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I. Introduction

Individual producers vary widely in terms of productivity. If these pro-
ductivity differences are driven by heterogeneity in skill sets across firms,
it stands to reason that some firms will be better at producing some prod-
ucts and worse at producing others. Whether such within-firm productiv-
ity dispersion exists is an important empirical question. However, to date
there has been very little work documenting whether within-firm hetero-
geneity is quantitatively important.
The lack of empirical evidence on within-firm productivity differences

is unlikely to be due to lack of importance or interest. For example, within-
firm productivity dispersion is often invoked in the finance literature to
understand why large, diversified conglomerates appear to trade at a dis-
count (Maksimovic and Phillips 2002; Schoar 2002).1 Similarly, a series
of papers in the international trade literature (Eckel and Neary 2010;
Bernard, Redding, and Schott 2011; Mayer, Melitz, and Ottaviano 2014,
2021) emphasize that within-firm heterogeneity can have important im-
plications for productivity growth, as competition shocks lead firms to
shed low-productivity varieties, increasing productivity.
Moreover, the magnitude of within-firm productivity dispersion is im-

portant for thinking about how firms might choose to optimally position
their products. In particular, while much of the empirical industrial or-
ganization literature has often emphasized the importance of demand
shifting product characteristics as a key strategic variable of the firm (e.g.,
Crawford 2012), another important dimension for thinking about where
a firm will locate in product characteristic and price space is the magni-
tude of within- and across-firm cost heterogeneity, which may be driven
by idiosyncratic productivity differences across product lines.2

Unfortunately, empirical evidence on themagnitude of within-firmhet-
erogeneity is primarily lacking because of data limitations. The standard
approach to measuring productivity uses production functions, which re-
quire an estimate of input use by output.However, the vastmajority of data
sets on manufacturing units record only input use at the firm or plant

1 Maksimovic and Phillips (2002) argue that this “conglomerate discount” arises as a re-
sult of comparative advantage differences across industry segments within the conglomer-
ate; highly specialized firms tend to be really good at one industry, while diversified firms
have less variability in productivity across industry segments, leading single-segment firms
to be more productive than conglomerates of a similar size. Schoar (2002), on the other
hand, shows that the conglomerate discount is primarily a transitory phenomenon, as
firm-level productivity decreases only after a plant operating in a new industry segment
is acquired. She argues that these effects are due to managerial inputs being focused on
integrating the new acquisition at the expense of incumbent industry lines.

2 This distinction between cost-based advantages and product-differentiation-based ad-
vantages is also often emphasized in the strategic management literature, e.g., Porter
(1980).
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level, rather than at the firm-product level, making the production func-
tion approach infeasible.3

To address these shortcomings, this paper provides three key contri-
butions. First, I develop a flexible recipe for identifying unobserved in-
put allocations and total factor productivity (TFP) across product lines
for multiproduct producers, using demand-side information.4 In partic-
ular, I show that standard duality results that follow from profit maximi-
zation conditions generate a mapping from observable output prices
and quantities to the unobservable input allocations for a wide class of
models that are commonly used in applied work. Second, I apply this ap-
proach to a panel of plants manufacturing machinery in India, in order
to compare the magnitude of within-producer heterogeneity to that of
across-producer heterogeneity. I find sizable within-plant heterogeneity,
accounting for around one-third of plant-product-level productivity dif-
ferences. These within-plant productivity differences are found to have
important quantitative implications: after estimating a within-plant core-
competency efficiency ladder as in Eckel and Neary (2010) and Mayer,
Melitz, and Ottaviano (2014), I find that removing an average plant’s
lowest-productivity variety increases the unweighted average of plant-level
log revenue–based TFP by 10%–65%. Third, I show that plants aremuch
more likely to drop low-productivity varieties, compared tohigh-productivity
varieties. These results provide evidence that within-producer productiv-
ity differences are being taken into account by the producers themselves.
Since firms appear to care about these within-firm productivity differences,
abstracting from this form of heterogeneity is unlikely to be innocuous,
as has been done in the vast majority of previous work on productivity
estimation.
This paper can be broken down into roughly two parts. In the first part,

which comprises section II, I outline how information in standard pro-
duction data sets can be used to identify within-firm productivity differ-
ences. The approach exploits the fact that firm-product output prices
and quantities contain information on within-firm input use. To illustrate

3 There are some key exceptions, including Lamorgese, Linarello, and Warzynski
(2015) and Garcia-Marin and Voigtländer (2017, 2019), who are able to estimate within-
plant productivity dispersion in Chile using a novel data set containing information on cost
shares by product line within a plant. Another important and related line of research in-
cludes Ichniowski, Shaw, and Prennushi (1997) and Ichniowski and Shaw (1999), who ex-
amine the effect of various management practices on production-line-specific productivity
within Japanese and American steel mills, using product-line-specific “uptime,” a novel
productivity measure available for their specific study that is proportional to production
delays.

4 Note that the approach assumes that the researcher has access to quantity data, and as
a result the measure of TFP identified in this paper is quantity TFP, or TFPQ, as described
by Foster, Haltiwanger, and Syverson (2008). I often simply refer to the object as “TFP,” un-
less a distinction must be made between TFPQ and revenue-based TFP, which I also con-
sider when aggregating to the level of a firm or plant.
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the basic idea behind the approach, consider a firm producing two out-
puts using labor. Suppose a researcher observes the level of output across
the two production lines, as well as the total quantity of labor purchased
by the firm. The key difficulty is that differences in output across produc-
tion lines can be due to either differences in labor input or differences in
unit labor requirements, thereby frustrating a researcher’s ability to esti-
mate within-firm TFP differences.
This problem can be solved by combining profit maximization condi-

tions with some restrictions on the shape of the production technology.
For example, suppose that a researcher is confident that both produc-
tion lines are characterized by constant returns to scale and that the mar-
ket for each output is perfectly competitive.5 Since firms are price takers,
the marginal cost of each product will have to equal its price. Given con-
stant returns to scale, this implies that the price of each good will equal
the wage over the unit labor requirements. This means that the ratio of
output prices within the plant will be proportional to the ratio of unit la-
bor requirements. Therefore, price variation provides information on rel-
ative productivity dispersion within a plant. One can combine this infor-
mation with the structure of the production technologies, as well as an
aggregate resource constraint, to generate four equations that uniquely
pin down the four unknowns: the two unobserved unit labor require-
ments and the two unobserved labor allocations.6

While the above example imposes strong assumptions (single-input
technologies, perfect competition, constant returns to scale), profit max-
imization separately identifies input allocations from within-firm TFP dif-
ferences for amuchwider class of pricingmodels and production technol-
ogies. These include models of oligopolistic competition and collusion,
which account for cross-product cannibalization effects, as well as more
general multiple-input production technologies with increasing or de-
creasing returns to scale. Unsurprisingly, this increased generality comes
at a cost; one must know the shape of a firm’s demand function to disen-
tangle the information contained in firm-product output prices on input
allocations from the information prices convey on differences in market

5 While the scale of the firm is theoretically indeterminate with constant returns to scale
and perfect competition, for this exercise one can consider a firm choosing an arbitrary
scale of production consistent with zero profits or consider an isolated local market with
a fixed quantity of inelastically supplied labor, where local wages adjust so that a represen-
tative firm earns zero profits by hiring all available labor.

6 More formally, since labor is the only input and production is characterized by con-
stant returns to scale, we can write Y j 5 AjLj , where j 5 1, 2 indexes products within
the plant, Aj is the unit labor requirement for output j, and Lj is the quantity of labor used
to produce j. This provides two equations. As long as labor is completely attributable to
each production line, this provides a third restriction, L1 1 L2 5 L, where L is the total
quantity of observed labor. Profit maximization and perfect competition imply that
P j 5 w=Aj for j 5 1, 2, which implies that P 1=P 2 5 A2=A1. This is the fourth condition nec-
essary to uniquely determine (A1, A2, L1, L2) using information on (Y 1, Y 2, P 1, P 2, L).
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power across production lines. However, as long as one observes outputs
and prices by product line, one can use standard demand estimation tools
to do this, as was previously exploited by Valmari (2016) in a setting where
monopolistic producers face isoelastic demand.More generally, as long as
one can recover product-level marginal costs from output and price infor-
mation, which Berry andHaile (2014) show is possible under very general
conditions, then one can use marginal cost information to recover firm-
product input allocations, which can then be used to recover within-firm
TFP differences.7

These new identification results suggest a straightforward, two-step rec-
ipe for estimating within-firm productivity dispersion in data sets that
contain information on output prices, quantities, and aggregate inputs.8

First, obtain an estimate of input use by product line by estimatingdemand
and imposing a conduct assumption to recovermarginal costs. Second, use
the estimates of plant-product input use to estimate a firm-product-level
production function. Since the approach allows for nonparametric speci-
fications of demand and the production function and does not explicitly
restrict howproductivity evolves over time, this recipe can easily be adapted
tomany theoretical and empirical settings, while also allowing researchers
to apply a variety of different estimators for demand and production func-
tions that are appropriate for the particular application.9

In the second key part of the paper, in sections III–V, I apply a variant
of this methodology to a panel of plants manufacturing machinery in In-
dia, using data from the 2000–2007 Annual Survey of Industries (ASI).
The magnitude of within-plant productivity differences is important to
understand in this setting, since multiproduct plants dominate manufac-
turing in India, while product turnover accounts for more than a quarter
of manufacturing net sales growth over the 2002–8 time period (Boehm,
Dhingra, and Morrow 2018). Whether this product turnover is also an

7 While marginal costs are directly proportional to TFP differences if there are constant
returns to scale, note that this is no longer true if there are increasing or decreasing returns
to scale. As a result, uncovering within-firm TFP differences can convey additional informa-
tion beyond what can be uncovered from simply examining marginal cost differences.

8 Examples of this type of data include the US Census of Manufactures used in Foster,
Haltiwanger, and Syverson (2008), the Belgian PRODCOM (production communautaire) data
used in Dhyne et al. (2017), the Canadian manufacturing data used in Baldwin and Gu
(2009), and the Indian Prowess data used in Goldberg et al. (2010b) and De Loecker et al.
(2016), as well as the Indian ASI (Annual Survey of Industries) data used in this paper.

9 While the approach does not explicitly require that researchers take a stance on the
law of motion for productivity over time, it does require that firms have full information
on their technology levels when choosing inputs. While this rules out proxy-variable ap-
proaches to production function estimation (e.g., Olley and Pakes 1996; Levinsohn and
Petrin 2003; Ackerberg, Caves, and Frazer 2015; Gandhi, Navarro, and Rivers 2020), other
popular estimators, such as dynamic panel (Blundell and Bond 2000) or cost-share-based
(Syverson 2004; Foster, Haltiwanger, and Syverson 2008; Backus 2020) approaches, can eas-
ily be applied.
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important source of productivity growth cannot be known unless themag-
nitude of within-firm productivity is estimated.
Applying the approach developed in this paper to the machinery,

equipment, and parts industry, I find that productivity varies widely across
production lines within the same plant, with within-plant variation in
TFPQ accounting for 36% of the variance in variety-level TFPQ differ-
ences. In general, a plant performing well in one product line does not
imply that it is equally good at producing other products; for example,
multiproduct plants producing a variety in the 90th percentile of the
TFPQ distribution for a particular product code will also produce other
products that are, on average, ranked only around the 60th–70th percen-
tile of their respective product codes.
I then use my estimates of within-producer productivity differences to

consider whether the extensive margin of product choice can drive
plant-level revenue-based productivity differences. For this purpose, I es-
timate a within-plant efficiency ladder by ranking each plant’s products
according to revenue-based TFP (“revenue efficiency”), which incorpo-
rates variation in both cost heterogeneity (TFPQ) and product appeal
at the product level.10 On average, removing a plant’s lowest-performing
product can generate 10% to just under 65% increases in the unweighted
average of plant-level revenue efficiency, with the largest gains accruing to
plants that produce only two products.
This paper concludes by providing estimates of the probability of drop-

ping a product conditional on variety-level revenue efficiency, TFPQ, and
product appeal. These results establish whether plants are actually aware
of these sources of heterogeneity when choosing their production sets,
which is a necessary condition for the various mechanisms related to
the “core-competence”models of multiproduct producers, such as Eckel
and Neary (2010) and Mayer, Melitz, and Ottaviano (2014), to be valid. I
find that plants are more likely to drop low-revenue-efficiency products,
with a 1 standard deviation decline in revenue efficiency being associated
with around a 6.5 percentage point increase in the probability of ceasing
production of that product. After further decomposing revenue efficiency
into common product-level shocks, as well a product’s relative TFPQ and
product appeal ranking within a product code, I find that plants aremore
responsive to demand-based product appeal variation than they are to
TFPQ variation. A 1 standard deviation decrease in appeal, holding the
productivity of all other products fixed, generates an increase in dropping
probabilities of around 13 percentage points. On the otherhand, a similar
shock to within-plant TFPQ generates an increase in product dropping of

10 The notion of product appeal used in this paper is based on a demand residual, as in
Khandelwal (2010), Amiti and Khandelwal (2013), and Hottman, Redding, and Weinstein
(2016).
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around 7 percentage points. These findings provide support for the core-
competence model of multiproduct producers, as plants appear to be be-
coming “leaner and meaner” as they drop varieties (Eckel and Neary 2010),
while clarifying that this mechanism is primarily driven by demand-side ap-
peal differences, rather than cost-side productivity differences.
Relationship to related literature.—This paper contributes to a growing lit-

erature on how to estimate the productivity of multiproduct producers.
Many approaches in this literature use information on multiple outputs
to recover an estimate of firm-level productivity only. This is accom-
plished by using a firm-level output index to deflate total revenues, as in
Eslava et al. (2004) and Smeets and Warzynski (2013), making use of an
explicit within-firm aggregation model, as in Balat, Brambilla, and Sasaki
(2016) and Eslava and Haltiwanger (2018), or by using a firm-level mea-
sure of technologydifferences formultiple-output technologies, as inCaves,
Christensen,andDiewert(1982),or,morerecently,MaicanandOrth(2021)
and Malikov and Lien (2021). While certainly useful for many questions,
these approaches cannot estimate within-firm efficiency differences.11

An alternative approach estimates within-firm input allocations that
apply to a firm-product-specific production technology.Many papers sim-
ply use revenue shares for this purpose, including Foster, Haltiwanger,
and Syverson (2008), Atalay (2014), and Collard-Wexler and De Loecker
(2015). A direct implication of the approach developed in this paper is
that revenue shares are the correct way to allocate inputs, as long as there
are no within-producer differences in markups and the production tech-
nology is homogeneous and identical across production lines, up to variety-
specific TFP differences.12

De Loecker et al. (2016), Valmari (2016), Itoga (2019), and Gong and
Sickles (2021) also provide models that can be used to uncover unob-
served input allocations. The approach developed in De Loecker et al.
(2016) allows a researcher to estimate input allocations without taking
a stance on demand or the form of competition but also requires that
there be no within-firm TFP dispersion, which by assumption rules out
the within-firm efficiency differences that are the core object of interest
in this paper. Valmari (2016), using a model with Cobb-Douglas produc-
tion technologies and monopolistic producers facing isoelastic demand,
shows that one can use output price and quantity information to estimate
input allocations when there is unobserved TFP variation within a firm,

11 It is worth noting that while the index-number approach is often applied to uncover
firm-level measures of productivity, the general approach to uncovering input shares and
within-firm productivity dispersion used in this paper shares some similarities with the index-
number approach used in Caves, Christensen, and Diewert (1982), as both approaches rely
on duality results to provide estimates of various unobservables.

12 Collard-Wexler and De Loecker (2015) also remark that revenue shares are appropri-
ate in their setting as long as markups are constant within firm, although their approach
assumes no within-firm TFP dispersion.
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assuming that productivity shocks are realized before all inputs are cho-
sen, as well as zero adjustment costs for reallocating dynamic inputs across
product lines. Itoga (2019) follows a similar strategy while instead allowing
for oligopolistic competition with nested CES (constant elasticity of sub-
stitution) demand.Gong and Sickles (2021) impose exogenous output prices
while also considering some different timing assumptions in a firm’s in-
put allocation decision and also allowing for productivity shocks that are
unobserved by the firm when choosing inputs.
This paper provides a flexible recipe for identifying the unobserved in-

put allocations, allowing for parametric and nonparametric specifica-
tions of the production technology as well as a wide class of parametric
and nonparametric demand systems involvingmonopolistic competition,
oligopoly, or collusive conduct. For this purpose, the assumptions of cost-
less transferability of dynamic inputs, as well as the timing of the produc-
tivity shocks described in Valmari (2016), are crucial. However, this paper
improves on past work in this area in three key ways. First, this paper shows
that as long as the production function is homogeneous of degree f > 0
and output elasticities do not vary across product lines, then output prices
and quantities fully reveal input allocations, without requiring knowledge
of the production function parameters. This allows the researcher to di-
rectly includemultiproduct firms in production function estimation, which
cannot be accommodated by the framework developed in De Loecker et al.
(2016). Moreover, since input use is uncovered independently of produc-
tion function parameters, the researcher can avoid complications gener-
ated by the simultaneous estimation of input allocations and production
function parameters, as is done in Valmari (2016) and Gong and Sickles
(2021). Finally, by considering identification in a general nonparametric
setting that allows for a number of different modes of competition, this
paper provides a simple recipe for identifying unobserved input alloca-
tions, the input allocation rule, which applies to a wide class ofmodels that
are commonly used in empirical work. This will allow other researchers to
apply these results to their preferred models of interest, rather than lim-
iting attention to the particular models and functional forms considered
in previous papers.
An alternative approach to estimating firm-product efficiency is devel-

oped by Dhyne et al. (2017, 2021). Rather than estimating input alloca-
tions, they estimate a firm-level production technology, the transformation
function, to identify firm-product efficiency differences. One advantage of
their approach is that it can apply to settings where there is joint produc-
tion; that is, a firm’s technology cannot be representedbyfirm-product pro-
duction functions, as some inputs may be used in multiple product lines si-
multaneously. This paper, on the other hand, provides a comprehensive
framework for uncovering within-firm productivity dispersion in nonjoint
production settings, where firm-product production functions are well
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defined. An advantage of this framework is that it generates well-defined
measures of productivity dispersion at the product level, even if firms pro-
duce different output sets.13 As a result, the framework developed in this
setting allows for direct estimationof a core-competence efficiency ladder,
as in Eckel and Neary (2010), Mayer, Melitz, and Ottaviano (2014), and
Arkolakis, Ganapati, and Muendler (2021), which quantifies the degree
towhich product-level efficiency falls as firms addnewproducts and there-
fore move production away from their most efficient production line.
The empirical results in this paper are closely related to those of Garcia-

Marin and Voigtländer (2017), who also estimate within-firm TFP disper-
sion, although in a special setting where they directly observe cost shares
by product line, which they use to allocate inputs.While their paper shares
an interest in testing various implications of the core-competence model
of multiproduct firms, their focus is primarily on intensive-margin reallo-
cations, rather than the extensivemargin—for example, product dropping.
By focusing on the extensive margin of adjustment, my paper provides
some of the first evidence that plants actually care about these sources of
heterogeneity, finding that plants are much more likely to cease produc-
tion of low-efficiency products, in terms of bothphysical efficiency (TFPQ)
and general demand-based product appeal. Such evidence is lacking in
previous literature on this topic, even though it is actually required by
many models of multiproduct producers, such as those described in Ber-
nard, Redding, and Schott (2010, 2011), Eckel and Neary (2010), and
Mayer, Melitz, and Ottaviano (2014).
This paper also contributes to a growing literature on separately iden-

tifying the different sources of firm heterogeneity. I provide a unified
framework for identifying a number of importantmargins of firm hetero-
geneity, including across- and within-firm variation in TFP, quality, mark-
ups, and marginal costs. Previous approaches have largely used techniques
that can uncover only a subset of these different margins, including Foster,
Haltiwanger, and Syverson (2008) and Jaumandreu and Yin (2016), who
focus on separately identifying demand- versus supply-side heterogeneity;
DeLoecker andWarzynski (2012) andDeLoecker et al. (2016), who focus
on separately identifyingTFPandmarkups; Forlani et al. (2016) andBlum
et al. (2021), who identify markup, demand, and productivity differences;
Goldberg et al. (2010a, 2010b), who focus on identifying within-firm
improvements driven by product adding and dropping; and Hottman,
Redding, and Weinstein (2016), who provide a framework for separately

13 This advantage is not shared by the approach developed by Dhyne et al. (2017, 2021),
since their approach relies on a log-linear transformation function; in this setting, a single-
product producer cannot be operating on the same log-linear transformation function as a
two-product producer, as one of the function’s arguments would go to negative infinity. As
a result, producers with different output sets operate fundamentally different technolo-
gies, and therefore the relevant residuals, which would form the basis of productivity com-
parisons, are not directly comparable.
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identifyingmarkups, product appeal, andmarginal costs across andwithin
firms.

II. Theoretical Framework

A. Model Assumptions

During each period t, a set of differentiated products, Ωt, are sold on the
market by Nt firms. Each product is produced by a particular firm i, with
Yit ⊂ Ωt denoting the set of products produced by firm i 5 1, 2, ::: ,Nt ,
and Jit 5 jYit j denoting the number of products produced by the firm.14

Each product (or variety) j ∈ Yit is produced using the following produc-
tion technology:

Y
j
it 5 expðqit

jÞF ð~X j
itÞ, (1)

where Y j
it is total output of variety j ∈ Yit , ~X

j
it is the vector of inputs used in

the production of j, and q
j
it is log TFP, or productivity, of variety j.

To obtain an input allocation rule that depends only on demand-side
data (prices, quantities, and demand elasticities), I require that the pro-
duction function satisfy the following restrictions.
Assumption 1. F(⋅) is continuous and differentiable, equal to zero if

any of its arguments are equal to zero, strictly increasing in all arguments,
quasi-concave, and homogeneous of degree f > 0.
Assumption 2. The production technology differs across product

lines within a firm only as a result of differences in q
j
it ; that is, F(⋅) does

not depend on j ∈ Yit .
Assumption 1 largely imposes standard regularity conditions on the

production function, while still allowing for nonparametric specifica-
tions of the production technology. Assumption 2 requires some further
discussion, as it differs from related work in important ways. First, note
that this assumption allows the TFP shifters, q j

it , to differ by product line
in a completely flexible way—in particular, firms can be good at produc-
ing some products while being worse at producing others. This allows a
researcher to investigate questions related to the degree of efficiency dif-
ferences across product lines, which cannot be done using the framework
described by De Loecker et al. (2016), which requires that q j

it 5 qit . On
the other hand, this restriction does require ruling out productivity dif-
ferences that are not Hicks neutral, such as factor-specific productivity
differences.
Relatedly, requiring that the shape of the production technology, F(⋅),

not differ across production lines may appear more restrictive than
the setting considered in De Loecker et al. (2016), who state that their

14 In what follows, the operator F⋅F always refers to the number of elements in a given set.

2780 journal of political economy



approach allows the technology to be product specific. Note, however,
that assumption 2 guarantees that the share of inputs allocated to each
production line does not depend on the identity of the input, or input
proportionality, which is also required by De Loecker et al. (2016).15 As
a result, violating assumption 2 violates the input proportionality restric-
tions that are simply assumed by De Loecker et al. (2016), and therefore
it is not more restrictive than their setting. More importantly, in practice
most production data sets have only enough observations to feasibly esti-
mate production function parameters at the level of an industry or sector,
rather than at the product level. In these situations, the appropriateness of
assumption 2 can be examined simply by checking the prevalence of firms
producing in multiple industries.16

While the production technology can use an arbitrary number of in-
puts, I require that eachfirmuse at least one static input, such asmaterials,
that can be purchased from the market each time period according to
some knownprice schedule; the next assumption states thismore formally.
Assumption 3. F(⋅) takes as an input at least one element from the set

M, whereM is a set of static inputs that can be purchased for one-period
use from the market according to some known price schedule WM

it 5
WM ðoj∈Yit

M
j
it , A

M
it Þ for each M ∈ M, where AM

it is a vector of input price
shifters.
Note that assumption 3 allows (but does not require) input buyers to

have price-setting power, as in the monoposony/oligopsony literature
(e.g., Robinson 1933; Card et al. 2018; Berger, Herkenhoff, and Mongey
2021).17 If producers have no input market power, then one can simply
write W M

it 5 WM ðAM
it Þ; that is, wages do not depend on the total quantity

of inputs purchased. Note that the core requirement embodied in as-
sumption 3 is that there exists at least one input that does not have dy-
namic implications.

15 The version of input proportionality assumed in De Loecker et al. (2016), which re-
quires that value shares not vary with the identity of the input, or value proportionality,
is slightly different from the form of input proportionality implied by assumption 2, which
generates quantity proportionality, where input quantity shares do not depend on the
identity of each input. Note, however, that if the input prices for input X being used in
product line j by firm i can be written as W Xj

it 5 W X
t � W j

it , which De Loecker et al. (2016)
assume when using same input price control function for each input, then quantity propor-
tionality implies value proportionality. More importantly, violations of quantity proportional-
ity imply violations of value proportionality if input prices satisfy W Xj

it 5 W X
t � W

j
it . To see

this, suppose that a two-product firm has a higher capital-labor ratio in product line 1 than
in product line 2, thereby violating quantity proportionality. Value proportionality will hold
only if the ratio of capital to labor prices is lower in product line 1 than in product line 2. This
is impossible, since W K1

it =W L1
it 5 W K

t =W L
t 5 W K2

it =W L2
it .

16 In my empirical application, I also test for within-industry variation in the production
function using single-product plants and cannot reject the null hypothesis of equal, iden-
tical production functions across 2-digit codes.

17 See also Morlacco (2018), Brooks et al. (2021), and Rubens (2021) for recent work
examining input market power using production function estimation.
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Production may also use dynamic inputs, such as capital, which are ac-
cumulated through an investment process. Each dynamic input K ∈ K,
evolves over time according to a law of motion Kit 5 lK ðKi,t21, I K

i,t21, I
K
it Þ,

where Kit is the stock of dynamic input K used in firm i at time t, and
I K
it is firm i’s investment in dynamic input K at time t. Note that I in-
clude both contemporaneous investment (I K

it ) and lagged investment
(I K

i,t21) in the law of motion for dynamic inputs, so that the notation is
general enough to encompass both predetermined inputs, in which case
lK ðKi,t21, I K

i,t21, I
K
it Þ 5 l K ðKi,t21, I K

i,t21Þ, andmodels of adjustment costs where
dynamic inputs can adjust to contemporary shocks (e.g., Bond and Sö-
derbom 2005), in which case lK ðKi,t21, I K

i,t21, I
K
it Þ 5 l K ðKi,t21, I K

it Þ.18 Invest-
ment, as well as upkeep of the current stock of dynamic input K, costs
the firm dK ðKit , I K

it Þ. This setup allows dynamic inputs to face adjustment
costs at the firm level. I require, however, that there not be any adjust-
ment costs within a firm. In particular, I assume the following.
Assumption 4. All inputs can be costlessly transferred across produc-

tion lines.
Note that assumption 4 is immediately satisfied for the definition of

static inputs described by assumption 3. For dynamic inputs, assumption 4
means that each firm i can reallocate their stock of dynamic inputs K ∈ K

into any of their production lines at zero extra cost, with K
j
it denoting the

quantity of dynamic input K ∈ K going into production line j ∈ Yit . While
this a relatively strong assumption, as it rules out unobserved adjustment
costs of capital within a firm, it is necessary to allow for dynamic adjustment
costs at the level of a firm. In particular, if there are unobserved dynamic
adjustment costs for capital by product line, the optimal allocation of cap-
ital in each period will generally depend on the stock of capital used in
each product line in the previous period. This adds another jYit j 5 Jit
unobservables that would have to be pinned down to solve the input al-
location problem, which is unlikely to be feasible, particularly if themag-
nitude of adjustment costs varies across firms. On the other hand, note
that assumption 4 is entirely consistent with dynamic adjustment costs
(e.g., time to build) for capital across firms, since costless transferability
of capital means that the capital allocations are no longer a state variable
in the firm’s problem.19

18 In my empirical application, I assume that capital is predetermined, while I allow labor
to adjust to productivity shocks in the current period while still involving some dynamic im-
plications due to adjustment (e.g., hiring and firing) costs.

19 Gong and Sickles (2021) consider an important alternative to assumption 4, although
this assumption weakens the degree to which one can allow for adjustment costs at the level
of a firm. In particular, they assume that capital stock used at time t in each product line j is
decided at time t 2 1. However, the product-line-specific capital stock in this setting is
bought at a constant marginal cost and fully depreciates each time period. The setting con-
sidered in this paper allows capital to follow an arbitrary accumulation process at the level
of a firm, such as processes involving partial depreciation of capital over time, as is standard
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Given these assumptions, it will be useful to distinguish between input
allocations, which describe the allocation of inputs across uses within a
firm conditional on the aggregate resources firm i commands, and aggre-
gate input vectors, which correspond to the total quantity of inputs used
by the firm i in period t. Formally, I denote input allocations by the input
matrixXit , with typical element ( j,X) equal to X

j
it , which denotes the total

quantity of input X ∈ ðK,MÞ allocated to production line j ∈ Yit . On the
other hand, I denote aggregate input vectors by ~Xit ; ð~Kit , ~MitÞ, where ~Kit

is the vector of dynamic input stocks owned by firm i at time t and ~Mit is
the vector of total static inputs purchased by firm i.
I make the following assumption to ensure that input allocations are

well defined.
Assumption 5. Aggregate inputs, ~Xit , are completely attributable to

production lines:X j
it 5 S

jX
it Xit , where S

jX
it ∈ ½0, 1� andoJit

j51S
jX
it 5 1, for any in-

put X.
Note that assumption 5 rules out public inputs, such as an input that can

be used in more than one production process at once. This assumption
may limit the role of economies of scope due to cost savings generated by
public inputs, as described in Baumol, Panzar, and Willig (1982). While
my baseline approach, which allows for general production technologies,
cannot account for this, I show in section II.C.2 that this restriction can be
relaxed for some types of public inputs if the technology is Cobb-Douglas.
Moreover, assumption 5 is compatible with some economies of scope as
long as they are embodied in TFP differences, rather than differences in
the shape of the production technology, as was pointed out by De Loecker
et al. (2016).
I also make the following restriction on the relationship between in-

puts and outputs.
Assumption 6. The input sets ðK,  MÞ do not contain any products

produced within the same firm; that is, Yit /⊂ ðK,MÞ.
Assumption 6 does not allow plants to produce and sell products that

are also used as inputs into one of their other outputs, such as a vertically
integrated T-shirt producer who also produces and sells cotton fabric.
The methods outlined in this paper do not easily generalize to this case,
as the input allocation rules in this setting will critically vary with the
input-output structure of each production process.
The next set of assumptions describes the industry structure. I assume

that each product sold on the market faces a downward-sloping demand
function,Q j

itð~Pt ,~htÞ, where~Pt is the vector of prices charged for each prod-
uct and~ht is the vector of product characteristics for each product. Note
that the demand function depends on the entire vector of prices charged

in many other settings; e.g., Olley and Pakes (1996). See also sec. II.C.3 for an alternative
approach that allows the researcher to relax this restriction for some inputs.
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on the market, ~Pt , allowing for fairly general patterns of cross-product
substitutability. Letting ~Qitð~Pt ,~htÞ denote the vector of demand functions,
I also require that the overall demand system satisfy the following restric-
tion, described inmore detail in Berry, Gandhi, andHaile (2013) and Berry
and Haile (2014).
Assumption 7. The demand system ~Qitð~Pt ,~htÞ exhibits connected

substitutes in prices.
Assumption 7 is a fairly weak restriction that is satisfied by most of the

demand systems used in applied work. Roughly speaking, this restriction
requires that all goods be weak substitutes for each other (demand for
each good j is nondecreasing in the price of all goods k ≠ j) and that
some goods are strict substitutes for one another (demand for good j is
strictly increasing in the price of some subset goods m ≠ j).
Finally, I assume that firms optimally choose inputs and outputs; as-

sumption 8 states this more formally.20

Assumption 8. Each firm chooses their aggregate input vectors ~Xit ,
the allocation of each input across production linesXit , a vector of output
prices~Pit , and a vector of investment levels~Iit to maximize the present dis-
counted value of their profits, given the laws of motion for the dynamic
inputs, the aggregate demand system, their output setsYit , the set of prod-
ucts produced by other firms Y2i,t ; Ωt ∖Yit , the vector of firm-level TFP
terms~qit , the vector of firm-level input price shifters~Ait , the vector of prices
charged by all other firm~P2i,t , the vector of lagged stocks of dynamic inputs
~Ki,t21, and the market-level vector of product characteristics~ht .
The Bellman equation associated with assumption 8 is

Vt xitð Þ 5 max
~Iit ,Xit ,~Xit ,~Pit

o
j∈Yit

P
j
itQ

j
it
~Pt ,~ht

� �
2 o

M∈M
o
j∈Yit

WM o
j∈Yit

M
j
it , A

M
it

 !
M

j
it

2 o
K∈K

dK ðKit , I
K
it Þ 1 bEfVt11 xi,t11ð Þjxitg,

subject to

expðq j
itÞF ð~X j

itÞ ≥ Q j
it
~Pt ,~ht

� � 8 j ∈ Yit ,

o
j∈Yit

X
j
it 5 Xit 8 X ∈ K,

Kit 5 l K ðKi,t21, I
K
i,t21, I

K
it Þ 8 K ∈ K,

(2)

where xit ; ðYit ,Y2i,t ,~qit ,~Ait ,~P2i,t , ~Ki,t21,~htÞ.
20 While this formulation of the firm’s problem assumes Bertrand competition, i.e., Nash

equilibrium with price setting, I show in app. B that one can obtain the same results under
Cournot competition, or Nash equilibrium with quantity setting.

2784 journal of political economy



While equation (2) is a fairly standard profit maximization problem,
there are some features of the problem that are worth emphasizing. First,
note that this formulation of the firm’s problem takes each firm’s output
sets, Yit , as given. This means that the model I use to uncover the unob-
served input allocations does not discipline how firms choose their prod-
uct sets over time. In particular, while equation (2) implies that a firm op-
timally allocates inputs across product lines for a given output set Yit to
maximize the present discounted value of their profits, this problemdoes
not require that output sets be chosen optimally in any sense. Rather, the
key requirement is that firms choose their output sets in a way that does
not interact with the input choice problem.21 This means that questions
related to how firms choose their product sets, such as which products
they wish to drop, are testable in this framework.22 I return to this prob-
lem in section V.C, where I examine which products are most likely to be
dropped by an Indian plant.
Second, the firm conditions on the full vector of TFP terms,~qit , when

choosing their input allocations. This information requirement is neces-
sary for input allocations to be fully revealed by demand-side informa-
tion. While the empirical framework considered below will allow these
productivity shocks to be unobserved by the econometrician, necessitat-
ing a way to deal with endogeneity bias, note that this assumption rules
productivity shocks that are unobserved by both the firm and the econo-
metrician, as is common in the “proxy-variable” literature (Olley and
Pakes 1996; Levinsohn and Petrin 2003; Ackerberg, Caves, and Frazer
2015; Gandhi, Navarro, and Rivers 2020).23 Finally, even though there
are dynamic adjustment costs due to the inclusion of the dK(⋅) functions,

21 For example, a model where firms choose their output sets optimally, as in Mayer,
Melitz, and Ottaviano (2014), can be accommodated as long as the fixed costs of produc-
ing each good are paid in nominal (dollar or rupee) units, rather than input units (e.g.,
labor units). In the latter case, the firm’s input allocation problem would have be modified
to account for these extra fixed costs that interact with the firm’s labor choice, which is in-
consistent with assumption 8.

22 Relatedly, note that I have not fully specified the law of motion for all state variables in
xit. This is intentional, as the subsequent theorem on recovering the allocation of inputs
does not depend on the law of motion for all state variables. Rather, theorem 1 will be valid
for any process governing the evolution of xit as long as each plant’s per-period payoffs take
the form described by eq. (2). This includes flexible specifications of the law of motion for
productivity, which can depend on endogenous firm choices such as R&D, as in Do-
raszelski and Jaumandreu (2013).

23 The core reason for this is that these extra shocks generates an extra set of jYit j un-
knowns. Each of these shocks would end up being arguments in the input allocation rule
derived below, which would severely complicate estimation. That said, this assumption is
not arbitrary, nor is it without economic content. Rather, the key assumption here is that
producers know their productivity levels; i.e., I am considering a full-information rather
than an imperfect-information model. This is a standard approach in empirical industrial
organization that focuses on modeling price competition from the demand side (e.g., Berry
1994; Berry, Levinsohn, and Pakes 1995), which also forms the basis of the input allocation
rule derived below.
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since demand depends entirely on a vector of current prices, there will be
no dynamic pricing in this model, except insofar as the set of dynamic in-
puts affect marginal costs.24

B. Identifying Unobserved Inputs Using
Demand-Side Data

I now show that assumptions 1–8 imply a mapping from observable prices
and quantities to the unobserved firm-product input allocations. First,
note that since dynamic inputs are costlessly transferable across uses within
the firm (assumption 3) and F(⋅) is strictly increasing in all of its inputs (as-
sumption 1), each firm will choose an input allocation that minimizes to-
tal static input costs conditional on its stock of firm-level dynamic inputs
~Kit and some desired set of output levels ~Yit . More formally, any solution
to equation (2) will involve an input allocationXit that minimizes static in-
put costs, subject to some desired output levels Y j

it for each j ∈ Yit , and a
given stock of dynamic inputs. The Lagrangian for this conditional cost
minimization problem is given by25

L 5 2o
M∈M

o
j∈Yit

WM o
j∈Yit

M
j
it , A

M
it

 !
M

j
it 1 o

j∈Yit

l
j
it exp q

j
it

� �
F ð~X j

itÞ 2 Y
j
it

� �

1 o
K∈K

ςKit Kit 2 o
j∈Yit

K
j
it

 !
,

(3)

where lj
it is the Lagrangian multiplier for the production constraint and

ςKit is the Lagrangianmultiplier for resource constraint for dynamic input
K ∈ K.
Letting nXit 5 W X

it 1 ð∂WX ðoj∈Yit
X

j
it , A

X
it Þ=∂ðoj∈Yit

X
j
itÞÞoj∈Yit

X
j
it if X ∈ M and

letting nXit 5 ςXit if X ∈ K, the first-order necessary condition for any input
X j

it can be written as

2nXit 1 l
j
it expðqit

jÞ ∂F ð
~X j

itÞ
∂X

5 0: (4)

To obtain a simple input allocation formula that depends only on
demand-side information, I make use of the following lemma.
Lemma 1. If assumptions 1–6 hold, then there exists a solution to

the firm’s conditional cost minimization problem satisfying X j
it 5 Sj

itXit 8
X ∈ ðK,MÞ, where S

j
it ∈ ½0, 1� and oj∈Yit

S
j
it 5 1.

Proof. See appendix A.

24 Put differently, the pricing problem is entirely static, conditional on the set of dynamic
inputs chosen at time t.

25 A formal statement of the conditional cost minimization problem is stated in app. A.
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This result is a straightforward implication of homogeneous produc-
tion technologies. Since homogeneous production technologies gener-
ate isoquants that have constant slopes along any ray from the origin, this
means that a cost-minimizing firmwill choose constant input ratios across
production lines within the firm; that is, X j

it=Z
j
it 5 X k

it =Z
k
it for each X , Z ∈

ðK,MÞ and each j , k ∈ Yit . This immediately implies that the input shares
within a particular production line j do not depend on the identity of the
input, and therefore X

j
it=Xit 5 S

j
it 8 X ∈ ðK,MÞ.

As a result, assumptions 1–6mean that the vector of inputs allocated to
each production line can be written as ~X j

it 5 S
j
it
~Xit . Substituting this into

equation (4) and then using the fact that all of the partial derivatives of a
homogeneous of degree f > 0 function are homogeneous of degree
f 2 1, one obtains

nXit 5 l
j
it expðqit

jÞ S
j
it

� �f21 ∂F ð~XitÞ
∂X

: (5)

Divide this expression by Y j
it 5 expðq j

itÞF ðSj
it
~XitÞ 5 expðq j

itÞðSj
itÞfF ð~XitÞ,

which yields, after some minor manipulations,

Sj
it 5

∂F ð~XitÞ
∂X

l
j
itY

j
it

F ð~XitÞnXit
: (6)

One can then sum equation (6) over all j ∈ Yit , yielding ð∂F ð~XitÞ=
∂X Þð½oj∈Yit

l
j
itY

j
it �=½F ð~XitÞnXit �Þ. Dividing equation (6) by this expression yields

S
j
it 5

l
j
itY

j
it

ok∈Yit
lk
itY

k
it

5
MCj

itY
j
it

ok∈Yit
MCk

itY
k
it

, (7)

where the second equality follows from the envelope theorem l
j
it 5

∂Cð~Kit , ~Yit ,~qit ,~AitÞ=∂Y j
it ; MCj

it , where Cð~Kit , ~Yit ,~qit ,~AitÞ is the cost func-
tion for static inputs, conditional on the level of dynamic inputs ~Kit and
a desired level of output ~Yit .26

Equation (7) provides a simple input allocation rule, where the unob-
served input allocations are given by output times marginal cost shares.
Whilemarginal costs are almost always unobservable in any firm-level data
set, the input allocation rule becomes empirically useful after one notes
that many models of interfirm competition imply a direct mapping from
observable demand-side variables to unobservable product-level condi-
tionalmarginal costs. To see this, note that once the input allocationproblem
has been solved for any potential level of dynamic inputs ~Kit and desired out-
put levels ~Yit , one can determine the static conditional cost function and
substitute this into equation (2), yielding the simplified firm’s problem:

26 More formally, Cð~Kit , ~Yit ,~qit ,~AitÞ is the objective function associated with the solution
to problem (CM) in app. A.
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Vt xitð Þ 5 max
~Pit ,~Iit ,~Kit

o
j∈Yit

P
j
itQ

j
it
~Pt ,~ht

� �
2 C ~Kit , ~Qit

~Pt ,~ht

� �
,~qit ,~Ait

� �
2 o

K∈K
dK ðKit , I

K
it Þ 1 bEfVt11 xi,t11ð Þjxitg,

subject to

Kit 5 l K ðKi,t21, I
K
i,t21, I

K
it Þ 8 K ∈ K,

(8)

where I have used the fact that quantity produced will equal quantity sold
in equilibrium, that is, Y j

it 5 Q
j
itð~Pt ,~htÞ.

Taking the first-order condition for any P j
it in equation (8) yields

Q
j
it 1 o

k∈Yit

∂Qk
it

∂P j
it

P k
it 2 MCk

itð Þ 5 0, (9)

where the ∂Qk
it=∂P

j
it terms for k ≠ j are included to account for within-

firm cannibalization effects, that is, the effect of pricing in firm j on other
product lines.
One can then stack the Jt ; jΩt j first-order conditions defined by equa-

tion (9), which, inmatrix notation, defines the following systemof equations:

~Qt 1 Δt
~Pt 2 MC

��!
t

� �
5 0, (10)

whereΔt 5 Ot ∘ ∂t , with ∂t corresponding to a Jt � Jt matrix of demand de-
rivatives, with typical element ( j, k) equal to ∂Q j

it=∂Pk
mt and Ot being the

ownership matrix, with element ( j, k) equal to 1 if products j and k are
both produced by the same firm (i 5 m) and 0 otherwise.
Note that one can use equation (10) to solve for the equilibrium mar-

ginal costs as a function of quantities produced, prices, and demand de-
rivatives, by premultiplying by Δ21

t , yielding

MCt

��!
5 g ~Qt ,~Pt , ∂t ,Ot

� �
5 Δ21

t
~Qt 1 ~Pt : (11)

For the marginal cost inversion described by equation (10) to be valid,
Δt must be invertible. Berry and Haile (2014) show that a sufficient con-
dition for Δt to be invertible is that assumption 7 holds, a relatively weak
restriction that is satisfied by many of the demand systems used in ap-
plied work.27

27 While assumption 7 is a sufficient condition for Δ21
t to exist, it is not necessary. In par-

ticular, demand systems where some goods are complements, which will tend to violate as-
sumption 7, will often still generate a mapping from prices to marginal costs. This means
that eq. (7) can still be used to uncover unobserved input allocations in many settings with
complementary goods. See Song, Nicholson, and Lucarelli (2017), Thomassen et al.
(2017), Bokhari and Mariuzzo (2018), Ershov et al. (2021), Iaria and Wang (2021), and
Wang (2021) for examples of demand systems with complementarity that still generate
marginal cost inversions.
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An important point worth emphasizing is that as long as assumption 7
holds, Δt is invertible for any ownership matrix Ot . This means that this
marginal cost inversion is also possible under imperfect competition with
some forms of collusion, as long as the econometrician knows which
firms are colluding and which are not. In particular, as noted by Nevo
(1998), collusion between firms can be thought of as joint-profit maximi-
zation, that is, legally separate firms choosing their prices as if they were
one multiproduct firm.28 As long as the set of colluding firms fully inter-
nalize their pricing decisions across products, then this simply corre-
sponds to an alternative ownership matrix, O0

t , to that observed in the
data. For example, full market collusion simply corresponds to the case
whereO0

t is a Jt � Jt matrix of 1s, implying that all prices are chosen to in-
ternalize all possible cannibalization effects.
Combining equations (10) and (7) yields the following theorem.
Theorem 1. As long as the cost-minimizing input allocation is unique,

then assumptions 1–8 imply that the share of any input X ∈ ðK,MÞ going
into production line j ∈ Yit satisfies S

j
it 5 ½g j

it ð~Qt ,~Pt , ∂t ,OtÞY j
it �=½ok∈Yit

g k
it ð~Qt ,

~Pt , ∂t ,OtÞY k
it �, where each g

j
it ð�Þ is a known function of prices, quantities, de-

mand derivatives, and the ownership matrix.
Proof. The proof follows from the discussion in text and equations (7)

and (11), which will always hold if there is a unique solution to the firm’s
input allocation problem, as per lemma 1. Note that uniqueness of the
input allocation problem is guaranteed for standard homogenous pro-
duction functions such as Cobb-Douglas and CES, as it is straightforward
to verify that equation (4) implies that X j

it 5 S
j
itXit 8 j ∈ Yit . QED

C. Discussion and Extensions

The key significance of theorem 1 is that under the maintained assump-
tions, demand-side information (output prices and quantities) can be
used to infer the allocations of inputs across production lines, if demand
derivatives and ownership structures are known. This immediately sug-
gests a simple strategy for estimating within-firm TFP dispersion. First,
use price and quantity data to estimate the shape of the demand function.
Having estimated the demand function, the researcher can then obtain
estimates of demand derivatives at the product level and then apply theo-
rem 1 to obtain the allocations of inputs across production lines within a
firm. This provides the researcher with estimates of input use at the firm-
product level, which can then be used to estimate a firm-product level of
production function.

28 Note that this form of collusion requires that firms cooperate only in output markets,
i.e., through pricing first-order conditions, not through input markets; i.e., firms cannot
engage in labor or capital sharing.
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Note that since assumptions 1–8 do not require that the researcher
specify exactly how the various unobservables at the firm level, ð~qit ,~hitÞ,
evolve over time, this general recipe is flexible enough to allow for a wide
variety of estimation strategies for both the demand andproduction func-
tions. In particular, researchers are free to formally model the distri-
bution of ð~qit ,~hitÞ in various ways to identify the production and demand
parameters, through either maximum likelihood or instrument-based
GMM (generalized method of moments) methods.29

Under some further restrictions, input allocations can be recovered
without having to estimate parameters governing the demand system.
In particular, the following corollary follows immediately from theorem 1.
Corollary 1. If assumptions 1–8 hold, the cost-minimizing input

allocation is unique, and a firm charges the same markup m
j
it ; P

j
it=MCj

it 5
mit on all products, then input allocations are revealed by revenue shares.
Proof. By assumption, MCj

it 5 P
j
it=mit . Applying this to the input allo-

cation rule (7) yields

Sj
it 5

P
j
it=mit

� �
Y

j
it

ok∈Yit
P k
it=mitð ÞY k

it

5
P j
it Y

j
it

ok∈Yit
P k
it Y

k
it

:

QED
Note that the assumptions of corollary 1 are true for two well-known

cases. First, if outputmarkets areperfectly competitive, firmsdonot charge
a markup and therefore mj

it 5 1 8 j . Moreover, if variety-level demand for
eachproduct follows the sameCESdemand function, then afirmwill charge
the samemarkup on all products, as in Feenstra andMa (2007). Note that
this result does not require monopolistic competition or a continuum of
firms; rather, even if firms engage in Nash-Bertrand oligopoly pricing,
which implies different markups across firms, each firm will choose the
same markup across all products produced within the same firm, as a re-
sult of their internalization of cannibalization effects across their produc-
tion lines.30

Whenever firms charge different markups across production lines,
within-plant price variation also contains information on differences in
market power across production lines, which has to be accounted for

29 Note, however, that the estimation approach must be consistent with firms having full
information on ~qit when choosing inputs. This rules out proxy-variable-based production
function approaches, as I noted when discussing assumption 8. However, this approach still
allows for a number of alternative strategies based on various instrumental variables, dy-
namic panel-type approaches, or even cost-share-based approaches to identifying the pro-
duction function.

30 It is worth noting that variety-level CES is actually a slightly stronger requirement than
is necessary for this result; see Hottman, Redding, and Weinstein (2016), who consider
more general nesting structures which generate constant within-firm markups.
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when estimating unobserved input allocations. In suchmodels, onemust
first estimate the approximate shape of the demand system to recover
product-specific marginal costs for the input allocation rule (7).

1. General Functional Forms

To examine the role the functional form restrictions in assumptions 1
and 2 play, suppose first that Y j

it 5 expðq j
itÞF jð~X j

itÞ, where F j(⋅) is still dif-
ferentiable but is neither homogeneous nor quasi-concave.31 One can
then modify equation (4) to allow the production function to vary with
j and then divide this expression by Y j

it 5 expðq j
itÞF jð~X j

itÞ and rearrange,
yielding

X
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v
j
X
~X

j
it
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j
itY

j
it

nXit
, (12)

where v
j
X ð~X j

itÞ ; ð∂F jð~X j
itÞ=∂X ÞðX j

it=F
jð~X j

itÞÞ is the output elasticity for input
X ∈ ðK,MÞ. Summing equation (12) over all j ∈ Yit and dividing equa-
tion (12) by this new expression yields, after the envelope theorem is
applied,
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itY
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~X k

it
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Note that equilibrium input shares, if they exist, will form a fixed point
of the system of equations described by equation (13). More importantly,
this mapping does not depend on the unobservable TFP terms q j

it , imply-
ing that input shares may be separately identified from TFP if Fj is known,
even if assumptions 1 and 2 do not hold.32

While assumptions 1 and 2 are unnecessary if F j(⋅) is known, in general
the production functionmust also be estimated. This can lead to difficul-
ties in applying equation (13) in practice, since, if one wishes to use mul-
tiproduct firms to estimate the production function, one would have to
already know the production technology to determine their input alloca-
tions. To deal with this, one must either use only single-product firms to
estimate the technology and then solve for the input allocations using
equation (13), as in De Loecker et al. (2016), or use an estimator that

31 I consider the case of nondifferentiable production technologies in app.C.
32 Note that a fixed point is guaranteed to exist in eq. (13) for the case of heterogeneous

Cobb-Douglas production functions; i.e., F jð~X j
itÞ 5

Q
X∈ðK,MÞðX j

itÞb
j

X . Since output elasticities
are constant for each input with Cobb-Douglas, i.e., v j

X ð~X j
itÞ 5 b

j
X , eq. (13) simplifies to
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estimates input allocations and production function parameters simulta-
neously, as inValmari (2016)orGong and Sickles (2021). Both approaches
have limitations. The former approach, using single-product firms only,
may be subject to selection bias absent a correction that models the pro-
cess governing selection into producing multiple products, is potentially
less efficient than using all observations in the estimation algorithm,
and cannot allow single- and multiproduct plants to have fundamentally
different technologies.
On the other hand, the latter approach, which estimates input alloca-

tions and production function parameters simultaneously, may suffer
from identification problems, as it is no longer clear what sources of var-
iation can be used to separately identify output elasticities from input al-
locations. For example, following a GMM-based approach as in Valmari
(2016) will require formulating moment conditions that are inherently
nonlinear in the parameters to be estimated. Determining primitive con-
ditions under which thesemoments would uniquely pin down the param-
eters of interest is quite difficult, as described by Newey and McFadden
(1994), who note that, in practice, identification is often simply assumed
in nonlinear GMM settings. Moreover, since input shares depend on pa-
rameters in other production lines, this means that estimation would
have to be done simultaneously for all products belonging to a connected
set, that is, the set of firm-level product sets that overlap in at least one
product. This can generate a severe dimensionality problem, as the set
of nonlinear parameters that have to be estimated simultaneously grows
multiplicatively in the number of products in a connected set and the
number of inputs, which becomes intractable quite quickly.33 On the other
hand, invoking assumption 2 can allow the researcher to abstract from
these extra complications, obtaining an estimate of input use that does
not dependonunknownproduction functionparameters, allowing the re-
searcher to invoke standard arguments for identification of the produc-
tion function parameters used in past research on productivity in a firm-
level setting.

2. Public or Joint Inputs

It is also worth considering whether assumption 5 is appropriate, that
is, whether all inputs are attributable to each production line, so that
X j

it 5 SjX
it Xit , whereoj∈Yit

S jX
it 5 1 8 X . While this assumption ismade by ba-

sically all the literature that allocates inputs to deal with multiproduct

33 For example, if we consider a connected set of around half the available 2-digit HS
(harmonized system) codes in a production setting with three inputs (labor, capital, and
materials), this generates a problem with just under 150 nonlinear parameters that have
to be estimated simultaneously.
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firms, it is restrictive in the sense that it rules out public or joint inputs,
which may affect many production lines simultaneously, as in Baumol,
Panzar, andWillig (1982), generating economies of scope. I now show that
a variant of the identification result carries through for the special case of
Cobb-Douglas technologies with public or joint inputs.
Suppose that the use of some input Xit within a firm can be divided into

a public, or common, component, X C
it , and a rivalrous component, X R

it .
Rivalrous inputs X R

it can be allocated to only a single production line, as
in assumption 5, so that X jR

it 5 S
jXR
it X R

it , with oj∈Yit
S
jXR
it 5 1. Common inputs

are allocated to every production line automatically. Hence, the quantity
of effective inputs allocated to each production lines is given by X

j
it 5

X C
it 1 X

jR
it .

Suppose further that the public component of Xit is a constant frac-
tion of total inputs owned by the firm—that is, X C

it 5 kXXit and X R
it 5

ð1 2 kX ÞXit—and the production technology is Cobb-Douglas, so that
F ð~X j

itÞ 5
Q

X∈ðK,MÞðX j
itÞbX . Firms will then allocate their private inputs X R

it

across production lines to minimize static production costs conditional
on aggregate dynamic inputs. It is straightforward to show, following the
derivation in the text, that this slight modification implies that effective
inputs will satisfy the following:
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1 1 Jit 2 1ð ÞkX½ �Xit ,

(15)

where Jit ; jYit j is the number of products produced by firm i.34

While the fractions of public inputs, kX, are unobservable, and hence
the level of input usage will not be identified in this framework, note that
under Cobb-Douglas, equation (15) implies that the unobservable com-
ponent of these input allocations, ð Jit 2 1ÞkX , is observationally equiva-
lent to a TFP shifter received by multiproduct firms. To see this, substi-
tute equation (15) into the production function, yielding

Y j
it 5 expðq j

it 1 SCitÞ
Y

X∈ðK,MÞ
X̂ j

it

� �bX

, (16)

where X̂ j
it is the level of input usage obtained from theorem 1, and SCit is

the economies-of-scope shifter, given by SCit ; oX∈ðK,MÞbX lnð1 1 ð Jit 2
1ÞkX Þ.

34 Implicitly, this derivation assumes that rivalrous inputs are chosen to be nonnegative,
and this constraint is not binding; i.e., the firm does not wish to move common inputs from
one production line to another.
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Hence, when public inputs take this form, they are observationally
equivalent to TFP shifters that depend on the number of products pro-
duced by a firm. As a result, one can deal with the complications intro-
duced by public inputs by controlling for the number of products in the
production function estimation routine.35

Note, however, that under these assumptions the production function
residual, q̂ j

it , will be composed of both a “pure” TFP component and an
economy-of-scope shifter, SCit; that is, q̂

j
it 5 q

j
it 1 SCit . This means that

multiproduct firms may have higher measured TFP either because of se-
lection—that is, firms with high q

j
it terms are more likely to producemany

products, as emphasized by Bernard, Redding, and Schott (2010) and
Mayer, Melitz, and Ottaviano (2014)—or because of economies of scope—
that is, multiproduct production scales up input effectiveness as a result
of public inputs. Lacking a clean source of variation to distinguish be-
tween these two stories, I do not attempt to distinguish economies of
scope from selection in my empirical application, although I do use these
results to inform my identification strategy, which controls for scope ef-
fects (which could occur via selection or public inputs) through the num-
ber of product dummies.

3. Violating Costless Transferability

Assumption 4, which requires that inputs be perfectly transferable across
product lines, is unlikely to hold if some inputs face dynamic adjustment
costs that are product specific. For example, some product lines may re-
quire investment in specializedmachinery, or workersmay be required to
learn a particular set of specialized skills to produce a particular product.
In such settings, the lagged allocation of capital or labor will tend to affect
the future allocations of these inputs, complicating the task of uncover-
ing the unobserved input allocations by generating further unobservable
state variables.
Note, however, that for some questions a researcher may be content to

simply determine the allocation of static inputs, leaving the allocation of
these dynamic inputs to form part of the productivity residual. In partic-
ular, if some dynamic inputs are highly specialized, so that transferring
these inputs across products is largely infeasible, it may make more sense
to use productivity measures that include the effect of these specialized
inputs. In this setting, the unobserved dynamic input allocations for spe-
cialized inputs will simply act as components of a firm’s product-line-
specific technology that they can invest in and improve over time. More

35 More generally, one could allow the fraction of public inputs, kX, to depend on the sets
of outputs produced by the firm, in which case one would have to include product set fixed
effects.
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formally, suppose that Y j
it 5 expðq j

itÞ
Q

X∈ðK,MÞðX j
itÞbX , with 0 < bX < 1 8 X .

Further suppose that there exists some subset of specialized, dynamic in-
putsS ⊂ K that face product-line-specific adjustment costs, so that assump-
tion 4 does not hold. One can then define product-line-specific productivity
inclusive of the specialized dynamic inputs as q jS

it 5 q
j
it 1 oX∈Sb

X lnðX j
itÞ.

Substituting this expression into the production function yields the mod-
ified technology:

Y
j
it 5 expðq jS

it Þ
Y

X∈ðM,K ∖SÞ
X

j
it

� �bX

: (17)

Note that the production function
Q

X∈ðM,K ∖SÞðX j
itÞbX satisfies assump-

tions 1 and 2. As a result, one can immediately apply theorem 1 and un-
cover the remaining input allocations, using demand-side data. As long
as the remaining production function parameters can then be identi-
fied, the researcher will then be able to estimate q jS

it , which can be inter-
preted as product-line-specific productivity that includes the effect of
specialized investments in hard-to-transfer machinery or workers.36

While this provides one alternative path forward for researchers who
do not find assumption 4 appropriate, note that allowing unobserved in-
puts to form part of the production function residual generates further
identification challenges. Specifically, since the firm directly controls the
quantity of inputs used in a given production line by accumulating dy-
namic inputs, the residual itself is an endogenous variable, which will
tend to react to the same shocks as the remaining inputs in the produc-
tion function. I consider this problem in more detail in appendix D and
show that if one wishes to use all firms in the production function esti-
mation algorithm, one must use identification strategies different from
those commonly used in the production function literature.

III. Data

The primary data set used in this paper comes from the 2000–2007 Indian
ASI, provided by the Indian Ministry of Statistics.37 The sample frame
for the survey is all manufacturing plants in India that employ more than
10 workers. Plants with more than 100 workers (“census” plants) are

36 This result relies on the Cobb-Douglas functional form. If the production function
were to be homogenous of degree f > 0 but not Cobb-Douglas, then one cannot simply
treat unobserved dynamic inputs as analogous to a Hicks-neutral productivity shifter, since
fixing the quantity of one input generates a technology that is no longer homogeneous in
the remaining inputs.

37 Years in the ASI are recorded from April 1 to March 31. While the Ministry of Statistics
refers to years by the end year, I refer to years by the start year, since the majority of pro-
duction time takes place in that year. I follow this convention when matching the data
to other data sets (e.g., trade data).
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surveyed every year, while smaller plants are randomly sampled each year.
The data contain consistent plant-level identifiers across years, allowing
me to construct plant-level panels.38 As described in Martin, Nataraj,
and Harrison (2017), the panel data are of fairly high quality and cover
a much larger subset of Indian producers than other comparable data
sets for the country, such as Prowess.
I focus on a single industry in my empirical application: machinery,

equipment, and parts, the details of which are described in appendix E.
I focus on this industry for two reasons. First, I wish to focus on an industry
where it is appropriate to think of inputs as being directly allocated to dif-
ferent production lines, as per assumption 5. Unfortunately, this is not the
case for two of India’s largest industries, sugar and textiles, as many plants
in these industries produce groups of products that are by-products. In
particular, most refined-sugar producers also produce molasses, which is
generated by the refining process, while many cotton producers also pro-
duce cotton waste, a by-product of cotton production that is often resold
for further productionpurposes.Unfortunately, thismeans that theorem1
is unlikely to apply for these plants. Machinery manufacturing, on the
other hand, does not commonly generate by-products that are also sold
on the market by the same plant, making theorem 1 more likely to apply.
Second, to satisfy assumption 6, I wish to focus on industries where the

plant-level output sets are not driven by vertical integration concerns. If
some of the outputs produced and sold by a plant are also inputs in a ver-
tically integrated production line, then theorem 1 will not apply. Unfor-
tunately, this appears to be the case formany plants. After constructing an
input-output table, the details of which I describe in appendix E1, I find
that large portions of the observed revenue in industries such as steel,
food, and synthetic textiles are produced by multiproduct plants that
are potentially vertically integrated, in the sense that one of their outputs
is likely an input for another one of their production lines. While there
are some plants in the machinery, equipment, and parts industry that
produce product sets that may indicate vertical integration, as I docu-
ment in appendix E1, this is a smaller problem than in other industries.
The key variables used in this study are described in tables 1 and 2.

Each plant lists the revenues and quantities produced and sold for up
to 10 different products produced within the plant.39 Associated with

38 Since the unit of observation is a plant-item, rather than a firm-item, I consider sep-
arate plants as separate firms in my empirical analysis. For plants to approximate firms, I
implicitly assume that the firms that operate multiple plants decentralize the pricing deci-
sion to local managers or that within-firm, across-plant cannibalization effects are small
enough to be safely ignored.

39 Differences between quantity sold and quantity produced reflect inventory adjust-
ments. As I describe in app. E3, adapting the model described in sec. II to account for in-
ventory adjustments changes little in practice.
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each product entry is a 5-digit ASI commodity classification, or ASICC,
code, with just over 1,000 unique item codes belonging to the machinery,
parts, and equipment industry.40 Each ASICC code is associated with a
particular unit of quantity, such as kilograms, tonnes, or units sold, which
allows one to use the information on revenues and quantities to construct
a within-product-code consistent unit price, which I take to be item-level
prices.41 While each item produced by a plant is assigned a product code,
approximately 17% of plant-year observations report multiple entries for
the same product code. These are, according to the ASI documentation,
not to be regarded as duplicates, indicating that plants also report sepa-
rate product lines within a 5-digit ASICC code as well. In my empirical
analysis, I consider each entry as a separate variety of the same general
product class, rather than aggregating to the 5-digit ASICC code level.42

I take the inputs of the production function to be labor Lit, capital Kit,
and materials Mit. I measure labor input Lit by the number of man-days
worked and capital Kit with the perpetual inventory method. Since I ob-
serve information on the price and quantity of various inputs at the 5-digit
ASICC code level, to measure materials inputsMit in a manner that is not

TABLE 1
Plant-Product-Year Summary Statistics: Machinery,

Equipment, and Parts (69,516 Observations)

Variable Mean Standard Deviation Minimum Maximum Median

Log Revenue (r j
it) 15.87 2.59 1.39 25.14 15.88

Log Quantity Sold (q j
it) 7.65 4.17 26.91 24.17 7.46

Log Prices (p j
it) 8.23 3.6 23.05 21.43 8.26

Log Quantity Produced (y j
it) 7.78 4.18 25.52 24.19 7.64

Multiproduct .76 .43 0 1 1
Single Industry .5 .5 0 1 0
Vertical Integration .2 .4 0 1 0

Note.—Multiproduct, Single Industry, and Vertical Integration are all dummy variables.
Single Industry refers to products produced by plants that produce only products belong-
ing to ASICC codes 74–78. Vertical Integration refers to plants that produce output sets
that I classify as potentially vertically integrated, using information on input use by single-
product plants (see app. E1 for more details on the classification of potentially vertically
integrated plants). Revenue is measured in nominal rupees, while quantity sold and quan-
tity produced are measured in 5-digit ASICC code–specific units (kilograms, meters, number
of units, etc.). Prices are measured as unit values for quantity sold, i.e., the ratio of nominal
revenues in rupees, divided by quantity produced.

40 These product codes correspond to all product codes that belong to the 2-digit ASICC
categories 74–78. See app. E1 for more details and examples of the 5-digit codes.

41 Note that some product codes do not have quantity information. These account for
just over 12% of product-year observations in the data set and are dropped.

42 In practice, most multiproduct firms report a single variety of each product code. See
fig. 3, in app. E, for histograms of product counts by plant measured according to the num-
ber of unique entries in the ASI, vs. the number of unique product codes. The vast majority
of plants report less than 10 products using either approach to counting unique product
lines.
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subject to the input price bias discussed by De Loecker and Goldberg
(2014) and De Loecker et al. (2016), I deflate materials expenditures by
a plant-level Cobb-Douglas input price index. See appendix E3 for more
details.

IV. Estimation

To estimate within-plant heterogeneity, I work with a simple parametric
model that satisfies the assumptions of theorem 1. In particular, I assume
that the plant-product-level production technology is Cobb-Douglas:

Y j
it 5 expðq j

itÞ Lj
it

� �bL

K j
it

� �bK

M j
it

� �bM

: (18)

Since only aggregate inputs (Lit, Kit,Mit) are recorded in the ASI, before
estimating equation (18), I must first estimate ðLj

it , K
j
it ,M

j
itÞ using demand-

side data. For this purpose, I need to specify a demand system and a mar-
ket structure.
Let Λg

t denote the set of varieties belonging to product nest g, where
each product nest g corresponds to a 5-digit ASICC code, while a variety
j corresponds to a particular plant-product entry in theASI.43 I denote the
5-digit code a particular variety j belongs to as g( j), where g( j) should be
read a function corresponding to the mapping between varieties and
product codes.44 Demand for product j ∈ Λg ð jÞ

t ∈ Ωhð jÞ
t ⊂ Ωt—where Λg ð jÞ

t

and Ωhð jÞ
t are the sets of varieties belonging to 5- and 3-digit ASICC codes

~g 5 g ð jÞ and ~h 5 hð jÞ, respectively—is then given by45

43 Recall that some plants report multiple entries for the same product code, which I
treat as separate varieties.

44 I occasionally make reference to a particular variety’s 3-digit and 2-digit product code
as well—for this purpose, I use h( j) for 3-digit ASICC codes and d( j) for 2-digit codes.

45 In all the subsequent notation, I let lowercase letters correspond to natural logs, so
p

j
it ; lnðP j

itÞ.

TABLE 2
Plant-Year Summary Statistics: Machinery, Equipment,

and Parts (20,702 Observations)

Variable Mean Standard Deviation Minimum Maximum Median

Log Labor (lit) 8.92 1.44 3.26 14.54 8.65
Log Capital Stock (kit) 15.15 2.25 2.09 23.48 14.94
Log Materials (mit) 6.91 3.29 23.91 22.99 6.39
No. of varieties ( Jit) 1.55 1.31 1 28 1
Multiproduct .26 .44 0 1 0

Note.—Summary statistics are reported only for plants that produce only products be-
longing to ASICC codes 74–78. Labor is measured in number of man-days worked; Capital
is measured deflated rupees, using the capital deflator used in Allcott, Collard-Wexler, and
O’Connell (2016); and Materials refers to measured materials expenditures (in current ru-
pees) deflated by a plant-specific Cobb-Douglas price index. See app. E3 for more details
on variable construction.
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where a > 0 and j ∈ ð0, 1� are demand parameters, djit ; h
j
it 2 ap

j
it is the

mean utility of product j, which depends on both the product’s log price
p

j
it and its appeal h j

it , and I h
t is total expenditure by buyers in the market h

at time t. I consider different 3-digit ASICC codes to be different markets,
in the sense that they correspond to different choice setsΩh

t .46 Each prod-
uct setΩh

t contains an outside option whose mean utility d0h

t is normalized
to 0, which should be regarded as a set of varieties that are relevant to the
consumer’s choice set that are not actually recorded in the ASI or import
flows. As I show in appendix F1, this aggregate-demand system can be de-
rived from a discrete-choice model incorporating continuous quantity
choice described in Björnerstedt and Verboven (2016).47

One advantage of this demand system is that it is invertible, thereby al-
lowing one to use themarket share inversion approach developed inBerry
(1994) to estimate its parameters. More importantly, Björnerstedt and
Verboven (2016) have shown that the relevant market share inversion
for this model is one based on revenue shares rather than quantity shares.
This is important, as themarket share inversion approach can be sensitive
to measurement error in the shares, because of the nonlinearity of the
inversion function. Moreover, mismeasurement in unit quantities—and
therefore quantity shares—is a common concern when working with
plant-level survey data, as responders may not have fully accurate records
of quantities or may accidentally report quantities in the wrong units. Re-
lying on an inversion based on revenue shares addresses these concerns,
as the nonlinear inversion is instead based on revenues, which are likely
better measured in accounting statements and are not likely to be subject
to unit errors.48

My preferred market structure in this setting is Nash-Bertrand price
competition, which will account for within-plant cross-price effects.
Since the vast majority of multiproduct plants produce multiple product
codes and nests in the above model are defined at the level of a product
code, this implies that most plants will charge different markups on dif-
ferent products. As a result, revenue shares are not appropriate in this
setting, unless I find that j 5 1 or I assume that plants are behaving “as
if” there was monopolistic competition—that is, treating the price index

46 See app. E2 for a list of 3-digit ASICC codes.
47 Note that this demand model is also equivalent to a nested CES demand function, as

originally shown by Verboven (1996).
48 Note, however, that measurement error in quantities can still generate inconsistent

estimates through measurement error in unit values or prices. I deal with this issue by re-
lying on an instrument for prices that is unlikely to be correlated with plant-product mea-
surement error in unit quantities.
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terms ðok∈Λl
t
expðdkmt=jÞÞj as constants.49 Note, however, that estimates of

(a, j) are the only extra information I need to apply the input allocation
rule, as I show in appendix F2. In the next section, I outline my sequen-
tial estimation strategy, which involves first estimating (a, j) and then
applying theorem 1 to estimate ðLj

it , K
j
it ,M

j
itÞ, which I then use to estimate

the production function (18).50

A. Demand Estimation

I apply the demand inversion technique developed in Berry (1994) to
equation (19) to estimate the parameters governing the demand func-
tion. After following a derivation similar to that in Berry (1994) for the
nested logit, where I replace quantity shares with the corresponding rev-
enue shares, I obtain the following estimating equation:

rs jit 2 rs0hðjÞ
t 5 1 2 jð Þrsj jg ð jÞit 2 ap

j
it 1 h

j
it , (20)

where rs jit ; lnðRj
it=I

hð jÞ
t Þ is the log of product j ’s revenue share in terms of

total revenue generated by 3-digit sector h( j), rs0hð jÞt is the natural log of
the revenue share of the outside option inmarket h( j), whose mean utility
d0ht is normalized to 1, and rsjjg ð jÞit ; lnðR j

it=ok∈Λg ð jÞ
t
R k

mtÞ is the natural log of
the revenue share of variety j within 5-digit ASICC code g( j).51 Note that
I consider imported goods to be part of each 5-digit ASICC nest and hence
include total imported revenue within Λg

t .52

Equation (20) can be estimated using linear instrumental variables
methods, with unobserved product appeal, hj

it , functioning as the struc-
tural residual. This unobserved source of product-level heterogeneity
captures product-specific demand shocks as well as differences in quality

49 Note that within-plant markups are not constant for my specification of demand with
Bertrand-Nash pricing, while they are in Hottman, Redding, and Weinstein (2016), be-
cause my upper-level nests are 5-digit product codes, while Hottman, Redding, and
Weinstein (2016) specifies the upper nest as a firm identifier. By setting the upper-level
nest as a product code, I am allowing within-product-code substitution to be larger than
across-product-code substitution, which is appropriate for my setting, where choice sets in-
clude broad classes of inputs, such as generators and transformers. Note that this nesting
pattern causes a plant to charge different markups by product line, since the larger across-
product substitution effects lead firms to internalize different degrees of market power
across different product codes. This causes product-level markups to vary because of differ-
ences in the within-product-code market share of each good. On the other hand, the firm-
nestingmodel considered in Hottman, Redding, andWeinstein (2016), has symmetric sub-
stitution patterns across varieties in the same firm, which leads to the same markup being
charged on all products.

50 Since I use a sequential estimation algorithm, I use a plant-level block bootstrap pro-
cedure to construct my standard errors when necessary. See app. G for further details.

51 See app. F2 for further details on the construction of market size and the outside
option.

52 See app. E4 for details on the mapping between 5-digit ASICC codes and 4-digit HS
codes used to determine total imports by ASICC code.
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across producers. This means that consistent estimation requires instru-
ments that shift production costs while not directly affecting product ap-
peal. For this purpose, I use information on input prices to construct the
following instruments:

Z
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, (21)
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it
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, (22)

whereW k
it denotes the price of input code k paid by firm i, Ig denotes the

set of 5-digit input product codes that I observe being used by single-
product producers of product code g, Fkg

t denotes the set of plants ob-
served in the ASI at time t who purchase an input with product code k ∈
Ig who do not sell any outputs in the machinery, equipment, and parts
sector, gkg is the overall cost share of input k ∈ Ig in the production of
product code g by single-product firms, and YM

it ⊂ Yit is the set of varie-
ties belonging to the machinery sector sold by plant i at time t.
The first instrument, equation (21), which varies across time only within

a 5-digit product code, leverages average input price growth experienced
by plants in other output markets that use similar inputs.53 For the instru-
ment to be valid, input price variation should be driven by demand and
supply shocks in other industries that are orthogonal to machinery de-
mand shocks or general changes in machinery quality by product code.54

This requires that changes in average input prices not be driven by ma-
chinery demand, which will obviously not be satisfied in input markets
where the machinery industry is the primary downstream consumer. To
deal with this concern, I exclude any input codes k from k ∈ Ig if more
than 30% of the revenue I observe going into purchases of k comes from
machinery, equipment, and parts producers.55 Note that equation (21) ex-
plicitly avoids using the direct plant-level variation in input prices to iden-
tify the demand elasticities, since plant-level input prices likely incorporate

53 I trim the 95th and 5th percentiles of these prices by product code to limit the influ-
ence of outliers when constructing average prices.

54 Note that requiring that the cost shifters not be correlated with general changes in
machinery quality by product code requires that firms not quality-upgrade/downgrade
in response to the cost shocks. A sufficient condition for this to hold is that product char-
acteristics, including unobserved product quality, are fixed at product birth, similar to the
exogenous-product-characteristics assumption used in Berry, Levinsohn, and Pakes (1995).

55 Since I am excluding some inputs from the construction of the input price instru-
ment, this means that the input weights, gkg, do not necessarily sum to 1 for each output
code g. However, since the instrument is already demeaned within each product code
across time, differences in the size of the admissible set of products will not affect the level
of the instrument.
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information on plant-specific output quality, as argued by Kugler and Ver-
hoogen (2012) and De Loecker et al. (2016).
The second instrument, equation (22), provides a second source of iden-

tifying variation by recognizing that these cost shocks will affect eachmul-
tiproduct plant differently through variation in their output sets. In par-
ticular, this instrument is based on the average value of Zg

t taken by other
products produced within the same firm. Note that this instrument will
be correlated with prices and revenue shares either through pricing that
internalizes within-plant cannibalization effects or through cost shocks
that affect common inputs that are used in multiple production lines within
a plant.56

The results of this estimation strategy can be found in table 3.57 As ex-
pected, OLS (ordinary least squares) estimation of equation (20) gener-
ates a price coefficient of the wrong sign, since prices tend to be positively
correlated with product appeal. The instrumental variables strategy ap-
pears to fix this bias, generating point estimates that imply an average
own-price elasticity of approximately21.6. I also report the first-stage es-
timates in table 3, with these coefficients generally taking the sign one
would intuitively expect (i.e., increased input prices are associated with

56 Products outside the machinery sector are not included in this average, since Zg
t is un-

likely to be correlated with machinery prices for these products.
57 As an alternative to including plant fixed effects, the regressions include plant age con-

trols as well as a set of dummies for state, rural location, census status, organization, and own-
ership type, as well as the number of products by plant. I have explored using plant fixed ef-
fects as well, but these results suffered from serious issues related to instrument strength, with
the first-stage F-statistics falling below 1. This is likely because this instrument primarily har-
nesses variation in cost growth across product codes, rather than within-plant cost growth.

TABLE 3
Demand Estimates (64,917 Observations)

OLS IV p
j
it rsj jg ð jÞit

Estimates:
p j
it .007 2.220

(.002) (.116)
rsj jg ð jÞit .946 .621

(.004) (.306)
First stage:
Z

g ð jÞ
t .284 .136

(.097) (.041)
Z

2jg
it .322 2.186

(.198) (.108)

Note.—Firm age controls, as well as dummies for product
code, year, state, census status, rural locations, organization, own-
ership type, and the number of products, are included in all re-
gressions. Sanderson-Windmeijer F-statistics are 16.35 and 10.07
for p jg

it and for rsj jgit , respectively. Standard errors adjusted for
two-way clustering by plant and product code are in parenthe-
ses. IV 5 instrumental variables.
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output price increases).58 The Sanderson-Windmeijer first-stage F -statistics
are found to be 16.35 and 10.07 for p jg

it and rsj jgit , respectively, consistent
with the instruments having sufficient explanatory power to identify the
demand parameters.

B. Production Function Estimation

After estimating demand, I use the estimated demand parameters (â, ĵ) to
obtain an estimate of the within-firm input allocations, using theorem 1.59 I
then estimate the plant-product-level production function (18), using a
nonlinear GMM estimation procedure. Specifically, to obtain an estimat-
ing equation, I assume that productivity follows an exogenous AR(1) pro-
cess given by60

q
j
it 5 r

g ð jÞ
0 1 rdð jÞq

j
i,t21 1 y

j
it , (23)

where r
g ð jÞ
0 is the mean TFP of varieties belonging to product code ~g 5

g ð jÞ and rdð jÞ is a TFP persistence parameter that differs by 2-digit indus-
try ~d 5 dð jÞ.61
Taking logs of equation (18) and substituting in the law of motion

(eq. [23]) yields y j
it 5 r

g ð jÞ
0 1 bLl

j
it 1 bK k

j
it 1 bMm

j
it 1 rdð jÞq

j
i,t21 1 y

j
it . Quasi

differencing, or “r-differencing,” this expression for each 2-digit indus-
try d equation yields

y
j
it 5 r

g ðjÞ
0 1 rdð jÞy

j
i,t21 1 bL l̂

j
it 2 rdð jÞ l̂

j
i,t21

� �
1 bK k̂

j
it 2 rdð jÞk̂

j
i,t21

� �
1 bM m̂

j
it 2 rdð jÞm̂

j
i,t21

� �
1 y

j
it 1 ε jit ,

(24)

where I have substituted estimated input use by product line x̂
j
it for real-

ized input use x j
it . As a result, there are two unobservables in this expres-

sion: yj
it , the innovation to productivity that is unknown to the plant at

time t 2 1; and ε j
it , an error term accounting for the fact that input allo-

cations are estimated in the first-stage demand regression and therefore
ε j
it ≠ 0 in finite samples.62

58 The fact that the input price instrument is positively correlated with the within-product-
code revenue shares is perhaps surprising, since one would expect input price increases to
decreasemarket shares. Note, however, that since this instrument does not vary within a prod-
uct code, this is likely due to increased exit of competitors, which would tend to increase rsj jgit
within a product code.

59 See app. F2 for more details on the appropriate mapping, given the assumed demand
system of eq. (19).

60 Note that I assume linearity of the productivity process simply for empirical tractabil-
ity; see app. H4 for an example of how to generate a similar estimating equation for the
simple nonlinear law of motion q

j
it 5 r0 1 r1q

j
i,t21 1 r2ðq j

i,t21Þ2 1 y
j
it .

61 Specifications that allow the persistence parameter r to vary by 3- and 5-digit product
code can be found in app. H3.

62 This approach abstracts from selection when considering the law of motion, as is com-
mon in the dynamic panel approach to production function estimation. While further research
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Since the above model is nonlinear in parameters, because of the in-
teractions between rdðjÞ and the production function parameters, equa-
tion (24) is estimated with a nonlinear GMM estimation procedure based
on a series of moment conditions of the form

E ðyj
it 1 e

j
itÞ � ~Z

j
it

� 	
5 ~0, (25)

where ~Z
j
it is a vector of instruments.63 Estimation is based on an unbal-

anced panel of plant-products.64

Note that the structure of this estimating equation is very similar to the
popular proxy-variable approach to estimation developed in Ackerberg,
Caves, and Frazer (2015), with y

j
it essentially taking the place of their first-

stage predicted values. While both approaches leverage very similar sources
of variation, note that applying a proxy-variable approach would violate
assumption 8, which requires that plants know their entire vector of pro-
ductivities,~qit . As a result, productivity shocks that are unobserved by the
plant when choosing inputs, which form the basis of the first-stage esti-
mating equations in the proxy-variable literature, cannot be accommo-
dated, since this breaks the link between observed prices, outputs, and the
unobserved input allocations.65

I now turn to the problem of choosing appropriate instruments. Since
y
j
it is realized in period t, lagged inputs li,t21, ki,t21, and mi,t21 will function

63 As long as the first-stage estimator is consistent, asymptotically the error term in eq. (25)
simply becomes yj

it , implying that as long as the instruments are uncorrelated with innova-
tions to productivity yj

it , a two-step GMM estimator will be consistent for the production func-
tion parameters.

64 Note that after solving for the input allocations using each plant’s full product sets, I
drop plant-products with multiple entries for the same product code in a given plant-year
(“multivariety” observations) during estimation, since one cannot precisely determine the
appropriate panel variable for these observations.

65 To clarify this point, note that the input allocation rule is derived by using the plant’s
first-order conditions determining input use at time t, which conditions on the firm’s cur-
rent information set Iit. Assumption 8 requires that each plant choose the share of inputs
being allocated to each product line after all productivity shocks generating ~qit have been
revealed. As a result, Y j

it is equal to each firm’s expected output level at time t, conditional
on Iit and the quantity of inputs they choose to allocate to product line j. On the other
hand, if Y j

it 5 EðY j
it jIitÞe j

it , where e
j
it is a shock that is realized at the end of time t but un-

known to the plant (and econometrician) when choosing inputs, then EðY j
it jIitÞ 5 Y

j
it=e

j
it

would be the relevant argument for output in the input allocation rule, since first-order
conditions for input use would be taken conditional on Iit. Note, however, that this intro-
duces a whole new set of unobservables to the input allocation rule, making the approach
infeasible without some other set of assumptions to pin down these extra shocks.

into whether this may generate significant bias would be useful, past research indicates that
as long as one does not generate further selection bias by conditioning only on balanced
panels, rather than the unbalanced panel, correcting for attrition bias tends to have a neg-
ligible effect on the estimated production function coefficients (Olley and Pakes 1996; De
Loecker et al. 2016).
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as valid instruments in this setting.66 I further followOlley and Pakes (1996),
Levinsohn andPetrin (2003), andAckerberg, Caves, and Frazer (2015) and
assume that capital is predetermined because of time to build, which allows
kit to be added to the instrument set.67 Finally, since I wish to identify a sep-
arate persistence parameter rd(j) for each 2-digit industry, I also add y

j
i,t21

multiplied by an indicator for a product’s 2-digit industry to the instru-
ment set.
While it is fairly standard to also use the lagged value of static inputs in

both proxy-variable and dynamic-panel approaches to production func-
tion estimation, note that using only this type of variation to identify static
input elasticities, such as bM, is problematic.68 In particular, it is not entirely
obvious why the lagged value of a static input should be correlated with dif-
ferences in static input usage, except through productivity or demand
changes, as has recently been pointed out by Gandhi, Navarro, and Rivers
(2020). While the fact that lagged inputs may be weak instruments has
been widely acknowledged in the dynamic-panel literature (see Blundell
andBond 2000), note that this problem ismost likely to be pronouncedwith
static inputs, since there are no adjustment costs for these inputs that make
lags relevant for determining future levels.
To deal with this concern, I also use the current and lagged values of the

input price instruments described in section IV.A, Zg ð jÞ
t and Z

g ð jÞ
t21 , to iden-

tify bM. As long as these instruments are valid for demand, meaning that
variation in the input price instrument is driven by demand and supply
shocks in other output markets, which affect the input prices of goods
used to produce product code g, then they will function as valid instru-
ments for estimating equation (24) as well.69 Since this type of variation
is not commonly used in the production function literature, I consider a
series of specifications that either use Zg ð jÞ

t and Z
g ð jÞ
t21 , or lagged materials,

to identify the production function parameters.
Finally, I also include a series of 5-digit product code fixed effects, to

deal with differences in units across product codes, as well as fixed effects
for the current and lagged number of products, to account for potential

66 Note that estimated lagged input use by product line would also function as a valid
instrument but generates attenuation bias in a finite sample. Moreover, note that if instru-
ment relevance is driven by the existence of adjustment costs (Bond and Söderbom 2005),
since adjustment costs vary at the plant rather than the plant-product level in this model,
instrument validity is more likely to hold with respect to plant-level inputs than for plant-
product-level ones.

67 Note, however, that contemporary levels of plant-product capital use are not valid in-
struments in this setting; this is because assumption 4 implies that input shares can react to
contemporary shocks, even though the total stock of capital is predetermined.

68 I regard labor as a dynamic input because of dynamic adjustment costs related to hir-
ing and firing.

69 Note that I also require that plants not respond to these cost shocks by directly chang-
ing their productivity, which eq. (23) already rules outs.
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economies-of-scope effects.70 Since I have more instruments than param-
eters, I use the standard NL2SLS (nonlinear two-stage least squares) weight-
ing matrixW 5 ðZ 0ZÞ21 when constructing the GMM criterion function.
OLS as well as GMM results based on the instrument sets described in

the previous subsection can be found in table 4. The most striking fea-
ture worth emphasizing is that the particular set of instruments used to
identify the production function can affect whether there is evidence for
increasing or constant returns to scale. In particular, in columns 2 and 3,
where I include laggedmaterials in the instrument set, I can reject the con-
stant returns to scale at the standard levels of statistical significance. On the
other hand, in column 4, where I drop lagged materials as an instrument,
instead relying on the input price instruments Zg ð jÞ

t and Z
g ð jÞ
t21 to identify the

materials elasticity, I can no longer reject constant returns to scale at stan-
dard significance levels.71

Perhaps more strikingly, increasing returns appear to be driven by the
materials output elasticity, with columns 2 and 3 implying amaterials elas-
ticity that is three times that obtained by OLS.72 Since the large output
elasticities and returns to scale in columns 2 and 3 may cast some doubt
on the validity of lagged materials as an instrument, I rely on the results
from column 4 to generate the estimates of TFPQused in the next section
of the paper.73

Note that the above estimates assume that the production functions are
the same for all product lines. To verify that this is an appropriate as-
sumption formy sample, I also consider specifications that allow the pro-
duction function to differ by 2-digit ASICC code and conduct a Wald test

70 In practice, I demean all variables in the estimating equation within product code to
difference out the product-code fixed effects. Note that during bootstrapping I occasion-
ally encountered some collinearity issues with the full set of fixed effects for the current
and lagged number of products. To avoid these numerical issues, I drop the fixed effects
for more than five products and instead have the fifth fixed effect equal 1 for any plant sell-
ing five or more products.

71 Note that one well-known source of increasing returns is shared inputs, which my model
generally rules out except for the special form of shared inputs explored in sec. II.C.2. As a
result, in non–joint-production settings considered in this paper, one would generally ex-
pect to find evidence closer to constant or decreasing returns to scale, as in col. 4 rather than
cols. 2 and 3, which have fairly large increasing returns to scale.

72 In app. H2, I report Hansen’s overidentification test for each specification after using
a two-step estimator with an optimal weighting matrix, finding that there is evidence that
the second specification is misspecified. On the other hand, I do not reject the overiden-
tification test for the specification in cols. 3 and 4.

73 Moreover, note that cols. 2 and 3 imply the opposite direction for the bias of OLS for
materials and capital, as one often expects OLS to generate an upward-biased estimate of
themore flexible inputs and downward-biased estimates of the least flexible inputs (Levinsohn
and Petrin 2003). The estimates in col. 4, however, are consistent with GMM solving the stan-
dard bias of OLS. While this does provide one rationale for choosing the estimates in col. 4, I
still report results on within-plant heterogeneity, using the production function estimates ob-
tained with these alternative instruments (see app. J3), and find them quantitatively similar
to the baseline results reported in the next section.

2806 journal of political economy



for whether the production function differs across 2-digit codes. To get
around the identification issues highlighted in section II.C.1, I consider
a sample of single-product plants for this purpose, as well as a panel of
single-industry plants, which produce only products within the same 2-digit
ASICC code, in which case I can still invoke theorem 1 to allocate inputs
without knowledge of the production function parameters. The Wald test
statistics and corresponding p-values can be found in table 5.74 I find that I
cannot reject the null of identical production functions across 2-digit ASICC
codes for all specifications. As a result, imposing assumption 2, as I do in
table 4, is likely appropriate for the setting considered in this paper.75

74 More details on the estimation procedure, as well as point estimates and standard er-
rors for the production functions, can be found in app. H1.

75 An important caveat worth noting here is that since the point estimates for the produc-
tion function parameters in app. H1 are also imprecisely estimated, failure of the Wald test
might also be due to a lack of statistical power, rather than a clear rejection of assumption 2.
In app. J5, I provide an alternative way to examine whether assumption 2 is an important

TABLE 4
Production Function Estimates (3,620 Observations)

OLS
GMM

(1) (2) (3) (4)

bL .542 .331 .321 .626
(.057) (.192) (.191) (.261)

bK .223 .101 .097 .236
(.040) (.082) (.081) (.099)

bM .262 .790 .806 .217
(.021) (.191) (.186) (.352)

r74 .757 .747 .842
(.222) (.197) (.199)

r75 .657 .661 .670
(.082) (.078) (.068)

r76 .651 .653 .623
(.098) (.104) (.079)

r77 .420 .422 .541
(.062) (.060) (.087)

r78 .194 .181 .569
(.319) (.265) (.651)

bL 1 bK 1 bM 1.027 1.222 1.224 1.078
(.035) (.084) (.080) (.113)

(Zg ð jÞ
t , Zg ð jÞ

t21 ) . . . Yes No Yes
mi,t21 . . . Yes Yes No

Note.—OLS and GMM estimates of the production function (18) using an unbalanced
panel of plant-product observations. All GMM specifications include li,t21, kit, ki,t21, and y

j
i,t21

interacted with a 2-digit ASICC dummy, as instruments. Columns 2 and 3 also include mi,t21

as an instrument, while cols. 2 and 4 include (Zg ð jÞ
t , Zg ð jÞ

t21 ), as defined by eq. (21). All spec-
ifications include a series of indicator variables for product code g( j), as well as the total
number of products produced by the plant. GMM specifications based on quasi differenc-
ing also include indicators for the lagged number of products produced by the plant,
interacted with rd( j). Plant-level block bootstrapped standard errors are in parentheses
(1,000 replications).
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V. Results

A. Quantifying Within-Plant Heterogeneity

Having estimated the demand and production parameters for themachin-
ery, equipment, and parts industry, I use this information to construct two
measures of plant-product-specific heterogeneity; log TFPQ, defined as q j

it

in equation (18), and plant-product-specific product appeal, defined as
the residual from equation (20), h j

it . I then use these terms to estimate the
magnitude and economic implications of within-plant heterogeneity.76

Note that since variety-level TFPQ and appeal levels are not necessarily com-
parable across product codes, because of differences in units, in what fol-
lows I normalize each of the variables to have the zero mean and unit var-
iance for each product code, unless otherwise stated.
Table 6 provides a simple first pass at quantifying the degree of within-

plant heterogeneity, by decomposing the variance of log TFPQ and appeal
into across-plant and within-plant variation using a standard variance de-
composition. This approach is based on the identity x j

it 5 ½ð1=JitÞok∈Yit
xk
it � 1

½x j
it 2 ð1=JitÞok∈Yit

xk
it �, where the variance of the first term corresponds to

the across-plant variance in x, while the second component corresponds
to the within-plant variance.77 While the largest component of the variance
is accounted for by across-plant heterogeneity, as one might expect, the

76 In app. J1, I also consider a similar decomposition where I reweight TFPQ and appeal
according to their overall revenue, as well similar decomposition for marginal costs and
output.

77 The across and within terms are uncorrelated by construction, so they sum to the total
variance of x.

TABLE 5
Wald Tests: F d 5 F d

0
(2,780 Observations)

(1) (2) (3) (4) (5) (6)

Wald test statistic 16.039 16.978 11.424 7.090 7.054 5.488
p -value [.189] [.150] [.493] [.852] [.854] [.940]
Single product Yes Yes Yes No No No
Single industry No No No Yes Yes Yes
(Zg ð jÞ

t , Zg ð jÞ
t21 ) Yes No Yes Yes No Yes

mi,t21 Yes Yes No Yes Yes No

Note.—The above reports the Wald test statistics for a joint hypothesis test that bd
L 5 bd 0

L ,
bd
K 5 bd 0

K , and bd
M 5 bd 0

M for all (d, d 0) combinations in {74, 75, 76, 77, 78}, with the corre-
sponding p-value for this test in brackets. Production function parameters and standard
errors are reported in app. H1. Columns 1–3 use only single-product plants, while cols. 4–6
use only plants that produce within a single 2-digit ASICC code. All specifications use the stan-
dard set of instruments described in table 4, as well as the input price instruments (Zg ð jÞ

t , Zg ð jÞ
t21 )

in cols. 1, 3, 4, and 6. In cols. 1, 2, 4, and 5, I also use lagged materials as an instrument.

restriction by using a cost-share approach for estimating production function parameters by 2-,
3-, and 5-digit ASICC codes. I find that this approach still leads to relatively similar estimates of
within-plant heterogeneity, compared to the identical-production-function approach used in
the main text.
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within-plant component is quite sizeable, accounting for just over one-third
of the total variation in TFPQ and quality.
An alternative way to characterize the degree of within-plant heteroge-

neity is to ask the following question: Do plants produce products that lie
in similar or different segments of the product-ranking hierarchies? For
example, do plants producing high-quality goods produce only products
that lie in the top percentile of the product appeal distribution, or does
the fact that a plant produces a high-TFPQ product not predict the pro-
ductivity of their other products? In the former case, across-plant hetero-
geneity is more important, while in the latter case, the within-plant com-
ponent clearly matters.
To answer this question, I rank each variety on the basis of TFPQ or ap-

peal within a given 5-digit product code and year, to determine each vari-
ety’s decile rank. I then regress the decile rank of each variety on a series
of dummies for the decile rank of each plant’s top-performing variety (i.e.,
the variety with the highest decile rank, or their “core” product).78 If there
were no within-firm heterogeneity in TFPQ, so that each firm was equally
efficient at producing all varieties, then by construction the coefficient on
the decile rank dummy j would equal j, since the top-ranked decile would
be equal to every other decile. On the other hand, the degree to which
the estimated coefficient on the decile rank dummy j is below j provides
a measure of the degree of within-plant productivity dispersion.
The results of these regressions can be found in table 7, revealing siz-

able differences in efficiency across products. For example, a plant with a
core variety in the top decile (90th–100th percentile) produces other prod-
ucts that lie, on average, somewhere between the 60th and 70th percentiles

78 Note that I drop plants whose best-performing product is in bottom decile, since by
construction all other products will also be in the bottom decile and therefore the max-
decile dummy will perfectly predict the outcome for these plants.

TABLE 6
Multiproduct Plant Variance Decompositions

(11,933 Observations)

Type Across Within Total

TFPQ:
Variance .682 .390 1.072
Percentage (%) 64 36 100

Appeal
Variance .666 .397 1.063
Percentage (%) 63 37 100

Note.—Only products produced by multiproduct plants
are included in the sample. TFPQ corresponds to log quantity
TFP, q j

it . Appeal corresponds to the estimated residual from
eq. (20). All variables have been standardized to have mean
zero and unit variance by 5-digit product code. See text for
definition of “Across” and “Within.”

within-firm productivity dispersion 2809



of the quality ladder in other product codes. This is a fairly steep drop in
performance, which appears to hold across the efficiency ladder. These
estimates indicate that it is not innocuous to simply ignore product-line
efficiency differences, as having a high-ranked variety in one product seg-
ment does not guarantee that a plant’s other varieties will also be high
performing.

B. Plant-Level Efficiency and Marginal Varieties

The previous section documented fairly large within-plant heterogeneity,
providing evidence that plants producing high-quality or high-TFPQ prod-
ucts tend to be less efficient at producing other varieties. This suggests that
the core-competence model of multiproduct firms (Eckel and Neary 2010;
Mayer, Melitz, and Ottaviano 2014; Arkolakis, Ganapati, and Muendler
2021), where firms are less productive at producing varieties outside their
core competence, is afirst-order featureof thedata. In this section, I consider
whether there is sufficient within-plant heterogeneity for the extensive mar-
gin of product choice to have quantitatively important effects on plant-level
efficiency, by estimating a simple core-competence-style efficiency ladder.

TABLE 7
Decile Ranks: Core versus Other Products

TFPQ Decile Appeal Decile
(1) (2)

2nd decile (10th–20th percentiles) 1.2985 1.2872
(.0712) (.0645)

Top variety in 3rd decile (20th–30th percentiles) 1.8710 1.7820
(.1090) (.1050)

Top variety in 4th decile (30th–40th percentiles) 2.3741 2.1396
(.1163) (.1315)

Top variety in 5th decile (40th–50th percentiles) 2.9809 2.6886
(.1747) (.1614)

Top variety in 6th decile (50th–60th percentiles) 3.4419 3.2403
(.1616) (.1659)

Top variety in 7th decile (60th–70th percentiles) 4.0611 3.7018
(.1839) (.2413)

Top variety in 8th decile (70th–80th percentiles) 4.7582 4.5523
(.2051) (.2344)

Top variety in 9th decile (80th–90th percentiles) 5.9277 5.5000
(.2578) (.2270)

Top variety in 10th decile (90th–100th percentiles) 6.6091 6.8969
(.2560) (.2191)

Observations 2,122 2,143

Note.—OLS regressions of a series of indicators for the decile rank of a plant’s top prod-
uct, according to product-code-year TFPQ ranking (col. 1) or product-code-year product
appeal ranking (col. 2), on the decile rank of each particular variety within a plant (exclud-
ing the top-ranked variety). The sample consists of multiproduct plants that produce only
product codes with at least 10 observations per product-code-year. Plants whose best-ranked
product is in the bottomdecile are dropped. Plant-level block bootstrapped standard errors
are in parentheses (1,000 replications).
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I then use these estimates to examine how much plant-level efficiency
would increase if one simply removed a plant’s lowest-efficiency (or mar-
ginal) variety.

1. Measuring Plant-Level Productivity

To quantify how the extensive margin of product choice can affect plant-
level efficiency, one has to take a stance on how to measure productivity
at the plant level. However, this is not straightforward if one measures pro-
ductivity using TFPQ, since TFPQ will implicitly vary across products be-
cause of differences in the quantity units across product codes; as a result,
it is not clear how to aggregate across product-code-specific TFPQ to ob-
tain a meaningful plant-level metric of productivity. While standardizing
TFPQ to have mean zero and unit variance by product code, as I have so
far, partly alleviates this concern, note that product differentiation within
a product code can generate differences in measured TFPQ across prod-
ucts that have nothing to do with productivity differences. For example,
large motors likely require more capital and labor hours than small mo-
tors—as a result, measured TFPQ for large-motor producers will tend to
be smaller than that for small-motor producers.
Figure 1 suggests that these concerns may matter in practice. In partic-

ular, after standardizing both TFPQ and appeal to have mean zero and unit
variancewithin a product code, I find that high-TFPQproducts tend to have
low appeal, similar to thefindings in Forlani et al. (2016) and Jaumandreu
and Yin (2016), who separately identify demand shifters and TFPQ for a
number of different industries.79 A simple explanation for this pattern is
that producing high-appeal products, whichmay be larger or more durable,

79 Note that the standard errors on this correlation, obtained using the bootstrap, are
fairly large. If one simply takes the point estimates of the demand and production function
parameters as given when constructing standard errors, both these correlations are statis-
tically significant at the 1% level. However, accounting for uncertainty in the demand and
production function parameters generates larger standard errors, as the direction and
magnitude of the correlation between TFPQ and appeal are sensitive to the particular pa-
rameters used. For example, if one fixes the output elasticities, but recovers TFPQ using
y
j
it 2 ½~f=ðbL 1 bK 1 bM Þ�ðbLl

j
it 1 bK k

j
it 1 bmm

j
itÞ, where ~f is a desired level of returns to scale,

I find that the estimated slope between TFPQ and appeal decreases as ~f increases for the
given sample, with the slope of the line of best fit for all plant-product increasing from
around 20.394 to 20.067 as one varies assumed returns to scale from ~f 5 1:3 to ~f 5 0:7.
Similarly, the estimated slope between TFPQ and appeal tends to decrease as a (the param-
eter governing price effects in demand) increases, with the slope of the line of best fit in-
creasing from 20.565 to 20.036 as one varies a from 0.8 to 0.05. This implies that one is
most likely to obtain zero or positive correlations when returns to scale and a are small.
In particular, of the 37 bootstrap simulations where the correlation between TFPQ and ap-
peal becomes weakly positive for all plant-products, the average value of a is 0.093, while the
average value of returns to scale is 0.937. Note, however, that accounting for uncertainty in
estimated returns to scale and demand parameters in my bootstrap simulations still gener-
ates a statistically significant negative correlation for all plant products at the 10% level,
although one cannot reject zero correlation between TFPQ and appeal for the subset of
single-product plants.
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is costly, which will show up in the data as increased input use—for example,
workers might need to work more diligently to produce higher-quality mo-
tors. Another explanation for this negative correlation is that firms will
choose to produce low-appeal goods only if they are sufficiently cheap—as

FIG. 1.—Negative correlation between TFPQ and product appeal. Appeal refers to h
j
it ,

the residual from equation (20), while TFPQ refers to q
j
it in equation (18). Both variables

have been standardized to have a mean of zero and unit variance within each product
code. A includes all products, while B includes only single-product plants. Plant-level block
bootstrapped standard errors are in parentheses (1,000 replications).
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a result, selection of productsmay generate a TFPQ cutoff that is decreasing
in idiosyncratic appeal, generating a negative relationship between average
appeal and TFPQ.
Regardless of which mechanism generates this negative relationship,

the core problem is that different varieties within a product code almost
certainly vary in terms of their product characteristics, such as size, quality,
and durability, and these product characteristics are unobserved in the
ASI. This makes TFPQ, which is a purely physical comparison of produc-
tivity differences in quantity units, a potentially misleadingmeasure of ef-
ficiency.80 Note, however, that product appeal, or the demand residual h j

it ,
captures these unobserved differences, since it by construction provides a
measure of the portion of variety-level demand that is unexplained by price.
A natural way to deal with this comparability problem, then, would be to
use some measure of appeal-adjusted TFPQ at the plant-product level,
which we might construct by multiplying the measured TPFQ units by es-
timated appeal. This would provide a measure of productivity that would
be in product appeal units and would therefore be directly comparable
across product codes.
Interestingly, the approach to productivity measurement described in

Klette and Griliches (1996) and De Loecker (2011), based on examining
the residual from the revenue production function, directly provides such
a measure of appeal-adjusted TFPQ. As described in further detail in ap-
pendix I, the demand function (eq. [19]) and the production function
(eq. [18]) imply that log revenues at the product level are related to input
use as follows:

lnðR j
itÞ 5 a=j

1 1 a=jð Þ bl l
j
it 1 bkk

j
it 1 bmm

j
it
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it 1~h
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j
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~q
j
it ;

a=j

1 1 a=jð Þ q
j
it : (28)

80 See also Atkin, Khandelwal, and Osman (2019) for further evidence from the flat-
weave rug industry that TFPQ can perform poorly as a measure of productivity in settings
within significant quality variation.

(27)
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The residual from equation (26), which I have denoted E
j
it for variety-

level “efficiency,” turns out a function quite similar to appeal-adjusted TFPQ
as described in the previous paragraph. Moreover, since the residual is
now measured in units of log revenues over inputs, it is directly compa-
rable across plants and products. For this reason, I refer to E

j
it as “revenue

efficiency.”
Note that I intentionally use the term “revenue efficiency” for my no-

tion of revenue-based TFP, rather than “TFPR,” as in Foster, Haltiwanger,
and Syverson (2008), since the residual from a revenue production func-
tion is not the same thing as TFPR, a point that has been emphasized by
Haltiwanger (2016) and Foster et al. (2016). In particular, TFPR is defined
in Foster,Haltiwanger, and Syverson (2008) as TFPQ � Price, which by con-
structionwill vary with prices and therefore partly willmeasure differences
inmarket power across firms.Note, however, that this is not necessarily the
case for revenue efficiency; rather, differences in prices across products
within the same product code are captured by the revenue production
function itself. This can be seen by noting that the production function
coefficients in equation (26) are each scaled down by ða=jÞ=½1 1 ða=jÞ�,
since increases in input use will require that prices fall for quantity pro-
duced to still equal quantity demanded. Since the revenue production
function is constructed by assuming that each firm operates on their in-
verse demand curve, price variation is partly captured by differences in in-
put use, rather than being loaded on a residual term.
On the other hand, differences in market power across product codes or

across time can still show up in revenue efficiency Ej
it , through the price in-

dex terms lnðok∈Λg
t
expððhk

it 2 apk
itÞ=jÞÞ and lnðoΛl

t∈Ωh
t
ðok∈Λl

t
expððhk

it 2 apk
itÞ=

jÞÞjÞ. Note, however, that these terms are identical for all products within
a given product code and year and therefore can be purged from my ef-
ficiency measures by demeaning Ej

it within a given product code–year.
Another useful feature of working with the revenue production func-

tion is that it aggregates up to a plant-level revenue production function in
an internally consistent way, providing a natural metric to quantify the effects
of product dropping. As I show in appendix I, the model estimated in this
paper implies the following plant-level log revenue efficiency measure:

Eit ; ln o
j∈Yit

R
j
it

 !
2

a=j

1 1 a=jð Þ bl lit 1 bkkit 1 bmmitð Þ

5
1

Yitj joj∈Yit

E
j
it|fflfflfflfflfflffl{zfflfflfflfflfflffl}

; EM
it : mean plant efficiency

1 ln o
j∈Yit

S
j
it

� �f a=jð Þ= 11 a=jð Þ½ �
exp E

j
it 2

1

Yitj joj∈Yit

E
j
it

 ! !
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

; ES
it : specialization effects

:
(29)

(29)
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Overall plant-level revenue efficiency depends on two key terms: mean
plant efficiency, which is simply an unweighted average of plant-product-
level log revenue efficiency Ej

it , and specialization effects, which will depend
on the correlation between the plant’s chosen input shares and within-
plant demeaned log revenue efficiency. I show in appendix I2 that the
vastmajority of the variation of plant-level revenue efficiency is due to var-
iation in the unweighted average of plant-product revenue efficiency, while
specialization effects account for only around 3%–4% of the variance of
plant-level revenue efficiency. This means that by focusing on variation in
the mean plant-efficiency term, I can capture close to 96%–97% of the de-
terminants of plant-level revenue efficiency. As a result, in the next subsec-
tion, I approximate the full effect of the extensivemargin of product choice
on plant-level efficiency by examining the effect of removing a product on
mean plant-level product-code demeaned efficiency:

ÊM
it ;

1

Yitj joj∈Yit

E
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Λg ð jÞ
t

�� �� o
k∈Λg ð jÞ

t

E k
it

 !
, (30)

where I focus on product-code demeaned efficiency so that all efficiency
gains will be based on within-product-code variation in revenue efficiency,
rather than efficiency gains due to product-code-level differences in com-
petition structure as captured by the price index terms.

2. Marginal Varieties in Core-Competence Models

In this section, I estimate a within-plant technology based on the core-
competencemodels developed in Eckel andNeary (2010), Mayer, Melitz,
and Ottaviano (2014), and Arkolakis, Ganapati, and Muendler (2021) to
examine whether the removing marginal (lowest-efficiency) products leads
to quantitatively important changes in plant-level revenue efficiency. These
papers assume that each multiproduct producer faces a technology where,
as new product lines are added to a producer’s product set, these new vari-
eties are less productive than their other product lines, capturing the idea
that a firm is moving farther away from their “core competence.” This class
of technologies takes the following formwhen applied tomy notion of within-
plant log revenue efficiency:

Ê r
it 2 Ê 1

it 5 2H ðr Þ, (31)

where H 0ðr Þ > 0, and r 5 1, 2, ::: , Jit indexes a particular variety within a
multiproduct plant, after ordering all products from highest to lowest rev-
enue efficiency.
For example, Mayer, Melitz, and Ottaviano (2014) consider a linear spec-

ification of the technology,H ðr Þ 5 b � ðr 2 1Þ, while Arkolakis, Ganapati,
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andMuendler (2021) consider a log-linear specification,H ðr Þ 5 b � lnðr Þ.81
Lacking direct estimates of within-plant productivity differences, both papers
use the structure of their model and variation in export revenues across
products andmarkets to estimate b. However, since I have direct estimates
of within-plant productivity, I can obtain an estimate of these parameters
by directly estimating equation (31) by OLS, which provides a useful sum-
mary statistic of the degree of within-plant heterogeneity. These results can
be found in columns 1 and 2 of table 8.82

Both functional forms yield extremely large estimates of within-plant
heterogeneity.83 In particular, column 1 implies that a plant’s worst prod-
uct is approximately 45% less efficient than its second-worst product. Col-
umn 2, on the other hand, which allows for nonlinear product scope effects

81 Eckel and Neary (2010) often leave the form of H(r) unrestricted, although they are
able to strengthen some of their results by considering a linearly declining technology.

82 I do not include a constant in these regressions, so all deviations from the model and
the data are captured by the error term.

83 Note that the magnitude of these coefficients is important, not the direction, as by con-
struction I have to obtain negative coefficients in these regressions.

TABLE 8
Within-Plant Heterogeneity in Core-Competence Models

Linear Log-Linear Nonparametric
(1) (2) (3)

r 2 1 2.4773
(.1261)

ln(r) 21.2378
(.3165)

Indicator for r 5 2 2.9602
(.2197)

Indicator for r 5 3 21.4527
(.3504)

Indicator for r 5 4 21.7336
(.4397)

Indicator for r 5 5 21.9281
(.5081)

Indicator for r 5 6 22.0349
(.5632)

Indicator for r 5 7 22.0428
(.6206)

Indicator for r 5 8 22.1260
(.6552)

Indicator for r 5 9 22.3322
(.6957)

Indicator for r ≥ 10 22.7367
(.8775)

Observations 7,997 7,997 8,019

Note.—OLS regressions of Ê r
it 2 Ê 1

it on listed independent variables.
Products with rank j 5 1 are excluded. Columns 1 and 2 exclude 22 plant-
products that are ranked larger than 10 because of the rarity of these par-
ticular rankings. Plant-level block bootstrapped standard errors are in
parentheses (1,000 replications).
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because of the inclusion of the natural log of product rank, implies that a
plant’s second-best product is approximately 58% less efficient than the
plant’s core product, while a plant’s third-best product is approximately
39% worse than its second-best product. In column 3, I nonparametrically
account for declines in productivity, finding effects that are fairly similar
in magnitude to the log-linear specification.
In figure 2, I plot the increase in plant-level efficiency, as measured by

equation (30), generated by removing a plant’s worst-performing product
according to the core-competence technology described in table 8. The
implied productivity effects of product dropping are extremely large, in-
creasing plant-level revenue efficiency by around 22%, according to the
linear specification of the technology, while generating log revenue effi-
ciency gains of 10% to just under 65%whenone relies on the log-linear or
nonparametric specification of the technology.
Overall, these results imply that fairly large increases in plant-level rev-

enue efficiency can be generated by simply removing a plant’s least effi-
cient variety. Note, however, that these revenue efficiency increases will be
realized only if plants actually drop less efficient goods. In the next section,

FIG. 2.—Plant-level revenue efficiency growth after removal of marginal varieties. The fig-
ure shows the implied log revenue efficiency growth from removing a plant’s lowest-efficiency
variety according to core-competence technology estimates in table 8. Log plant-level revenue
efficiency is measured according to equation (30), with the y-axis denoting the change in
plant-level log revenue efficiency after a plant’s worst product is dropped.
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I provide evidence that plants are most likely to quit producing their least
efficient varieties.

C. Do Plants Care about Within-Plant Heterogeneity?

While I have presented evidence that within-plant efficiency differences
exist and are sizeable, I have not yet provided any evidence that manufac-
turing plants actually care about these objects. Since TFPQ and appeal are
residual-basedmeasures, theymay simply be a “measure of our ignorance,”
as per Syverson (2011, 330), rather than real economic primitives that plants
are taking into account when making decisions.
Since the approach developed in this paper does not impose any disci-

pline on themanner in which plants choose their product sets over time, I
now test whether variety-specific heterogeneity is related to a plant’s deci-
sion to drop a product, that is, cease production of that variety in the fol-
lowing period. If plants also choose their product sets to maximize their
profits, as in Maksimovic and Phillips (2002), Bernard, Redding, and Schott
(2010, 2011), Eckel and Neary (2010), and Mayer, Melitz, and Ottaviano
(2014), then plants should be more likely to drop products with lower
TFPQ or appeal, all else equal.84 I also decompose which sources of variety-
specific heterogeneity are primarily driving product-dropping behavior to
determine which dimensions of product positioning are most salient to In-
dian plants.
In particular, I first estimate a probit model for the probability of drop-

ping a product in the subsequent period, given total plant-product-level
revenue efficiency. For this purpose, I consider a product dropped when-
ever I observe a plant producing a particular product code g at time t, but
not at time t 1 1.85 Note that product dropping is quite common in my
sample, as 43.1% of the observed plant-years have at least one product
dropped in the subsequent period (excluding the last year each plant is

84 Many of these papers pin down the equilibrium number of products by assuming the
existence of product-specific fixed costs. One can add such fixed costs to the model devel-
oped in this paper without changing any of the features of the input allocation problem as
long as those fixed costs are in nominal (rupee) units. For example, if product assortment
choices are made a period in advance of production and efficiency shocks are persistent,
then low-TPFQ or low-appeal products will be more likely to be dropped, since in expec-
tation those varieties will be less likely to cover their fixed cost.

85 Note that the procedure for classifying dropped products is more complicated when a
plant produces multiple varieties of the same product code. For example, one may observe
a particular plant producing two varieties of transformers in period t but only one variety at
time t 1 1, To deal with this, I classify the varieties with the most different value of reve-
nues, when compared across time periods, as the dropped products. More formally, if a
plant drops V varieties of the same product code g, I calculate the minimum pairwise dif-
ference between the revenues earned by each variety j ∈ Λg

it and the revenues of each va-
riety j ∈ Λg

i,t11. The set of varieties with the V largest values of this minimum pairwise dif-
ference are then classified as the dropped products.

2818 journal of political economy



observed).86 In these regressions, I first consider the full value of revenue
efficiency as in equation (26), so that all the determinants of revenue ef-
ficiency, including product-code-specific shocks such as changes in demand
or level of competition, are embodied in this object. I then decompose
product-level revenue efficiency into a number of separate components,
to examine whether different sources of heterogeneity have different ef-
fects on dropping behavior, similar in spirit to the decomposition for plant
exit effects examined in Foster, Haltiwanger, and Syverson (2008) for de-
mand versus TFPQ shocks. These results are reported in table 9.
The baseline results in column 1 imply that plants do indeed care about

product-level revenue efficiency. In particular, a product that is 1 standard
deviation below the mean value of revenue efficiency is around 6.5 per-
centage points more likely to be dropped in the subsequent period than
a product with themean value of revenue efficiency. These are fairly large
effects, generating marginal exit probabilities that are around four to six
times larger than the effect of plant-level TFPR variation on plant-level exit
documented in Foster, Haltiwanger, and Syverson (2008).

86 Note that plants are about equally likely to add products as well—in particular, focus-
ing on plant-years where I observe the plant in at least one earlier time period, I also find
that 43.3% of plant-years have production sets with at least one new product.

TABLE 9
Product-Dropping Probits (3,472 Observations)

(1) (2) (3) (4) (5) (6) (7) (8)

E
j
it 2.0665

(.0218)
�P

g
t 2.0318 2.0254

(.0260) (.0264)
�A

j
it 2.0403 2.0389

(.0195) (.0195)
�C

j
it .0029 2.0078

(.0174) (.0207)
P̂

g
t 2.0574 2.0896

(.0220) (.0256)
Â

j
it 2.0797 2.1277

(.0188) (.0289)
Ĉ

j
it .0088 2.0699

(.0177) (.0375)

Note.—Estimates of the marginal effects from a probit regression on an indicator var-
iable for whether a plant drops a product in the following period. Definitions of all inde-
pendent variables are described by eqq. (26), (32) and (33). Ej

it , and P
g
t have been standard-

ized to have mean zero and unit variance over the entire sample, while C
j
it and A

j
it are

standardized within a product-code-year. To guarantee that a product-dropping variable
is capable of being constructed for all observations, the sample consists of multiproduct
plants that I observe in the current as well as the subsequent period. All regressions include
year fixed effects. Marginal effects are evaluated at the sample average for the covariates.
Plant-level block bootstrapped standard errors are in parentheses (1,000 replications).
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In columns 2–8 of table 9, I dig a bit deeper into the components of
revenue efficiency that are driving a plant’s decision to drop a product.
In particular, I rely on the following decomposition of revenue efficiency
into three separate components:
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: (32)

The first component, which I call product-code profitability, is simply
the average value of revenue efficiency by product code and time period.87

As should be clear from equations (26)–(28), this variable partly reflects
variation in the difficulty of producing different product codes but also
variation in competition and overall demand andmarket size across prod-
uct codes.88 The second component, which I call a variety’s relative cost
advantage, essentially measures a particular product’s ranking within a
product code’s current TFPQ ladder, while the third component, relative
appeal advantage, measures a product’s ranking within the current qual-
ity/appeal ladder.89 By decomposing revenue efficiency into these three
components, I can then examine whether product dropping is primarily
driven by across-product-code variation in profitability or by differences in
appeal or cost comparative advantage within product codes. This is useful,
as it can speak to whether cost-side product positioning, where a firmmay
gain an advantage in themarket by producing at lower costs and potentially
undercutting their competitors, is more or less important than demand-
based product positioning.
In order to get a fuller picture of what is driving dropping behavior, I

then further decompose each component of revenue efficiency into its plant-
level average and its within-plant relative ranking.More formally, for each
revenue efficiency component X ∈ ðP , C , AÞ, I define

87 Averages are done with respect to all observable values of revenue efficiency in my data
set, meaning that I always include single-product varieties in these averages to obtain the cor-
rect ranking of products.

88 While one could further break this variable down into an average TFPQ component
and an average demand-shifter component, note that the level of these variables across prod-
uct codes is very difficult to interpret because of differences in units. As a result, it is easier to
make comparisons of the composite variable, as it is in revenue efficiency units for all prod-
uct codes.

89 Since relative appeal and cost advantages do not have any natural units, I standardize
these variables within each product code and time period. This removes variation in the
length of different TFPQ/appeal ladders by product code, so that a 1-unit increase in cost
or appeal advantage is measured as a 1 standard deviation increase in the appeal/TFPQ lad-
der of that particular product.
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(33)

This allows me to examine whether product dropping is driven by a
particular product’s ranking within a plant’s revenue efficiency (or TFPQ/
appeal) ladder or is a general response to overall low performance by the
plant. Note that the former effect is consistent with a core-competence
model, as product dropping leads plants to become “leaner andmeaner”
(Eckel and Neary 2010). On the other hand, if only plant-level average
productivity matters for product dropping, it is unlikely that plants are
considering within-plant heterogeneity when choosing their product sets.90

Applying the decomposition in equation (33) to each of the three right-
hand-side variables in equation (32) leads to six components of revenue
efficiency variation that could be driving product-dropping behavior. In
columns 2–7, I run the product-dropping probits for each of these vari-
ables separately, and then in column 8, I control for all individual sources
of heterogeneity.
Note that simply conditioning on cost advantages alone, as in columns 3

and 7, explains little to no dropping behavior. However, if one conditions
on all sources of within-plant heterogeneity, as in column 8, then within-
plant variation in cost advantages (Ĉ j

it) appears to explain a sizable com-
ponent of product-dropping behavior, with a 1 standard deviation decrease
in relative cost advantages, holding productivity of all other products fixed,
generating around a 7 percentage point increase in the probability of drop-
ping that product.91 This effect is slightly smaller than the effect of within-
plant product code profitability (P̂ g

t ) shocks, where a 1 standard deviation
decrease in profitability leads to a 9 percentage point increase in the like-
lihood of dropping that product. Plants appear to be most sensitive to
within-plant appeal shocks (Âj

it), with a 1 standard deviation decrease in
appeal advantages leading to around a 13 percentage point increase in
the probability of dropping that product. The fact that plants appear to
be more sensitive to demand-side appeal shocks than to cost-side TFPQ
shocks is consistent with Hottman, Redding, and Weinstein (2016), who
find that appeal shocks are more important than cost dispersion for ex-
plaining differences in firm size. Moreover, these results may also indi-
cate that to first order, demand-side product characteristics, as captured

90 Since I wish to compare within-plant effects to average plant effects, I drop single-
product plants from these regressions, since they cannot have within-plant effects. Note,
however, that my findings are robust to including single-product plants as well. See app. J2.

91 This estimate is somewhat imprecisely estimated, with the corresponding t-statistic ly-
ing slightly below the threshold for significance at the 5% level, although it is well within
the bounds for significance at the 10% level.

within-firm productivity dispersion 2821



by variety appeal, are a more salient feature of product position than is a
variety’s location in TFPQ space.
Thewithin-plant variation in the various components of product hetero-

geneity appears to generate much larger product-dropping effects, while
the across-plant effects are generally much smaller and often statistically
indistinguishable from zero.92 This shows that plants appear to be taking
the various dimensions of within-plant product heterogeneity into account
when choosing their products sets. As a result, table 9 provides new evidence
that the productivity gains from product dropping emphasized by the lit-
erature on core competence are operative in the data.93

D. Robustness

The baseline results estimated the production function and input alloca-
tions using a Bertrand-Nash pricing assumption. In appendix J4, I show
that the quantitative conclusions are largely unaffected by varying the as-
sumed competition structure to monopolistic competition or full collu-
sion. The within-plant component of TPFQ accounts for slightly more of
the total variance undermonopolistic competition (38%), while TFPQob-
tained assuming collusion generates a within-plant component that is about
the same size as that found in the baseline Bertrand-Nash case (36%). I also
find similar increases in plant-level efficiency by removing a plant’s worst
product according to the core-competence model, accounting for increases
of around 50%–65% when considering two-product plants and increases
of around 10% once one considers plants with seven or more products. I
also find that plants are similarly sensitive to within-plant heterogeneity,
as the product-dropping probits provide quantitatively similar marginal ef-
fects. While more research is needed into the robustness of various input
allocation rules for different questions, it is useful to know that themonop-
olistic competition specification, which generates a revenue-share input
allocation rule that is straightforward to construct and often used in the
literature, delivers estimates similar to those one would obtain by estimat-
ing a full model of Bertrand-Nash competition or collusion in this partic-
ular application.

92 In fact, only firm-level average appeal advantages appear to have a statistically signif-
icant effect on product dropping. This may indicate that plant-level demand shocks are
more important than supply shocks. For example, plant-level reputation may be an impor-
tant component of product-level demand, which is likely to spill over to each of the prod-
ucts a plant produces.

93 Appendix J2 reports the corresponding estimates for the specifications in cols. 1 and 8
of table 9 using logit, OLS, and OLS with product code and plant fixed effects, as well as
the baseline probit specification, where I also include single-product plants in the estima-
tion sample. These effects are quantitatively similar to the baseline results, although the
sensitivity to full Ej

it shocks appears 60% larger in the linear probability model with product
code and plant fixed effects.
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In appendix J4, I also consider the robustness of my conclusions con-
cerning within-plant heterogeneity according to the extension developed
in section II.C.3, which does not require assuming costless transferability
for all inputs. Treating capital’s contribution to production as an unob-
served input generates a slightly smaller role for within-plant TFPQ vari-
ation (34%), while allowing both capital and labor to be unobserved com-
ponents of TFPQ generates a within-plant contribution accounting for
between 28% and 37% of total TFPQ variation, depending on themagni-
tude of the estimated output elasticity for materials. The product-dropping
sensitivities remain quite close to the baseline marginal effects when one
allows only capital to not be subject to assumption 4. On the other hand,
themarginal effects of within-plant cost and appeal heterogeneity are, re-
spectively, around 25% and 40% smaller than the baseline effects when
both labor and capital do not satisfy costless transferability for my pre-
ferred specification, which uses single-product plants to estimate the ma-
terials output elasticity. More importantly, relaxing assumption 4 by in-
cluding the contribution of specific capital or labor to TFPQ can generate
much larger increases in plant-level revenue efficiency when marginal vari-
eties are removed according to the simple core-competence efficiency lad-
der. In particular, two-product plants can experience efficiency gains of
around 0.66–0.72 log points (or efficiency increases of around 94%–105%)
when I remove their worst product, which is about 50% larger than the base-
line effects. Since these specifications treat specialized inputs as another
source of within-plant heterogeneity, this is perhaps unsurprising, as this
simply means that allowing for further sources of product-level heteroge-
neity generates a steeper within-plant efficiency ladder.94 Note, however,
that if one is comfortable allowing labor to be subject to costless transfer-
ability, thus allowing the use of theorem 1 to determine the labor alloca-
tions, the gains from product dropping are quantitatively quite similar to
those obtained in the baseline.
Finally, while I found evidence that identical output elasticities by prod-

uct line are likely appropriate for the machinery sector considered in this
paper, I also explore in appendix J5 whether relaxing the assumption of
identical production functions across product lines affects my conclusions
concerning themagnitude of within-plant heterogeneity. For this purpose,
I rely on the cost-share approach to obtain output elasticities, as in Syverson
(2004), Foster, Haltiwanger, and Syverson (2008), and Backus (2020), rely-
ing on average output elasticities by 2-, 3-, and 5-digit code obtained using
single-product plants.95 I find that this approach generates slightly less

94 In particular, since these unobserved dynamic inputs are likely to be positively corre-
lated with plant-product revenue efficiency, the total variance of Ej

it 1 bX x
j
it is likely to be

larger than the variance of Ej
it alone.

95 While this approach requires some assumptions that are not necessary in the produc-
tion function estimation framework considered in this paper—namely, that all inputs are
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within-plant TFPQ variation, accounting for closer to one-quarter of the
total TFPQ variation, rather than a third.On the otherhand, the product-
dropping regressions are quantitatively similar, generating product-
dropping sensitivities to revenue efficiency, as well as within-plant relative
cost and appeal advantages, that are similar in magnitude to those in the
main text.
While these different specifications do lead to some small differences

in the quantitative implications of within-plant heterogeneity, note that all
specifications point toward the same general picture: within-plant hetero-
geneity is sizeable, and plants appear to care about within-plant heteroge-
neity, as they are more likely to drop their lowest-performing products.

VI. Conclusion

This paper has developed a flexible recipe for estimating product-level TFP
for multiproduct firms in data sets where the allocation of inputs across pro-
duction lines is unknown, using a combination of demand- and supply-side
information. The only additional empirical information required to imple-
ment the approach developed in this paper is firm-product-level prices
and quantities. Since this information is becoming more widely available
inmany firm- andplant-level data sets, the techniques developedhere should
be able to help researchers interested in productivity differences across firms
to tackle a wider class of problems.
Applying the approach to a panel of manufacturing plants in India from

2000–2007 provides sizeable estimates of within-plant heterogeneity in effi-
ciency. Productivity differences acrossproduct lines arequantitatively impor-
tant, potentially accounting for plant-level efficiency gains of around 50%–

65% if a two-product plant were to cease producing its lower-productivity
good. Such productivity gains are often realized in practice, as plants are
found to be more likely to drop their lowest-performing products.
The results in this paper suggest important areas for future research.

For example, while this paperhas documented a number of ways in which
product dropping can matter quantitatively, more precise estimates of the
gains from product dropping may be obtained by carefully modeling the
process through which firms choose their product sets. Progress on this
question could be made by applying the techniques developed in this pa-
per to a model of product-level entry and exit with multiproduct produc-
ers. For example, onemight use such amodel to obtain estimates of (fixed)
product development costs, which could then be used to quantify the effect
of competition shocks on product variety and welfare. The techniques and

static and competitively supplied with constant returns to scale—a key advantage of this
framework is that since it as based on cost shares (which must always be between 0 and
1), it is straightforward to obtain output elasticities at very fine levels of aggregation.
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empirical results described in this paper will hopefully provide a preliminary
first step toward such a model for future work.
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