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a b s t r a c t 

I study the impact of transportation network companies (TNC) on traffic delays using a natural experiment created by the abrupt departure of Uber and Lyft from 

Austin, Texas. Applying difference in differences and regression discontinuity specifications to high-frequency traffic data, I estimate that Uber and Lyft together 
decreased daytime traffic speeds in Austin by roughly 2.3%. Using Austin-specific measures of the value of travel time, I translate these slowdowns to estimates 
of citywide congestion costs that range from $33 to $52 million annually. Back of the envelope calculations imply that these costs are similar in magnitude to the 
consumer surplus provided by TNCs in Austin. Together these results suggest that while TNCs may impose modest travel time externalities, restricting or taxing TNC 
activity is unlikely to generate large net welfare gains through reduced congestion. 

1. Introduction 

Transportation network companies (TNC) like Uber and Lyft have 
grown rapidly over the past decade to become integral parts of urban 
transportation systems. A small but growing literature has attributed to 
these companies benefits that include billions in annual consumer sur- 
plus ( Cohen et al., 2016 ), reductions in drunk driving ( Greenwood and 
Wattal, 2015 ), and flexible work ( Judd and Krueger, 2016; Angrist et al., 
2017 ). 

The costs of TNC expansion, however, have yet to receive commen- 
surate treatment in the economics literature. Most notably, TNCs have 
been accused of contributing to traffic congestion ( San Francisco Tran- 
sit Authority, 2018; Schaller Consulting, 2018 ), but existing studies of 
the impact of TNCs on congestion are few, arrive at varied conclusions, 
and do not quantify the implied congestion costs ( Li et al., 2019; Erhardt 
et al., 2019 ). Back of the envelope calculations suggest these costs could 
be substantial. A 2017 Inrix report, for example, placed the annual cost 
of congestion to US drivers at $305 billion ( Inrix, 2017 ) —roughly two 
orders of magnitude larger than estimates of national consumer surplus 
provided by Uber ( Cohen et al., 2016 ). This suggests that if TNCs have 
even a modest impact on traffic congestion, the negative externalities 
associated with lengthening travel times could offset consumer surplus 
benefits. Understanding how and whether TNCs impact traffic conges- 
tion therefore plays a crucial role in determining appropriate policy re- 
sponse to the continued growth of these companies. 

Two identification problems, however, make causal inference diffi- 
cult when studying the relationship between TNC activity and traffic 
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congestion. First, Uber and Lyft likely select entry locations based on 
trends in city-level characteristics unobservable to the econometrician. 
Comparisons that leverage differences in TNC entry dates across loca- 
tions may therefore suffer from reverse causality. Second, within-city 
time series regressions may be biased by omitted variables (e.g., gentri- 
fication) which are serially correlated with TNC activity and also impact 
congestion. 

In this paper I leverage a natural experiment in Austin, TX to cir- 
cumvent these identification challenges: On May 9 th , 2016, both Uber 
and Lyft unexpectedly exited Austin following a vote that upheld a city 
ordinance requiring driver background checks. I combine this variation 
in TNC activity with novel and granular Bluetooth traffic speed data, 
and setting-specific estimates of the value of travel time to answer two 
research questions. First, do transportation network companies impact 
traffic congestion? And if so, what are the travel-time related costs or 
benefits of TNC operation? 

This setting informs two empirical strategies: a difference in differ- 
ences comparing pre- versus post-May 9 th traffic speeds in 2015 (where 
both companies operated year round) to 2016 (where both companies 
exit on May 9 th ), and a regression discontinuity in time. Across specifi- 
cations, I find evidence of modest increases in traffic speeds following 
the exit of Uber and Lyft. Difference in differences results suggest that 
across all hours, traffic speeds increased roughly 1% following the exit 
of Uber and Lyft. 7 am. to 7 p.m. traffic speeds increased by 2.3%, with 
the largest TNC-related slowdowns occurring during the middle of the 
day (11 a.m. to 2 p.m.). Using setting-specific estimates of value of the 
travel time, I calculate that Austinites would be willing to pay roughly 
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$33 to $52 million annually to avoid these slowdowns. Back of the enve- 
lope calculations suggest that these figures are a small fraction (4–6%) of 
total Austin-area congestion costs, and are roughly the size of estimates 
of the consumer surplus associated with TNC operation in Austin. 

These findings improve on the existing literature in three ways. First, 
this is to my knowledge the only paper to use the exit of Uber and Lyft 
to study the impacts of TNCs on congestion. This translates to weaker 
identifying assumptions than those imposed in analyses leveraging the 
staggered expansion of these companies. Second, I extend existing anal- 
yses by mapping changes in travel speeds to changes in travel time costs, 
providing the first estimates of the congestion costs associated with TNC 
activity. And third, the spatial and temporal granularity in the Bluetooth 
data allows me to perform analyses that contribute to a more complete 
picture of the heterogeneous impacts of TNC activity on traffic conges- 
tion. 

These findings also provide several important takeaways for policy- 
makers. First, TNC activity can be viewed roughly as a transfer, as the 
consumer surplus enjoyed by TNC passengers is of similar size to the 
time loss incident on incumbent drivers. Second, it is difficult to ratio- 
nalize TNC quantity restrictions purely on welfare grounds, as the lost 
consumer surplus may outweigh travel time gains. In other words, even 
if TNC regulation is more politically achievable than are price-based 
congestion controls, TNC regulation appears (at least in the Austin case) 
to be a poor tool to address congestion-related externalities. Relatedly, 
the relatively modest impacts of TNCs on traffic congestion in Austin 
suggest that congestion taxes targeted specifically at ridesharing com- 
panies are unlikely to result in large traffic-related welfare gains. Lastly, 
the fact that speeds slow in response to TNC activity suggests TNCs add 
vehicles miles traveled (VMT) to the transit system. In other words, the 
VMT avoided by sharing rides are outweighed by additional trips in- 
duced by the availability of TNCs. 

The rest of this paper is organized as follows. Section 2 describes 
related literature and background. Section 3 details the events that pre- 
cipitated the departure of Uber and Lyft from Austin. Section 4 outlines 
the data sources. I describe my empirical strategy and threats to identifi- 
cation in Section 5 , and present results in Section 6 . Section 7 concludes. 

2. Background and related literature 

Traffic congestion is a significant urban disamenity. It is costly 
( Inrix, 2018 ), it is associated with lower self-reported happiness 
( Anderson et al., 2016 ), and it comes with considerable co-costs in terms 
of noise and pollution ( Currie and Walker, 2011 ). Although a tax is the 
canonical policy prescription for congestion ( Vickrey, 1969 ), both the- 
ory and empirics suggest that because targeting individual contributions 
to congestion is difficult, realistic congestion pricing instruments (e.g., 
cordon charges) may fall well short of the welfare gains achievable by 
a hypothetical first best policy ( Knittel and Sandler, 2018; Prud’Homme 
and Bocarejo, 2005 ). This, coupled with the potential political advan- 
tage of TNC regulation over comprehensive congestion taxation suggests 
that understanding the sign and magnitude of TNC related time costs or 
savings will be important for informing city-level policy. Indeed, sev- 
eral cities have already moved to regulate TNCs in the name of con- 
gestion. New York City, for example, cited congestion as a motivation 
for its 2018 ridesharing cap ( New York Times, 2018 ). As of 2020, San 
Francisco, New York, and Chicago have all imposed “congestion fees, ”
levied on TNC trips in the city center ( New York Times, 2019 ). Outside 
of the US, cities like London and Vancouver have weighed congestion 
impacts as they deliberate over TNC policy ( Reuters, 2019; Vancouver 
Sun, 2019 ). 

As a number of other observers have noted, however, the impact 
of TNCs on traffic speeds is theoretically ambiguous. While survey 
data from Rayle et al. (2014) and Clewlow and Mishra (2017) suggest 
TNCs induce trips, and Mangrum and Molnar (2018) demonstrate that 
taxis —the closest analog to TNCs —increase congestion on the margin, 
Judd and Krueger (2016) show that in five of six US cities, Uber drivers 

spend a significantly higher fraction of their time with a passenger in 
their vehicle than do taxi drivers. This ride-sharing effect could atten- 
uate or outweigh the effect of induced trips. There may also be com- 
plementarities between TNCs and public transit: Hall et al. (2018) use 
a difference in differences design on measures from the National Tran- 
sit Database to conclude that Uber is indeed a complement to public 
transportation. It is unclear, though, whether complementarity between 
TNCs and public transit will result in more or fewer vehicle trips. 

To date there exists little econometric work on whether TNCs cause 
traffic congestion, and existing results arrive at varied conclusions. 
Li et al. (2019) , for example, use city-level congestion measures and 
differences in Uber’s entry date to estimate the company’s impact on 
congestion, concluding that Uber improves city-level congestion mea- 
sures. Erhardt et al. (2019) , on the other hand, use 2010 and 2016 Inrix 
traffic data and scraped measures of Uber activity to calibrate a traf- 
fic engineering model of San Francisco. They conclude that rideshar- 
ing companies were responsible for significant (30%) increases in ve- 
hicle hours traveled. In addition to the fact that these studies reach 
contradicting conclusions, the identification concerns outlined in the 
introduction suggest value in reassessing this question using a natural 
experiment. 

3. Natural experiment 

Austin, TX, is the 11 th largest incorporated place in the United States 
and suffers from considerable congestion: According to Inrix, Austin 
ranked 14 th nationally and 72 nd globally in the number of average hours 
lost to congestion per driver. Cities with similar levels of per-driver con- 
gestion costs include San Diego, Berlin, and Manchester. Both Uber and 
Lyft began operating in Austin in 2014. 

In December 2015, the Austin City Council passed Ordinance No. 
20151217-075, which imposed a series of regulations on TNCs, includ- 
ing data requirements, restrictions on idling locations, and most con- 
troversially, fingerprinting requirements to facilitate driver background 
checks ( The City Council of Austin, 2015 ). Proposition 1, sponsored by 
Uber and Lyft, attempted to overturn this ordinance. On May 7 th , 2016, 
the Proposition was defeated in a citywide vote, with 56% of voters 
casting against ( The Texas Tribune, 2016 ). In protest, Uber and Lyft ex- 
ited the Austin market on May 9 th ( New York Times, 2016 ). 13 months 
later, Uber and Lyft re-entered Austin as Governor Greg Abbott signed 
into law HB 100, which overturned Austin’s local ordinance ( The 85th 
Texas Legislature, 2017 ). This variation in TNC activity provides the 
basis for my empirical identification. 

During the yearlong absence of Uber and Lyft, Austin was not with- 
out ridesharing. A number of smaller TNCs entered the market or ex- 
panded their Austin presence following the defeat of Proposition 1. In 
date of their arrival in Austin, these companies are: GetMe (Decem- 
ber 2015), Fare (Mid-May 2016), Fasten (June 1 st , 2016), Tride Tech- 
nologies (June 15 th , 2015), and RideAustin (June 16 th , 2016). Wingz, 
which provides rides to and from the airport, also started operating in 
Austin in May of 2016. A survey of Austin commuters conducted in 
November 2016 by Hampshire et al. (2017) offers a view of take up of 
these alternative rideshare companies. RideAustin held the largest mar- 
ket share (47.4%), followed by Fasten (34.5%), Fare (12.9%), GetMe 
(2.8%), Wingz (1.6%), and Tride (0.4%). Informed by the Hampshire 
et al. (2018) survey and the universe of RideAustin’s 2016 trip-level 
data, I am able to infer the level of total TNC activity in Austin follow- 
ing the exit of Uber and Lyft. I can therefore identify a window following 
the Proposition 1 vote where alternative TNC activity is negligible (see 
Section 5.1 ). 

4. Data 

I use data collected from an array of Bluetooth sensors along major 
roadways (both highway and surface-level) operated by the Austin 
Department of Transportation. Located inside traffic signal cabinets, 
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Fig. 1. Bluetooth Segment Locations in Austin, 
TX. Notes: Nodes represent terminal Bluetooth sen- 
sor locations for each of the 79 segments used in 
my analysis. Note that some sensors act as both 
origin and destination readers for different seg- 
ments. Paths represent Google Maps recommended 
driving directions between endpoints of a given 
segment, colored by Open Street Map road type. 
Motorways are major divided highways, primary 
roads are large multi-lane roads that may or may 
not be divided. Secondary roads are typically two- 
to four-lane surface streets. The black line is the 
Austin city limit. 

these sensors detect unpaired Bluetooth devices (e.g., smartphones, car 
systems) and estimate traffic speeds based on the movement of single 
devices (which are given unique anonymous identifiers) through the 
network of sensors. 

I use an aggregated version of this dataset prepared by Post Oak 
Traffic Systems, which isolates device movements through specific road 
segments (henceforth segments ), which are short sections along just 
one road. This company pre-processes the data in several ways. Data 
are aggregated at 15 min bins and represent the average speed across 
the segment for devices that appear at the origin reader first, and then 
the destination reader, and do not appear at any other sensors in the 
interim. These data are also filtered for outliers: only observations that 
fall within 75% of the IQR of the previous 15 observations are used in 
calculating speeds. This type of filtering is applied to combat bias from 

the movement of non-vehicle Bluetooth devices (like those carried by 
pedestrians) through the sensor network. 

In addition to the data cleaning performed by Post Oak Traffic Sys- 
tems, I further restrict my sample to consistently reporting sensors. Of 
the 430 total segments, I drop segments that report in fewer than 70% 

of days during each year (2015 and 2016) of the study period, leav- 
ing me with a panel of 79 segments. For robustness I also report re- 
sults using a) all segments that report in more than 30% of study pe- 
riod days and b) only segments that report during 100% of study period 
days. 

The 79 segments I use in my preferred specification are plotted in 
Fig. 1 and summarized in Table 1 . The mean segment length is 0.72 
miles, with minimum and maximum lengths of 0.06 and 3.8 miles, re- 
spectively. As shown in Fig. 1 , my sample covers a range of road types. 
The smallest roads in my sample are two-lane roads, the largest are 7- 
lane roads, and the median segment is a 5-lane road. I observe 966,301 
15-min speed reports during my study period. On average, a segment 
sees 4.77 devices move from origin to destination during each 15 min 
period, meaning that my data summarize roughly 4.6 million segment 
traverses. The average travel speed is 2.99 minutes per mile, which cor- 

responds to 20.06 miles per hour. This figure is consistent with periods 
of significant congestion. 

My variable of interest is minutes per mile, which has two advan- 
tages over miles per hour. First, a change of one mile per hour does not 
represent a constant damage over the domain of this variable: In terms 
of time lost, changing from 5 to 4 miles per hour is roughly 20 times 
as costly as changing from 20 to 19 miles per hour. Second, multiply- 
ing outcomes in minutes per mile by estimates of the value of time is a 
straightforward way to arrive at cost calculations from changes in traffic 
delays. 

While novel and granular, the Bluetooth data bring challenges for 
estimation. First, in the raw data available on the Austin Open Data 
Portal, 61 of the 79 segments used in my analysis show the segment 
length changing over the course of the study period. While most of these 
adjustments are minor, and personal correspondence with Austin Trans- 
portation Department employees suggests that these adjustments likely 
reflect updated length measurements and not relocation of Bluetooth 
sensors, I nonetheless investigate the possibility that these segment 
length changes constitute a threat to identification in Appendix E . I 
use the updated length measurements for all speed calculations in all 
time periods. A second challenge is the possibility of Bluetooth sensors 
measuring the movement of pedestrians. If filtering does not eliminate 
all measurement error originating from Bluetooth devices used by 
Austinites walking or biking, and the use of these modes of transit 
is correlated with the period where Uber and Lyft exited Austin, the 
empirical strategies I describe below will arrive at biased estimates. I 
further investigate this in Section 5.4 . 

I compile several other datasets to augment my analysis. To control 
for weather-related shocks, I use precipitation and temperature data ac- 
cessed through the National Oceanographic and Atmospheric Admin- 
istration’s National Centers for Environmental Information. To isolate 
a period of time where the impact of other TNCs is minimal, I use 
RideAustin’s trip-level data. These data range from June 2 nd , 2016 to 
April 13 th , 2017, and are publicly available online ( RideAustin, 2017 ). 
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Fig. 2. Variation in TNC Activity. Notes: This figure displays the variation in ridesharing activity I use to identify the impact of TNCs on congestion. From left to 
right, the vertical lines represent the start of the 2016 difference in differences period (March 20 th ), the failure of Proposition 1 (May 9 th ), and the end of the 2016 
difference in difference period (August 1 st ). The grey dotted line is the average number of Uber trips per week (as per an Uber Report on 2014–2015 operations). 
The red dotted line represents an estimate of total Uber and Lyft pre-exit activity, assuming a 30% Lyft market share. Note that because both Uber and Lyft entered 
Austin in 2014, the actual number of Uber trips in early May 2015 was likely much larger than 70,000 per week. The grey dots plot weekly RideAustin activity for 
the first 9 months of the company’s operation. The red dots inflate the RideAustin data by the reciprocal of its November 2016 market share (47%) to provide an 
estimate for the total level of post Proposition 1 alternative TNC activity. 

Lastly, I use two datasets to arrive at setting-specific value of time esti- 
mates. The first is the National Household Travel Survey (NHTS), which 
contains information on income and commuting habits. The second is 
a toll price and travel time dataset from the MoPac variable price free- 
way in Austin. These data were provided courtesy of the Central Texas 
Regional Mobility Authority and are further detailed in Appendix A . 

5. Empirical strategy 

5.1. Timeframe 

I use Bluetooth traffic data from 2015 and 2016 to study the rela- 
tionship between TNCs and congestion. I truncate this window to isolate 
periods where the variation in traffic speeds can be credibly attributed 
to the failure of Proposition 1. As described in Section 3 , a number of 
TNCs entered the market following the exit of Uber and Lyft. Estima- 
tions using the entire yearlong suspension period as a comparison would 
therefore underestimate any changes relative to a TNC-free counterfac- 
tual. Informed by the universe of trips from RideAustin —the TNC with 
the largest market share during Uber and Lyft’s absence —I truncate my 
estimation period on August 1 st , 2016. Similarly, Austin hosts the South 
by Southwest Music Festival (SXSW) each March. I restrict my analysis 
to exclude the 2015 and 2016 festivals. This leaves me with data from 

March 20 th to August 1 st for both 2015 and 2016. The 2016 study pe- 
riod is plotted with TNC data in Fig. 2 . Note that although the Austin 
Bluetooth data extend through 2019, significant portions of the spring 
are missing data from years 2017, 2018, and 2019, including Uber and 
Lyft’s re-entry in May of 2017. While this rules out difference in differ- 

ences specifications using later years, I am able to use data from dif- 
ferent parts of 2017–2019 to perform placebo regression discontinuity 
estimates (see Appendix D ). 

5.2. Difference in differences 

To study the effect of the exit of Uber and Lyft on travel times, I com- 
pare traffic speeds pre and post May 9 th in 2016 (where Uber and Lyft ex- 
ited) to 2015 (where both companies operated year-round). To capture 
heterogeneity in the congestion impacts across time of day, I perform 

this comparison within each hour of day, ℎ (or equivalently, interacting 
each right-hand side term below with an hour of day dummy): 

𝑠 𝑖,𝑦,𝑡 = 𝛼 + 𝛽ℎ 𝛿𝑦 𝜂𝑡 + 𝛾1 𝛿𝑦 + 𝛾2 𝜂𝑡 + 𝜸3 𝛿𝑦 𝜽𝑖 ⋅ 𝑡 + 𝜸4 𝜽𝑖 + �𝐗 𝑦,𝑡 + 𝜖𝑖,𝑦,𝑡 (1) 

Where 𝑠 𝑖,𝑦,𝑡 is the speed (in minutes per mile) measured over segment 𝑖 
on day 𝑡 of year 𝑦 . 𝛿𝑦 is a dummy that equals one for the year 2016, and 
𝜂𝑡 is a dummy that equals one for days (in any year) after May 9 

th . 𝜽𝑖 
is a set of dummies for each road segment, and 𝑡 is the signed number 
of days between a given date and May 9 th of that year. 𝐗 𝑡 is a vector of 
controls that includes day of week fixed effects, holiday fixed effects, 10 
10-degree daily temperature bins, and 10 daily precipitation level bins. 
The interacton betwen 𝛿𝑦 𝜂𝑡 is the treatment indicator, as it takes a value 
of 1 for observations after May 9 th , 2016, and zero otherwise. 𝛿𝑦 𝜽𝑖 ⋅ 𝑡 are 
segment-year specific linear time trends. 

The identifying assumption in the estimation of 𝛽ℎ —the effect of 
Uber and Lyft operation on travel speeds during a given hour of day 
ℎ —is that conditional on seasonality and weather, the difference in 

4 



M. Tarduno Journal of Urban Economics 122 (2021) 103318 

travel speeds between 2016 and 2015 at hour ℎ does not change after 
May 9 th for reasons other than the operation of Uber and Lyft. 

I calculate hour-specific congestion impacts with the goal of produc- 
ing more accurate cost estimates. As I show in Appendix A , variable-toll 
data suggest that the value of travel time in Austin varies significantly 
from hour to hour. Similarly, the number of vehicles on the road peaks 
during rush hours. Together, this information suggests that the same 
change in traffic speeds could produce different aggregate congestion 
costs at different times of day. By matching hour-specific estimates of 
the impact of TNCs to hour-specific vehicle miles traveled (VMT) and 
hour-specific estimates of the value of travel time, my cost calculations 
account for temporal heterogeneity that pooled estimates may not re- 
flect. To determine whether the convolution between hourly congestion 
impacts and hourly VOT is a first-order consideration, I also estimate 
a model pooling across hours of day. This estimator is Eq. 1 , but run 
without interacting hour of day fixed effects with the right hand side 
variables. The rationale for this regression is to simulate what estima- 
tion and inference might look like using temporally aggregated data. 

To investigate spatial heterogeneity, I estimate a model pooling over 
hours of day and allowing an idosyncratic treatment effect for each road 
segment. This model is equivalent to Eq. 1 , but interacts the set of seg- 
ment dummies with the treatment indicator, 𝛿𝑦 𝜂𝑡 . 𝜷 is now a 1x79 vector 
of segment-specific treatment effect estimates. Note that in this pooled 
Equation hour of day fixed effects are included in 𝐗 𝑦,𝑡 . 

𝑠 𝑖,𝑦,𝑡 = 𝛼 + 𝜷𝛿𝑦 𝜂𝑡 𝜽𝑖 + 𝛾1 𝛿𝑦 + 𝛾2 𝜂𝑡 + 𝜸3 𝛿𝑦 𝜽𝑖 ⋅ 𝑡 + 𝜸4 𝜽𝑖 + �𝐗 𝑦,𝑡 + 𝜖𝑖,𝑦,𝑡 (2) 

5.3. Regression discontinuity 

Lastly, I estimate a regression discontinuity model, again estimat- 
ing hour-specific treatment effects ( 𝛽ℎ ) by interacting each term in the 
regression Equation with a set of hour of day fixed effects. 

𝑠 𝑖,𝑡 = 𝛼 + 𝛽ℎ 𝜂𝑡 + 𝜸1 𝜽𝑖 + 𝜸2 𝜽𝑖 ⋅ 𝑡 + 𝜸2 𝜽1 ⋅ 𝑡 
2 
+ 𝜸4 𝜽𝑖 + �𝐗 𝑡 + 𝜖𝑖,𝑡 (3) 

The identifying assumption for 𝛽ℎ is that conditional on weather, po- 
tential outcomes (traffic speeds) in hour of day ℎ are continuous about 
May 9 th , 2016. While the identifying assumption for the RD is arguably 
weaker than that of the difference in differences estimator, the RD will 
produce estimates of the short-term response to the exit of Uber and 
Lyft. As such, I rely on the difference in difference estimator to produce 
my preferred annual congestion cost figures. 

5.4. Threats to identification 

Threat 1: Contemporaneous shocks. The identifying assumptions 
in both the RD and DID estimates rely on the absence of 𝑦𝑒𝑎𝑟 ∗ 𝑝𝑜𝑠𝑡 - 
specific shocks to Austin area travel speeds. The end of the University of 
Texas, Austin (UT) school year, for example, presents a potential threat 
to identification if university-related traffic activity differed substan- 
tially between 2015 and 2016. In Appendix D , I use placebo exit dates 
to determine whether or not shocks that create regression discontinuity 
estimates on the order of my reported coefficients are empirically com- 
mon. Fig. D.2 displays coefficient estimates using the actual exit date in 
relation to the distribution of coefficients from 134 regression disconti- 
nuities using placebo exit dates, 13 of which were chosen to line up with 
the beginning/end of a UT semester. 5 of the 134 placebo coefficients 
(4%) are more negative than the estimates using the actual TNC exit 
date, zero of which correspond to the start/end of a UT semester. This 
placebo test therefore suggests that shocks that produce RD estimates on 
the order of my estimates are empirically uncommon, and that my re- 
sults are not likely a result of changing traffic patterns related to activity 
at UT. 

Threat 2: Other modes of transportation. If the exit of Uber and 
Lyft led Austinites to substitute toward walking or biking and these trips 
were not dropped as outliers during data processing, 𝛽 will not be iden- 
tified. In other words, for other modes of transportation to bias my es- 

timates, traffic speed must be mismeasured, and that mismeasurement 
must be correlated with the treatment. 

Data on mode shares and mode speeds suggest that this type of bias 
cannot alone account for my results. Hampshire et al. (2017) suggest 
1.8% of TNC users switched to bikes following Uber’s exit. If TNCs made 
up 10% of Austin trips, and bikes constituted 1.53% ( United States Cen- 
sus Bureau, 2015 ), this mode shifting represents an 11.8% increase in 
total bike trip volume. The average car in my sample took 2.99 min 
to traverse a mile —3.01 minutes per mile fewer than the 6 minutes 
per milemph) assumed by Google biking directions. These figures im- 
ply that for changes in bike shares to alone account for a change of 
0.1 minutes per mileroughly the average treatment effect across day- 
time hours), bikes would need to constitute roughly 28% of observed 
Bluetooth samples after dropping extreme travel time outliers. This fig- 
ure is inconsistent with the travel speeds implied by the movement of 
Bluetooth devices, which greatly exceed 10 miles per hour on average. 

Nonetheless, I draw on a second traffic speed dataset to empirically 
examine this concern. In addition to Bluetooth sensors, the city of Austin 
also maintains pneumatic sensors that take periodic measurements of 
traffic speeds. While these measurements are not frequent enough to 
act as a replacement dependent variable, they do allow me to study 
the relationship between Bluetooth speed measurements and true traffic 
speeds by matching segments to pneumatic sensors. 

While we should not expect pneumatic sensors to match segment 
speeds exactly (segments often include intersections), if there is signifi- 
cant switching to non-vehicular modes of transport that biases the Blue- 
tooth speed measurements, this would be reflected in a change in the 
relationship between the two measurements. For example, say we have 
a segment-sensor pair, and prior to May 9 th , 2016, when the pneumatic 
sensor reports a speed of 25 mph, the Bluetooth segment on average re- 
ports a speed of 20 mph. If there is bias from mode-switching, we would 
expect this relationship to change in the post period. Now, when the 
pneumatic sensor again registers 25 mph, the incresed number of non- 
filtered pedestrian datapoints biases the segment measurement down- 
ward, to, say, 18 mph. 

To operationalize this anecdote, I match segments to pneumatic sen- 
sors, and run a regression of segment speeds on sensor speeds, allowing 
for a differential slope term interacted with a post May 9 th 2016 dummy. 
If I find a statistically (and economically) significant difference in slopes, 
I treat this as evidence of mode choice related bias. This exercise is de- 
tailed in Appendix B . I match 39 Bluetooth segments to pneumatic road 
sensors. In a simple regression with month of year and road segment 
fixed effects, I find little evidence to support pedestrian-induced bias 
in my estimates. As shown in Table B.1 , the coefficient on the interac- 
tion between the post dummy and the pneumatic segment speed is not 
statistically different from zero, nor is it of meaningful magnitude. 

Threat 3: TNC driving speeds. If TNC vehicles drive significantly 
slower or faster than the average non-TNC vehicle in a way that re- 
mains after filtering, the above estimates of 𝛽ℎ will be biased. During 
congested conditions it is unlikely that this should occur: if congestion 
slows all drivers, then travel time measurements from any subset of ve- 
hicles should be representative of average speeds. At free-flow traffic 
speeds, however, it is possible that TNCs drive faster (due to profit mo- 
tive) or slower (idling to find riders) than non-TNC vehicles. 

To test these concerns, I use public trip-level data from the startup 
RideAustin, which entered the market following the departure of Uber 
and Lyft. Following Mangrum and Molnar (2018) , who construct “taxi 
races ” to test whether different types of taxi travel at different speeds, 
I match RideAustin trips to Bluetooth segments, allowing me to test the 
null hypothesis that TNC vehicles drive at the same speeds as the average 
mix of vehicles. 

This exercise is detailed in Appendix C . Over 221 trip-segment 
matches, I find that on average RideAustin vehicles traveled 0.03 min- 
utes per mile slower while traversing a given segment than did the av- 
erage device during the same time period. This difference is not statis- 
tically significant, nor should it meaningfully bias my results. Assuming 
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Fig. 3. Difference in Differences Results. Notes: Results from Eq. 1 , a difference in differences comparing pre vs. post May 9 th traffic speeds in 2015 (where both Uber 
and Lyft operated in Austin) to pre vs. post May 9 th traffic speeds in 2016 (where both TNCs exited Austin). Points represent the estimated effect of TNC departure 
on traffic speeds (in minutes per mile) by hour of day. Controls include day of week, holiday, and segment fixed effects, segment-specific linear trends in days since 
May 9 th , and flexible controls for temperature and precipitation. Bars reflect 95% confidence intervals from two-way standard errors clustered by segment-week. 
Traffic speed data were accessed through the City of Austin’s Open Data Portal. 

TNCs account for 10% of vehicle trips, for example, this difference in 
speeds implies a bias on the order of 0.003 minutes per mile —one to two 
orders of magnitude smaller than my estimates of the impact of TNCs 
on traffic speeds. To the extent that speed differences do generate bias, 
they will lead me to overstate improvements in traffic speeds resulting 
from a TNC ban. 

6. Results and discussion 

6.1. Traffic speeds 

Across multiple specifications, I find evidence of modest increases 
in traffic speeds following the exit of Uber and Lyft. Results from my 
preferred specification ( Eq. 1 ) are displayed in Table 2 and Fig. 3 . Point 
estimates of changes in minutes per mile are largely negative, suggesting 
reduced congestion after the exit of Uber and Lyft. While the 95% con- 
fidence intervals for hour-specific estimates of changes in travel times 
generally include zero, an F-test rejects the null hypothesis of 𝛽ℎ = 0 ∀ℎ 

( 𝑝 < 0 . 0001 ). Although TNCs appear to negatively impact morning rush 
hour conditions, I estimate little change in evening rush hour speeds. 
The largest improvements in travel times following TNC exit come, sur- 
prisingly, between 11 a.m. and 2 p.m. Point estimates for off-peak hours 
(8 p.m. to 6 a.m.) are small and straddle zero. This pattern could be a 
result of TNCs comprising a higher share of vehicles during the middle 
of the day than during peak hours. Additionally, evening rush hour ef- 
fects could be muted if TNC users are more likely to share cars during 
the evening than they are during the morning and early afternoon. 

Fig. 6 and Table 3 display results from Eq. 3 , a regression discontinu- 
ity by hour of day. These figures are qualitatively similar to, but larger 
in magnitude than the difference in differences results, suggesting that 
the short-term impacts of TNC exit may be more pronounced than the 
medium-term impacts. Fig. 7 plots residuals from a pooled regression 
discontinuity performed on daytime traffic speeds in 2016 (when Uber 
and Lyft exited) and 2015 (where both companies operated year-round). 

Table 1 
Road segment summary statistics. 

mean sd min max 

Average Speed (mph) 24.74 9.61 2.17 95.04 

Minutes Per Mile 2.99 1.79 0.63 27.69 

Segment Length 0.72 0.57 0.06 3.80 

Number samples 4.77 3.77 1.00 45.00 

Number of Lanes 4.70 0.91 2.00 7.00 

Summary statistics for traffic data along 79 road segments in Austin, TX. Speed 
data reflect the average travel time for Bluetooth devices that move from origin 
sensor to destination sensor during a given 15-min interval. As described in 
Section 4 , data are also filtered for outliers. Traffic speed data were accessed 
through the City of Austin’s OpenData Portal. 

The 2015 regresion discontinuity estimates a null effect, offering evi- 
dence that the 2016 regression discontinuity results are not driven by 
seasonal changes in traffic patterns. 

Table 4 shows the results from running versions of Eqs. 1 and 3 , 
pooling across hours. The pooled difference in differences results suggest 
that on average, speeds increase by 0.026 minutes per mile ( 𝑝 = 0.15), 
or roughly 0.9% following TNC exit. Consistent with the hour-specific 
estimates, restricting the pooled DID analysis to daytime hours (7 a.m. 
to 7 p.m.) generates larger estimates of speed increases following TNC 
exit ( 𝛽 = −0 . 068 , 𝑝 = 0.2). This coefficient translates to a 2.3% increase 
in daytime traffic speeds. Fig. 4 displays the raw speed data for daytime 
traffic by week of year for my study window, and provides evidence of 
the absence of pre-trends. Fig. 5 plots an event study version of Eq. 1 , 
where separate treatment effects are estimated for each week. Consistent 
with the growth of RideAustin and other Austin-area TNC alternatives 
through the second half of 2016, the event study shows the treatment 
effect decaying over time: 2016 traffic speeds are significantly lower 
than those in 2015 for 10 weeks following the exit of Uber and Lyft, but 
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Fig. 4. Parallel Trends. Notes: This figure shows raw 

average speed (minutes per mile) between 7 a.m. and 
7 p.m. over 79 road segments in Austin, TX, plotted by 
week of year for 2015 and 2016. Data were accessed 
through the City of Austin’s Open Data Portal. The dot- 
ted line represents the week of May 9 th , where Uber 
and Lyft ceased operation in Austin in 2016. Note that 
week zero is partially treated, as May 9 th , 2016 was a 
Monday. 

Fig. 5. Event Study. Notes: This figure plots results from a difference in differences regression with separate coefficients for 17 pre and 20 post-exit weeks. Points 
represent the estimated difference between 2015 and 2016 traffic speeds (in minutes per mile) relative to the difference in the week leading up to May 9 th . Controls 
include day of week, holiday, SXSW, and segment fixed effects, as well as flexible controls for temperature and precipitation. Bars reflect 95% confidence intervals 
from standard errors clustered by segment. 

by week 17, point estimates suggest that traffic speeds had returned to 
the baseline 2015–2016 difference. 

As in the hour-specific estimates, the pooled RD estimates are larger 
in magnitude than are the DID results: Travel times decreased by 0.102 
minutes per mile ( 𝑝 = 0.01) across all hours and by 0.134 ( 𝑝 = 0.003) 
minutes per mile for daytime hours. These coefficients correspond to 
travel time reductions of 3.4% and 4.5%, respectively. 

As noted in Section 3 , a number of ridesharing firms entered the 
market after the exit of Uber and Lyft. If alternative TNC activity was 
substantial during the study period, my results will be attenuated rela- 
tive to the counterfactual of a TNC-free Austin. Although RideAustin’s 

data provide some insight into the level of alternative TNC activity in 
Austin, it is unclear whether the growth of RideAustin in 2016 is repre- 
sentative of the growth of all alternative TNCs, or whether RideAustin 
grew by cutting into the market share of firms like Fasten and Fare, 
which arrived earlier. In Table 5 , I report estimates of the impact of 
TNCs on traffic speeds in Austin under each of these two possible trajec- 
tories of TNC activity in 2016: In rows 1 and 3 ( RideAustin Data ), I as- 
sume 10,200 TNC trips per day during the pre-period (see Uber (2015) ), 
and use RideAustin’s time-series data —inflated by the reciprocal of its 
market share —to produce a time-varying measure of TNC activity fol- 
lowing the failure of Proposition 1. This time series is plotted in red in 
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Fig. 6. Regression Discontinuity Results. Notes: Results from Eq. 3 , a regression discontinuity performed on traffic speeds across 79 road segments in Austin, TX. 
The bandwidth is March 20 th - August 1 st of 2016, which (asymmetrically) spans the May 9 th departure of Uber and Lyft. Points represent the estimated effect of 
TNC exit on traffic speeds by hour of day. A negative point indicates an estimated increase in traffic speed. Controls include day of week, holiday, and segment 
fixed effects, segment-specific second degree polynomials in days since May 9 th , and flexible controls for temperature and precipitation. Bars reflect 95% confidence 
intervals from two-way standard errors clustered by segment-week. Traffic speed data were accessed through the City of Austin’s Open Data Portal. 

Table 2 
Difference in differences results. 

Hour of Day 𝛽ℎ 𝑠𝑒 𝑝 

0 − 0.0606 0.0515 0.2588 

1 − 0.0525 0.0358 0.1640 

2 − 0.0505 0.0278 0.0908 

3 − 0.0121 0.0649 0.8547 

4 0.0911 0.1006 0.3805 

5 − 0.0293 0.0920 0.7547 

6 − 0.0568 0.0996 0.5778 

7 − 0.1446 0.1169 0.2365 

8 − 0.0583 0.1331 0.6680 

9 − 0.0188 0.0954 0.8469 

10 0.0318 0.0581 0.5921 

11 − 0.1418 0.0664 0.0508 

12 − 0.1730 0.0812 0.0512 

13 − 0.1555 0.0927 0.1157 

14 − 0.0176 0.0469 0.7125 

15 − 0.0238 0.0453 0.6083 

16 0.0657 0.0683 0.3524 

17 0.0016 0.0591 0.9790 

18 0.0500 0.0862 0.5715 

19 − 0.0300 0.0638 0.6451 

20 0.0004 0.1036 0.9966 

21 0.0817 0.0703 0.2646 

22 − 0.0709 0.0852 0.4191 

23 − 0.0152 0.0328 0.6497 

F-test 0.0000 

N 966,301 

Notes : Results from Eq. 1 , a difference in differences comparing pre vs. post May 
9 th traffic speeds in 2015 to pre vs. post May 9 th traffic speeds in 2016 (where 
both Uber and Lyft exited Austin). Controls include segment-specific linear in 
day trends, a precipitation dummy, day of week fixed effects, and year and post 
May 9 th dummies. Standard errors are clustered by segment-week. 𝛽ℎ represent 
the estimated effect of TNC departure on traffic speeds (in minutes per mile) 
by hour of day. Bold coefficients are significant at the 10% level. The final row 

reports the p-value from a joint hypothesis test of 𝛽ℎ = 0 ∀ℎ . 

Table 3 
Regression discontinuity results. 

Hour of Day 𝛽ℎ 𝑠𝑒 𝑝 

0 − 0.0598 0.0297 0.0637 

1 − 0.0959 0.0343 0.0142 

2 − 0.0316 0.0251 0.2287 

3 0.0202 0.0348 0.5711 

4 0.0156 0.0690 0.8245 

5 − 0.0920 0.0395 0.0352 

6 − 0.0267 0.0618 0.6727 

7 − 0.1081 0.1016 0.3050 

8 − 0.1370 0.1666 0.4248 

9 − 0.0661 0.0769 0.4047 

10 0.0128 0.0566 0.8249 

11 − 0.1137 0.0462 0.0275 

12 − 0.2675 0.0744 0.0029 

13 − 0.2861 0.0878 0.0057 

14 − 0.0932 0.0404 0.0368 

15 − 0.0759 0.0398 0.0775 

16 − 0.0187 0.0449 0.6833 

17 − 0.0623 0.0561 0.2856 

18 − 0.0257 0.0715 0.7246 

19 − 0.0605 0.0539 0.2808 

20 − 0.0727 0.0565 0.2188 

21 − 0.1082 0.1144 0.3601 

22 − 0.1388 0.1126 0.2379 

23 -0.0385 0.0544 0.4910 

F-test 0.0000 

N 501,010 

Notes : Results from Eq. 3 , a regression discontinuity performed on traffic speeds 
across 79 road segments in Austin, TX. The bandwidth is March 20 th - August 
1 st of 2016, which (asymmetrically) spans the May 9 th departure of Uber and 
Lyft. Controls include hour of day, day of week, holiday, and segment fixed 
effects, segment-specific second degree polynomials in days since May 9 th , and 
flexible controls for temperature and precipitation. Standard errors are clustered 
by segment-week. 𝛽ℎ represent the estimated effect of TNC departure on traffic 
speeds (in minutes per mile) by hour of day. Bold coefficients are significant at 
the 10% level. The final row reports the p-value from a joint hypothesis test of 
𝛽ℎ = 0 ∀ℎ . 
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Fig. 7. Regression Discontinuity Residual Plots. Notes: This figure plots the daily mean residuals from a pooled version of Eq. 3 , omitting the 𝛿𝑦 𝜂𝑡 (year 
∗ post) indicator. 

The dependent variable is minutes per mile, measured over 79 road segments in Austin, TX. The bandwidth is March 20 th - August 1 st of 2016 (or 2015), which 
(asymmetrically) spans the May 9 th departure of Uber and Lyft. Controls include hour of day, day of week, holiday, and segment fixed effects, segment-specific 
second degree polynomials in days since May 9 th , and flexible controls for precipitation and temperature. The dotted line represents a second degree polynomial in 
days since May 9 th ; the shaded region is the 95% confidence interval. Traffic speed data were accessed through the City of Austin’s Open Data Portal. 

Fig. 2 . Under this assumption, neither the fuzzy DID nor the fuzzy RD 
specification differs significantly from the results in Table 4 . In rows 2 
and 4 ( Hampshire Data ), I again use 10,200 TNC trips per day for the 
pre-exit figure, but then assume that a constant 4180 (41% of 10,200) 
TNC trips per day during are completed during the treatment period. 
This figure reflects results from a November 2016 survey conducted by 
Hampshire et al. (2017) , where 41% of survey respondents reported that 
they completed an Uber or Lyft reference trip using another TNC follow- 
ing the failure of Proposition 1. This trajectory assumes that RideAsutin’s 
growth is not representative of the alternative TNC market, and instead 
entirely reflects RideAustin winning over customers from other already- 
established Uber and Lyft alternatives. 

Intuitively, the results using the Hampshire Data assumption are 
roughly 1.7 times larger than the estimates from Table 4 . This of- 
fers a useful bound for this exercise investigating attenuation. If the 
RideAustin data is even partially representative of the growth of alterna- 
tive ridesharing companies in Austin, then TNC activity in May–August 
of 2016 was lower than the 41% replacement reported by Hampshire 
et al. (2018) in November. I therefore view row 4 —which implies a 

7.6% reduction in travel speeds when moving from zero TNC activity 
to full TNC activity —as an upper bound for the congestion impacts of 
TNCs in Austin. 

My estimates of changes in traffic speeds together with data on the 
number of total TNC and non-TNC vehicle trips in Austin allow me to 
estimate the implied elasticity of congestion with respect to TNC vol- 
umes. According to the 2017 NHTS, Austin-area households take an av- 
erage of 3.6 vehicle trips a day. Austin’s 37,000 households, then, gen- 
erate roughly 1.35 million vehicle trips per day. The available data on 
Uber and Lyft suggest that the two services together completed roughly 
10,200 trips per day prior to their 2016 exit from Austin (see Fig. 2 ). 
Multiplying this figure by a factor of two to reflect the capacity factor 
estimated by Judd and Krueger (2016) suggests that Uber and Lyft to- 
gether accounted for 1.5% of Austin-area vehicle trips prior to the failure 
of Proposition 1. My pooled estimates of the impact of TNCs on Austin- 
area congestion therefore imply congestion elasticities with respect to 
TNC volume of between 0.6 and 2.3. My preferred specification, which 
suggests a 2.3% increase in daytime traffic speeds following the exit of 
Uber and Lyft, corresponds to an elasticity 1.5. These estimates lie on 
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Fig. 8. Weekday vs. Weekend Effects. Notes: This figure plots 
difference in differences estimates ( Eq. 1 ) of the impact of Uber 
and Lyft’s exit on travel speeds separately for weekdays and 
weekends. Points represent the estimated effect of TNC depar- 
ture on traffic speeds (in minutes per mile) by hour of day. 
Controls include day of week, holiday, and segment fixed ef- 
fects, segment-specific linear trends in days since May 9 th , and 
flexible controls for temperature and precipitation. Bars re- 
flect 95% confidence intervals from two-way standard errors 
clustered by segment-week. Traffic speed data were accessed 
through the City of Austin’s Open Data Portal. 

the lower end of the range of congestion elasticities from existing stud- 
ies. Anderson et al. (2016) , for example, estimate a congestion elasticity 
of 2.7 in Beijing; findings from Leape (2006) imply an elasticity of 2.5 
in London, and results from Eliasson (2009) imply an elasticity of 1.5 
in Stockholm. The relatively small congestion elasticity implied by my 
estimates may reflect the lower levels of congestion in Austin relative to 
cities like London and Beijing, or the offsetting effect of trips saved by 
the ‘ridesharing effect’ of TNCs. 

In Appendix D , I investigate the robustness of the results presented 
in this section. Fig. D.1 plots both the difference in differences and re- 
gression discontinuity results for bandwidths ranging from 20 to 70 days 
around May 9 th . The conclusion that daytime traffic speeds increase fol- 
lowing the exit of Uber and Lyft holds across bandwidth choices. To 
test the likelihood that the regression discontinuity estimates presented 
above are the result of a contemporaneous shock to Austin-area traf- 
fic speeds, I compare my estimates to coefficients from 134 regression 
discontinuities using placebo exit dates. The results of this exercise are 

shown in Fig. D.2 . 5 of the 134 placebo coefficients (4%) fall below the 
estimate using the true exit date, suggesting that it is empirically un- 
likely that my RD estimates are the result of an unobserved Austin-area 
transit shock. 

6.2. Heterogeneity and external validity 

Results from Eq. 2 , which allows for segment-specific congestion re- 
sponses, are plotted in Figs. 9 and 10 . Two themes emerge. First, there is 
no clear spatial pattern in congestion impacts: I estimate negative and 
positive travel time impacts both for segments in the city center and 
for outlying roads. Second, Fig. 9 shows that segments that experienced 
exceptionally large changes in traffic speed were characterized by ex- 
ceptionally high levels of pre-period traffic congestion, suggesting con- 
struction or other segment-specific shocks may explain these estimates. 
Absent these outliers, the segment-specific effects exhibit relatively low 

variance. An important avenue for future work would be to investigate 
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Fig. 9. Distribution of Segment-Specific Responses. Notes: Results from Eq. 2 , a difference in differences comparing pre vs. post May 9 th traffic speeds in 2015 
(where both Uber and Lyft operated in Austin) to pre vs. post May 9 th traffic speeds in 2016 (where both Uber and Lyft exited Austin), allowing for segment-specific 
congestion responses. Bars represent the number of segments with idiosyncratic changes in traffic speeds falling withing a given bin. Cells are colored by the pre May 
9 th 2016 congestion level, as measured by the ratio of average speed to the 95 th percentile of speed. Traffic speed data were accessed through the City of Austin’s 
Open Data Portal. 

Fig. 10. Segment-Specific Responses. Notes: Results from 

Eq. 2 , a difference in differences comparing pre vs. post 
May 9 th traffic speeds in 2015 (where both Uber and Lyft 
operated in Austin) to pre vs. post May 9 th traffic speeds 
in 2016 (where both Uber and Lyft exited Austin), allow- 
ing for segment-specific congestion responses. Paths rep- 
resent Google Maps recommended driving directions be- 
tween endpoints of a given segment, colored by the sign 
and magnitude of the estimated segment-specific change 
in traffic speed. The black line is the Austin city limit. Traf- 
fic speed data were accessed through the City of Austin’s 
OpenData Portal. 
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Fig. 11. External Validity. Notes: This figure depicts vehicle and public transit use across the 20 largest US cities for the year 2017. Data for both subfigures come 
from the U.S. Census Bureaus 2017 American Community Survey. Similarities in commuting behavior between Austin and other “Sun Belt ” cities suggests that the 
findings in this paper may be most applicable to this group of metros. 

Table 4 
Pooled estimates. 

𝛽 ( Δ minutes/mile) 𝑠𝑒 𝑝 Implied annual cost ($) 

Difference in Differences (All hours) − 0.0261 0.0170 0.1479 − 33,096,514 

Difference in Differences (7 a.m. - 7 p.m.) − 0.0684 0.0529 0.2004 − 63,985,000 

Regression Discontinuity (All Hours) − 0.1015 0.0353 0.0052 − 129,010,337 

Regression Discontinuity (7 a.m. - 7 p.m.) − 0.1335 0.0433 0.0028 − 124,930,327 

Notes : The first two rows display results from a variation of Eq. 1 , a difference in differences specification that 
estimates the pooled impact of TNC exit on traffic speeds across hours of day. 𝛽 represent the estimated effect of 
TNC departure on traffic speeds, measured in minutes per mile. Controls include segment-specific linear in day 
trends, controls for precipitation, day of week fixed effects, hour of day fixed effects, and year and post-May 
9 th dummies. Standard errors are clustered by segment-week. Row 1 shows the results of this regression using 
speed data on all hours, and column 2 shows results restricted to 7 a.m. to 7 p.m. The final column displays 
annual costs implied by multiplying 𝛽 by annual Ausin-area VMT, and then by $15.40, which is 50% of the 
average per-worker wage rate for Austin households, according to the 2017 NHTS. Traffic data were accessed 
through the City of Austin’s OpenData Portal. Rows 3 and 4 repeat this exercise for Eq. 3 . 

whether these outliers indeed represent extreme congestion reductions 
from TNC operation in select locations, or whether they can be explained 
by data absent from this setting. 

The external validity of the results presented in this paper hinges on 
whether Austin is representative of other metropolitan areas in terms of 
commuter preferences and the substitutability of transit options. To de- 
termine which cities have transit systems that resemble Austin’s, Fig. 11 
depicts how public transit use and personal vehicle travel vary across 
the 20 largest metro areas in the US. Commuters in the majority of large 
American cities (especially those located in the ‘Sun Belt’) exhibit mode 
choices similar to those in Austin, where commuters heavily favor solo 
commutes in personal vehicles. In cities with extensive public transit sys- 
tems (e.g. New York, Washington, San Francisco), however, commuter 
choices are quite different than they are in Austin. This suggests cau- 
tion when applying the results described in this paper to address policy 
questions in these metro areas. 

6.3. Equilibrium response 

It is worth discussing the extent to which the brief disruption of TNC 
activity in Austin provides insights into the equilibrium differences in 
congestion levels between a city with and a city without TNCs. In ad- 

dition to the first-order changes in traffic flow caused by the absence 
of TNCs, the full equilibrium response to the exit of TNCs would reflect 
a combination of short and long-run adjustments made by road users. 
More specifically, road users will spatially re-optimize in response to 
differential speed changes, and city residents may change long run by 
vehicle purchase or sorting decisions. 

Because spatial re-optimization over route choices likely occurs in 
the short-run, and I use a large sample of segments covering different 
types of roadways, my estimates likely reflect this spatial substitution. 
My results do not, however, reflect long-term adjustments: The above 
analysis compares traffic speeds in Austin with and without TNCs, hold- 
ing fixed decisions on car purchasing behavior and locational sorting. 
Some of the reduction in congestion that I measure likely comes from 

individuals who, prior to 2016, chose not to purchase a vehicle because 
they had access to ridesharing. In the long run, the actions of these 
marginal car owners would erode the traffic improvements that resulted 
from the exit of Uber and Lyft. 

6.4. Congestion costs 

Armed with estimates of hour-specific changes in travel times, I cal- 
culate the external congestion cost associated with TNC operation as 
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Table 5 
Fuzzy RD and Fuzzy DD. 

𝛽 ( Δ minutes/mile) 𝑠𝑒 𝑝 

Fuzzy DID, RideAustin Data 0.0721 0.0573 0.2084 

Fuzzy DID, Hampshire Data 0.0978 0.0237 0.0010 

Fuzzy RD, RideAustin Data 0.1324 0.0133 0.0000 

Fuzzy RD, Hampshire Data 0.2263 0.0227 0.0000 

Notes : The first two rows display results from a fuzzy difference in differences 
specification that estimates the impact of TNC activity on Austin traffic speeds 
between 7 a.m. and 7 p.m. The regression coefficient represents the change 
in travel times (in minutes per mile) resulting from a change from full TNC 
operation [1] to no TNC operation [0]. The first row ( RideAustin Data ) uses 
RideAustin’s trip-level data together with estimates of RideAustin’s market share 
to construct a measure of daily TNC activity. The second row assumes that the 
level of TNC activity during the period following the exit of Uber and Lyft was 
a constant 41% of pre-exit levels. This assumtion is based on a November 2016 
survey conducted by Hampshire et al. (2018). Rows three and four report results 
from fuzzy regression discontinuity designs that estimate the impact of TNC 
activity on Austin traffic speeds between 7 a.m. and 7 p.m., using the same TNC 
activity assumptions. 

follows: 

Δcongestion cost = 
∑

ℎ 

Δ minutes per mile ℎ ∗ miles driven ℎ ∗ value of time ℎ 

(4) 

Δ minutes per mile are the coefficients, by hour of day, ℎ, estimated 
above. To estimate miles driven ℎ , I use periodic traffic counts to estimate 
the share of VMT by hour of day in Austin, and multiply these shares 
by estimates of daily VMT provided by the Texas Department of Trans- 
portation. Note that this operation assumes that my estimates represent 
an average effect for all VMT within Austin City limits. Table 6 provides 
evidence in support of this assumption: According to data maintained by 
the Texas Department of Transportation, roads included in my preferred 
specification resemble those not included in terms of congestion, VMT, 
and speed. Finally, I calculate Austin-specific hourly value of travel time 
(VOT) estimates ( value of time ℎ , above) using data from Austin’s MoPac 
freeway (see Appendix A ). I also present results using a VOT heuris- 
tic from Small and Verhoef (2007) : 50% of the wage rate. I estimate 
the wages of Austin-area drivers by calculating the per-worker income 
for car-commuting Austin households in the 2017 National Household 
Travel Survey (NHTS). Standard errors for all congestion cost estimates 
follow formulas developed by Goodman (1960) . 

I report the results of this exercise in Table 7 . Both rows reflect 
changes in travel times estimated in my preferred specification ( Eq. 1 ), 
a DID across years. Using time-varying (MoPac) and uniform (NHTS) 
VOT estimates, I calculate the daily congestion costs associated with 
Uber and Lyft activity at $92,071 and $127,983, respectively. These es- 
timates correspond to annual costs of $33 million ( p = 0.181) and $46 

Table 7 
Congestion cost estimates. 

Daily cost ($) 𝑠𝑒 𝑝 annual cost ($) 

Time-varying VOT − 92,071 97,547 0.1806 − 33,605,827 

Uniform $15.40 VOT − 127,983 72,156 0.0489 − 46,713,725 

Notes : Estimates of the travel-time congestion costs of TNC operation in Austin, 
TX. The first row displays the result of the exercise described in Eq. 4 , which 
matches hour-specific changes in travel time to hour-specific willingness to pay 
estimates (detailed in Appendix A ) and hour-specific traffic volume measure- 
ments. The second row uses a VOT of $15.40, which is 50% of the average 
per-worker wage rate for car-commuting Austin households, according to the 
2017 NHTS. Standard errors for cost figures are calculated following Goodman 
(1960). See Table 8 for hour-by-hour cost estimates. 

million ( p = 0.049). Disaggregating this sum by weekend and weekday 
effects ( Table 9 ) produces slightly larger figures annual cost figures: 
$39 million ( p = 0.041) and $52 million ( p = 0.003). In Appendix D , I re- 
port results from this exercise using a regression where observations are 
weighted by the number of Bluetooth devices recorded in each 15-min 
window. The rationale for this specification is to investigate whether 
the above results are biased when segments with differing traffic flows 
are implicitly given the same weight in determining regression coeffi- 
cients. The cost estimates from this weighted regression are similar to 
the non-weighted results and imply an annual congestion cost associ- 
ated with Austin-area TNC activity of $54 million. Note that each of 
these aggregate cost measures relies on the assumption that VOT is uni- 
form across the city. While misattributing VOT estimates by location 
may bias these estimates, there are two reasons why this bias is likely 
small: First, in a recent investigation of the heterogeneity of urban VOT, 
Buchholz et al. (2020) find that the majority of the variation in VOT 
is across individuals rather than across locations within a city. Second, 
the lack of a spatial gradient in the segment-level congestion estimates 
(see Fig. 10 ) means that a cost calculation using a modest VOT gradient 
between the city and the suburbs (as in Fig. 8 of Buchholz et al. (2020) ) 
would produce similar aggregate welfare measures as those reported 
above in Tables 4 and 7 , so long as the VOT estimates I use reflect the 
rough spatial average of the Austin metro area. 

Several outside studies provide valuable context when interpreting 
these congestion cost estimates. First, according to the Inrix Global 
Scorecard, the aggregate 2017 travel time cost in Austin was $2.8 
billion, $810 million of which was attributed to traffic slowdowns 
( Inrix, 2017 ). Back of the envelope calculations using my estimates 
therefore suggest that Uber and Lyft together accounted for 1–2% of all 
travel time costs in Austin, and 4–6% of congestion costs. Second, esti- 
mates of consumer surplus associated with TNCs offer a useful bench- 
mark for policymakers weighing the benefits of TNC operation against 
the costs. The results from Cohen et al. (2016) allow me to produce two 

Table 6 
Austin metro validity. 

Not Sampled Sampled p 

Annual Delay per Mile (person-hours) 118,372.98 101,368.11 0.58 

Texas Congestion Index 1.36 1.39 0.61 

Peak Period Average Speed 33.22 29.52 0.16 

Freeflow Speed 41.20 37.97 0.28 

Average Daily VMT 204,488.84 166,805.50 0.46 

Peak Period Annual Hours of Delay (person-hours) 377,230.86 241,909.86 0.34 

Notes : This table uses data maintained by the Texas Department of Transportation (TXDoT) 
to compare observable characteristics of Austin-area roads that do not appear in my sample 
(column 1) to those that do (column 2). Column (3) reports p-value of the corresponding 
t -test for a difference in means. The data cover 86 road segments in Austin, 35 of which 
overlap with the 79 Bluetooth segments used in the above analysis. Note that roads sections 
are coded as sampled even if the Bluetooth segment does not cover the entire corresponding 
TXDoT road segment. 
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Table 8 
Summary statistics for components of cost calculation. 

Hour of Day 𝛽 𝑠𝑒 VOT sd VMT sd Cost/hour (MoPac VOT) Cost/hour (NHTS VOT) 

0 − 0.06 0.04 8.66 3.05 201,112 1667 − 1759 − 1759 

1 − 0.05 0.04 8.4 2.96 125,170 825 − 921 − 921 

2 − 0.05 0.04 8.29 2.91 95,873 566 − 669 − 669 

3 − 0.01 0.05 8.3 2.92 64,993 265 − 109 − 109 

4 0.09 0.05 8.32 3 45,746 73 578 578 

5 − 0.03 0.06 9.69 3.57 79,183 89 − 375 − 375 

6 − 0.06 0.07 12.67 8.28 216,472 1181 − 2595 − 2595 

7 − 0.14 0.08 25.64 30.81 510,299 7646 − 31,539 − 31,539 

8 − 0.06 0.12 28.78 37.99 680,662 11,764 − 19,034 − 19,034 

9 − 0.02 0.08 14.67 17.84 729,092 8322 − 3344 − 3344 

10 0.03 0.05 10.16 4.08 726,981 3464 3919 3919 

11 − 0.14 0.04 10.1 3.75 786,248 4234 − 18,771 − 18,771 

12 − 0.17 0.04 10.05 4.83 910,484 4754 − 26,387 − 26,387 

13 − 0.16 0.04 10.41 6.06 943,347 5733 − 25,444 − 25,444 

14 − 0.02 0.04 11.75 9.67 919,202 6131 − 3176 − 3176 

15 − 0.02 0.04 20.79 19.93 937,669 5146 − 7716 − 7716 

16 0.07 0.04 29 26.84 950,548 4552 30,189 30,189 

17 0 0.04 24.5 22.83 953,432 4493 618 618 

18 0.05 0.04 23.27 24.29 940,423 4676 18,220 18,220 

19 − 0.03 0.04 11.55 9.64 834,215 3861 − 4822 − 4822 

20 0 0.04 9.76 3.68 644,943 3076 47 47 

21 0.08 0.04 8.42 3.4 529,941 2619 6082 6082 

22 − 0.07 0.04 8.67 3.36 429,036 2491 − 4397 − 4397 

23 − 0.02 0.04 8.57 3.06 306,256 2127 − 665 − 665 

Daily Cost − 92,071 − 127,983 

Notes : This table displays the components of the aggregate cost calculations in Table 7 . The first two columns reproduce 
the difference in differences results from Table 2 . Columns 3 and 4 show the mean and standard deviation of the value of 
travel time (VOT) estimates from the MoPac Freeway (see Appendix A ). Columns 5 and 6 report the mean and standard 
deviation of hourly VMT. These estimates are generated by multiplying the hourly share of total Austin Traffic (as per 
Austin traffic count data) by estimates of aggregate Austin-area VMT (as per the Texas Department of Transportation). The 
penultimate column reports the hourly costs estimates using the VOT from column 3; the final column reports hourly cost 
estimates applying a constant $15.40 per hour. 

Table 9 
Congestion costs disaggregating weekdays and weekends. 

Annual cost ($) 𝑠𝑒 𝑝 

Time-varying VOT − 39,989,479 21,348,072 0.0410 

Uniform $15.40 VOT − 52,084,544 15,784,030 0.0026 

Notes : Estimates of the travel-time congestion costs of TNC operation in Austin, 
TX, using separate estimates for weekdays and weekends. The first row follows 
Eq. 4 , and uses separate hourly Value of Travel Time (VOT) schedules for week- 
days and weekends derived from MoPac Data. The second row applies a uniform 

VOT time across all hours. Following the heuristic provided by Small and Ver- 
hoef (2007), this VOT is 50% of the per-worker wage rate for Austin-area car 
commuting households, as per the 2017 NHTS. Standard errors for cost figures 
are calculated as described in Section 6 . 

back of the envelope estimates of consumer surplus in Austin. First, Co- 
hen et al. (2016) conclude that in the four cities they examine, $1.57 of 
consumer surplus are generated for every dollar spent on TNCs. Uber 
reported that in 2015, its drivers grossed $27 million in the Austin 
area ( Uber, 2015 ). According to Uber’s S1 filing, 83% of the payments 
to the Uber app went to drivers in 2016, suggesting that Austin con- 
sumers pay roughly $32.5 million to Uber annually. Inflating this fig- 
ure by the multiplier from Cohen et al. (2016), and assuming an equal 
expenditure-consumer surplus ratio between Lyft and Uber implies a to- 
tal TNC-related consumer surplus for the city of Austin of $72.9 million 
annually. As a second way of estimating consumer surplus in Austin, I 
rescale the Cohen et al. (2016) estimate of national consumer surplus 
from Uber ($6.8 billion). Multiplying this figure by Austin’s share of the 
US urban population (0.49%) yields an estimate of the 2015 Austin-area 
consumer surplus of $33 million annually. Again inflating this figure to 
account for Lyft’s market share suggests a TNC-related consumer surplus 
for the city of Austin of $47 million. These exercises therefore suggest 
that the congestion costs resulting from Uber and Lyft activity in Austin 

are similar in magnitude to the consumer surplus benefits provided by 
these companies. 

7. Conclusion 

Using a natural experiment in Austin, TX, I study whether transporta- 
tion network companies impact traffic speeds. I estimate that TNCs are 
responsible for a 2.3% increase in Austin-area travel times between 7 
a.m. and 7 p.m. This figure masks important heterogeneity, with the 
largest TNC-related slowdowns occurring between 11 a.m. and 2 p.m. 
By matching setting-specific changes in traffic speeds to hour-specific 
estimates of the value of travel time, I find that Austinites would be 
willing to pay $33 to $52 million annually to avoid the slowdowns in- 
duced by TNC activity. Back of the envelope calculations using estimates 
of TNC consumer surplus from Cohen et al. (2016) suggest that the cost 
of TNC-related congestion in Austin is similar in magnitude to the con- 
sumer surplus generated by these companies. 

These results have important implications for urban transportation 
policy. While a comprehensive congestion tax is the most efficient re- 
sponse to congestion externalities, charging all road users the social 
marginal cost of their actions is both technologically and politically chal- 
lenging ( King et al., 2007 ). Given these difficulties, a natural question is 
whether policies that target a related good (TNCs) would improve wel- 
fare, and if so, how such a policy would perform relative to the first-best. 

My results suggest that quantity restrictions —like those imposed by 
New York in 2016 —are unlikely to produce substantial welfare bene- 
fits, as the congestion benefits from restricting TNC activity are roughly 
offset by lost consumer surplus. Estimates of the congestion costs asso- 
ciated with TNC activity also speak to the efficacy of TNC taxation as 
a means of addressing traffic externalities. Models of imperfect Pigou- 
vian taxation show that the welfare gains of a second-best tax relative 
to a first-best tax are a function of how well second best taxes target 
heterogeneous externalities, as well as the correlation between demand 
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Fig. A1. Revealed Preference Value of Travel Time Estimates. Left Pane: Willingness to pay for travel time reductions in Austin, TX. Constructed using 2017 data 
from the MoPac variable-toll lane (Highway Loop 1), provided by the Central Texas Regional Mobility Authority. Dots represent means of observed equilibrium 

prices divided by expected time savings by hour of day. 
Right Pane: MoPac expressway (red dashed) plotted with the 79 road segments used in estimation of the changes in travel speeds (blue). Nodes represent Bluetooth 
sensors, and the black line is the Austin City limit. 

elasticities and idiosyncratic externalities ( Knittel and Sandler (2018) 
and Diamond (1973) ). Taxing ridesharing, then, will perform well as a 
second-best congestion pricing scheme if a) ridesharing activity is well- 
correlated with congestion, and b) if demand for ridesharing is elastic 
relative to the demand for other congesting trips. The results from this 
natural experiment suggest that TNC activity is not highly correlated 
with urban congestion externalities: back of the envelope calculations 
suggest TNCs are responsible for a small fraction of the congestion costs 
in Austin, and TNC-related externalities often occur at times where the 
value of travel time is relatively low. Taken together with results from 

Cohen et al. (2016), who characterize TNC trips as inelastic, uniform 

TNC taxation is unlikely to produce welfare gains that approach those 
realized under a first-best congestion price. For policymakers politically 
constrained to target congestion taxes at TNCs, the significant temporal 
and spatial variation in congestion impacts estimated in this paper sug- 
gests that there may be substantial improvements in policy efficiency 
from including spatial and temporal variation in pricing. TNC conges- 
tion fees levied in New York and San Francisco, for example, may be 
made more efficient by adding variation to the tax rate by time of day 
or origin/destination zone. 

These results also pose several questions that may inform future re- 
search. First, identifying the drivers of the spatial and temporal hetero- 
geneity in the congestion impacts of TNCs would be useful to city pol- 
icymakers attempting to better target TNC-based congestion policies. 
Second, replicating this type of analysis in other settings with similar 
identification opportunities would provide a valuable test of external va- 
lidity, especially in cities with markedly different commuting and public 
transit landscapes. Finally, the fact that speeds slow in response to TNC 
activity suggests TNCs add vehicles to the road. In other words, my re- 
sults suggest that the ride-induction effect dominates the ride-sharing 
effect. This conclusion will be important to test in other cities, as the 
impact of TNCs on VMT is an important uncertainty in the prediction of 
transportation sector emissions. 

Appendix A. Revealed preference VOT estimates 

The MoPac (Texas State Highway 1) is a north-south route in Austin. 
Starting in November 2017, the Central Texas Regional Mobility Author- 
ity opened an 11-mile variable-price express lane on the MoPac (see 
Fig. A.1 ). The price of using this lane adjusts in order to keep the ex- 
press lane moving at free-flow speeds: tolls increase when the express 

lane is busy and decrease when it is underused. Toll rates are posted at 
the northbound and southbound entrances. 

Using 30-min resolution data provided by the Central Texas Regional 
Mobility Authority on MoPac prices and average travel times on the 
tolled and non-tolled lanes, I recover time-varying estimates of the value 
of travel time. Commuters entering the MoPac see the toll price, but not 
the difference in travel times between the tolled and non-tolled lanes. 
I therefore produce value of travel time estimates by dividing the ob- 
served toll price on a given date and time by the expected travel time 
savings for that time of day. To calculate the expected time savings, I 
take the average time difference between tolled and non-tolled lanes by 
half hour of day. For example, if the average difference between tolled 
and non-tolled lanes is 4 min between 9:00 a.m. and 9:30 p.m., and I 
observe an average price between 9:00 and 9:30 on a given day of $1, 
then the implied value of travel time for that half-hour block on that 
day is $15 per hour. I then aggregate these observations across days to 
recover an average value of travel time for each half hour of day. Note 
that because the tolled lane is always faster than the non-tolled lane in 
expectation , this method rationalizes driver’s use of the toll lane when 
ex-post travel times are equal between tolled and non-tolled lanes. 2 

These estimates are summarized in Fig. A.1 , and are broadly consis- 
tent with value of travel time estimates from related settings ( Small and 
Verhoef, 2007 ). Importantly, however, VOT peaks during morning and 
evening rush hour periods, possibly reflecting different commuters, or 
heterogeneity in the value of time based on trip purpose. Note that the 
motivation for using MoPac data is to study the convolution between the 
value of travel time and estimated congestion impacts, not to produce 
novel estimates of the value of travel time. 

Appendix B. Threats to identification from other modes of 
transportation 

In addition to Bluetooth sensors, the city of Austin maintains pneu- 
matic sensors which take periodic measurements of traffic speeds. Pneu- 
matic sensors are stretched across traffic lanes, and therefore will not 
be influenced by pedestrian activities. Additionally, pneumatic sensors 
classify observations by axel length, meaning activity from bicycles 

2 Note that the MoPac has a price floor of $0.25; 55% of the observations 
(largely in off-peak hours) are at the price floor. VOT estimates excluding these 
observations produce similar results. 
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Fig. B1. Segment-sensor matching. Notes: An example of a Bluetooth segment 
(blue path) matched to a pneumatic sensor (black dot). Segments were matched 
to sensors by both location and direction of travel. 

Table B1 
Tests for Bias. 

Point estimate 𝑠𝑒 𝑝 

𝛽1 0.0366 0.0221 0.0979 

𝛽2 − 0.0094 0.0222 0.6727 

Notes : Results from Eq. 5 , which tests whether the relationship between 
pneumatic speed measurements ( 𝑠 𝑖,𝑡 ) and Bluetooth speed measurements ( 𝑦 𝑖,𝑡 ) 
changes after the exit of TNCs in Austin. In addition to the variables listed, this 
regression includes segment and month of year fixed effects. 

will not be reflected in vehicle speed measurements. I identify 39 in- 
stances where Bluetooth road segments overlie pneumatic sensors (see 
Fig. B.1 ), and test whether the relationship between the two speed mea- 
sures changes significantly after the Proposition 1 vote. 

For other modes of transportation to bias my estimates, speed must 
be mismeasured on Bluetooth segments, and that mismeasurement must 
be correlated with the treatment. To test for this bias, I perform the 
following regression: 

𝑦 𝑖,𝑡 = 𝛼 + 𝛽1 𝑠 𝑖,𝑡 + 𝛽2 𝐷 𝑡 ⋅ 𝑠 𝑖,𝑡 + 𝜸1 𝝓𝑡 + 𝜸2 𝜽𝑖 + 𝜖𝑖,𝑡 (5) 

Where 𝑦 𝑖,𝑡 is the Bluetooth speed measurement on segment 𝑖 and 
time 𝑡, and 𝑠 𝑖,𝑡 is the pneumatic road segment speed measurement on 
segment 𝑖 and time 𝑡 . 𝐷 𝑡 is a treatment dummy, which equals one for 
days after May 9 th , 2016. 𝝓𝑡 is a set of month of year fixed effects, and 
𝜽𝑖 is a set of segment fixed effects. I test the null hypothesis 𝛽2 = 0 , and 
interpret a significant result as evidence of bias in the Bluetooth speed 
masurements. Results from Eq. 5 are displayed in Table B.1 . 

Appendix C. Threats to identification from TNC driving speeds 

If TNC vehicles drive significantly slower or faster than the average 
non-TNC vehicle in a way that remains after filtering, the above em- 
pirical strategy will be biased. To test for this potential bias, I match 
RideAustin trips to segments, allowing me to test the null hypothesis 
that TNC vehicles drive at the same speeds as the average mix of vehi- 
cles. 

Table C1 
TNC vehicle speeds. 

Δ Minutes per Mile 𝑠𝑒 𝑝 

− 0.0324 0.1643 0.8438 

Notes : A comparison of means between Bluetooth-recorded travel speeds and 
TNC vehicle speeds. The coefficient Δ Minutes per Mile represents the difference 
in means between travel speeds (in minutes per mile) for these TNC trips and 
the average travel times recorded by the corresponding segment over the 15-min 
period where the TNC trip occurred. 

I match TNC trips to segments based on the following criteria: for 
a given segment, the sum of the distance between segment and TNC 
trip termini must be less than 500 m, and the distance traveled by the 
TNC vehicle must be within 10% of the segment length. I identify 1901 
such matches, with several segments recording multiple TNC trips that 
fit this criteria. I then replicate the type of data filtering applied by Post 
Oak Traffic Systems. Recall that in the data I use for my analysis, only 
observations that fall within 75% of the interquartile range (IQR) of the 
15 most recent observations are used to calculate average speeds. While 
I do not have access to the IQR data, I do have the standard deviation 
of speed measurements for any given 15-min interval. I use this to esti- 
mate the IQR, and drop RideAustin trips that fall outside of IQR estimate 
for the corresponding segment, time, and date, as these trips likely be 
dropped from the Bluetooth speed measurements. 

After applying these filters, I am left with 221 trip matches, which are 
summarized in Table C.1 . The regression coefficient reflects a difference 
in means between TNC trip speeds and the segment speeds recorded at 
corresponding times. On average, TNC vehicles traversed segments 0.03 
minutes per mile slower than did the average recorded vehicle. This dif- 
ference is not statistically significant, and under reasonable assumptions 
about TNCs as a share of total vehicles (5–15%), should not generate 
meaningful bias in the results reported above. 

A shortcoming of this test is that I only observe drivers while they 
have a passenger in the car. This test will not identify differences caused 
by passengerless TNCs driving systematically above or below the flow 

of traffic. Note that the most extreme cases of this activity (e.g., idling 
while waiting for passengers) will be dropped by the IQR filter. 

Appendix D. Robustness 

In this section, I investigate the robustness of my results to alterna- 
tive specifications and alternate road segment groups. Table D.1 shows 
the results of difference in difference regressions using alternate linear 
trend and weighting specifications. Table D.2 shows the results of run- 
ning Eq. 1 on different sub and supersets of the Bluetooth data used in 
the main analysis. My results are stable over these specifications: The 
F-test rejects the null that the hour-specific effects are jointly zero. Ad- 
ditionally, the estimated annual congestion cost of TNC activity is of a 
similar magnitude to my preferred specification in each of these alter- 
native specifications. 

Fig. D.1 plots estimated regression discontinuity and difference in 
differences coefficients pooling over hours of day for symmetric band- 
widths ranging from 20 to 70 days about May 9 th . The regression dis- 
continuity results are stable over this range. The difference in differ- 
ences results show positive, but not statistically significant point esti- 
mates for a small minority of bandwidths. Across all bandwidths, for 
both RD and DID specifications, point estimates of congestion impacts 
between 7 a.m. and 7 p.m. are negative. Taken together, the results pre- 
sented in Fig. D.1 are consistent with the conclusions in the body of this 
paper: daytime travel speeds in Austin likely increased following the 
exit of Uber and Lyft. 

Fig. D.2 displays regression discontinuity estimates of the impact of 
TNC departure on traffic speeds using the actual TNC exit date in rela- 
tion to the distribution of coefficients from 134 regression discontinu- 
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Table D1 
Alternate specifications. 

Hour of Day Model 1 Model 2 Model 3 Model 4 

𝛽ℎ 𝑝 𝛽ℎ 𝑝 𝛽ℎ 𝑝 𝛽ℎ 𝑝 

0 − 0.0606 0.26 − 0.0632 0.24 − 0.0789 0.21 − 0.1059 0.14 

1 − 0.0525 0.16 − 0.0550 0.13 − 0.0850 0.13 − 0.1405 0.09 

2 − 0.0505 0.09 − 0.0508 0.09 − 0.1007 0.12 − 0.0195 0.74 

3 − 0.0121 0.85 − 0.0158 0.81 − 0.1051 0.14 0.1506 0.27 

4 0.0911 0.38 0.0841 0.41 − 0.0795 0.38 0.1073 0.57 

5 − 0.0293 0.75 − 0.0365 0.71 − 0.1850 0.10 0.0886 0.66 

6 − 0.0568 0.58 − 0.0765 0.43 − 0.2831 0.03 − 0.0599 0.75 

7 − 0.1446 0.24 − 0.1647 0.16 − 0.3566 0.07 0.0425 0.85 

8 − 0.0583 0.67 − 0.1072 0.52 − 0.1727 0.26 − 0.3543 0.23 

9 − 0.0188 0.85 − 0.0589 0.58 − 0.1561 0.25 − 0.0924 0.55 

10 0.0318 0.59 0.0133 0.84 − 0.1190 0.25 0.0001 1.00 

11 − 0.1418 0.05 − 0.1445 0.04 − 0.0621 0.29 − 0.1327 0.14 

12 − 0.1730 0.05 − 0.1771 0.04 − 0.1745 0.05 − 0.1885 0.10 

13 − 0.1555 0.12 − 0.1615 0.09 − 0.1082 0.12 − 0.2408 0.08 

14 − 0.0176 0.71 − 0.0224 0.63 − 0.0379 0.42 − 0.0103 0.84 

15 − 0.0238 0.61 − 0.0304 0.49 − 0.0257 0.60 − 0.0026 0.97 

16 0.0657 0.35 0.0578 0.37 0.0515 0.33 0.0715 0.32 

17 0.0016 0.98 − 0.0028 0.96 0.0248 0.60 0.0360 0.49 

18 0.0500 0.57 0.0459 0.59 − 0.0102 0.85 0.0615 0.33 

19 − 0.0300 0.65 − 0.0285 0.65 − 0.0254 0.63 − 0.0327 0.57 

20 0.0004 1.00 − 0.0065 0.95 − 0.0192 0.76 0.0324 0.73 

21 0.0817 0.26 0.0775 0.27 0.0090 0.90 0.1261 0.08 

22 − 0.0709 0.42 − 0.0763 0.37 − 0.0491 0.51 − 0.0502 0.57 

23 − 0.0152 0.65 − 0.0235 0.53 − 0.1450 0.07 − 0.1187 0.04 

F-test 0.00 0.00 0.00 0.00 

Annual Cost − 33,605,827 − 49,764,126 − 91,753,234 − 54,047,223 

Notes : Results from Eq. 1 . Model 1 reproduces the results from my preferred specification, with year-segment specific linear trends. Model 2 includes only year- 
specific linear trends (i.e, pools across segments). Model 3 includes only segment-specific linear trends (i.e., pools across years). Model 4 uses the same specification 
as column 1, but weights observations (which are 15-min average travel times) by the number of vehicles observed. Bold coefficients are significant at the 10% 

level. The penultimate row reports the p-value from a joint hypothesis test of 𝛽ℎ = 0 ∀ℎ ; the final row reports annual costs using hourly VOT estimates from Austin’s 
MoPac freeway (see Appendix A ). 

Table D2 
Alternate segment groups. 

Hour of Day Group 1 Group 2 Group 3 

𝛽ℎ 𝑝 𝛽ℎ 𝑝 𝛽ℎ 𝑝 

0 − 0.0606 0.26 − 0.0379 0.44 − 0.0399 0.78 

1 − 0.0525 0.16 − 0.0482 0.08 − 0.1551 0.12 

2 − 0.0505 0.09 − 0.0412 0.19 − 0.0854 0.42 

3 − 0.0121 0.85 − 0.0125 0.74 0.0498 0.74 

4 0.0911 0.38 0.0547 0.39 0.0785 0.64 

5 − 0.0293 0.75 − 0.0124 0.87 − 0.0177 0.88 

6 − 0.0568 0.58 − 0.0147 0.84 0.2108 0.36 

7 − 0.1446 0.24 − 0.0899 0.35 − 0.1519 0.51 

8 − 0.0583 0.67 − 0.1080 0.35 − 0.1177 0.82 

9 − 0.0188 0.85 − 0.0448 0.51 − 0.2941 0.27 

10 0.0318 0.59 − 0.0162 0.73 − 0.1159 0.42 

11 − 0.1418 0.05 − 0.1416 0.05 − 0.2689 0.07 

12 − 0.1730 0.05 − 0.1246 0.19 − 0.3233 0.03 

13 − 0.1555 0.12 − 0.0956 0.28 − 0.3944 0.13 

14 − 0.0176 0.71 0.0029 0.95 − 0.1260 0.43 

15 − 0.0238 0.61 − 0.0217 0.56 − 0.0168 0.91 

16 0.0657 0.35 0.0435 0.47 0.0059 0.96 

17 0.0016 0.98 − 0.0307 0.62 0.0587 0.49 

18 0.0500 0.57 − 0.0222 0.76 − 0.0479 0.77 

19 − 0.0300 0.65 − 0.0520 0.30 − 0.1182 0.41 

20 0.0004 1.00 0.0036 0.97 0.0546 0.70 

21 0.0817 0.26 0.1056 0.10 0.0967 0.58 

22 − 0.0709 0.42 − 0.0468 0.60 − 0.1515 0.36 

23 − 0.0152 0.65 − 0.0243 0.48 − 0.1332 0.46 

F-test 0.00 0.00 0.00 

Notes : Results from Eq. 1 , applied different groups of road segments. Group 1 is my preferred specification, which 
uses all traffic segments which report in more than 70 percent of days in each year. Group 2 relaxes this level 
to segments that report in 30 percent of days. Group 3 uses only segments that report in every day of the study 
period. Bold coefficients are significant at the 10% level. The final row reports the p-value from a joint hypothesis 
test of 𝛽ℎ = 0 ∀ℎ . 
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Fig. D1. Bandwidth Sensitivity. Notes: This figure plots estimated difference in differences and regression discontinuity coefficients pooling over hours of day (a 
variation of Eq. 3 ) for symmetric bandwidths ranging from 20 to 70 days about May 9 th , 2016. Bars represent the 95% confidence interval using standard errors 
clustered by segment-week. Specifications with a bandwidth of over 45 days include a dummy for the SXSW festival. For reference, my preferred specification uses 
an asymmetric bandwidth of 45 pre-period days and 52 post-period days. 

Fig. D2. Regression Discontinuity Placebo Tests. Notes: This figure displays re- 
gression discontinuity estimates of the impact of TNC departure on traffic speeds 
in Austin, TX, using the actual TNC exit date (in red) in relation to the dis- 
tribution of coefficients from 134 regression discontinuities using placebo exit 
dates (in grey and yellow). The grey cells are results from 121 placebo regres- 
sion discontinuity dates that run every 20 days from 2015 to 2019 with a 30 
day bandwidth. The yellow cells are results from using the start/end of the UT 
semester as placebo regression discontinuity dates. I omit placebo regressions 
with significant amounts of missing data (missing more than 75% of days within 
the RD bandwidth). Controls in each regression are day of week, holiday, and 
segment fixed effects, segment-specific second-degree polynomials in days since 
May 9 th , and flexible controls for temperature and precipitation. Specifications 
with March dates include a dummy for the SXSW festival. 

ities using placebo exit dates. The results of this exercise suggest that a) it 
is unlikely for shocks to the Austin-area traffic system to create changes 
in travel speeds on the order of the estimates reported in Table 4 , and 
b) it is unlikely that the RD results reflect contemporaneous changes in 
traffic resulting from the end of the University of Texas, Austin semester. 

Appendix E. Segment length revisions 

The raw Bluetooth traffic data available on the Austin Open Data 
Portal show the lengths of traffic segments varying over time. Of the 
79 segments that I use in my analysis, 61 segment lengths changed dur- 
ing the study period, with the majority of these adjustments occurring 
on March 24 th , 2016. On average, these adjustments were small: only 
four segment lengths were adjusted by more than 4%. According to the 
data providers, these adjustments most likely reflect updated distance 
measurements, not the repositioning Bluetooth readers. As such, I use 
updated segment lengths to calculate average speeds in all time periods. 

To verify that this data quality issue does not constitute a threat 
to identification, I run a regression discontinuity about each segment 
length change. Of the 61 segments where lengths were adjusted, 47 had 
adequate data to run a regression discontinuity about the date where 
the segment length was changed. 8 of these 47 regression discontinuities 
registered statistically significant changes in traffic speeds. These results 
of these RDs are plotted in Fig. E.1 . 

Table E.1 shows that omitting these 8 segments from my study pool 
does not substantively change the results presented in the body of this 
paper. Columns 1 and 2 reproduce estimates from Table 4 , and columns 
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Fig. E1. Speed Around Segment Length Revisions. Notes: This figure plots coefficients from 47 regression discontinuity specifications estimated where the raw 

Bluetooth data showed a change in a segment length. Each cell corresponds to the estimated change in traffic speed (in minutes per mile) estimated about the date 
of a single length revision. Controls in each regression include day of week, holidays, SXSW, and hour fixed effects, segment-specific linear trends in days since 
adjustment, and flexible temperature and precipitation functions. Significant results are potted in red. Standard errors in all regressions are Newey-West. 

Table E1 
Sensitivity to segments with anomalous length revision data. 

𝛽 ( Table 4 ) 𝑠𝑒 𝛽 (Restricted sample) 𝑠𝑒 

Difference in Differences (All hours) − 0.02605 0.01701 − 0.02972 0.02462 

Difference in Differences (7 a.m. - 7 p.m.) − 0.06838 0.05295 − 0.06137 0.03211 

Regression Discontinuity (All Hours) − 0.10155 0.03535 − 0.06498 0.01899 

Regression Discontinuity (7 a.m. - 7 p.m.) − 0.13351 0.04331 − 0.08567 0.02529 

Notes : The first two columns reproduce the results from Table 4 , which reports difference in differences and regression discontinuity results pooled across the hours 
of the day ( Eqs. 1 and 3 , respectively). Columns 3 and 4 show results from the same regressions run on a sample that excludes the 8 segments that registered a 
statistically significant change in traffic speeds about the adjustment date. 

3 and 4 re-run these specifications excluding the 8 segments that reg- 
istered a statistically significant change about their readjustment date. 
Across all four specifications, analyses using a restricted pool of seg- 
ments suggest a modest increase in traffic speeds following the exit of 
Uber and Lyft from Austin. Note that the magnitude of the regression 
discontinuity results are sensitive to the exclusion of these 8 segments. 

Supplementary material 

Supplementary material associated with this article can be found, in 
the online version, at doi: 10.1016/j.jue.2020.103318 . 

CRediT authorship contribution statement 

Matthew Tarduno: Conceptualization, Methodology, Software, For- 
mal analysis, Data curation, Writing - original draft, Writing - review & 

editing, Visualization. 

References 

Anderson, M.L. , Lu, F. , Zhang, Y. , Yang, J. , Qin, P. , 2016. Superstitions, street traffic, and 
subjective well-being. J. Public Econ. 142, 1–10 . 

Angrist, J., Caldwell, S., Hall, J., 2017. Uber vs. taxi: A Driver’s eye view. NBER Working 
Paper 23891. 

Buchholz, N. , Doval, L. , Kastl, J. , Mat ějka, F. , Salz, T. , 2020. The Value of Time: Evidence 
From Auctioned Cab Rides. Technical Report. National Bureau of Economic Research . 

Clewlow, R., Mishra, G., 2017. Disruptive Transportation: the Adoption, Utilization, and 
Impacts of Ride-Hailing in the United States. Institute of Transportation Studies, Uni- 
versity of California, Davis Research Report UCD-ITS-RR-17-07. 

Cohen, P. , Hahn, R. , Hall, J. , Levitt, S. , Metcalfe, R. , 2016. Using Big Data to Estimate 
Consumer Surplus: The Case of Uber. Technical Report. National Bureau of Economic 
Research . 

Cramer, J. , Krueger, A.B. , 2016. Disruptive change in the taxi business: the case of uber. 
Am. Econ. Rev. 106 (5) . 177–82 

Currie, J. , Walker, R. , 2011. Traffic congestion and infant health: evidence from E-ZPass. 
Am. Econ. Rev. 3, 65–90 . 

Diamond, P.A. , 1973. Consumption externalities and imperfect corrective pricing. Bell J. 
Econ. Manag. Sci. 526–538 . 

Eliasson, J. , 2009. A cost–benefit analysis of the stockholm congestion charging system. 
Transp. Res. Part A: Policy Pract. 43 (4), 468–480 . 

Erhardt, G.D. , Roy, S. , Cooper, D. , Sana, B. , Chen, M. , Castiglione, J. , 2019. Do transporta- 
tion network companies decrease or increase congestion? Sci. Adv. 5 (5), eaau2670 . 

Goodman, L.A. , 1960. On the exact variance of products. J. Am. Stat. Assoc. 55 (292), 
708–713 . 

19 



M. Tarduno Journal of Urban Economics 122 (2021) 103318 

Greenwood, B.N. , Wattal, S. , 2015. Show me the way to go home: an empirical investi- 
gation of ride sharing and alcohol related motor vehicle homicide. Fox Sch. Bus. Res. 
Pap. (15–054) . 

Hall, J.D. , Palsson, C. , Price, J. , 2018. Is uber a substitute or complement for public transit? 
J. Urban Econ. 108, 36–50 . 

Hampshire, R. , Simek, C. , Fabusuyi, T. , Di, X. , Chen, X. , 2017. Measuring the impact of an 
unanticipated disruption of uber/lyft in austin, tx. Lyft in Austin, TX (May 31, 2017) . 

Inrix, 2017. INRIX Global Traffic Scorecard. 
Inrix, 2018. INRIX Global Traffic Scorecard. 
King, D. , Manville, M. , Shoup, D. , 2007. The political calculus of congestion pricing. 

Transp. Policy (Oxf) 14 (2), 111–123 . 
Knittel, C.R. , Sandler, R. , 2018. The welfare impact of second-best uniform-Pigouvian 

taxation: evidence from transportation. Am. Econ. J.: Econ. Policy 10 (4) . 211–42 
Leape, J. , 2006. The london congestion charge. J. Econ. Perspect. 20 (4), 157–176 . 
Li, Z., Hong, Y., Zhang, Z., 2019. Do ride-sharing services affect traffic congestion? an 

empirical study of uber entry. Working Paper. 
Mangrum, D., Molnar, A., 2018. The marginal congestion of a taxi in new york city. Work- 

ing Paper. 
New York Times, 2016. Uber and Lyft End Rides in Austin to Protest Fingerprint Back- 

ground Checks. 
New York Times, 2018. Uber Hit With Cap as New York City Takes Lead in Crackdown. 

New York Times, 2019. Your Taxi or Uber Ride in Manhattan Will Soon Cost More. 
Prud’Homme, R. , Bocarejo, J.P. , 2005. The london congestion charge: a tentative eco- 

nomic appraisal. Transp. Policy (Oxf) 12 (3), 279–287 . 
Rayle, L. , Shaheen, S. , Chan, N. , Dai, D. , Cervero, R. , 2014. App-Based, on-Demand ride 

services: comparing taxi and ridesourcing trips and user characteristics in san fran- 
cisco. University of California Transportation Center . 

Reuters, 2019. Uber and other taxi firms to pay London congestion charge. 
RideAustin, 2017. Comprehensive Ride Data. 
San Francisco Transit Authority, 2018. TNCs and Congestion. 
Schaller Consulting, 2018. The New Automobility: Lyft, Uber and the Future of American 

Cities. 
Small, K. , Verhoef, E. , 2007. The economics of urban transportation. Routledge . 
The 85th Texas Legislature, 2017. Texas House Bill 100. 
The City Council of Austin, 2015. Ordinance 20151217-075. 
The Texas Tribune, 2016. Austin’s Proposition 1 Defeated. 
Uber, 2015. Case Study Shows Our Impact in Austin. 
United States Census Bureau, 2015. American Commnity Survey. 
Vancouver Sun, 2019. Dan Fumano: Vancouver wants to charge Uber and Lyft users a 

congestion fee. 
Vickrey, W.S. , 1969. Congestion theory and transport investment. Am. Econ. Rev. 59 (2), 

251–260 . 

20 


	The congestion costs of Uber and Lyft
	1 Introduction
	2 Background and related literature
	3 Natural experiment
	4 Data
	5 Empirical strategy
	5.1 Timeframe
	5.2 Difference in differences
	5.3 Regression discontinuity
	5.4 Threats to identification

	6 Results and discussion
	6.1 Traffic speeds
	6.2 Heterogeneity and external validity
	6.3 Equilibrium response
	6.4 Congestion costs

	7 Conclusion
	Appendix A Revealed preference VOT estimates
	Appendix B Threats to identification from other modes of transportation
	Appendix C Threats to identification from TNC driving speeds
	Appendix D Robustness
	Appendix E Segment length revisions
	Supplementary material
	CRediT authorship contribution statement
	References


