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a b s t r a c t

The economics of wind and solar generation face two opposing drivers. Technological progress leads to

lower costs and both wind and solar have shown dramatic price reductions in recent decades. At the

same time, adding wind and solar lowers market electricity prices and thus revenue during periods

when they produce energy. In this work, we analyze these two opposing effects of renewable integra-

tion: learning and diminishing marginal revenue, investigated using a model that assumes the status quo

with regards to generation technology mix and demand. Our modeling results suggest that reduction in

revenue from market forces may offset or even outpace technological progress. If deployed on current

grids without changes to demand response, storage or other integrating technologies, the cost of miti-

gating CO2 with wind will increase and will be no cheaper in the future than it is today for solar. This

study highlights the need to deploy grid technologies such as storage and new transmission in order to

integrate wind and solar in an economically sustainable manner.

© 2020 Elsevier Ltd. All rights reserved.

1. Background

Wind and solar power are likely to play critical roles in miti-

gating climate change and other sustainability impacts of electricity

systems. Understanding the cost of abating carbon via renewable

energy versus alternatives, e.g. energy efficiency, is important in

developing energy policies and allocating societal resources. While

assessing the present cost of mitigating carbonwith wind and solar

is relatively straightforward, projecting into the future is more

complicated. Technological progress has led to substantial cost re-

ductions in wind and solar power: wind power dropped from over

$4,000/kW in 1980 [1] to $1,500/kW in 2016 [2] and utility scale

solar from over $22,000/kW [3] to $2,500/kW in 2016 [4]. Future

cost reductions are expected as well. However, wind and solar

power influence the economics of the grids in which they are

deployed. Supply and demand implies that electricity prices tend to

fall during the times that wind and solar are generating, which

results in lower revenue to those generators. These two factors,

technological progress and diminishing marginal revenue, pull

carbon abatement cost in opposite directions. This work includes

both factors and offers the first estimate of their combined effect.

Technological progress in renewable energy is well-studied using

historical cost trajectories to find trends and inform forecasts.

Experience curves and their variants are themost common approach

used to describe technological progress. Developed first to describe

cost reductions in aircraft manufacturing [5], the experience curve is

an empirically observed power law decay of some characteristic of

industrial processes and cumulative experience implementing that

process [6,7]. In the energy domain, the single factor experience

curve takes the form: C(P) ¼ C0 (P/P0)
�a where P is a measure of

cumulative adoption of a technology (e.g., the total watt capacity of

solar cells produced), C is the price per energy unit (e.g., $/Wp or

$/kWh), C0 and P0 are initial cost and production values, and a is a

(positive) empirical constant, known as the learning coefficient. a is

related to the fractional reduction in costs for every doubling of

production, known as the Learning Rate, given by the equation

LR ¼ 1-2�a. Despite its simplicity, the above equation fits empirical

data quite well and prior research has shown that R-squared exceeds

90% for a majority of 62 technologies [8].

Starting from the 1990’s, experience curves have been applied to

describe cost reductions in renewable energy technologies,

including wind and solar power [9,10]. The single factor experience

curve has been generalized to into multi-factor models that

distinguish different types of progress such as learning-by-doing,

learning-by-research, and materials [11,12]. Rubin et al. (2015)

reviewed 11 generation technologies and found substantial
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variability in learning rates depending on the method and data

range. Learning rates for windwere found to vary between 3.1% and

13.1% while solar varied between 14% and 32% depending on the

study [13]. Williams et al. (2017) found the sources of variability in

thewind learning rate to be driven by starting and end year of data-

sets and the geographical scope of the analysis. Developing amodel

focused on cost of energy production, they found a narrower range

for global wind learning rate: 7e11%. Overall, wind and solar costs

have decreased significantly over the past few decades and the

trend in those reductions has been reasonably regular. It is prudent

to assume a future in which this pattern continues, with faster cost

reductions expected for solar.

The second major factor affecting the economics of wind and

solar is diminishing marginal revenue due to adoption of renew-

ables, which is a topic of more recent and limited investigation. One

approach to characterize this diminishing revenue effect is through

use of electricity system models (e.g. with dispatch and capacity

expansion) to study how locational marginal prices and other

payments to renewables change as a function of adoption. Wiser

and Mills (2012) use a long run long dispatch model that in-

corporates hourly generation and load profiles in order to account

for factors that affect both renewable as well as conventional

generators. These include variability in generation and ancillary

service requirements for renewable technologies and part-load

inefficiencies, minimum generation limits, ramp-rate limits, and

start-up costs for conventional thermal. The model was used to run

a case study that approximately matches the expected character-

istics of California in 2030. They found that marginal economic

value of wind and solar decline considerably with increase in

penetration. Windwas seen to drop from $70/MWh to $40/MWh of

value as penetration increased from 0% to 40% of the annual load.

Solar showed an evenmore dramatic reduction dropping from $90/

MWh to $30/MWh between a penetration of 0% and 30% of the

annual load. While such models provide a highly resolved view of

electricity systems that accounts for many system interactions,

their complexity makes validation and broad application

challenging.

Alternatively, econometric methods have also been used to

establish relationships between electricity price and demand, and

estimate the impact of renewable energy on prices. This approach

develops a relationship between price and demand in a region

based on time-resolved data for Locational Marginal Price (LMP)

and historical load in a particular grid region. Models have been

developed for Texas [14] and California [15] in the U.S. as well as

entire nations: Italy [16], Ireland [17], Australia [18] and Germany

[19,20]. They document statistically significant merit order effects

of wind and solar energy. These studies find that increase in natural

gas price, retirement of nuclear plants and economic growth tend

to increase energy prices. On the other hand, demand side man-

agement and development of renewable energy reduce prices. In

California for example, each additional GW of solar power output

reduces the LMP by $3.4/MWh in the SP15 region, while the same

amount of wind reduces the LMP by as much as $11.4/MWh. The

two approaches are complementary: econometric approaches (as

we use in this work) are better at reproducing and broadly applying

current and near-future trends while capacity expansion models

are required to understand long-term trends. Both approaches have

been used to determine that revenue decline due to adopting wind

and solar can be substantial.

Prior work has studied both technological progress and dimin-

ishing marginal revenue for wind and solar, but has not investi-

gated how these two factors combine to influence the economic

effectiveness of carbonmitigation. The economics of wind and solar

can be considered a race between the declining costs due to tech-

nological progress and their declining value due to revenue erosion.

Therefore, modeling both of these effects simultaneously can help

us understand which of these effects is likely to proceed at a faster

rate. We approach this question by developing modified Marginal

Abatement Cost Curves (MACC) for wind and solar power in the

continental U.S. The usual MACC curve approach develops an

average expenditure (e.g. $/tonne CO2) and mitigation potential

(total tonnes CO2) for aggregated technologies [21]. For wind and

solar, this approach has yielded carbon mitigation costs that vary

widely, depending on location/geographic aggregation and year of

study, which affects the presumed technology cost. In prior

research, abatement costs for wind was seen to vary from -V7(-$8)/

tonne CO2 in Italy [22] to V44 ($51)/tonne in Germany [23]. For

solar, different estimates have varied from $18/tonne CO2 in the U.S.

[21] to V1,870 ($2,170)/tonne in Italy [22].

In this work we combine modeling elements (experience curve,

regression of electricity demand and prices, and MACC) to yield the

first characterization of how technological progress and declining

revenue influence the cost of mitigating carbonwith renewables. It

is important to emphasize at the outset that our approach assumes

wind and utility-scale solar are built out on the current grid (year

2016) with current fuel prices. In reality, the grid is evolving and

technologies that help to integrate wind/solar (storage, demand

response, etc) will influence outcomes. This said, accounting for all

drivers of the future grid is not only challenging, but that future also

depends on the plans that we develop today. Understanding the

effect of building out renewables on the current grid provides

valuable insights into current trends and future grid needs.

Our modeling approach adds wind or solar to U.S. electricity

grids in discrete blocks (2.5 GW at a time) and then tracks how

technological progress and revenue decline affect successive in-

stallations. As geographic heterogeneity is expected for both rev-

enue and carbon mitigation from wind and solar installations, we

separately model 13 regions based on the Federal Energy Regula-

tory Commission (FERC) regions in the continental U.S. A single

factor experience curve is used to describe technological progress

and an econometric regression model is developed to estimate

revenue decline. Net Present Value, carbon mitigated and marginal

abatement cost are calculated for a proposed 2.5 GW addition in

each region. We then assume successive build-out in the region

with lowest carbon abatement cost. Solar or wind capacity is added

until the “economic potential” is reached, a new measure we

develop here. The total potential of wind or solar is typically

assessed by geophysical analysis that assesses the physical limita-

tions on solar/wind deployment [24e26]. “Economic potential”, in

contrast, is the amount of wind or solar that can be adopted in a

region before the addition of a new plant makes no contribution to

the total revenue of that technology’s generation fleet.

2. Methodology

Fig. 1 shows an overview of data and flow of the model. Each

electricity system in the U.S. has its own combination of renewable

resources, energy prices and grid mixes. These factors, when

combined, result in marginal abatement costs that differ by loca-

tion. We limit our spatial analysis to disaggregation into 13 elec-

tricity market regions that are based on FERC regions (Table S2 in

supporting information). We collect data on locational marginal

price (LMP) from ISOs and demand from EIA [27] for each region

and use regression to establish an empirical relationship between

them.We then assume capacity expansion of wind and solar to take

place 2,500MWat a time, building out wind or solar separately. We

assume that renewable energy is able to generate at zero marginal

cost and is effectively modeled as negative demand. Therefore, as

renewable energy is added, it drives down the LMP during the hour

it produces and reduces the revenue the renewable energy
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receives. At the same time, as more renewables are built out, the

cost of later wind/solar is reduced due to learning. This drives down

the levelized cost of energy (LCOE). Because government support of

renewables is already related to the pollution abatement costs, we

do not include subsidies in our calculations. Rather, we calculate

the required subsidy as a difference between cost of generation and

expected market revenue. The difference between the revenue and

LCOE is a profit if positive and a subsidy requirement if negative.

Wind and solar also generate zero onsite emissions, therefore dis-

placed emissions depends on the grid mix in which they operate.

We find the emission savings,D emission, using region-specific data

on hourly marginal emissions [28]. We then go on to calculate

marginal abatement cost:

Abatement cost

�

$

tonne CO2

�

¼
�

LCOE
�

$

MWh

�

� revenue
�

$

MWh

��

�

�

D emissionðtonne CO2Þ:

(1)

The abatement cost is positive, i.e. net cost to society, if cost

(LCOE) > revenue.

Our methodology is primary based on econometric analyses

which have been widely used for similar studies around the world

including Texas [14] and California [15] in the U.S. as well as entire

nations: Italy [16], Ireland [17], Australia [18] and Germany [19,20].

One of the main advantages of this methodology is the relatively

small data requirement and therefore potentially lower exposure to

model uncertainties. The type of modeling also does not require

explicit assumptions on other related variables for e.g.: the price of

fossil fuels because they are inherently a part of the independent

variable here, that is the energy demand. Because we model

renewable generation as negative demand and our objective is to

establish a relation between LMP and energy demand and track the

change in LMP with renewable generation, we found an econo-

metric methodology to be the best suited given the methodological

literature review, data requirements, and exposure to uncertainties.

The different components of our methodology have been explained

in greater details in sections 2.1 to 2.5.

2.1. Relationship between price and demand

To calculate the revenue to wind and solar, we first establish a

relationship between demand and locational marginal price (LMP).

This can be done using dispatch models [29]. However, we, along

with other authors [15,16], use regression of price and demand data

to make an econometric model. We use hourly data for the year

2016e8,784 data points for LMP and demand in each of 13 regions.

Analysis accounts for daily as well as seasonal change in loads,

prices and renewable generation in each region. Electricity market

wholesale prices are gathered from Independent System Operators

(ISOs) [30e35] and the EIA Wholesale Electricity and Natural Gas

Market dataset (EIA, 2015). LMP for regulated markets were

assumed to be the prices at which they trade with deregulated

markets (data selection is described in the SI, Table S5).

We use a linear regression [14,16,17,36] with zero intercept to

establish the relation between price and LMP. As the grid operates

differently throughout the year, we divide the year into 4 seasons

(summer, winter, spring and fall), running separate regressions for

each of the 13 regions. Fig. 2 shows example regressions for the

California ISO.

The slopes for all four seasons are all statistically significant (p-

value ranges from 8.5E-23 to 3.4E-07), but the r-squared values can

be low. This is because there are other factors that influence price

such as congestion. We are not concerned here with precisely

predicting price, only the effect of changes in demand on price. A

dispatch curve is often shown with a flat part and an exponential

part, e.g. Ref. [37]. However, we observed that they appear rela-

tively flat in the observed data, presumably due to heterogeneity in

the cost of operation and efficiency for plants using the same fuel.

This results in the coefficient for the exponential segment being

orders of magnitude smaller in comparison to the coefficient for

linear segment. We thus assume that the dispatch curve can be

approximated as linear. Fig. 2 shows an example for CAISO and we

find similar patterns for ISOs across the country.

Having established the relation between LMP and demand, we

Fig. 1. Overview of model: data, process and output (EWITS ¼ Eastern Wind Integration and Transmission Study, TMY3 ¼ Typical Meteorological Year (TMY3) dataset, EIA ¼ Energy

Information Administration, O&M ¼ Operations and Maintenance, ISO ¼ Independent System Operator, LMP ¼ Locational Marginal Price, LCOE ¼ Levelized Cost of Energy).
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model renewable generation as negative demand, calculating LMP

in a given hour with the equation:

LMP new¼ LMP original� Seasonal slope

of LMP vs Demand * Hourly capacity

factor * Installed capacity of wind or solar

(2)

Thismethod retains the observed hourly fluctuations in prices in

the actual data, but adjusts the prices down in a linear way as wind

or solar is added. Hourly capacity factor is a plant’s energy output

over an hour (MWh) divided by the installed capacity of the

resource (MW). For wind, the hourly capacity factors are taken from

the Eastern Wind Integration and Transmission Study (EWITS) and

Western Wind datasets (NREL, 2015). We average hourly capacity

factors of between 50 and 200 individual locations depending on

the size of the region to arrive at the hourly capacity factor of each

resource for each region. There is large geographic variability, e.g.

annual capacity factors of wind is seen to range from 30% in Georgia

to 49% in Texas. For solar photovoltaics, we use the Typical Mete-

orological Year (TMY3) dataset, which provides one year of hourly

simulated solar insolation for 1,020 locations in the U.S. (NREL,

2015). We use the same method of taking the average of several

individual locations as we did in the case of wind. The annual ca-

pacity factor of solar is observed to range between 17% in NEISO to

22% in CAISO.

The annual revenue to wind and solar for the year can be

calculated as a summation of hourly revenues, using the formula:

2.2. Revenue decline and economic capacity

There are different perspectives on estimating the amount of

renewable energy thatmay be integrated into the grid (Brown et al.,

2016). Technical potential refers to the total generation that may be

feasible given geo-spatial constraints and current state of tech-

nology. Lopez et al. (2012) provides GIS based technical potential of

several technologies for all of the U.S. Economic potential is typi-

cally defined as the subset of the technical potential that is available

where the cost required to generate the energy (which determines

the minimum revenue requirements for development of the

resource) is below the revenues available in terms of displaced

energy and displaced capacity.

With every subsequent addition of renewable energy, demand

reduces, lowering the LMP. In effect, the addition of renewable

energy reduces the clearing price, such that every subsequent unit

of renewable energy earns less money. This concept of diminishing

marginal revenue or revenue decline is well known and has been

explored in several studies for the U.S. and other countries

[15,17,29]. The extrapolation of revenue decline implies that there

will come a point when it will no longer make economic sense to

invest in a renewable source.

Fig. 2. Regression to establish relation between Locational Marginal Price (LMP) and demand in California ISO (CAISO). Although, theoretically, a dispatch curve is expected to have

a linear part and an exponential part [37], in reality there is much heterogeneity in the cost of operation even for plants using the same fuel, such that the coefficient for the

exponential segment is orders of magnitude smaller in comparison to the coefficient for linear segment. The curve is therefore approximated to a linear function.

Annual Revenue¼
X

8784

k¼1

Installed capacity * Hourly capacity factor renewableðhour kÞ * LMP newðhour kÞ (3)
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For this analysis we obtain the economic potential by continuing

to build plants until no additional revenue is gained by building a

plant, i.e. the annual revenue of Nþ1 plants ¼ annual revenue of N

plants. This assumes that capacity expansion would continue even

when average revenue has dropped below LCOE or average cost

(AR < AC).

This method is different from that used by Brown et al. (2016).

Brown et al. assume economic capacity is reached when average

cost ¼ average revenue (AC ¼ AR) and considers government

subsidy as part of the revenue income. In contrast, we do not

consider subsidies as part of the revenue stream and instead

consider economic capacity to be reached when the additional

renewable installation adds zero net economic value. As a result,

our numbers for economic potential are higher when compared to

Brown et al. (2016).

2.3. Wind and solar costs

To calculate the costs of solar and wind, we assume a present

investment cost of $1,400/kW for solar for utility scale fixed-tilt PV

[38] and $1,000/kW for wind [4], with operation and maintenance

cost of $23.40/kW per year for solar and $22.90/kW per year for

wind [4]. In addition, we assume a life span of 20 years for both

technologies [4] and a real discount rate of 1.75% [39]. All calcula-

tions are in real US $2016.We use the Federal Reserve discount rate,

the amount that the U.S. Central Bank charges its member banks to

borrow from its discount window. This discount rate is low, and we

also run the model with discount rate of 5%, shown in the Sup-

plementary Information (Section 3). Note that a higher discount

rate penalizes the economics of capital-intensive renewables,

leading to higher abatement costs, meaning that our baseline dis-

count rate is optimistic for the economics of wind and solar. To

model capital cost reduction, we use a learning rate of 16% for solar

(Rubin et al., 2015) and 9.9% for wind (Williams et al., 2017).

Learning is assumed to be national in scope, i.e. cost reduction after

adopting in any one region applies to future adoption in all regions.

As discussed inWilliams et al. (2017), this is equivalent to assuming

a global learning rate and a U.S. deployment rate that is propor-

tional to the global deployment rate.

In addition to abatement cost (Eq. (1)), we calculate the equiv-

alent per-MWh subsidy that would be required for each 2.5 GW

block of wind or solar generation:

Subsidy
�

$

MWh

�

¼ LCOE
�

$

MWh

�

� Revenue
�

$

MWh

�

(4)

2.4. CO2 emissions reductions

We calculate the displacement of emissions with each capacity

addition using hourlymarginal emissions factors for each region for

the year 2016 [28]. This dataset provides marginal emission factors

for 24 h in a day for 3 seasons (summer, winter and transition) for

all U.S. eGRID regions. We considered fall and spring as transition.

The eGRID regions do not line up exactly with the market regions.

We mapped the eGRID regions to our market regions based on the

state that most closely represents each region and part of both

classifications. The mapping of eGRID regions to our regions is

summarized in Table S3 in the supporting information.

The general form for annual greenhouse gas (GHG) mitigation of

a technology intervention is:

2.5. Iterative adoption model

We assume that wind and solar are adopted 2,500MWat a time.

With each adoption we determine the change in demand induced

and resulting revenue decline. Adoption continues until the point

when an additional 2,500 MW has no net economic value in a re-

gion. We call this the economic potential. We then calculate the

emission displaced using marginal emission factors and calculate

cost of emission mitigation. We arrange the mitigation costs for

every 2,500 MW installed around the U.S. from lowest to highest

abatement cost to create the MAC curve. Emissions of non-CO2

greenhouse gases have not been included (see Fig. 1).

3. Results: Renewable integration and electricity prices

3.1. Revenue decline

Wind and solar can generate with near zero marginal cost.

Because they are the lowest-cost generation sources, increased

deployment of wind and solar drive down the clearing price in the

LMP market during the periods when they generate. As a result,

more wind or solar generation drives down the revenue earned by

all nearby generators of the same type (as well as other generators,

though that is outside of the current scope). This drop in revenue is

proportional to the power output of wind/solar and inversely

proportion to the total demand of the region. Fig. 3 illustrates

revenue decline for the case of wind and solar in 13 energy market

regions. As expected, larger ISO regions (such as Midcontinent In-

dependent System Operator (MISO)) can absorb more renewable

energy in comparison to smaller regions. Also, areas with higher

capacity factor (CF) see a faster drop with capacity addition in

comparison to those with lower CF because they generate more

energy from a given deployment of wind/solar.

Comparing our results with prior models, Mills and Wiser (2012)

study solar impacts on prices in the California ISO using an energy

system model with dispatch and capacity expansion. They find that

average revenue for solar starts at $89/MWh at 0% of generation and

drops to $25/MWh when the solar share of generation reaches 30%

(72% drop). In comparison, our model predicts a smaller drop from

$34/MWhto$20/MWh(38%drop) for the sameadoption. It isdifficult

to explain the difference in results because energy system models

with dispatch and capacity expansion are complex and qualitatively

different from our econometric approach. However, their higher

initial revenue could occur because their model uses IEA’s projection

of natural gas price of $7.8 per MMBtu in 2030 (IEA, 2011), which is

much higher than actual natural gas prices in 2016: $2.49/MMBtu

[40]). As a result, the Mills and Wiser study predicts much higher

clearing prices even with today’s renewable portfolio and a more

dramatic declinewith additional solar, presumably because itmay be

replacing more expensive gas generation during peak hours.

Woo et al. (2016) use econometric models to examine the

impact of wind and solar onwholesale electricity prices for regions

within California (NP15 and SP15), considering the impact of 1 GW

of additional wind or solar power production in either region. They

DGHG emissions¼
X

k¼8784

k¼1

½hourly marginal emission factorðhour kÞ * renewable generationðhour kÞ� (5)
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find that the wholesale price reduction from 1 GW of solar in an

hour can vary between $1/MWh to $3.7/MWh depending on area of

installation and supply. The effect of 1 GWof wind on LMP is higher,

varying between $1.5/MWh and $11.5/MWh. In comparison, we

find that adding 1 GW of solar power output in CAISO reduces LMP

by $0.4/MWhwhile the same amount of wind reduces LMP by $0.8/

MWh. The results here are not directly comparable since the de-

mand in the sub-regions are naturally lower than the whole of

CAISO and an additional GW has greater impact on revenue

reduction if conceptually limited to a smaller region. The demand in

the NP15 and SP15 regions are each about 45% of the total CAISO

demand, suggesting that the price effect in CAISO should be

approximately 45% of the effect limited to either region. Our esti-

mated price reductions are in that order of magnitude: 11%e40% of

the Woo et al. result for solar and 7%e53% for wind. The higher

revenue erosion from Woo et al. may be attributed to regional

transmission congestion that is not accounted for in our model. For

more details comparing our revenue erosion estimates with other

studies see the Supporting Information (Section 1).

3.2. Maximum income-earning adoption of wind and solar

(Economic potential)

As revenue decline continues, it is expected that a system will

reach a capacity of utility-scale wind and solar for which an addi-

tion does not increase total revenue to the generation fleet of that

technology in a region. We term this capacity level the “economic

potential” because it represents the point where additional

deployment of the technology will actually result in lower total

revenue. Plotted in Fig. 4, we find that the economic potential varies

across the 13 electricity market regions.

The economic potential of a region varies with size of the ISO

and the nature of load and dispatch curves. Converting the capacity

results into shares of total generation, the economic capacity of

solar ranges from 16% in the Carolinas to 32% of generation in

CAISO. The economic potential for wind ranges from 24% of gen-

eration in the Carolinas to 42% in South West. MISO and PJM, the

two largest ISO areas, have the highest economic potential in ca-

pacity terms for wind and solar. The total economic capacity in the

U.S. was found to be 580 GWof solar and 500 GWof wind. In terms

of generation, the number would to be around 1,100 TWh/year for

solar and 1,500 TWh/year for wind.

Brown et al. (2016) also estimate the economic potential of wind

and solar in the U.S. using a condition of long-term equilibrium

where average revenue � average cost. Their results are a national

economic potential of 441e617 TWh of solar and 715e1,036 TWh of

wind energy, the range depending on the scenario. Our estimates

are slightly higher than that of Brown et al. (2016) and the differ-

ence may be due to different equilibrium conditions, i.e. our short-

term equilibrium condition where revenue to the marginal plant is

zero versus their long-term condition.

3.3. Carbon abatement costs for wind and solar

The cost of carbon abatement for a technology is the ratio of net

economic cost and carbon displaced. The economics of wind and

solar result from the outcome of opposing drivers: revenue decline

and technological progress. As mentioned in the introduction, we

Fig. 3. Diminishing average revenue for wind (top) and solar (bottom) for thirteen U.S. regions. Each line represents an installation of 2,500 MW. The revenue from the first in-

stallment is the line on top. The gap between the lines represent the drop in revenue with subsequent installations and may be interpreted as the rate of reduction of average

revenue to wind or solar with a capacity expansion of 2,500 MW. For example, revenue to wind is nearly the same in CAISO and PJM for the first unit. However, revenue decline

occurs much more quickly in CAISO than in PJM because PJM is a larger system, allowing PJM to accommodate more total wind capacity than CAISO. (CAISO ¼ California ISO,

ERCOT ¼ Electric Reliability Council of Texas, MISO ¼ Midcontinent Independent System Operator, NEISO ¼ New England ISO, PJM ¼ Pennsylvania, Jersey, Maryland, SOCO ¼

Southern Company Services, SWPP ¼ Southwest Power Pool, TVA ¼ Tennessee Valley Authority).
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incorporated technological progress using a single factor experi-

ence curve. The learning rates, or fractional cost reduction per

doubling of cumulative production, have been well-studied for

wind and solar power [13,41e44]. From this literature we use a

learning rate of 16% for utility solar and 9.9% for wind.

Wind and solar generate with zero onsite emissions and reduce

system-level emissions by displacing emissions from generators

that do emit carbon pollution. We estimate the carbonmitigated by

wind and solar using hourly generation data in combination with

hourly marginal emission factors (MEFs) to assess emission dis-

placed, divided by region and hour of the year. The marginal

abatement cost is calculated from these estimates of emissions

benefits as well as the revenue estimates discussed above. We do

not expect marginal emissions factors for carbon dioxide to change

significantly over time with the adoption of more renewables. This

is because renewables usually displace fossil plants at the margin,

i.e. the mix of coal and natural gas plants generating at a given time,

which changes slowly. Retrospective analysis indicates very slow

changes in the MEFs of CO2. For example, in the U.S. the average

MEF for CO2 fell only 7% between 2006 and 2012. In contrast,

criteria pollutants showedmore dramatic reductions over the same

period: 20% for NOx and 30% for SO2 [45]. Also, note that lower

MEFs would increase abatement costs and would result in higher

MACs than we calculate in this work. Figs. 5 and 6 show marginal

Fig. 4. Economic capacity of wind and solar in ISOs across the U.S. Vertical bars (left y-axis) represent economic capacity in GW, horizontal lines (right y-axis) represent the share of

total energy generation of wind or solar in each region. Economic potential is the subset of technical potential at which point the annual average revenue of the marginal additional

unit equals the lost revenue it induces in other generators of the same technology. (CAISO ¼ California ISO, ERCOT ¼ Electric Reliability Council of Texas, MISO ¼ Midcontinent

Independent System Operator, NEISO ¼ New England ISO, PJM ¼ Pennsylvania, Jersey, Maryland, SOCO ¼ Southern Company Services, SWPP ¼ Southwest Power Pool,

TVA ¼ Tennessee Valley Authority).

Fig. 5. Marginal Carbon Abatement Costs for Solar (colored bars) and Subsidy required (colored lines). Results both with learning (blue bars and lines) and without learning (orange

bars and lines) are shown. When accounting for both learning and revenue degradation, the effective cost of CO2 abatement from solar stays relatively flat over 530 GW of

deployment. Each vertical bar represents installation of 2,500 MW of solar in one of 13 ISO regions, ordered from lowest to highest abatement cost. (CAISO ¼ California

ISO, ERCOT ¼ Electric Reliability Council of Texas, MISO ¼ Midcontinent Independent System Operator, NEISO ¼ New England ISO, PJM ¼ Pennsylvania, Jersey, Maryland, SOCO ¼

Southern Company Services, SWPP ¼ Southwest Power Pool, TVA ¼ Tennessee Valley Authority).
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abatement cost estimates for wind and solar, starting from the

buildout in the region with lowest abatement cost (MISO for solar

and New England for wind) and running out to the total economic

potential in each region.

To show the effect of technological progress in solar, we plot

abatement cost with zero progress (orange bars) and with 16%

learning rate (blue bars). With no learning, the cost of CO2 abate-

ment for solar (Fig. 5) starts at $46 per tonne of CO2 for the first

2.5 GW in MISO and increases to $124 per tonne for the last 2.5 GW

in NEISO. However, if learning is included, the abatement cost is

nearly constant over the entire economic potential, dropping to a

low of $41 for several installations before going back up to $66 per

tonne.

Solar power has historically been subsidized to bring its cost of

generation in line with other sources. Presuming that society wants

to continue this support, it is important to understand how it might

evolve considering the co-evolution of revenue decline and tech-

nological progress. We explore this by calculating the annual price

subsidy per MWh needed to make the Net Present Value of a solar

installation positive. Results for subsidy requirements for solar are

shown in Fig. 5 with the blue line including learning and the yellow

line neglecting it. Without learning, the subsidy ranges between

$25 and $55 per MWh (40% and 60% of the cost of generation).

Learning should be included to reflect expected trends, and subsidy

levels in that case do fall (to a low point of 18 $/MWh), but subsidies

continue to be needed for the entire economic potential. After the

addition of 530 GW of solar, despite the much lower capital cost of

the technology (47% lower than the starting point of $1,400/kW),

the carbon abatement cost of solar is actually higher ($66/tonne)

than where it started ($46/tonne).

Fig. 6 shows results for abatement cost and subsidy re-

quirements for wind power. The abatement curve starts negative,

indicating that initially there are savings frommitigating CO2 using

wind in NEISO and PJM. However, the revenue decline effect is

stronger for wind than solar (see Fig. 3), with revenue declines

exceeding cost reductions from the 9.9% learning rate. This results

in mitigation costs soon switching from negative to positive and

increasing over the entire roll-out of 417 GW, even though our

model suggests that the capital cost of the final wind deployment is

22% lower than the first one. Despite an increasing trend in

abatement costs, the abatement cost of wind remains lower than

solar for almost the entirety of its economic potential. This suggests

that wind may be a more cost effective method of CO2 mitigation

compared to utility solar across the U.S., now and in the future.

The subsidy requirement for wind start at $-3/MWh (profitable)

and climbs to $25/MWh, ranging between�10% and 40% of the cost

of generation. Even though the investment cost of wind and solar

are expected to go down in the future due to technological progress,

the loss of revenue occurs at a pace that approximately keeps up

with cost declines for solar and exceeds it in the case of wind over

very large deployments (equivalent to six times the current wind

deployment [46] and ten times the solar deployment [47] as of

2018).

4. Caveats

The results discussed above are an outcome of specific modeling

assumptions and their interpretation should be placed in an

appropriate context. We are aware that these results, in particular a

need for increasing subsidies for wind, will be controversial and

thus set aside this section to explain modeling assumptions and

caveats. First and foremost, we reiterate that our model builds out

wind and solar on the current grid, essentially assuming that the

rest of the generation fleet does not change in response to the

wind/solar deployment that continues to occur across the U.S. In

reality, the grid could evolve in a number of ways that affect rev-

enue decline, including capacity retirements/additions other than

wind/solar, or deployment of technologies that improve renew-

ables integration, such as storage, demand response and new

transmission. It also does not account for the possible impacts of

changes in fossil fuel prices on the revenue to wind and solar

though it does implicitly account for seasonal variability in prices.

To first discuss retirements/additions: adopting wind or solar

has the potential to lead to retirements for other types of plants, e.g.

coal, nuclear, and natural gas. These retirements reduce supply,

potentially pushing prices up, and countering revenue decline.

However, renewables are not firm capacity and therefore cannot be

used to meet grid capacity requirements. The most likely scenario

Fig. 6. Marginal Carbon Abatement Costs for Wind (colored bars) and Subsidy required (colored lines). Results both with learning (blue bars and lines) and without learning (orange

bars and lines) are shown. When accounting for both learning and revenue degradation, the effective cost of CO2 abatement from wind increases over the 417 GW of economic

capacity. Each vertical bar represents installation of 2,500 MW of wind in one of 13 ISO regions, ordered from lowest to highest abatement cost. (CAISO ¼ California ISO,

ERCOT ¼ Electric Reliability Council of Texas, MISO ¼ Midcontinent Independent System Operator, NEISO ¼ New England ISO, PJM ¼ Pennsylvania, Jersey, Maryland,

SOCO ¼ Southern Company Services, SWPP ¼ Southwest Power Pool, TVA ¼ Tennessee Valley Authority).
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for grids to maintain firm capacity in the near term is replacement

of coal plants with natural gas that would operate with lower ca-

pacity factor, filling in for gaps in wind/solar output. The effect of

replacing coal with gas on revenue decline depends on the relative

price of coal versus natural gas electricity during periods when

wind/solar are generating. Because wind/solar have very low

marginal costs, they can be considered market price takers with an

energy value equal to the marginal generator’s production cost.

Thus, wind/solar revenues depend on the extent to which the grid

relies on more expensive price-setting generators, e.g. coal and

natural gas. If natural gas replaces coal with lower or similar mar-

ginal cost, the revenue decline of wind and solar is similar or

accelerated compared to our model. If the marginal cost of natural

gas is higher than coal, then revenue decline is countered to the

degree that the grid calls on more expensive natural gas. While the

future of fuel prices is difficult to know with certainty, recent his-

tory generally shows comparable marginal costs between natural

gas and coal. In this case, the replacement of coal with natural gas

would not appreciably affect the operating cost of the marginal

generator, suggesting that revenue decline for wind and solar

would not shift significantly with the additional gas capacity that is

mainly used to fill in when renewables are not available.

By enabling temporal fungibility between supply and demand,

storage and demand response capacity would mitigate revenue

decline. Implicit in our model are additions to transmission and

distribution infrastructure required to integrate new wind and

solar power into each of the 13 regions. However, addition of long-

distance transmission connecting across markets would create a

more nationally aggregated dispatch curve, influencing prices and

revenue decline. The potential of these grid changes is discussed

further in the discussion section below.

Finally, changes in fossil fuel prices, particularly natural gas,

would impact the wholesale clearing price and therefore the rev-

enue earned by renewable resources. Because natural gas plants are

the primary price-maker during peak load, changes in natural gas

prices would impact peak prices. Our study uses hourly data from

2016 and therefore implicitly assumes that the cost of fossil fuels is

that of 2016, including seasonal variability. In 2016, natural gas

prices ranged between $2.33 in March to $4.15 in December. In

2019, gas prices were similar, ranging between $2.62 in June and

$4.16 in January. Therefore, the findings of the model are relevant

for some years other than 2016, thoughwe recognize that change in

gas prices would impact both economic potential and abatement

costs. Specifically, increased gas prices would raise peak prices and

therefore revenue earned by wind and solar. This would in turn

slow revenue decline and accommodate more renewable energy

into the grid. This would also reduce the subsidy required and

thereby abatement cost of carbon. A reduction in natural gas prices

would have the opposite impact. Current U.S. natural gas prices are

historically low, though with current supplies and export con-

straints it is plausible that the status quo may continue for a decade

or more, absent policy changes that increase the cost of natural gas

generation [48].

As with any modeling exercise, outcomes depend on numerical

values of input data. The pace of technological progress is an

important assumption. While our learning rates are based on

reasonable empirical extrapolations of historical trends, we tested

sensitivity by considering values of ±50% of the base case. We find

that the trends in abatement cost and subsidy requirement are

similar evenwith such a broad range of learning rates. Details of our

sensitivity analysis can be found in the supplementary information

(Section 2).

5. Discussion

In this paper we examine two opposing effects of renewable

integration, revenue reduction and learning, for 13 electricity

market regions across the U.S. Results indicate that learning alone is

not enough to ensure reduction in the cost of abatement usingwind

or solar technologies. The revenue earned by these technologies

degrades too quickly in most regions to retain or improve their

economic viability. Our results reveal that while technological

progress reduces costs, revenue reductions through the merit order

effect may cancel or outpace it. This finding contradicts existing

research that concludes that learning tends to reduce abatement

cost of carbon [49,50] because these studies did not consider both

revenue decline and learning. There are caveats and uncertainties

in our modeling, discussed above, yet we argue that we identify a

plausible future inwhich the economic prospects of wind and solar

are no better than today. There are significant policy implications:

absent other efforts to address revenue decline, subsidies for wind

and solar adoption may need to continue and even increase. This

possible future should be taken seriously.

A variety of technical and operational strategies (storage, de-

mand response) have been identified to help with renewable

integration and mitigate the revenue degradation challenge that

we characterize. Most of these strategies are currently being pur-

sued and all of themwould be further encouraged by market forces

as greater amounts of wind and solar are added to existing elec-

tricity systems. This is encouraging, but the contribution of our

research is to show that these electricity system changes are

actually necessary if wind and solar are to continue their historical

trajectory of decreasing carbon mitigation costs.

Energy storage is a well-discussed option for integrating wind

and solar. It has the potential tomitigate revenue decline by charging

during low cost hours (with high renewable generation) and raising

the demand, then discharging when prices are higher. For example,

Shafiee et al. consider a 140 MW storage plant added to the Alberta

electricity system (12 GW of generation, so storage is 1.2% of gen-

eration) and evaluate its effect on electricity prices [51]. This storage

deployment has a noticeable effect on prices, but decreases peak

price far more than it increases off-peak prices (~$35/MWh decrease

when discharging, ~$2.50/MWh increase when charging). However,

it is the increase in off-peak price that affects the rate of wind/solar

revenue erosion. Much research on storage has focused on the

operationally and economically appropriate amount to accommo-

date a given level of renewable energy. For example, in an analysis

for the state of Texas, de Sisternes et al. examine various deeply

decarbonized electricity systems with and without storage [52]. In a

scenario where average emissions are limited to 100 kg/MWh with

no new nuclear plants, the addition of some storage (along with

wind and solar) is needed to meet peak demand, and going from 10

to 20 GW of storage reduces the operational costs of generation by

5e10%. While this and similar studies do not directly address reve-

nue decline, they reflect a growing body of work that aims to clarify

how storage can enhance wind and solar deployment.

Demand response is another mechanism to help incorporate

large amounts of renewables into the grid. For storage, the objective

is to “buy low, sell high”. For demand response, it is “use low, save

high”. Traditionally, demand response programs are used to reduce

peak demand. Such programs incorporate a "trigger point", which

for example in the case of PJM was at an LMP of $75/MWh, beyond

which payments for load reduction included a subsidy payment to

the consumers [53]. These help utilities save money by not having

to pay hundreds of dollars per MWh to generators at the peak hour.

Typically these programs shift demand from later in the afternoon,

when the demand is highest, to other hours like late evening.

Addressing revenue decline with demand response would be
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similar in principle to peak reduction but with a different focus:

shifting demand from times when electricity is expensive (re-

newables are not available) to times when it is cheap (renewables

are available). More sophisticated consumer rate structures can

achieve this and several states, led by California, are planning time-

of-use or related rate designs as a way of improving grid flexibility

and helping to integrate additional wind and solar [54].

Expansion of transmission capacity is another change that could

address revenue decline. It is important to distinguish between

transmission needed for balancing within an area and transmission

intended to expand the geographic scope of markets. Regarding the

former, Brown et al. (2016) suggest that the calculated economic

potential (which is similar to our findings) can be supported by the

present transmission system. Denholm et al. (2013) suggest 33% of

California’s energy demand could be supplied by renewables

without substantial changes to the transmission system. Even if not

needed to counteract revenue decline, there are economic advan-

tages to expanding transmission. Reducing congestion charges

within an area is one benefit of transmission, as is enabling plants

to trade with markets further away and balance renewables over

larger regions. For example, if prices are low during peak wind

generation in ERCOT, the ERCOT region may be able to supply low-

cost electricity to SWPP or other markets farther away where the

clearing prices are higher, providing benefits to both systems.

While our results indicate challenges for wind and solar to

become economically self-sufficient, this does not imply that the

technologies are not justifiable and in the public interest. Even if

revenue decline proceeds as our “status quo” model suggests,

hundreds of gigawatts of deployment have abatement costs well

below most estimates of social cost of carbon. A comprehensive

estimate of climate change impacts, the social cost of carbon ac-

counts for damages to agricultural productivity, human health,

property from increased flood risk and changes in energy system

costs. The current central estimate of this number is around $40 per

tonne, though it is recognized that this does not include all impacts

of climate change [55]. Other estimates put this number at $68 in

2015 and expected to reach $115 in 2050 [56]. In addition to carbon

benefits, solar and wind power also reduce emissions of criteria

pollutants. Sexton et al. (2018) estimated that every kW of solar

results in $117 in annual avoided damages. This can be attributed to

reduction of SOx ($82), CO2 ($23.5), PM2.5 ($7.4) and NOx ($3.6) and

varies widely by location [57]. If we add these up, the social benefits

are greater than the required subsidy per MWh and abatement cost

per tonne of CO2 through the hundreds of GWs of wind and solar

deployment that we model.

One approach to assess mitigation potential is to find the

cumlative adoption with mitigation cost below the social cost of

carbon. This reflects the deployment justifiable from a benefit-

cost perspective. Results are showm in (Fig. 7) with social cost

of carbon as a variable. For social cost of carbon from $0e20/

tonne, the amount of wind power increases rapidly, decreasing in

slope for higher costs. Solar power does not emerge as an option

at all until a threshold $46/tonne is reached, but at that point

there is dramatic increase in solar deployment to a nominal ca-

pacity above wind.

The benefits of lower prices for wind and solar are often

assessed assuming they do not influence the energy markets in

which they are adopted. The contribution of this work is to show

that accounting for the negative effect of wind and solar adoption

on their own revenue may cancel out or even exceed the economic

benefits of lower capital costs through technological progress. This

said, the degree of revenue decline found here is by no means

written in stone. The grid is evolving in directions that tend to

mitigate revenue decline and purposeful action to address it could

go further, improving the ability of intermittent renewables to

deliver carbon benefits at low cost. The key is to recognize the

relevance of revenue decline, work to better understand it, and

make appropriate decisions to realize a sustainable and economic

grid.
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Fig. 7. Cumulative capacities of wind and solar with mitigation cost less than a given value of social cost of carbon. The y-axis represents the cumulative deployment with cost

<social cost of carbon) fo and the x-axis represents the social cost of carbon. Our results suggest different carbon mitigation cost trajectories for wind and solar. From $0e20/tonne

allowed mitigation cost, the amount of wind power increases rapidly, decreasing in slope for higher costs. Solar power does not emerge as an option at all until $46/tonne is reached,

but at that threshold point there is dramatic increase to a nominal capacity above wind.
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