units of research productiv-

ity are  diff erent than what we’ve seen so far. For example, between 1985 and 

2006,  declining research productivity means that the number of years of life saved 

per 100,000 people in the population by each publication of a clinical trial related to 

cancer declined from more than 8 years to just over one year. For breast cancer, the 

changes are even starker: from around 16 years per clinical trial in the mid-1980s to 

less than 1 year by 2006.

Figure 9. Research Productivity for Medical Research

Note: Research productivity is computed as the ratio of years of life saved to the number of publications.
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Table 3—Research Productivity for Medical Research

Effective research Research productivity

Disease Factor increase Avg. growth (%) Factor decrease Avg. growth (%)

All publications
 Cancer, all types 3.5 4.0 1.2 −0.6
 Breast cancer 5.9 5.7 8.2 −6.8
 Heart disease 5.1 3.6 5.3 −3.7

Clinical trials only
 Cancer, all types 14.1 8.5 4.8 −5.1
 Breast cancer 16.3 9.0 22.6 −10.1
 Heart disease 24.2 7.1 25.3 −7.2

Notes: Research productivity is computed as the ratio of years of life saved to the number of publications. In the 
first panel, the research input is based on all publications in PubMed with “Neoplasms” or “Breast Neoplasms” 
or “Heart Diseases” as a MeSH keyword. The second panel restricts to only publications involving clinical trials. 
Results for cancer and breast cancer cover the years 1975–2006, while those for heart disease apply to 1968–2011. 
See the online Appendix for more details.
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Next, however, notice that the changes were not monotonic if we go back to 

1975. Between 1975 and the  mid-1980s, research productivity for these two cancer 

research categories increased quite substantially. The production function for new 

ideas is obviously complicated and heterogeneous. These cases suggest that it may 

get easier to find new ideas at first before getting harder, at least in some areas.

VI. Research Productivity in  Firm-Level Data

Our studies of semiconductors, crops, and health are illuminating, but at the end 

of the day, they are just case studies. One naturally wonders how representative they 

are of the broader economy. In addition, some growth models associate each firm 

with a different variety: perhaps the number of firms making corn or semiconduc-

tor chips is rising sharply, so that research effort per firm is actually constant, as is 

research productivity at the firm level. Declining research productivity for corn or 

semiconductors could in this view simply reflect a further composition bias.20

To help address these concerns, we report two sets of results with  firm-level data. 

Our first set is Compustat (2016) data on US  publicly-traded firms. Our second 

set is  administrative data from the Census of Manufacturing. Each dataset has its 

strengths. Compustat includes a longer time series as well as firms from outside 

manufacturing. The Census covers the universe of manufacturing firms rather than 

just those that are publicly traded.

The strength of the  firm-level data is that they are more representative than the 

case studies, but of course they too have limitations.  Publicly-traded firms and man-

ufacturing firms are each still a selected sample, and our measures of “ideas” and 

research inputs are likely to be less precise. And in some models, the product line 

rather than the firm is the right unit of observation. Creative destruction may make 

the  firm-level results harder to interpret. This is because part of the effect of a firm’s 

own R&D on its growth rate may reflect not just the impact on its productivity, 

but also a gain in market share at the expense of another firm (business stealing). 
Fortunately, empirical evaluations of the magnitude of R& D-induced business steal-

ing using Compustat data find it to be quantitatively dominated by the knowledge 

creating effects of R&D (see Bloom, Schankerman, and  Van Reenen 2013 and 

Lucking, Bloom, and Van Reenen 2017). With these caveats in mind, we view this 

 firm-level evidence as a helpful complement to the case studies.

A. Compustat Results

As a measure of the output of the idea production function, we use decadal aver-

ages of annual growth in sales revenue, market capitalization, employment, and 

revenue labor productivity within each firm. We take the decade as our period of 

observation to smooth out fluctuations.

Why would growth in sales revenue, market cap, or employment be  informative 

about a firm’s production of ideas? This approach follows a recent literature 

20 For example, Peretto (1998, 2016b) emphasize this perspective on varieties, while Aghion and Howitt (1992) 
takes the alternative view that different firms may be involved in producing the same variety. Klette and Kortum 
(2004) allows the number of varieties produced by each firm to be heterogeneous and to evolve over time.
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 emphasizing precisely these links. Many papers have shown that news of patent 

grants for a firm has a large immediate effect on the firm’s stock market capital-

ization (e.g., Blundell, Griffith, and Van Reenen 1999; Kogan et al. 2015). Patents 

are also positively correlated with the firm’s subsequent growth in employment 

and sales.

More generally, in models in the tradition of Lucas (1978), Hopenhayn (1992), 
and Melitz (2003), increases in the fundamental productivity of a firm show up in 

the long run as increases in sales and firm size, but not as increases in sales reve-

nue per worker.21 This motivates our use of sales revenue or employment to mea-

sure fundamental productivity. Hsieh and Klenow (2009) and  Garcia-Macia, Hsieh, 

and Klenow (2016) are recent examples of papers that follow a related approach. 

Of course, in more general models with fixed overhead labor costs for example, 

revenue labor productivity (i.e., sales revenue per worker) and TFPR can be related 

to fundamental productivity (e.g., Bartelsman, Haltiwanger, and Scarpetta 2013). 
And sales revenue and employment can change for reasons other than the discovery 

of new ideas. We try to address these issues by also looking at revenue productivity 

and through various sample selection procedures, discussed below. These problems 

also motivate the earlier approach of looking at case studies.

To measure the research input, we use a firm’s spending on research and devel-

opment from Compustat. This means we are restricted to  publicly-listed firms that 

report formal R&D, and such firms are  well-known to be a select sample (e.g., 

disproportionately in manufacturing and large). We look at firms since 1980 that 

report  nonzero R&D, and this restricts us to an initial sample of 15,128 firms. 

Our  additional requirements for sample selection in our baseline sample are:

 (i) We observe at least 3 annual growth observations for the firm in a given 

decade. These growth rates are averaged to form the idea output growth 

 measure for that firm in that decade.

 (ii) We only consider decades in which our idea output growth measure for 

the firm is positive (negative growth is clearly not the result of the firm 

innovating).

 (iii) We require the firm to be observed (for both the output growth measure and 

the research input measure) for two consecutive decades. Our decades are the 

1980s, the 1990s, the 2000s (which refers to the  2000–2007 period), and the 

2010s (which refers to the  2010–2015 period); we drop the years 2008 and 

2009 because of the financial crisis.

We relax many of these conditions in our robustness checks.

21 This is obvious when one thinks about the equilibrium condition for the allocation of labor across firms in 
simple settings: in equilibrium, a worker must be indifferent between working in two different firms, which equal-
izes wages. But wages are typically proportional to output per worker. Moreover, with  Cobb-Douglas production 
and a common exponent on labor, sales revenue per worker would be precisely equated across firms even if they 
had different underlying productivities. In a Lucas (1978) span of control setting, more productive firms just hire 
more workers, which drives down the marginal product until it is equated across firms. In alternative settings with 
monopolistic competition, it is the price of a particular variety that declines as the firm expands. Regardless, higher 
fundamental productivity shows up as higher employment or sales revenue, but not in higher sales per employee.
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Table 4 shows our research productivity calculation for various cuts of the 

Compustat data. In all samples, there is substantial growth in the effective number of 

researchers within each firm, with growth rates averaging between 2.4 percent and 

8.8 percent per year. Under our null hypothesis, this rapid growth in research should 

translate into higher growth rates of  firm-level sales and employment with a constant 

level of research productivity. Instead, what we see in Table 4 are rapid declines in 

 firm-level research productivity across all samples, at growth rates that range from 

−4.2 percent to −14.5 percent per year for multiple decades.

Averaging across all our samples, research productivity falls at a rate of about 

9  percent per year, cumulating to a 2. 5-fold decline every decade. At this rate, 

research productivity declines by a factor of about 15 over three decades of changes; 

put differently, it requires 15 times more researchers today than it did 30 years ago 

to produce the same rate of firm revenue growth.

Figure 10 demonstrates the heterogeneity across firms in our Compustat sample 

by showing the distribution of the factor changes in effective research and research 

productivity across firms. In this figure, we focus on the results for sales revenue for 

firms observed for two decades, but the results with other output measures and other 

time horizons are similar; additional results are available in the online Appendix.

The heterogeneity across firms is impressive and somewhat reminiscent of 

the heterogeneity we see in our case studies. Nevertheless, it is clear from the  

histogram that there is essentially no evidence that constant research productivity is 

Table 4—Research Productivity in Compustat Firm-Level Data

Effective research Research productivity

Sample Factor increase Avg. growth (%) Factor decrease Avg. growth (%)

Sales revenue

 2 decades (1,712 firms) 2.0 6.8 3.9 −13.6
 3 decades (469 firms) 3.8 6.7 9.2 −11.1
 4 decades (149 firms) 13.7 8.7 40.3 −12.3

Market cap

 2 decades (1,124 firms) 2.2 8.0 3.4 −12.2
 3 decades (335 firms) 3.1 5.6 6.3 − 9.2
 4 decades (125 firms) 7.9 6.9 14.0 −8.8

Employment

 2 decades (1,395 firms) 2.2 8.0 2.8 −10.3
 3 decades (319 firms) 4.0 6.9 18.2 −14.5
 4 decades (101 firms) 13.9 8.8 31.5 −11.5

Revenue labor productivity

 2 decades (1,444 firms) 1.9 6.4 2.2 −7.9
 3 decades (337 firms) 1.6 2.4 2.5 −4.5
 4 decades (109 firms) 2.5 3.1 3.5 −4.2

Notes: The table shows averages of firm-level outcomes for effective research and research productivity. Sales rev-
enue and Market cap are deflated by the GDP implicit price deflator. Revenue labor productivity is deflated Sales 
revenue divided by Employment. The effective number of researchers (Effective research) is measured by deflat-
ing nominal R&D expenditures by the average wage of high-skilled workers. The average growth rate across two 
decades is computed by dividing by ten years (e.g., between 1985 and 1995); others follow this same approach. 
Averages are computed by weighting firms by the median number of effective researchers in each firm across the 
decades. See the online Appendix for more details.
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a good characterization of the  firm-level data. The average, median, and modal firms 

experience large declines in research productivity. There is a long tail of firms expe-

riencing even larger declines but also a small minority of firms that see increases 

in research productivity. The fraction of firms that exhibit something like constant 

research productivity is tiny. For example, less than 5 percent of firms across our 

three time frames have research productivity changing (either rising or falling) by 

less than 1 percent per year on average.

Table 5 provides additional evidence of robustness. In the interests of brevity, we 

report these results for the sales revenue and for firms that we observe across three 

decades, but the results for our other output measures and time frames are similar. 

The first row repeats the benchmark results described earlier. The second and third 

rows relax the requirement that sales growth is positive. This increases the sample 

size considerably and brings the R&D growth numbers down substantially. In both 

cases, research productivity falls sharply, reassuring us that this sample selection 

criteria is not driving the results. The fourth row imposes the restriction that research 

is increasing across the observed decades. The fifth row tightens our restrictions and 

drops firm in which sales revenue declines on average in any decade. The sixth row 

uses median sales growth rather than mean as our output measure. The seventh row 

reports unweighted averages rather than weighting firms by the effective  number 

of researchers. And the eighth row uses  so-called “DHS growth rates” defined 

 following Davis, Haltiwanger, and Schuh (1996); this bounds growth rates between 

−2 and +2, addressing any concerns over outliers. The general finding of substan-

tial declines in research productivity is robust.

Figure 10. Compustat Distributions, Sales Revenue (Two Decades)

Notes: Based on 1,712 firms. 22.1 percent of firms have increasing research productivity. Only 3.0 percent have 
research productivity that is roughly constant, defined as a growth rate whose absolute value is less than 1 percent 
per year. See Notes to Table 4 for more details.
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B. Census of Manufacturing Results

We also look at firms in the US Census of Manufacturing (Bureau of the Census 

2015b), using data from the responses to mandatory survey responses on sales 

(Economic Census) and on R&D activity (Bureau of the Census 2009, 2015a, 

SIRD/BRDIS). These data have a number of differences with Compustat which 

makes them a valuable robustness check. First, they use the responses to official 

(mandatory) government surveys, rather than audited financial accounts. So this 

could potentially induce some measurement error (if the auditing process helps to 

eliminate recording errors for example), but it also helps to address concerns over 

potential bias in reported accounting data for  publicly-listed firms (e.g., if firms 

manipulate their reported R&D activity to influence their stock market valuation). 
Second, they cover the activity of all firms operating in the United States, public and 

private, including the subsidiaries of foreign multinationals. Thus, smaller firms, 

 start-ups, and subsidiaries of overseas firms are included.22 Third, the Census data 

exclude the R&D and sales activities of US firms abroad, which for large manufactur-

ing firms is often substantial. By contrast, Compustat reports the global  consolidated 

accounts, so overseas sales and R&D will be included in the totals.23 Fourth, the 

Census also collects data on the number of scientists and engineers engaged in R&D 

activity, providing a quantity measure of innovation inputs. Finally, the Census com-

pares the figures for large firms against administrative data, e.g., IRS tax returns and 

social security filings, helping to ensure data accuracy.

Our sample includes all firms that reported manufacturing shipments (sales) in 

the Economic Censuses (CMF) of 1982, 1992, 2002, and 2012, as well as positive 

22 Including the R&D and performance of small firms is potentially important as many innovations may come 
from younger firms. For example, see Acs and Audretsch (1988).

23 The Compustat Segment data do provide some breakdowns by geography and sector, but these are not consis-
tently reported over a long enough time period nor for enough firms (especially for R&D) for our exercise.

Table 5—Compustat Sales Data across Three Decades: Robustness

Effective research Research productivity

Case Factor increase Avg. growth (%) Factor decrease Avg. growth (%)

Benchmark (469 firms) 3.8 6.7 9.2 −11.1
Winsorize g < 0.01 (986 firms) 2.3 4.1 7.9 −10.3
Winsorize top/bottom (986 firms) 2.3 4.1 6.0 −8.9
Research must increase (356 firms) 5.1 8.1 11.6 −12.3
Drop if any negative growth (367 firms) 5.6 8.6 17.9 −14.4
Median sales growth (586 firms) 3.8 6.6 6.3 −9.2
Unweighted averages (469 firms) 3.8 6.7 9.2 −11.1
DHS growth rates (470 firms) 3.8 6.7 3.6 −6.4

Notes: Robustness results reported for the sample of changes across three decades. Winsorize g < 0.01 means 
we replace any idea output measure that is less than 1  percent annually with a value of 1 percent. Winsorize 
top/bottom does this same thing but winsorizes an equal number of firms at the top of the idea output distri-
bution. Research must increase means we require that the research measure be rising across the decades. 
Drop if any negative growth means we drop firms that have any decade (across our 1980–2015 period) in 
which average market cap growth is negative. Median sales growth uses the median of sales revenue growth 
in each decade rather than the mean. Unweighted averages gives each firm equal weight in computing sum-
mary statistics, rather than weighting each firm by its effective number of researchers. DHS growth rates uses  
  ( y  t   −  y  t−1  )  /  (0.5 ×   y  t   + 0.5 ×  y  t−1  )   to compute the growth rate of research productivity at the firm level to reduce 
problems with small denominators. 
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R&D expenditure in the BRDIS (or SIRD before 2008) surveys of R&D in at least 

one year in each decade. The data span 1,300 firms over 2,700 observations (where 

numbers have been rounded for disclosure purposes).
Research productivity results in the Census data are reported in Table 6 and are 

similar to what we saw in the Compustat sample. In row 1 we see that while effec-

tive research inputs have risen by 1.6 percent a year on average research productivity 

has fallen by 7.8 percent between 1992 and 2012. Part of the explanation is that 

our early period includes the “new economy” while our later period includes the 

Great Recession; this is a limitation of the Census sample. In row 2 we winsorize 

the growth rate in sales from below at 1 percent, finding that research productivity 

now falls by 6 percent. In row 3 we winsorize both the top and the bottom of the 

distribution of sales growth by the same share and still find a substantial decline in 

research productivity of 4.9 percent. In row 4 rather than weight firms by mean R&D 

spending over the 20 year window we provide unweighted results showing a larger 

decline of −8.1 percent. Finally, in row 5 we use the number of research scientists 

and engineers that is collected in the BRDIS/SIRD survey form as our measure of 

scientific input. This addresses any concerns over the deflator for R&D inputs as we 

are using a quantity (number of scientists and engineers) input measure, and we find 

once again a significant decline in research productivity of 6 percent.

VII. Discussion

A. Summary and  Semi-Endogenous Growth Theory

The evidence presented in this paper concerns the extent to which a constant level 

of research effort can generate constant exponential growth, either in the economy 

as a whole or within relatively narrow categories, such as a firm or a seed type or a 

health condition. We provide consistent evidence that the historical answer to this 

question is “no”: as summarized in Table 7, research productivity is declining at a 

substantial rate in virtually every place we look. The table also provides a way to 

Table 6—Census of Manufacturing Results, across Two Decades (1992–2002, 2002–2012)

Effective research Research productivity

Case Factor increase Avg. growth (%) Factor decrease Avg. growth (%)

1. Benchmark 1.2 1.6 2.2 −7.8
2. Winsorize g < 0.01 1.2 1.6 1.9 −6.0
3. Winsorize top/bottom 1.2 1.6 1.7 −4.9
4. Unweighted 1.0 0.0 1.9 −8.1
5. Research = scientists 1.3 2.3 2.3 −6.0

Notes: Research productivity is the ten-year DHS growth in real sales divided by mean R&D spending, deflated 
by the skilled wage, over those ten years. Research productivity growth is then calculated as the percent change in 
research productivity compared to ten years earlier. In row 2, idea output (sales growth) is winsorized from below 
at 1 percent. In row 3, idea output (sales growth) is winsorized from below at 1 percent and from above such that an 
equal number of firms are winsorized in each tail. In row 4, the mean is unweighted. In row 5, the denominator in 
research productivity is the number of scientists and engineers. In rows 1 to 3, the mean of the growth rate of R&D 
is weighted by mean R&D over the past 20 years. In row 5, the mean of the growth rate of scientists and engineers 

is weighted by mean R&D over the past 20 years. Factor decrease is calculated as 1/( 1 −  mean) where mean is the 
mean of the research productivity growth weighted by the average R&D spending over the past 20 years. Average 

growth is calculated as  1 −   (1 − mean)    1/10   where mean is the mean of research productivity growth weighted by the 

average R&D spending over the past 20 years. The sample includes 1,300 firms and 2,700 observations for all cells. 
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quantify the magnitude of the declines in research productivity by reporting the 

 half-life in each case. Taking the aggregate economy number as a representative 

example, research productivity declines at an average rate of 5.3 percent per year, 

meaning that it takes around 13 years for research productivity to fall by half. Or put 

another way, the economy has to double its research efforts every 13 years just to 

maintain the same overall rate of economic growth.

A natural question is whether these empirical patterns can be  reproduced in a gen-

eral equilibrium model of growth. One class of models that is broadly  consistent 

with this evidence is the  semi-endogenous growth approach of Jones  (1995), 
Kortum  (1997), and Segerstrom (1998).24 These models propose that the idea 

 production function takes the form

(17)    
  A ˙   t   _ 
 A   t  

   =  (α  A  t  
−β )  ⋅  S   t    .

24 Jones (2005) provides an overview of this class of models. Atkeson and Burstein (2019); Atkeson, Burstein, 
and Chatzikonstantinou (2019); and Buera and Oberfield (2019) are recent examples.

Table 7—Summary of the Evidence on Research Productivity

Scope Time period
Average annual 
growth rate (%)

Half-life 
(years)

Dynamic diminishing 
returns,  β 

Aggregate economy 1930–2015 −5.1 14 3.1
Moore’s Law 1971–2014 −6.8 10 0.2
Semiconductor TFP growth 1975–2011 −5.6 12 0.4

Agriculture, US R&D 1970–2007 −3.7 19 2.2
Agriculture, global R&D 1980–2010 −5.5 13 3.3
Corn, version 1 1969–2009 −9.9 7 7.2
Corn, version 2 1969–2009 −6.2 11 4.5
Soybeans, version 1 1969–2009 −7.3 9 6.3
Soybeans, version 2 1969–2009 −4.4 16 3.8
Cotton, version 1 1969–2009 −3.4 21 2.5
Cotton, version 2 1969–2009 +1.3 −55 −0.9
Wheat, version 1 1969–2009 −6.1 11 6.8
Wheat, version 2 1969–2009 −3.3 21 3.7

New molecular entities 1970–2015 −3.5 20 …

Cancer (all), publications 1975–2006 −0.6 116 …

Cancer (all), trials 1975–2006 −5.7 12 …
Breast cancer, publications 1975–2006 −6.1 11 …
Breast cancer, trials 1975–2006 −10.1 7 …
Heart disease, publications 1968–2011 −3.7 19 …
Heart disease, trials 1968–2011 −7.2 10 …

Compustat, sales 3 decades −11.1 6 1.1
Compustat, market cap 3 decades −9.2 8 0.9
Compustat, employment 3 decades −14.5 5 1.8

Compustat, sales/employment 3 decades −4.5 15 1.1
Census of Manufacturing 1992–2012 −7.8 9 …

Notes: The growth rates of research productivity are taken from other tables in this paper. The half-life is the num-
ber of years it takes for research productivity to fall in half at this growth rate. The last column reports the extent 
of dynamic diminishing returns in producing exponential growth, according to equation (17). This measure is only 
reported for cases in which the idea output measure is an exponential growth rate (i.e., not for the health technolo-
gies, where units would matter). 
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Research productivity declines as   A   t    rises, so that it gets harder and harder to gen-

erate constant exponential growth. The elasticity  β  governs this process. That is, it 

parameterizes the extent to which ideas are getting harder to find.25

Comparing both sides of equation  (17), one can see that constant exponential 

growth requires a growing number of researchers   S   t   . In fact, if    A ˙   t   /  A   t    is constant over 

time, it must be that

(18)   g  A   =   
 g  S   _ 
β
    ,

where   g  x    denotes the constant growth rate of any variable  x . The growth rate of 

the economy equals the growth rate of research effort deflated by the extent to 

which ideas are getting harder to find. Rising research effort and declining research 

 productivity offset, endogenously in this framework, to deliver constant exponential 

growth.26

This analysis can be applied across different firms, goods, or industries, follow-

ing the insights of Ngai and Samaniego (2011), who develop a  semi-endogenous 

growth model with heterogeneity in the dynamic spillover parameters of the idea 

production functions. Some goods, like semiconductors, can have rapid productiv-

ity growth because their  β  is small, while other goods like the speed of airplanes 

or perhaps the education industry itself could grow slowly because their  β  is 

large. Different sectors can exhibit constant exponential growth at different rates 

provided the amount of research effort put toward innovation is itself growing 

exponentially.

This framework helps us address a phenomenon that might at first have appeared 

puzzling: research productivity is declining very rapidly in the fastest growing sec-

tor in the economy, semiconductors. Why? In particular, why are we throwing so 

many resources at a sector that has such sharp declines in research productivity?

The last column of Table 7 reports estimates of  β  for each of our case studies, 

according to equation (17), and the results speak to the semiconductor puzzle we 

just highlighted. In particular, semiconductors is the application with the smallest 

value of  β , coming in at 0.2, suggesting that it is the sector with the least degree of 

 diminishing returns in idea production:  A  is growing at 35 percent per year, while 

research productivity is falling at 7  percent per year. From  (18), this implies a 

value of  β  of  7 / 35 = 0.2 . In contrast,  economy-wide TFP growth  averages about 

1.5   percent per year, while research productivity is declining at a rate of about 

5  percent per year, yielding a  β  of more than 3! So in fact, semiconductors shows 

much less diminishing returns than the economy as a whole.

25 To map this structure into Jones (2005), notice Jones had   A ˙   = α  S   t    A  t  
ϕ   so that  β = 1 − ϕ , whereas the 

Segerstrom and Kortum  quality-ladder approaches are more naturally expressed in terms of  β  directly. The advan-
tage of the  β  formulation is that it applies to both expanding variety and quality ladder models.

26 Many researchers in the  micro-productivity literature work with an R& D-augmented production function 
in the spirit of Griliches (1994). This leads to a specification where a firm’s own R&D (and other firms’  spillover 
R&D) is an explanatory variable in an  output-based production function (or other performance measures such 
as innovation proxies like patenting or market value as a forward-looking measure). Examples include Jaffe 
(1986); Hall and Mairesse (1995); Branstetter (2001); and Bloom, Schankerman, and Van Reenen (2013). Jones 
and Williams (1998) and Lucking, Bloom, and Van Reenen (2017) show how these  Griliches-style production 
 functions are compatible with  semi-endogenous R&D growth models like those explored above, and therefore with 
the declining research productivity that is implied.
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In the case where the “stepping on toes” effect of  λ ≠ 1  is allowed so 

that    A ˙   t   /  A   t   = α  S  t  
λ   A  t  

−β  , the steady-state equation becomes   g  A   = λ  g  S   / β , so that the 

estimate of  β  needs to be scaled by  λ .27 Appendix Table A1 reports the estimates 

of  β  when  λ = 0.75 .

Research productivity for semiconductors falls so rapidly, not because that sec-

tor has the sharpest diminishing returns; the opposite is true. It is instead because 

research in that sector is growing more rapidly than in any other part of the economy, 

pushing research productivity down. A plausible explanation for the rapid research 

growth in this sector is the “general purpose” nature of information technology. 

Demand for better computer chips is growing so fast that it is worth suffering the 

declines in research productivity there in order to achieve the gains associated with 

Moore’s Law.

B. Selection of Cases and Measurement Issues

Now that we have presented and discussed our evidence, it is worth stepping back 

to address general issues of selection and measurement. In particular, how did we 

pick our cases and does this create an important selection bias? Why do we focus 

on certain measures like density of semiconductors or seed yield per acre and not 

others?

As explained in the introduction, our selection of cases is driven primarily by 

the requirement that we are able to obtain data on both the “idea output” and the 

“research input” that is relevant for those ideas. We would like to report results for as 

many cases as possible, but this constraint was often binding. In the end, we report 

the cases in which we felt most confident. Another set of questions is why do we use 

the particular measures of idea output that we use. For example on Moore’s Law, 

why not look at the price of a floating point operation instead? Or why not output 

per farmer for crops instead of yield per acre? Or why not total factor productivity 

growth everywhere?

These are all good questions, and we have several answers. First and foremost, it 

is important to appreciate how high the hurdle is for issues like this to overturn our 

basic conclusion. Our graphs generally show flat or declining growth rates for idea 

output and research input measures that increase at 5 percent or 7 percent per year, 

or even more. That is, the research input doubles every 10 to 15 years. To overturn 

our result, alternative measures would need to dramatically change the pattern of 

growth rates we observe. Where our current measure is flat or declining, the alter-

native measure would need to show growth rates that themselves double every 10 

to 15 years.

This seems extremely unlikely. In some cases, it can be easily checked. For 

 example, Moore’s Law is sometimes stated in terms of cost as the cost of a floating 

point operation falling in half every two years. But this gives the same 35 percent 

growth rate that we’ve used and therefore delivers identical results to what we 

have. Next, notice that a constant mismeasurement of growth rates, i.e., if true 

growth rates of seed yields are 1 percent per year higher than we measure,   similarly 

27 Our implementation is slightly richer, allowing for possible trends in    A ˙   t   /  A   t    itself. In particular, motivated by 
(17), we measure  β  as the ratio of the growth rate of research productivity to the growth rate of idea output.
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leaves our main results essentially unchanged. The same would be true for mea-

surement error of growth rates that is stationary. This is because our findings are 

driven by the enormous differences in trends in idea output and research input 

that we observe. What would change our results is if the measurement error was 

worsening systematically over time by a large amount. We know of no evidence 

suggesting this is the case.28

A related point is that for our exercise to be valid, we need good matched mea-

sures of idea output and research input. For example, if the focus of US agricultural 

research is shifting to raising seed yields in other countries and climates, that could 

bias our results. Similarly, we would love to be able to discuss yield per farmer in 

addition to yield per acre. That would be interesting. The problem is that capital 

(e.g., new tractors and combines and GPS systems) has increasingly substituted for 

labor over time. This means that the R&D related to tractors and GPS systems then 

has  first-order relevance. We think yield per acre is more tightly tied to the seed 

R&D that we are measuring.

The bottom line is that we’ve tried to be as careful as possible in measurement 

and that influences the cases we look at and the specific input and output measures 

we use.

Another point worth emphasizing is that we are measuring a “Solow residual” 

of the idea production function. Any inputs we have incorrectly omitted, such as 

business improvements from workers on the factory floor, the innovation efforts 

of failed  start-ups that do not make it into the R&D numbers, or R&D from other 

industries that creates positive knowledge spillovers, will be forced into the resid-

ual. Our robust finding is that our measure of research productivity is declining. 

Missing inputs could affect our calculations in several ways. First, if the missing 

input enters as a spillover (outside the production function that researchers see), 
then it will naturally be part of our research productivity measure. Our conclusion, 

then, is that research productivity, including these spillover effects, is declining. 

Second, if the missing input belongs inside the research production function that 

firms see, the nature of the mismeasurement of research productivity depends on 

whether the input grows faster or slower than our measured research effort. If they 

grow at the same rate, research productivity will be correctly measured. A bias in 

the “bad” direction would occur if the unmeasured input grew more slowly than 

research effort. In this case, we would mistakenly overstate the decline in research 

productivity, when part should be attributed to another  slower-growing input. Of 

course, it could just as easily be the case that the unmeasured input grows faster, 

in which case the bias works in our favor. We try to be careful in our measurement 

and hope that the robustness of our finding across many different settings miti-

gates these concerns.29

Finally, we also face a trade-off in this paper: how much detail to go into in each 

particular case versus providing a sufficient number of cases so that the evidence 

28 For example Aghion et al. (2017) finds relatively stable measurement error in growth rates.
29 Many authors have been concerned that economists are increasingly underestimating the growth of 

“ intangible capital” inputs; e.g., see Corrado, Hulten, and Sichel (2005). One related concern is that entrant innova-
tion efforts are not being fully counted, and this is becoming an increasing problem: think of the “garage” innova-
tion in Silicon Valley. To the extent we increasingly fail to measure a  rapidly-growing input, this will make the fall 
in research productivity even more dramatic.
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is broadly convincing. An entire paper could be written on each of our cases. And 

we hope future researchers will dive into each of our cases to ensure that we have 

not missed something. We tried to strike a balance between depth and breadth of 

evidence, but different people make strike this balance differently. We hope that this 

project inspires others to look more closely at our individual cases and to delve into 

other cases where they can come up with good measures.

VIII. Conclusion

A key assumption of many endogenous growth models is that a constant number 

of researchers can generate constant exponential growth. We show that this assump-

tion corresponds to the hypothesis that the total factor productivity of the idea pro-

duction function is constant, and we proceed to measure research productivity in 

many different contexts.

Our robust finding is that research productivity is falling sharply everywhere 

we look. Taking the US aggregate number as representative, research productiv-

ity falls in half every 13 years: ideas are getting harder and harder to find. Put 

differently, just to sustain constant growth in GDP per person, the United States 

must double the amount of research effort every 13 years to offset the increased 

difficulty of finding new ideas.

This analysis has implications for the growth models that economists use in our 

own research, like those cited in the introduction. The standard approach in recent 

years employs models that assume constant research productivity, in part because it 

is convenient and in part because the earlier literature has been interpreted as being 

inconclusive on the extent to which this is problematic. We believe the empirical 

work we have presented speaks clearly against this assumption. A  first-order fact of 

growth empirics is that research productivity is falling sharply.

Future work in the growth literature should determine how best to understand 

this fact. One possibility is the  semi-endogenous growth models discussed in the 

preceding section. These models have important implications. For example, they 

have a “Red Queen” prediction in which we have to run faster and faster to main-

tain constant exponential growth.30 If the growth rate of research inputs were to 

slow, this could cause economic growth itself to slow down. It is possible that 

this contributes to the global slowdown in productivity growth during the past 15 

years.

Alternatively, there are other possible explanations for declining research pro-

ductivity. Akcigit and Kerr (2018) suggests that “follow on” innovations may be 

smaller than original innovations and provide evidence that research productivity 

declines with firm size. Incumbent firms may shift to “defensive” R&D to pro-

tect their market position, and this could cause research productivity to decline; 

Dinopoulos and Syropoulos (2007) provides a model along these lines. Or per-

haps declines in basic research spending, potentially related to the US decline 

30 Recall Lewis Carroll’s Through the Looking-Glass: “Now, here, you see, it takes all the running you can do, 
to keep in the same place. If you want to get somewhere else, you must run at least twice as fast as that!”
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in  publicly-funded research as a share of GDP, have negatively impacted overall 

research productivity. Clearly this would have important policy implications.31

That one particular aspect of endogenous growth theory should be reconsid-

ered does not diminish the contribution of that literature. Quite the contrary. The 

only  reason models with declining research productivity can sustain exponential 

growth in living standards is because of the key insight from that literature: ideas 

are  nonrival. For example, if research productivity were constant, sustained growth 

would actually not require that ideas be nonrival; Akcigit, Celik, and Greenwood 

(2016) shows that rivalrous ideas can generate sustained exponential growth in 

this case. Our paper therefore suggests that a fundamental contribution of endog-

enous growth theory is not that research productivity is constant or that subsidies 

to research can necessarily raise growth. Rather it is that ideas are different from 

all other goods in that they can be used simultaneously by any number of people. 

Exponential growth in research leads to exponential growth in   A   t   . And because of 

nonrivalry, this leads to exponential growth in per capita income.32

Appendix: Robustness Results: Allowing  λ < 1 

Table A1 shows the robustness of our results to the baseline assumption that there 

is no diminishing returns to research in the idea production function. See the dis-

cussion in Section IID for more details. For this set of results, we assume the input 

into the idea production function is   S   λ   where  λ = 3 / 4 . As expected, the growth 

rates of research productivity are about  three-fourths as large as in the baseline case, 

reported in Table 7, but they are substantially negative nearly  everywhere we look.

31 For example, see Akcigit, Hanley, and  Serrano-Velarde (2016).
32 A similar point can be made with respect to the Schumpeterian models. For example, one reading of Aghion 

and Howitt (1992) is that it emphasizes both Schumpeterian creative destruction as well as that policy can affect 
 long-run growth via an idea production function with constant research productivity. However, even if one accepts 
our interpretation of the evidence about research productivity, that in no way says anything critical about the 
Schumpeterian approach. Creative destruction and constant research productivity are distinct concepts.
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