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a b s t r a c t

Ride-hailing applications create new challenges for governments providing transit services, but also cre-

ate new opportunities to raise tax revenue. To shed light on the effect of taxing or subsidizing ride-hailing

services, we extend a pseudo-monocentric city model to include multiple endogenously chosen trans-

portation modes, including ride-hailing applications and endogenous car ownership. We show that most

tax and spending programs that cities have currently adopted mildly increase public transit usage.

However, the model predicts more significant increases in public transit ridership when ride-hailing

applications are subsidized as a ‘‘last-mile” provider. Our model indicates that whether ride-hailing ser-

vices and public transit are substitutes or complements is a policy choice.

� 2023 Elsevier B.V. All rights reserved.

1. Introduction

Ride-hailing applications (apps) including Uber, Lyft and Via,

have revolutionized transportation in cities around the world.

While the effects of these platforms on the labor market and pric-

ing strategies are well-studied,2 the effects of ride-hailing apps on

government finances as well as expenditures on related public ser-

vices such as public transportation remain uncertain. Taxing Uber

services or changing expenditures on related public services, will

affect the transit choices of individuals, possibly altering the busi-

ness models of these platforms, and in the long-run, will affect urban

form.3 Given many policymakers have argued that ride-hailing

applications lead to added congestion within city limits4 or are

crowding out public transit services, government regulations and

policies are critical tools to alter the urban transit choice landscape.

We study various policy options discussed in cities around the world

related to taxing or subsidizing ride-hailing applications, as well as

changes in government spending on possibly complementary or sub-

stitute modes of transit such as buses or subways (Hall et al., 2018;

Gonzalez-Navarro et al., 2022).

Given the surge in the popularity of ride-hailing apps,5 they

pose challenges for policymakers, including how to update anti-
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quated tax systems to deal with platform marketplaces. Despite

these challenges, many policymakers view ride-hailing apps as an

attractive source of revenue. As a result, some states and cities have

recently reformed their tax laws to raise revenue from ride-hailing

applications. The motives for these new taxes vary from expanding

the sales tax base as consumption shifts to services,6 seeking a

way to raise revenue that can be earmarked to fund public infras-

tructure or public transit, or, often due to political economy reasons

(Brueckner and Selod, 2006), to help level the playing field for tradi-

tionally taxis. At the same time, other cities are subsidizing ride-

hailing services as a means of improving the mobility and employ-

ment opportunities of low-income houses or as a way to provide

‘‘last-mile” services for individuals to get from their house to public

transit stations.

The expansion of ride-hailing apps may threaten publicly pro-

vided transportation networks, but privately-provided services

such as Uber may also complement public services (Hall et al.,

2018; Gonzalez-Navarro et al., 2022; Erhardt et al., 2019). Hall

et al. (2018) outline several possible mechanisms. Uber may be a

substitute because its convenience provides value to the consumer,

even if the monetary price of Uber is higher. Moreover, adding

another mode choice option may make transit less attractive. On

the other hand, Uber may be a complement to transit because Uber

can fill coverage gaps (geographic, time of day) in public transit

coverage. Further, Uber reduces the need to entirely rely on a fixed

transit schedule in the presence of bad weather or other shocks,

implying that individuals will be more likely to use transit in one

direction, if they know they can get back home via an alternative

mode, Uber.7 Of these possibilities, our model will focus on the con-

venience of Uber lowering the cost relative to other modes of transit

and Uber filling geographic coverage gaps in transit. In addition, we

verify the robustness of the model to including idiosyncratic trip-

specific benefits of taking Uber to transit. Finally, an additional

mechanism in our model is endogenous car ownership: higher Uber

prices may increase car ownership, which may in turn affect transit

usage for some trips. Thus, our model sheds light on the channels

discussed in the prior literature (Hall et al., 2018) by showing how

policies on ride-hailing apps and related services influence modal

choice and the long run development of cities.

While the literature on commodity taxes is well-developed, the

taxation of ride-hailing apps poses challenges not traditionally

found in standard (pre-digital economy) products. First, the taxa-

tion of ride-hailing apps will affect modes of transportation, land

use, and public infrastructure investment in the long-run (Larson

and Zhao, 2020). As a result, these taxes will have important gen-

eral equilibrium effects and standard reduced form empirical anal-

ysis is not sufficient to determine the long-run effect of taxing ride-

hailing apps. Second, ride-hailing apps are a platform. The business

model of platforms, like Uber, Facebook and Amazon is based on

connecting two interdependent groups. For the case of Uber, a dri-

vers’ valuation of Uber increases the more passengers are active on

the platform because their earnings opportunities increase. Like-

wise passengers’ valuation of Uber increases the more drivers are

active because their waiting time decreases. Taxes in this network

setting can have important and non-standard effects (Kind et al.,

2008; Koethenbuerger, 2021).

We answer several questions. First, how does taxing/subsidiz-

ing ride-hailing services change car ownership and the mode of

transit in our cities? Second, focusing on the goal of many urban

planners, what is the ‘‘optimal” way for cities to tax/subsidize

ride-hailing apps? Finally, as taxes are used to finance public ser-

vices, does the answer to each of these questions depend on

whether the tax revenue is used finance transportation services

or not?

To consider the normative question of the optimal ride-hailing

policy, we consider several policies debated by cities: flat unit

taxes per ride, ad valorem sales taxes on rides, mileage taxes, sub-

sidies on rides to and from public transport stations,8 and conges-

tion pricing policies. For each tax policy we consider, we allow the

government to use the revenue raised to finance various services:

transfers to non-residents (perhaps the policy is implemented by

the state rather than city), lump-sum rebates to residents, reductions

in the fares for public transportation, and improvements in the qual-

ity of public transportation. Given many of these policies were

implemented only recently, and it would be nearly impossible to

harmonize data across cities, we simulate a model of an urban area.

The simulation approach comes with the advantage of being able to

shed light on the long term effects.

We extend the standard monocentric city model (Brueckner,

1987) to allow for various transportation modes for commuting

to work, leisure trips to central points of agglomeration (down-

town), and ‘‘idiosyncratic” leisure trips to random points in the

city. Although we use the structure of the monocentric city model

for commuting and leisure trips to downtown, the addition of non-

commuting leisure trips to various points throughout the city

makes our city pseudo-monocentric.9 Although some models of

the monocentric city include transit choice (e.g., Arnott and

MacKinnon, 1977; Anas and Moses, 1979; Sasaki, 1989; Sasaki,

1990; Borck and Wrede, 2008; Brueckner and Franco, 2018), these

models are limited in their applicability to our setting. In particular,

these models usually only have two transport mode choices and

ignore heterogeneity in distance to transit lines. We extend the

monocentric city model to have multiple transport choices, con-

sumer heterogeneity in the proximity to transit stations, along with

trips to non-central locations in the city, making the model realistic

for our setting but also tractable for other researchers. In addition,

our model features a multi-stage process by which individuals

decide to own a car or not, allowing us to capture the long-run

effects of transit prices via more permanent decisions regarding

vehicles.

In our model, ride-hailing apps can be used for two choices with

respect to trips downtown for either commuting or leisure pur-

poses: as a direct means of transportation or as a means of trans-

portation to the nearest public transit station instead of walking

or buses. In addition, ride-hailing apps can be used as an alterna-

tive to driving or taking buses on local leisure trips to ‘‘random”

(non-central) points. While these types of leisure trips have an

exogenous distance, the distance of downtown leisure trips taken

on Uber is endogenous. Our model necessarily makes several

assumptions. One assumption is that we assume that trips can be

discretely separated into commuting trips subject to congestion

forces, leisure trips downtown at off-peak hours, and other local

6 This fits in a broader debate of how tax systems should evolve in the presence of

technological change (Agrawal and Wildasin, 2019). For example, Thuemmel (2022)

considers the tax treatment of robots.
7 It is also possible that Uber will not affect transit, particularly, if transit riders and

Uber riders are distinct segments of the population. Moreover, individuals might not

experiment with different modes unless forced to do so (Larcom et al., 2017). Given

our model does not feature income heterogeneity, this is not a channel we can

accurately capture, but to the extent it exists, it would likely mute the changes.

8 For the literature on transit subsidies, see Parry and Small (2009) and Basso and

Silva (2014). Other studies that have analyzed the effect of cars or car policies, include

Kopecky and Suen (2010), Gutiérrez-i-Puigarnau and van Ommeren (2011), and Xiao

et al. (2017).
9 The monocentric city model was developed by Alonso (1964), Mills (1967), and

Muth (1969). Thus far, it has been generalized and used extensively to study different

policies and new transportation technologies that affect transportation costs, land

use, energy use, and interstate commuting (Larson et al., 2012; Larson and Zhao,

2020; Rappaport, 2016; Wheaton, 1998; Wildasin, 1985; Agrawal and Hoyt, 2018).

Borck and Brueckner, 2018 apply the monocentric city model to study the effects of

optimal energy taxation. Bertaud and Brueckner (2005) analyze the impact of

building height restrictions using the monocentric city model.
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trips where those local trips have a more limited range of transit

options, while for trips to downtown we heavily rely on the struc-

ture of the monocentric city. Given the importance of Uber for trips

outside the city center, these leisure trips to non-CBD (Central

Business District) points turn the model into a pseudo-

monocentric model.

The model is solved numerically. Therefore, we calibrate this

model to a large U.S. city—Chicago. Large cities such as Chicago

are the most likely to pass specific taxes on ride-hailing apps and

are most likely to face a tradeoff between ride-hailing apps and

public transit modes. We first study the equilibrium without any

government intervention and then with it. By focusing on a large

city, we likely underestimate the ‘‘last-mile” effect of Uber. Rather

than focusing on many different city sizes, we have elected to focus

on many different policies. We will discuss whether the magni-

tudes of the effects depend on characteristics of the city, such as

income or transit coverage. One may also wonder whether the

key results would extend to cities that are polycentric. We will dis-

cuss what additional modeling issues would arise in polycentric

cities. Ultimately, we argue that these added complications may

change the magnitudes of our effects, but are unlikely to alter

the sign or the qualitative conclusion that policy choices influence

whether Uber and transit are complements or substitutes.

The first set of results concern taxes on Uber as they are cur-

rently implemented. Although cities have argued that these taxes

reduce congestion on the roadways and encourage public transit

usage, our model suggests that most of the substitution away from

Uber is toward solo driving, even when the spending is earmarked

to transit. Second, at the margin, what the tax revenue is used for

matters for what mode of transit individuals substitute toward. If

the goal of cities is to reduce congestion and increase transit usage,

taxes on Uber that fund fare reductions are more successful at

achieving the goal than increasing spending on transit frequency

improvements. Intuitively, transit improvements are extremely

expensive and the revenue raised from these taxes cannot suffi-

ciently change transit quality.

The second set of results focus on transit proposals adopted in

a limited number of cities that aim at forming a link between

ride-hailing apps and public transportation in order to use Uber

to fill coverage gaps. First, we show that subsidies on Uber rides

(to transit stations) are an extremely effective way of increasing

public transit usage. Indeed, a three dollar subsidy for all rides

to and from public transit, increases the usage of rapid transit

by over 15%. If cities enact policies, such as flat taxes on Uber,

then Uber and rapid transit are substitutes: Uber remains too

costly to act as a last mile provider but Uber offers an alternative

means of getting directly downtown than rapid transit. We esti-

mate the cross-price elasticity of taking public rapid transporta-

tion with respect to the price of taking Uber to work as 0.41

when cities tax Uber. But, the relationship between buses and

Uber is more nuanced: raising the price of Uber increases car-

ownership which induces declines in bus usage as a means of

going directly to the leisure destination. In this way, Uber may

be a substitute for rapid transit but, simultaneously, a comple-

ment to buses. In contrast, the Uber and rapid transit become

complements under the subsidy regime. The cross-price elasticity

is �0:32, when cities enact subsidy policies.

Lastly, we consider optimal congestion tolls (Hall, 2018; Hall,

2021; van den Berg and Verhoef, 2011). Many cities see this as a

viable policy because ride-hailing apps are more supportive of a

policy that treats all drivers in the same manner. The optimal con-

gestion toll alone increases transit usage as Uber subsidies did.

However, we show that suboptimal tolls—implemented to raise

the same amount of revenue as the flat tax on Uber rides—result

in smaller increases in transit usage and driving speeds than taxing

Uber directly.

A critical lesson from this paper is that transit elasticities are

determined by the policy environment. In other words, these elas-

ticities are not structural parameters, but rather are policy choices.

Critically, and in contrast to the conventional wisdom, our results

imply that standard transit elasticities and cross-price elasticities

are not just a function of individual preferences. Therefore, they

are not immutable and governments can choose these elasticities

through the appropriate policies. Thus, the choice of various policy

instruments can result in governments choosing the ‘‘optimal”

transit elasticities. Policy commentators and government officials

often worry that Uber is eroding public transit, but our results indi-

cate that if this is true, it may be a result of policymakers failing to

set an appropriate policy environment for the co-existence of Uber

and transit. Our paper provides a guide forward.

Ride-hailing apps create many challenges and opportunities for

cities; our paper provides policy guidance with respect to these

tradeoffs. Critically, whether ride-hailing apps and public transit

are substitutes or complements is a policy choice.

2. Institutional details

Taxes on ride-hailing services vary dramatically across cities. In

January 2018, the city of Chicago passed a $0.67 per trip tax on

ride-hailing services in the city of Chicago – a rate similar to a

few other cities around the country. In January 2020, these sur-

charges increased to $1.25 per ride, with slightly lower unit taxes

for shared rides. The city has pledged to use (part of) the revenue

generated from the taxes to improve the public transportation sys-

tem in the city. While Chicago uses a flat fee for most rides, and

many other cities also follow this model, other options have been

considered by Chicago and other states and cities.

Chicago is not alone in its unit tax per trip, though the amount

of the tax differs substantially across cities. For example, as of

2020, Seattle featured a $0.24 per trip tax on rides originating in

the city, while New York City has taxes of $2.75 on each ride, with

reductions to $0.75 for pooled rides. The state of Connecticut and

Massachusetts also have taxes set on a per ride basis. The amount

devoted to improving public transportation varies by city with

New York City earmarking 100% of the revenue to the Metropolitan

Transportation Authority, but with the state of Connecticut

depositing all revenue into the General Fund.

Other cities and states have elected to levy state and local ad

valorem taxes on the total fare of an Uber ride. In New York City,

in addition to the flat unit tax, the state and local sales tax

(8.875%) is also assessed, but unlike the unit tax, most of the rev-

enue goes to the general fund. Other states and localities do not

levy the sales tax rate, but rather have a specific ad valorem tax

that applies to ride-hailing applications, for example, 1.4% in

Philadelphia. In the case of many of these taxes, cities and states

differ in their implementation, including whether they apply uni-

formly to both ride-hailing applications and taxis.

Finally, other cities are instead providing subsidies for Uber rid-

ers. The rational for the subsidy is to induce ride-hailing apps to be

a ‘‘last-mile” provider for individuals wishing to take public trans-

portation. It is often not cost effective for cities to have a high den-

sity transportation network. However, Uber can be prohibitively

costly for low-income households. One urban area that has exten-

sively used subsidies is the Pinellas Suncoast Transit Authority

(PSTA). For rides starting or ending at a designated stop during

daytime hours, the PSTA subsidizes the ride by 50% up to a maxi-

mum of $3. The PTSA also provides free ride-hail rides for low

income qualifying riders between 9 pm and 6 am. San Diego has

partnered with Uber to provide $5 off UberPool trips during confer-

ences or large sporting events. In Philadelphia, the Southeastern

Pennsylvania Transportation Authority discounts rides by 40%
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and up to $10 per ride for rides to and from suburban rapid transit

stations.

3. Model structure

In order to model the general equilibrium effects of tax policy,

we first construct a baseline city that represent a present-day city

before ride hailing services are introduced. The city is pseudo-

monocentric and lies on a featureless plane without geological

constraints and housing regulations. We assume that land is

owned by absentee landlords. We assume a closed city model:

Uber’s taxation should not result in intercity migration.

The complexity of extending the baseline model to include pub-

lic transportation, ride-hailing, multiple trip types, car ownership

and tax policy requires the model be solved numerically. The goal

of numerical simulation models is to calibrate it to a real-world

city and then change the model’s parameters to produce general

equilibrium comparative statics. We first describe the general

setup of the model and then subsequently explain how we cali-

brate it to a given present-day city.

Given the monocentric city model has come under some criti-

cism as employment has suburbanized, it is useful to discuss its

applicability to our setting. Empirical evidence that our calibrated

city—Chicago—conforms to the predictions of the monocentric city

model abounds. The key prediction of the model is that population

density, structure density and land value decline substantially

from the city center. Regarding employment density and land

rents, Rosenthal et al. (2022) document that transit cities including

Chicago display a monotonic decline in employment density and

land rent as one moves away from the CBD. The decline is steep

at first and then quickly flatten out, which is a characteristic of a

monocentric city with a dominant central business district.

McMillen (2006) shows, what is obvious from observing the Chi-

cago skyline, that the city center still dominates urban spatial pat-

terns in terms of structure density, which declines exponentially

from the core.10 Thus, the monocentric city model remains a useful

tool to analyze Chicago. But, obviously other cities are not mono-

cetric, and the important question is whether our results using Chi-

cago as a case study extend more generally. We return to this issue

later in the paper.

3.1. Theoretical framework

Summary. Firms are located in the CBD and pay the same

exogenous wage rate to identical workers, which are fixed in pop-

ulation. Workers, who commute to the CBD reside in a residential

district between the CBD and city boundary. The city boundary is

determined endogenously by the reservation rent of agricultural

land. Utility is endogenous and allowed to vary under different pol-

icy scenarios. Households engage in commuting, downtown leisure

trips, and other leisure trips using various transport modes. Mode

choice is determined endogenously. In contrast to existing models

of urban areas where households are only heterogeneous in dis-

tance to the city center, in our model, a households’ location deci-

sion is characterized by a multi-dimensional vector given by the

distance to the CBD and the distance to the nearest transit station.

Land and housing prices vary across locations so that in equilib-

rium, households are indifferent across all locations.

3.1.1. The central business district

All employment is concentrated in the CBD, which is at the cen-

ter of the circle. Because this is a closed city model, total employ-

ment in the CBD is unchanged and hence the size of this area is

constant across simulations. For simplicity, this paper does not

model the land market for the CBD and the potential effects of ride

hailing transportation services on parking or the formation of

employment sub centers. These simplified assumptions are neces-

sary to facilitate simulation analysis. However, unlike the standard

model, as will become clear, not all trips are to downtown and so

many trips will not rely on this structure.

3.1.2. Land use

Urban land use is divided among highways, residential streets,

residential housing, and other uses (public transit, parks, etc.). It

is assumed that a constant fraction, hR, of land area is allocated

to highways, hs, of land area is allocated to residential streets, a

fixed proportion, h, of land is allocated for housing, and the remain-

ing share 1� hR � hs � hð Þ of land area devoted to other uses. The

road system consists of radial highways and residential streets that

are along the circumference of each radius. The highway network

is assumed to be dense. This eliminates the need to model house-

holds’ commuting from home to the highway.

Residential streets are located at each radius. Residential roads

are used to engage in local trips and to drive to the rapid transit

lines. We assume that, unlike highways which follow all rays from

the origin, the rapid transit lines are evenly distributed, i.e. the dis-

tance between transit lines is equal at a given annulus. Each rapid

transit line offers a radial route that links the CBD with residential

locations. Stops are located at each radius. We assume that the CBD

stops are next to the final destination, such that no additional tran-

sit is necessary. Although rapid transit lines are radial, we assume

that buses follow residential street roads—driving around the cir-

cle—and that bus stops are located at each point.

The city expands until the residential sector is outbid by the

agriculture sector. At the city boundary k, the residential land price

p‘ k
� �

is equal to agricultural land price pa
‘ . The ride-hailing indus-

try has no effect on the proportions of land use, although, in prac-

tice, in the long run, ride hailing services could potentially reduce

parking usage in the CBD and residential areas (Brueckner and

Franco, 2017). The fixed proportions assumption is reasonable if

land use regulations or zoning allocates development in fixed

proportions.

3.1.3. Housing production

Recall individuals are characterized by a distance from the CBD

and a distance from the public transit lines. Housing H k; jð Þ at dis-

tance k from the CBD and distance j from public transit, is produced

using structure (capital), S, and land, ‘, as inputs under a constant

returns to scale technology. The production function has a constant

elasticity of substitution (CES) functional form with an elasticity of

substitution equal to 1= 1� qð Þ:

H k; jð Þ ¼ A a1S k; jð Þ
q
þ a2‘ k; jð Þ

q� �1=q
; ð1Þ

where structure inputs are perfectly elastically supplied. Then, A

represents the housing production technology, a1 is the structure

input share, and a2 is the land input share. Housing producers max-

imize profits by using land and structure inputs to assemble hous-

ing. In equilibrium, given the production function is constant

returns to scale, these producers receive zero economic profit at

every location inside the city. Developers choose structure inputs

and land given a structure input price ps and residential land prices

p‘ k; jð Þ. The structure input price is exogenous while residential land

price is determined endogenously.

10 The dominance of the CBD in Chicago can also be seen from the pattern of the

population density distribution shown in Fig.A1.
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3.1.4. Households

Homogeneous households consume housing and a composite

commodity to maximize:

Uðk; jÞ ¼ b1yðk; jÞ
g
þ b2hðk; jÞ

g� �1=g
; ð2Þ

where h is housing consumption, y is numéraire good consumption,

b1 and b2 are consumption share parameters, and 1= 1� gð Þ repre-

sents the constant elasticity of substitution.

Households have an exogenously given income, W. For a house-

hold living at distance k from the CBD and distance j from rapid

transit, she spends income on the numéraire good, y k; jð Þ, housing,

h k; jð Þ, and total transportation costs, T k; jð Þ. Housing expenditure

depends on the housing rental price r k; jð Þ and size h k; jð Þ, yielding

the budget constraint:

W ¼ y k; jð Þ þ r k; jð Þh k; jð Þ þ T k; jð Þ: ð3Þ

In equilibrium, households’ utility is identical at each distance, k,

from the the CBD edge, and j from public transit. The assumption

of homogeneous income implies there are no heterogeneous effects

of ride hailing transportation services across different income

groups. Survey results generally show that affluent Americans are

more likely to adopt ride hailing.

3.1.5. Transportation technology

The model features three types of trips: commuting trips to the

CBD, leisure trips to downtown, and idiosyncratic ‘‘local” trips for

leisure. This wide variety of trip-types allows us to model various

channels that policies may influence Uber or transit ridership. The

total transportation cost for households at a distance pair

k; jð Þ; T k; jð Þ, includes the total commuting cost for work, Tcom k; jð Þ,

the non-commuting cost for leisure trips to the CBD, T leisure k; jð Þ,

and the total cost for ‘‘random” local trips, T local k; jð Þ.

As will become apparent, both commuting and CBD leisure trips

will rely on the structure of the monocentric city model, while

‘‘random” local trips will not. Commuting and leisure trips differ

in terms of their time of day, thus influencing the available modes

of transit, the costs of each mode, and the extent of traffic conges-

tion on roadways. For example, households make non-commuting

trips to downtown during non-rush hours or on weekend, while

commuting trips occur at peak hours. Among different transporta-

tion modes individuals optimally choose one mode to minimize

costs.11

Commuting trips to the CBD. Workers choose from different

transportation modes to commute to work including walking, pub-

lic transit, driving, and carpooling. According to the American Com-

munity Survey in 2010, over 90% of the U.S. population commute

through these four modes. Workers may arrive at public rapid

transit lines by walking or bus. After the ride hailing service is

introduced, workers have the option to either take it directly to

work or to the nearest public transit station. For ease of notation,

given a fixed number of trips, we define transport costs as annual-

ized measures.

For households living at distance k from the CBD and distance j

from the public transit station, the total transportation cost for

walking ncommute number of commuting trips is:

Twalk k; jð Þ ¼ sw �w � k=Vwalkð Þ � ncommute; ð4Þ

where the time cost of walking is a fraction sw of the wage rate per

hour, w. The speed of walking is set at a constant pace, Vwalk.

For workers who commute to the CBD via automobile, the

annual transportation cost includes the fixed cost of owning a

car, m0, an annual parking fee at the CBD, parkingCBD, costs propor-

tional to distance traveled (e.g. vehicle depreciation, maintenance),

m1, gasoline costs, and time cost of commuting. The gasoline cost is

determined by the fuel efficiency of the car, G, and the price per

gallon pg . Then, gasoline consumption per mile G�1 depends on

vehicle velocity, V. The velocity at each distance k is determined

jointly by the number of commuters and road capacity. The

time–cost of commuting depends on the value of time as a fraction,

s, of the wage rate per hour,w, and the travel time
R k

k
1

V jð Þ
dj, where

k represents the edge of the CBD and j represents the argument in

the integrand. We assume parking is next to the office. Taken

together, the total commuting cost of driving is:

Tdrive k; jð Þ ¼ m0 þ parkingCBD þm1kþ pg

Z k

k

1

G V jð Þð Þ
djþ sw

Z k

k

1

V jð Þ
dj

" #

� ncommute: ð5Þ

Both fuel and commuting time are related to the velocity of the

automobile at various locations in the city. The velocity is a func-

tion of the ratio of traffic volume to roads. Following Bureau of

Public Roads specification, the function for velocity is

V kð Þ ¼
1

aþ bM kð Þ
c ; ð6Þ

where M kð Þ ¼ N kð Þ
��!

=R kð Þ. N kð Þ
��!

represents the traffic volume passing

through distance k, which is a function of commuters living within

distance k;N kð Þ. Then R kð Þ represents the road capacity. Recall, at

each radius k, road capacity is a fixed fraction hR of the land area.

Finally, a; b, and c are congestion parameters.

Households living further away from the CBD have greater

incentives to carpool because costs could be shared among riders.

If workers choose to carpool, each carpool has n riders, who alter-

nate driving trips, implying that all carpoolers will own a car. The

shared parking cost is parkingCBD=n, the variable costs related to

distance traveled become m1=n per rider, and the shared gasoline

price per gallon is pg=n. Carpools incur an extra time cost for each

rider because riders have to coordinate schedules and drivers have

to pick up and drop off each rider. This extra carpooling time is

assumed to be fixed at zcarpool. Thus, the time cost of scheduling car-

pooling is sschedule �w � zcarpool, where sschedule is the time cost of coor-

dinating and scheduling carpooling as a fraction of wage rate.

Similarly, scarpool is the time cost of driving. Therefore, the total

commuting cost for workers who carpool is:

Tcarpool k; jð Þ ¼ m0 þ sschedule �w � zcarpool þ parkingCBD=nþ m1=nð Þk
�

þ pg=n
� �

Z k

k

1

G V jð Þð Þ
djþ scarpoolw

Z k

k

1

V jð Þ
dj� � ncommute:

ð7Þ

As mentioned previously, transit lines are evenly distributed. Each

transit line offers a radial route that links the CBD with residential

locations. Stops are located at each radius for workers to enter a

transit line to the CBD. Buses follow residential roads and thus

can be used on trips from home to transit stations.12 Thus, if house-

holds choose to take public transit, in the absence of ride-hailing

apps, they could walk or take bus to the nearest public transit station

and then take public transit. Therefore, for households walking to

the public transit, the transportation cost is:

Twalkpub k; jð Þ ¼ sw �w � j=Vwalkð Þ þ awt � spub �wþ publicfare
�

þ spub �w � k=Vmetroð Þ� � ncommute; ð8Þ

11 Individuals at a given distance k from the CBD and distance j from the public

transit station will commute using the same mode for all commuting trips.

12 Given buses and rapid transit have similar prices in Chicago, we assume

individuals would never want to take a bus directly to downtown given the speed

improvements of using rapid transit.
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where the first term represents the time cost of walking to the

nearby transit station. Then, awt is the average waiting time. The

time cost of transit is measured as a fraction, spub, of the wage rate

and publicfare is the ticket cost. Then, Vmetro is the average speed of

each transit line. Thus the average time riding the train from dis-

tance k to the CBD is k=Vmetro. The last term represents the time cost

of taking public transit. For households taking a bus to the public

transit, the transportation cost is:

Tbuspub k; jð Þ ¼ sbus �w � j=Vbusð Þ þ tbuswait � sbus �wþ busfare½

þ awt � spub �wþ transferfare

þ spub �w � k=Vmetroð Þ� � ncommute; ð9Þ

where sbus is the time cost of taking the bus, Vbus is the average

speed of the bus, and tbuswait is the time spent waiting for the bus,

and busfare is the bus fare. Then, the first term in this equation is

the total time cost of taking the bus accounting for its speed, the

second term is the time cost of waiting for the bus, and the third

term is the bus fare. The remaining terms parallel that of the prior

equation related to taking rapid transit, except the fare for a transfer

to rapid transit is given by transferfare, which may be less than the

direct fare of taking rapid transit. In this way, taking a bus is similar

to walking to transit, but potentially incurs different time costs,

waiting costs, and the bus fare.

Some metro lines may already be at or near capacity, implying

that any large policy change that dramatically increases demand

may substantially increase wait times. To account for this, we

model public transit crowding following the engineering literature

(Osuna and Newell, 1972; Esfeh et al., 2020). Assuming passengers

arrive randomly at transit stations and if passengers can be served

by the first arriving vehicle, the average waiting time is estimated

as half of the headway. Therefore, awt ¼ 1
2
C, where C is the head-

way or the frequency of the train. However, if overcrowding is an

issue, passengers who are not able to board the fist-arriving train

have to wait another time period of C. For passengers who are left

behind, their waiting time is C=2þ C. Assuming the load capacity

of all of the trains in one time period of C is Z, it implies that the

trains could fit a population of Z comfortably. If the number of pas-

sengers using public transit, Z, is greater than Z, the public transit is

overcrowded. There are Z � Z
� �

passengers left behind by the first

arriving train and have to wait for the next train. Therefore, follow-

ing Liu et al. (2013), if there is overcrowding, the average waiting

time for all passengers is

awt ¼
Z

Z
�
C

2
þ 1�

Z

Z

 !

�
C

2
þ C

	 


: ð10Þ

If Z < Z, there is no overcrowding issue and the average waiting

time is C=2.

According to survey data in Young and Farber (2019), 17.7% of

ride-hailing trips are to work, but this number is larger for younger

workers and night shift workers. Because Uber is a major player in

the ride hailing industry, this paper uses the fare structure of Uber

to represent ride-hailing apps. The cost of taking Uber to work

includes the payment to Uber, the time cost of waiting, and the

time cost of traveling, given by:

Tuber k; jð Þ ¼ f 0 þ f 1 � kþ f 2

Z k

k

1

V jð Þ
djþ awtuber � suberwait �wþ suber �w �

Z k

k

1

V jð Þ
dj

" #

� ncommute;

ð11Þ

where f 0 represents the base fare, f 1 represents the price per mile,

f 2 represents the price per hour, awtuber is the average waiting time

for Uber drivers to arrive, and suberwait is the time cost of waiting for

Uber. To simplify, the fare structure of taking Uber is set exoge-

nously without surge pricing. The time cost of commuting is a frac-

tion, suber , of the wage. We assume suber < s, because while in the

Uber, individuals can spend time working or other productive uses.

‘‘Dead trips” where the driver needs to find the next passenger also

do not cause added congestion, given they must always be in the

opposite direction on the highway.

If workers choose to take Uber to the nearest transit station, the

transportation cost is:

Tuberpub k; jð Þ ¼ f 0 þ f 1jþ f 2 þ suberwð Þ � j��j
� �

=V res þ�j=�V res

� ��

þ awtuber � suberwait �wþ awt � spub �wþ publicfare

þ spubw � k=VmetroÞ � ncommute; ð12Þ

where the first five terms represent the cost of taking Uber to transit

and the last three terms represent the cost of taking public transit.

To get to transit lines, Uber drives on residential streets.13 As more

people start to take Uber to transit stations, the speed on local roads

could fall. This congestion is likely to be most salient near transit sta-

tions, possibly a result of Uber causing congestion in the dropoff

area. Thus, we model this congestion within a given distance �j of

transit stations to capture congestion near the Uber arrival and

departure points. To capture this, V res represents the driving speed

on residential streets without congestion caused by Uber, while
�V res represents the speed on residential streets within�jmiles of tran-

sit stations. Then the term within square brackets implies added per-

sonal time costs due to congestion and added costs of Uber, as a

result of the app pricing per minute of travel.

To model congestion near transit, we assume it is based on the

average Uber speed rather than the precise amount of congestion

at each distance.14 The average Uber speed with congestion, �V res,

is a function of the number of Uber cars on the road and the residen-

tial road capacity, taking a similar functional form as (6) except

replacing a; b and c with residential road specific congestion param-

eters, ares; bres, and cres, and replacing M kð Þ with
Nuberpub

Rres
. In this last

term, Nuberpub is the the number of Uber trips to transit and Rres rep-

resents the residential road capacity. We have verified the results are

robust to the distance threshold that we specify congestion starts

at.15

Each household chooses a travel mode optimally to minimize

commuting cost. The transportation cost for households living at

radius k and distance j from public transit is:

Tcom k; jð Þ ¼ min Twalk k; jð Þ; Twalkpub k; jð Þ; Tbuspub k; jð Þ; Tuberpub k; jð Þ;
�

Tcarpool k; jð Þ; Tdrive k; jð Þ; Tuber k; jð Þ;
�

: ð13Þ

Car Ownership. We allow for endogenous car ownership, such that

Uber and the policy regime can change the number of car owners.

Car ownership decisions are made in two stages. In the first stage,

households choose their commuting mode to work. If they choose

to drive or carpool, they must own a car, incurring the fixed costs

of owning a car. In the second stage, households choose their mode

choice for leisure trips discussed below. Households who choose

not to own a car for commuting purposes may decide to own a

car for non-commuting trips if the total costs of doing so are less

than the total costs of those trips without a car. This theoretical

innovation sheds light on the effects of Uber on the car ownership

rate. The two stage process is a simplification, but facilitates solving

13 In contrast to Uber trips to public transit, all highway trips are radial. In addition

to driving to transit stations, residential streets are used for other purposes such as

shopping or errands besides commuting.
14 This simplifies computations considerably, with little expense. Moreover, this

allows us to interpret the congestion as a fixed cost near the station rather than

something that accumulates over distances.
15 Intuitively, as this distance increases and congestion occurs over a longer space,

then the response of individuals willing to switch to Uber as a way to get to public

transit is muted.
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the model. Moreover, such a process is not unreasonable given the

heavy reliance on driving to commute to work.

Households choose to own a car for commuting purposes if

households choose to drive or carpool to work, that is, if

Tcom k; jð Þ ¼ Tdrive k; jð Þ or Tcom k; jð Þ ¼ Tcarpool k; jð Þ.

Transport Cost Curves. Much of the intuition of the model can

be seen using the transportation cost curves defined above—and

those defined subsequently for leisure trips. Unlike prior models,

our model features distance to the CBD and distance to transit

lines, so that the transportation cost curves vary across both

dimensions. To gain intuition, Fig. 1 shows the transport cost

curves (per trip) with respect to distance to the CBD, conditional

on various distances to transit lines. AppendixA.1 extensively dis-

cusses the differences between the fixed (shifts) and marginal cost

(pivots) of each mode of transit and explicitly demonstrates how

the optimal transit cutoff rules are derived in partial equilibrium.

Focus on Panel 1a. The vertical intercept shows the fixed cost

conditional on a given distance from the transit station. Based on

our calibration discussed subsequently, the fixed cost of walking

is the lowest. The fixed costs of taking Uber directly to work is

lower than taking it to a transit station due to the added transit

costs. The fixed cost of carpooling is higher than the fixed cost

of driving because the added cost of carpooling is larger than

the savings from sharing parking costs, but the fixed cost of tak-

ing Uber is lower than both options. Finally, the fixed cost of

walking to transit is lower than taking the bus and Uber to tran-

sit. However, note these conclusions depend on distance from the

transit station.
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Fig. 1. Transportation Cost Curves (By Distance to Transit Stations). This figure shows the transportation cost curves for commuting purposes. Similar figures could also be

drawn for leisure trips. Recall that transportation cost curves vary by distance to the CBD (horizontal axis) and distance to the nearest transit line (each panel). Rather than

present a 3D surface, we show the transport cost curves in a series of panels. The horizontal axis of each figure corresponds to the distance to the CBD, while each panel

corresponds to a given distance from the transit line. We truncate transit lines at 15 miles from the CBD, as is the case in Chicago, and as a result the labels on the figures are

the distance to transit lines for individuals no further than 15 miles from transit. Those individuals further than 15 miles from the CBD will have different distance to transit,

which explains the kinks in those cost curves. The intercepts represent fixed costs, while the slopes represent marginal costs. The numerical values of the costs are based on

our calibration to the city of Chicago.

D.R. Agrawal and W. Zhao Journal of Public Economics 221 (2023) 104862

7



With respect to marginal costs, note that because each graph

fixes the distance to transit, the marginal cost is only related to

terms relating to distance to the CBD. The marginal cost of walking

is the highest. Uber’s marginal cost is the second highest because it

charges a higher fare per mile and minute than would be realized

by using one’s own car. Finally, the marginal cost of carpooling is

lower than solo-driving because maintenance and gas costs are

split. With respect to transit stations, conditional on a given dis-

tance from transit, the marginal cost of transit is the same by

assumption in our calibration. Each of these curves have a kink

after 15 miles, where the Chicago rapid transit line reaches its

endpoint.

The transport cost curve accounting for optimal individual

choices is the lower envelope of all of the curves. The intersections

of each individual curve along this lower envelope partitions the

city into various modal choices along each transportation array.

Then, moving across panels, as distance to a transit station

increases, the cost of walking, taking bus or taking Uber to public

transit each shift upward. However, the walking curve shifts up

faster as the cost of walking an additional mile is much higher.

Critically, as distance to transit increases, public transit becomes

too costly, and given Uber directly to work has a relatively low

fixed cost, Uber directly to work becomes a viable option (see the

last panel). Taking Uber to transit is never viable unless subsidized.

Thus, the four panels of graphs show that modal choice differs

based on distance to the CBD and distance to transit stations, with

the aggregate lower envelope of these curves being different at dif-

ferent distances from transit lines.

Leisure Trips to Downtown. Our model will feature two types

of leisure trips, the first of which will borrow some of the structure

of commuting trips. Households make non-commuting trips to

downtown (shopping, nightlife, concert venues) during non-rush

hours or weekends for leisure purposes. As noted in Hall et al.

(2018), there can be idiosyncratic reasons such as the weather or

time of day that alter why individuals take Uber. To model this,

for each leisure trip i, there is a random benefit (negative cost)

associated with taking Uber to downtown. We could also model

a random benefit of taking Uber to transit, but given we do not

have data to calibrate the parameters of that distribution, we leave

this as a robustness exercise for later in the paper.

Households have the same three options to get to public transit

for non-commuting trips to downtown, but the cost functions have

different parameters due to being off-peak hours. For example, for

households walking to rapid transit, the non-commuting cost has

the same per-trip form as (8) except that awt is replaced with

awtnonrush, the average waiting time for transit during non-rush

hours or weekends. Due to lower transit frequency at night and

on weekends, we assume awtnonrush > awt. The same modifications

to average waiting times are made for the cost functions of taking

the bus and Uber to public transit. Uber to public transit also has an

additional modification: because these trips are not during rush

hour, we assume there is no congestion near transit stations,

achieved by setting �j ¼ 0 in (12).

If households take Uber directly to their centrally located lei-

sure activity, there is a random benefit (negative cost) of taking

Uber that is trip-specific, randuber ið Þ which follows a Pareto type

1 distribution, with scale parameter normalized to one. This ran-

dom term captures any psychic benefits of engaging in activities,

such as the ability to avoid drunk driving or the role of time-of-

day or weather in changing the relative cost of Uber. The Pareto

distribution is ideal because it implies many trips will have small

benefits, but some trips will have very large Uber benefits. As dis-

cussed in the calibration section, we set the Pareto parameter such

that it pins down the appropriate share of Uber trips by trip pur-

pose. Given individuals optimize the mode for each trip separately,

the non-commuting cost for trip i of taking Uber downtown for lei-

sure is:

T leisure
uber k; j; ið Þ ¼ randuber ið Þ þ f 0 þ f 1 � kþ f 2

k

Vnorush

þ awtuber

� suber �wþ suber �w �
k

Vnorush

þ f 1 � kþ f 2
k

VCBD

þ suber �w �
k

VCBD

; ð14Þ

In addition, the cost differs from (11) because Vnorush is the driving

speed during non-rush hours. Furthermore, a critique of ride-

hailing apps is that they generate congestion downtown due to

many trips to common points of interest. For leisure trips, these

rides must travel a distance within the CBD to get to the final des-

tination. We allow for Uber to generate downtown congestion by

assuming that VCBD is the driving speed downtown in the CBD, so

that the last terms capture the extra cost associated with down-

town congestion caused by Uber drivers.

We model downtown congestion on the roads within the CBD.

Similar to congestion near transit stations, after a car enters into

the downtown area, its speed becomes a function of the number

of Uber drivers. In practice, we interpret this penalty as a cost of

taking an Uber into the downtown area, which could capture extra

waiting, drivers stopping in the road or idle driving by Uber drivers

who are looking for pickups. The number of Uber drivers affects car

drivers as well. This cost only arises on leisure and not commuting

trips: first, as the calibration will make clear, leisure trips using

Uber are more common than commuting trips and, second,

employment might be more spread out in the CBD than points of

leisure such as the symphony and bar district. The downtown driv-

ing speed again takes a similar form as (6) except replacing a; b and

c with downtown-leisure congestion parameters ales; bles, and cles.

Further, we replace M kð Þ with NCBDleisure

RCBD
, where NCBDleisure is the the

number of Uber trips into the CBD and RCBD represents the road

capacity in the CBD.

Households can also drive to the city center for leisure pur-

poses. Here, the cost will depend on whether the household has

already purchased a car for commuting. If households own a car

for commuting purpose, the non-commuting cost for driving is:

T leisure
drive k; jð Þ ¼ parkingpertrip þm1kþ pg

k

G Vnorushð Þ
þ sw

k

Vnorush

þm1 � kþ pg

k

G VCBDð Þ
þ sw

k

VCBD

; ð15Þ

where parkingpertrip is the per-trip cost of parking downtown during

off-hours. This equation differs from (5) because Uber drivers

impose an externality on other drivers in the CBD.

Given our model features endogenous car ownership, if house-

holds don’t own a car for commuting purposes, households need to

pay the fixed cost to buy a car for leisure purpose. Thus, for an indi-

vidual who does not already own a car, the per trip cost of driving

for leisure trips becomes T leisure
drive;buycar k; jð Þ which equals the fixed cost

of car ownership (m0) divided by the number of leisure trips plus

all of the terms on the right-hand-side of (15).

For simplicity, we assume individuals do not carpool or walk

directly to the destination for leisure trips. Then, for each trip i,

an individual will pick the mode of transportation that minimizes

the cost of that trip after accounting for the fact that the cost of

driving will be different depending if they already own a car for

commuting purposes, they will buy a car for leisure purposes only,

or they will never own a car. Unlike commuting trips mode choice

is trip-specific due to the presence of random Uber benefits.

Car Ownership for Leisure Trips. For individuals who already

own a car for commuting purposes, they make no additional own-
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ership decision and instead simply pick the mode that minimizes

each trip cost. But for individuals who do not already own a car,

we first calculate their decision for each trip i assuming they will

buy a car (including the added fixed costs). We then aggregate

their total leisure trip costs (public transport via walking/Uber/

bus, driving, or Uber direct) by summing over all trips i, yielding

a sum T leisure
buycar k; jð Þ. We then repeat this procedure assuming house-

holds never buy a car thus facing only the choice set walking/Uber/

bus to transit or Uber direct to downtown for each trip. After aggre-

gating, this yields a total cost of T leisure
nocar k; jð Þ. If not already owning a

car for commuting, a household will purchase a car if:

T leisure
buycar k; jð Þ < T leisure

nocar k; jð Þ: ð16Þ

Idiosyncratic Local Trips. Uber is also an important transit mode

for trips related to shopping/social activities outside of the CBD

and possible within-CBD trips. By definition, these trips can be quite

‘‘random” in terms of distance, time, and frequency, depending on

proximity to retail agglomerations, social centers, and other sub-

centers within the city. Moreover, whether an individual drives,

takes public transit, or takes Uber on these trips may depend on

numerous factors. Nonetheless, we make significant progress by

imposing some simplifying assumptions on the nature and cost of

these trips. Adding them to the model allows for a more realistic,

psuedo-monocentric city that allows us to more accurately study

the effect of ridehailing taxes.

The first assumption is that local trips can only be made by tak-

ing Uber, driving or bus.16 Second, individual trips are heteroge-

neous in their fixed costs of driving or taking the bus. Finally, the

average distance of local trips is DistL per trip, trip-specific parking

costs are parkingL ið Þ, and the average driving speed is V res. Only indi-

viduals that have decided to purchase a car, either for commuting or

leisure trips, can drive on these trips; individuals without a car must

take the bus or Uber. If choosing to drive, the total cost is a function

the same variables defined previously, except including idiosyncratic

parking costs:

TLocal
drive ið Þ ¼ parkingL ið Þ þ m1 � DistL þ pg �

DistL
G V resð Þ

þ s �w
DistL
V res


 �

:

ð17Þ

Instead, if choosing to take a bus, the local trip cost is:

TLocal
bus ið Þ ¼ randomwait ið Þ þ

DistL
Vbus

� sbus �wþ busfare; ð18Þ

where randomwait ið Þ is a trip-specific waiting time for the bus. This

might include idiosyncratic costs relating to the extent of the bus

transfers necessary.

If choosing to take Uber, the cost function is:

TLocal
uber ¼ f 0 þ f 1 � DistL þ f 2

DistL
V res

þ awtuber � suberwait �wþ suber �w �
DistL
V res

:

ð19Þ

For households who own a car, they choose a mode from driving,

bus or Uber to minimize the cost for each trip i. For households

who choose not to own a car, their local trip cost is determined

by picking from a choice set that only includes buses or Uber.

Given local trips are heterogeneous and idiosyncratic, we need a

flexible way to model the costs of each local trip. To do this, rather

than introduce heterogeneity in the distance of these trips, we

instead allow for heterogeneity in the parking costs and bus wait-

ing times of each local trip.17 Generally speaking, idiosyncratic park-

ing costs can have a broad interpretation: they could include the the

dollar costs of actual parking, any time costs of finding street park-

ing, and any psychic or monetary costs of engaging in activities such

as drunk driving. Although the dollar cost of parking may be low on

average, the total fixed cost for some trips may be very high. The

same is true for bus waiting times: the idiosyncratic cost could be

due to uncertainty of waiting, the numbers of bus transfers neces-

sary to reach different destinations, or a cost of a bus being late.

Thus, to model the possibility that some trips have very high

fixed costs of driving or taking the bus, we again assume the distri-

bution of parking cost and bus costs follows Pareto type 1 distribu-

tions, with scale parameter normalized to one. For each local trip,

we separately draw a new random parking cost and bus waiting

time from the distribution. Then, as above, parkingL has a CDF of

1� 1=parkingLð Þ
a
, where the Pareto parameter is a, with a similar

function for bus wait times. As discussed in the calibration section,

we set the Pareto parameter to pin down the the share of Uber trips

that are taken to non-CBD locations to match data on the destina-

tion (CBD/non-CBD) of all Uber trips within Chicago, classifying all

trips that are not to or from the CBD as a ‘‘local” trip.

Individuals endogenously determine the optimal mode for each

trip i. The aggregate local trip cost per household, TL is the sum of

all individual trip costs.

3.1.6. Tax policy

There have been several tax policies proposed in the past years:

a flat tax, an ad valorem tax, and a mileage tax. Here we consider

each of these policies in turn.

Flat Tax. Chicago historically imposed a constant unit tax per

Uber trip regardless of the distance or cost. The historical constant

tax rate per Uber trip, ttriptax, was $0.67 per trip in Chicago. Using,

(11), the tax-inclusive transportation cost for taking Uber to work

adds ttriptax to each trip. Similarly, using (12), the cost of Uber to

transit adds ttriptax to each trip. The tax also similarly shifts upward

any leisure trip costs that involve Uber.

Sales Tax. Another tax policy that has been implemented in

other places such as New York City is a sales tax, which is propor-

tional to the monetized cost of each Uber trip. This is a potential

alternative tax policy for Chicago to adopt. If a sales tax policy is

adopted, at a sales tax rate, tsalestax, the tax inclusive price of taking

Uber to work becomes 1þ tsalestaxð Þ � f 0 þ f 1 � kþ f 2
R k

k
1

V jð Þ
dj

� �

. This

then replaces the price of Uber in (11), where all non-monitized

costs are obviously not affected by the tax. The sales tax similarly

pre-multiplies the price of Uber for all other mode and trip types

involving Uber.

Mileage Tax. Finally, a mileage tax is another policy that has

been proposed to tax Uber and other driving (Davis and Sallee,

2020). It is a tax rate that is imposed on the driving distance by

Uber trips. Given the tax rate per mile, tmiletax, the only term in

(11) that is affected is the second term relating to Uber’s per mile

part of its pricing scheme, which now becomes f 1 � k � 1þ tmiletaxð Þ.

Similarly, the distance-based parts of the fares also increase by

the mileage tax rate for all other trips types and destinations

involving Uber.

3.1.7. Tax return scheme

We consider four spending plans to balance the budget: exter-

nal transfers, lump sum rebates, improvement to public transit,

and fare reductions.18 The amount of tax revenue, TR, raised is

determined endogenously. Under the constant tax rate ttax per trip,

the aggregate tax revenue is ttax � Tripsuber , where Tripsuber are the total
16 Given these trips do not involve travel to downtown, radial modes of public

transit are not included in the choice set.
17 Note that we do not need heterogeneity on all three trips, which would be

redundant. Any two trips could have the idiosyncratic component to make our point.

18 Parry and Bento (2001), Parry and Bento (2002) and Bento et al. (2009) emphasize

the critical importance of considering what the tax revenue is used for.
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trips on Uber. Under the sales tax, aggregate tax revenue is

tsalestax � Revenuesalestax, where Revenuesalestax is the aggregate sale rev-

enue from all Uber trips. Under the mileage tax policy, the aggregate

tax revenue is tmiletax � Distancemiletax, where Distancemiletax is the aggre-

gate Uber driving distance.

External Transfers. First, we assume that the state government

levies this tax only in Chicago and then spends the revenue such

that it only benefits nonresidents of the city. While Chicago’s tax

involves local spending, in many other states the tax is levied by

the state government, which then implicitly use the revenue to

subsidize rural parts of the state.

Lump Sum. The second spending scheme is to return the tax

revenue lump sum to each resident household, which increases

households’ income. This scenario is realistic from a policy per-

spective: cities need not earmark their revenue to transit ridership

andmay instead use the revenue to benefit all citizens via a general

fund. A lump-sum transfer would capture this if general public

spending is valued at par with increase in private income.

Transit Improvements. A third spending plan is to invest the

total tax revenue to improve the public transit system by increas-

ing train frequency, which reduces average waiting times. We

assume that the average waiting times is a function of the total

budget devoted to operating the public transit system. The elastic-

ity of average waiting times with respect to the public transit bud-

get is assumed to be a constant, �metro. Therefore,

awt ¼ Cmetro basebudget þ TRð Þ
�metro ; ð20Þ

where Cmetro is a constant, basebudget is the baseline operating bud-

get, and TR is the tax revenue raised. This tax return scheme has the

potential to increase public transit usage by lowering the cost of

transit due to lower waiting times. There may be increasing returns

to improving transit that the constant elasticity assumption sup-

presses. If so, then the transit model responses we estimate would

be smaller than those with increasing returns.

Reduce Fares. A final spending program is to invest the total tax

revenue in the public transit system by reducing the one way ticket

cost of taking metros or buses. In equilibrium, the aggregate tax

revenue should equal to the aggregate public transit fare reduction.

This policy holds the quality of infrastructure fixed, but adjusts the

transit price.

3.1.8. Labor market of Uber

An important part of Uber’s role as a platform is connecting rid-

ers and drivers. We model the driver labor market to incorporate

the incidence of the tax: Uber drivers will share some of the inci-

dence of the tax. Presumably, drivers make labor supply decisions

on expected hourly wages rather than the realized wage. Given

expected wages are unobserved, we proxy for it using driver rev-

enue net of the Uber commission. To proceed, and be consistent

with empirical labor supply elasticities, we assume that the hours

LS of Uber driving time supplied per driver depend on pay per hour,

which equals total revenue, Revenueuber paid to all drivers divided

by LS times the number of drivers. We assume the number of

drivers, Dr, is fixed, so all adjustments occur on the intensive

margin.

For each Uber trip, the driver revenue depends on the base fare,

cost per mile, cost per minute, trip length, and the driving time.

Aggregate revenue is the sum of revenues from trips to downtown,

to transit, and local trips. Let l index a household-trip that is from

location k lð Þ; j lð Þð Þ. Then, aggregate revenue from commuting trips is

Revenuecomuber ¼
X

l2Nuber

f 0 þ f 1 � k lð Þ þ f 2

Z k lð Þ

k

1

V jð Þ
dj

þ
X

l2Nuberpub

f 0 þ f 1j lð Þ þ f 2 �
j lð Þ

V res

ð21Þ

where Nuber and Nuberpub are the sets of household-trips taking

Uber directly to the CBD and to public transit for commuting pur-

poses. Similar expressions can then be derived for leisure trips to

downtown and for local leisure trips. Summing revenue from lei-

sure trips with revenue from commuting trips yields total Uber rev-

enue, Revenueuber . However, the company of Uber takes a certain

fraction, puber , of drivers’ revenue as fees. Although it can vary by

city or diver, on average, this is about 30% of drivers’ revenue.

Therefore, Uber drivers’ net revenue is 1� puberð ÞRevenueuber .

We assume that the labor supply function

LS ¼ 1� puberð ÞRevenueuber= LS � Drð Þð Þ�labor has a constant elasticity,

�labor . Then, rearranging, the labor supply function yields:

LS ¼ Cuber 1� puberð ÞRevenueuberð Þ�labor= 1þ�laborð Þ; ð22Þ

where Cuber is a constant. Multiplying by Dr, or total potential Uber

drivers, gives total Uber hours, with Dr absorbed into the constant.

Critically, puber adjusts to maintain equilibrium in the labor market.

Some discussion is in order. In particular, for driver revenue, we

only deduct Uber’s commission and, following standard practice

among empirical studies estimating this elasticity, do not deduct

driver capital/operating costs.19

A household who chooses to take Uber demands driving service

from an Uber driver. The demand is measured by the driving time

for all Uber trips. Similar to the supply side, summing across all

household-trips using Uber, the demand is given by

LD ¼
X

l2Ncom
uber

Z k lð Þ

k

1

V jð Þ
djþ

X

l2Ncom
uberpub

j lð Þ

V res

þ
X

i2NLocal
uber

DistL
V res

þ
X

l2Nleisure
uber

k lð Þ

V res

þ
CBD

VCBD

	 


þ
X

l2Nleisure
uberpub

j lð Þ � j
�

V res

þ
j
�

V res

�

 !

ð23Þ

where each N is the number of Uber trips for that trip type.

In equilibrium, it must be the case that LS � Dr ¼ LD. The aggre-

gate number of Uber trips, Tripsuber , are determined endogenously

by households who choose to take Uber given the tax rate and fare

structure. Then, Uber adjusts the fraction taken from drivers’ rev-

enue to achieve market equilibrium in response to different poli-

cies or regulations.

After the tax is imposed, the price of taking Uber goes up. As a

result, the demand for Uber trips goes down. As demand goes

down, aggregate income revenue for Uber drivers goes down as

well, which leads to a movement along the supply curve, which

decreases Uber supply. This disrupts market equilibrium. Note that

because Uber is a two-sided platform any policy change both shifts

the demand curve and induces a movement along the labor supply

curve. Depending on the relative size of the demand shift versus

the extent of movement along the labor supply curve, this may

result in a shortage or surplus of drivers if Uber’s commission is

held constant. If there is a surplus [shortage] of drivers, then

puber increases [decreases]. To ensure supply meets the demand,

the company of Uber has to change the fraction taken from drivers’

revenue.

Critically, the households’ mode choices are not a function of

puber and thus the way we model the labor market does not affect

the equilibrium transit choices in the model.20 Our approach is

important for modeling the incidence of the tax: drivers share some

of the cost of the policy changes because the policies now affect their

19 Hall et al. (2017) do not net out driver costs, and so the measure of the hourly

earning rate is a gross flow to both the driver’s labor and capital. This is consistent

with how empirical studies estimate the labor supply elasticity of Uber drivers: Chen

et al. (2019) do not net out driver costs from revenue and Angrist et al. (2021) define

the wage as the hourly farebox net of only the Uber fee.
20 Alternatively, we could simply assume that supply is perfectly elastic.
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net profits. This means that driver welfare is affected by policies,

consistent with reality.

Discussion First, in our model, Uber’s labor market clears by

drivers adjusting hours worked. This implicitly assumes there is

no extensive margin of labor supply. This assumption is necessary

because the literature we draw on to calibrate the elasticity (Chen

et al., 2019), estimates labor supply elasticities in terms of hours

worked. However, we can explore what would change if drivers

also responded along the extensive margin. In particular, given

the labor market need only clear in aggregate, the functional form

of (22) would be similar, simply needing to replace the hours elas-

ticity with a number capturing both responses, and adjusting the

the constant appropriately. If allowing for both extensive and

intensive labor supply responses increases the elasticity then it

can easily be shown that the changes to the Uber commission rate

will change by more than in our current model. Given the demand-

side is not affected by this, there will be no effect on modal choices.

But because driver profits enter into the welfare function, welfare

changes becomes more positive (or less negative).

Second, Uber adjusts the driver share of revenue rather than the

fare to restore equilibrium. In practice, Uber could change the dri-

ver’s commission, the base fare, the time fare, or the fare per mile

(or a combination of the four). We have elected to use the commis-

sion because of its simplicity in requilibrating the supply of drivers

in contrast to a multi-dimensional pricing problem. Moreover,

there is some evidence that ride-hailing apps do this in practice,

as commission rates appear to vary by location. The New York

Times notes that Uber has adjusted driver commissions in response

to New York levying its sales tax on Uber rides, though there is dis-

agreement as to whether Uber’s contract actually allows this

(Scheiber, 2017). Lyft, on the other hand, appears to explicitly

deduct a percentage from the fares drivers receive (Scheiber,

2017). Given the complex multi-dimensional incidence problem

underlying this, we leave alternative incidence assumptions to

future work. However, any fare change that is absorbed by Uber

because it is not passed on to consumers will mitigate the modal

choice responses relative to our results.

3.2. Model solution

The model is solved numerically. To solve the model, the city is

discretized into a grid of uniform squares. Each grid point corre-

sponds to a distance k from the CBD and distance j from the public

transit station. Because all transit lines are evenly distributed

within the city and households choose to go to the nearest transit

stop, each transit line has an equal market area. Because the city is

radially uniform and symmetric with respect to transit lines, it is

sufficient to examine half the market area for one line. After this

market area’s solution is obtained, it is aggregated across all mar-

ket areas.

Given the initial values for the housing price and the fraction of

people who choose to drive, then the cost for each transit mode,

the optimal mode choice for each type of trip, and the population

density, along with housing and land prices at each location are

solved recursively. We check if the following equilibrium condi-

tions are achieved for spatial equilibrium. If any one of these equi-

librium conditions is not met, the simulation is re-initialized and

simulated until subsequent iterations achieve an equilibrium.

First, all households achieve the same utility level and all hous-

ing producers earn zero economic profit. Second, the land price at

the city edge must be equal to the agricultural land rent p‘ k
� �

¼ pa
‘ .

This condition is used to determine the city boundary, k, in equilib-

rium. The city expands until the residential land price falls to the

agricultural land rent.

Second, the total population must be housed within the city.

Given the exogenous number of households in the city, N, the fol-

lowing population constraint condition must be met:

N ¼

Z k

k

Z J kð Þ

0

h � D k; jð Þdjdk; ð24Þ

where D k; jð Þ is the endogenous household density at distance k

from the CBD edge and distance j from public transit, which is

derived from H k;jð Þ=‘ k;jð Þ

h k;jð Þ
, where H k; jð Þ is total housing production,

h k; jð Þ is housing demand per household and ‘ k; jð Þ is total land, as

defined previously. Recall h is the fixed fraction of land devoted to

housing and J kð Þ is the maximum distance to the public transit at

each radius k.

Third, the total number of cars on the highway is determined by

the population who choose to drive, carpool, or take Uber to down-

town, which must equal to the total traffic volume passing through

the CBD edge. This determines the traffic volume on highways.

Similar conditions apply with respect to the volumes on local roads

and within the CBD.

Fourth, to clear the Uber labor market, labor supply is equal to

labor demand in equilibrium. This condition determines the

endogenous Uber commission rate.

Finally, aggregate tax revenue is equal to the spending of that

revenue, balancing the government budget constraint. This condi-

tion determines the improvement in public transit, fare reduction,

or the amount of the lump sum return endogenously.

3.3. Baseline calibration and simulation

The calibration of the model is evaluated by comparing the sim-

ulation outputs to the characteristics of Chicago in 2010, before the

entry of Uber. The Chicago urbanized area is selected to calibrate

the model due to its size and the presence of a public transit sys-

tem.21 The relatively strong CBD in Chicago also facilitates our sim-

ulations, but we will discuss the external validity of our results to

cities of other sizes and to cities that are polycentric.

For the transit system in Chicago, the total route length is 102:8

miles with several transit lines. The route length for each line

ranges from 5.1 miles to 26.9 miles. In the simulation, we assume

there are 7 lines with equal route length of 15 miles. These 7 lines

divide the city into equal pieces. The simulated city has a CBD, a

residential district, and an agricultural hinterland, which occupy

60% of the circular area.22 The rapid transit system, the simulated

city geometry, and simulated public transit system are shown in

Fig. 2.

Parameter calibration follows the literature on numerical urban

simulations. These parameter values are shown in TableA1. Addi-

tional discussion of some parameters is given in AppendixA.2. Here

we discuss important parameters.

According to National Household Travel Survey (2017), the

average annual person trips to and from work per household is

approximately 1/2 the number of vehicle trips for shopping, fam-

ily/personal errands, school or church, and social and recreation

purpose. We assume that all social/recreational trips in the

National Household Travel Survey are CBD leisure trips, while all

remaining shopping, personal, and school trips are idiosyncratic

local trips. Given this, 25% of leisure trips are to the CBD and 75%

are idiosyncratic. From these same data, the average trip length

for local trips is 7.15 miles. In the simulation, we assume each indi-

21 According to Gyourko et al. (2008), Chicago has relatively low regulatory barriers.

This characteristic is used to match the assumption of zero zoning regulations in the

theoretical model as closely as possible.
22 Saiz (2010) estimates that 60% of city area is available for development due to

Lake Michigan.
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vidual works 5 days per week for 50 weeks. Given 1.25 people per

household, the number of commuting trips is 625 per year per

household. Given the survey data, the total number of leisure trips

to the CBD is 295, with the annual number of local trips set to 859

per household.

Next, we need to determine the benchmark share of Uber trips

by trip type. We use the Chicago Data Portal ‘‘Transportation Net-

work Providers - Trips” to determine this. We define a local trip as

any trip that is not from outside the CBD to the CBD, or vice versa.

This dataset provides information on the origin and destination of

trips within the city from 2018 to 2020. Alex Mucci cleaned and

geolocated these data, and counts the number of ridehailing trips

that start/end in the downtown congestion zone.23 These data indi-

cate that 2/3 of trips have either only an origin or a destination

within the downtown zone. See Fig.A2. According to survey data

in Young and Farber (2019), 17.7% of ride-hailing trips are for work,

but this number is larger for younger workers and night shift work-

ers. We then assume that any trip entirely within downtown or that

is entirely outside of downtown is a local trip. Combining these data,

we calibrate the model such that (approximately) 18% of Uber trips

are for commuting trips, 48% are CBD leisure trips, and 34% of all

Uber trips are for local trips. To achieve these benchmarks, we set

the Pareto parameter for the three distributions governing the local

parking costs, bus waiting times, and random Uber benefits to match

these shares. In other words, we pick the local trips Pareto parame-

ters such that in our baseline simulation, 34% of total Uber trips in

our model are ‘‘local” trips, i.e., not involving a trip to downtown.

And we pick the Pareto parameter on Uber’s CBD leisure trips such

that 48% of all Uber trips are leisure trips to downtown.

Uber drivers’ labor supply elasticity is set at 1:72, based on the

elasticity at the median in Chen et al. (2019). The effective commis-

sion taken by Uber ranges from 20% to 50%. Therefore, in the sim-

ulation, the fraction that Uber takes from drivers’ revenue is set at

30%.

We assume that the transit system is near the load capacity per

headway because some stations are overcrowded while others are

not. Thus, Z is set to 13% of population.24

Results from simulating the calibrated model are shown in the

final column of Table 1. Overall, the simulated baseline city

matches the average characteristics of Chicago quite well. The

model fits the modal choices, car ownership rates, and Uber trip

shares well.

4. Results and counterfactual scenarios

In this section, we discuss the effect of various tax policies. Our

focus is on the mode of transit and congestion metrics such as

speed. The main tables in the text present the results of mode

choice for all trips (commuting, CBD leisure, local leisure) com-

bined, while the online appendix tables present mode choices dis-

aggregated by trip type.

Fig. 2. Chicago Public Transit System, Actual and Simulated. This figure shows the layout of Chicago’s ‘‘L” System. While there are many transit lines, the Panel (a) shows that

the lines move in approximately seven different distinct directions. Panel (b) shows the equal spacing of these lines for our simulated model. Panel (a) is sourced from the

Chicago Transit Authority website https://www.transitchicago.com/ma.ps/.

23 The boundaries of the downtown congestion zone are given by Business Addairs

and Consumer Protection website on ‘‘City of Chicago Congestion Pricing”https://

www.chicago.gov/city/en/depts/bacp/supp_info/city_of_chicago_congestion_pricing.

html.

24 The assumption on Z is consistent with rush hour patterns on many lines, but not

on off-peak demand.
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4.1. No tax equilibrium

Before discussing our counterfactual exercises, we first consider

the laissez-faire equilibrium where the city of Chicago does not tax

Uber. The first column of Table 2 presents this case. With respect to

transit choice, solo driving is the most common means of trans-

portation. In addition, just over 4% of people take an Uber directly

to their destination. The share of individuals taking Uber is non-

trivial. Among individuals taking public transportation, the model

initially predicts a corner solution: no individuals will take Uber

to public transportation and all individuals walk or take the bus.

The reason for this is that Uber charges a base fare that is too high

to make Uber a viable option. We will relax this subsequently. Even

if the time and distance to the train station are small, the base fare

of is larger than the fare to use the L-train. Given no Uber rides are

used to get to public transit, the average Uber trip is 23 min, is at a

distance of about 8 miles, and costs about $16. Car ownership rates

are almost 90%, with most households owning a car for commuting

purposes.

4.2. Counterfactual exercises with taxes

In the remainder of Tables 2/A2, we consider Chicago’s fixed tax

of $0.67 on Uber.25 As discussed previously, the tax revenue gener-

ated is then allowed to be spent in various ways.

We then proceed in subsequent tables by considering different

tax policies. In Tables 3/A3 we allow for the city, county and state

sales tax to be applied to each fare at a rate of the 9.25%.26 As a

third tax policy in TablesA4/A5, we consider a 20 cent per mile

tax. This policy attempts to tax road ware that may be caused by

an increase in Uber rides.

Fig.A3 visually previews the results of transit choice for the

laissez-faire equilibrium and for each of the policies. We will dis-

cuss each of these cases in turn.

4.2.1. Results: a fixed tax on Uber

Fig. 3 shows the intuition with respect to how the tax policy

shifts the transport curves for commuting trips. Similar figures

could be made for leisure trips. While these policies also shift/pivot

bid rent curves as in the standard monocentric city model, the

effects on the transport curves represent the direct effect of the

taxes and spending and thus we present the intuition using them.

In the first two panels, we show the fixed tax with a lump sum

rebate or a fare reduction, respectively. For simplicity, we show

the effects for individuals j ¼ 0:1 miles from transit stations; shifts

are qualitatively similar for other values of j in this scenario. The

only difference for other values of j is which curves form the lower

envelope.

In both depicted scenarios, the unit tax directly shifts up the

Uber to work and Uber to transit curves. In the latter scenario, with

a fare reduction, the Uber to transit curve shift is muted by the

lower fare; additionally, the cost of walking to transit shifts down

slightly. With a lump sum rebate, the upward shift of the Uber cost

curve is irrelevant because individuals living near transit stations

never take Uber directly to work. However, recall that as distance

to transit, j, increases, this upward shift will be relevant as walk-

ing/transit are no longer dominant options (e.g., for individuals

1.3 miles from transit in Fig. 1). Thus, we can see that the decline

in Uber usage from the tax comes from individuals sufficiently

far from public transit. With a fare reduction, this in turn, mildly

increases transit usage.

Now turn to the simulation results in Tables 2/A2. Based on our

general equilibrium model, the tax on Uber raises about 115 mil-

lion dollars which is approximately 14% of the Chicago Transit

Authority rapid transit budget. To compare results for various

spending policies, consider the various policies in Table 2. Of

course, adding the fixed tax to Uber rides lowers the share of rid-

ership taking Uber to directly to the destination. Even when tax

revenue is entirely used to improve the frequency of public trans-

portation or to reduce its fare, taxing Uber still results in a corner

solution where no individuals take Uber to public transit.27 Most

substitution away from Uber is toward solo driving. Given this, car

ownership mildly increases. However, in situations where transit

becomes cheaper due to the Uber tax revenue funding transit fees,

some of the riders that previously took Uber to work substitute

toward public transportation. Only in the latter scenario does car

ownership mildly decline. Finally, speeds on highways and down-

town mildly increase.

Critically, in TableA2, Uber trips to the CBD are more elastic

than leisure Uber trips.28 Intuitively, Uber is used for leisure trips

to downtown with high idiosyncratic benefits of Uber and for local

trips that have high idiosyncratic fixed costs of other means. These

Table 1

Calibration of the Simulation.

City Characteristics Chicago

Urbanized Area

Simulated

Characteristics

Total Occupied Units 3,012,005 3,010,616

Median Income 56,069 56,069

Median Lot Size (Acres, 1 unit

structure)

0.17 0.23

Median Unit Size 2000.00 2016.62

City Radius (miles) 33.56 34.10

Land area (square miles) 2122.81 2179.01

Time to work (Residential

Average)

30.70 29.41

Percent housed in 1 unit

structures

58.80% 59.38%

Percent housed in 2–4 unit

structures

14.60% 14.71%

Percent housed in 5 + unit

structures

26.60% 25.91%

Means of Transportation to

Work

Walked 3.30% 3.37%

Public transportation 12.40% 12.94%

Drove alone 69.40% 71.60%

Carpooled 8.70% 9.14%

Other/WFH 4.50% 0.00%

Uber – 2.95%

Types of Trips

Uber share for CBD leisure trips 9.60% 10.17%

Uber share for local trips 2.30% 3.00%

Car Ownership

Total ownership rate 87.10% 89.85%

Car ownership for commuting 78.10% 80.74%

Car ownership for leisure 9.00% 9.11%

The table shows the results of our calibration. The first numerical column shows

actual data for the Chicago urbanized area. The second numerical column shows the

simulated characteristics from our model. Sources for city data in the first column:

American Community Survey 1 year estimates (2010); American Housing Survey

(2009). Sources for car ownership: American Community Survey. Sources for Uber

Trips: Author calculation from Fig.A2 according to procedure in text.

25 Recently, Chicago raised this tax on ride-hailing services above this levee, but we

use the historical policy given it is more in line with the taxes of other cities.

26 With the exception of the case of external rebates, we assume that all of the

revenue from the county and state sales tax on the city’s Uber rides are transferred to

the city of Chicago via intergovernmental grants.
27 For example, in this case, the flat fee is able to improve transit wait times to work

by at most only a few seconds and only results in a transit subsidy of $0.40.
28 This can be calculated using TableA2, noting that in the baseline scenario, the

average price of Uber for commuting, Uber leisure trips to downtown, and Uber local

trips are $9.91, $21.37, and $14.22, respectively.
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trips are in the upper tail of the Pareto distribution, which mutes the

response. Moreover, commuting trips have many other substitutes

not possible for local trips. With respect to Uber’s outcomes, all

the different spending policies raise the average trip time and dis-

tance. Intuitively, trips become longer because the fixed cost of tax-

ing Uber becomes higher. As we assume that the incidence of the tax

works partly via Uber’s commission, Uber lowers its commission to

maintain equilibrium in the labor market. Intuitively, the tax shifts

down demand for drivers, but driver revenues also fall, which causes

a movement along the labor supply curve. Given our calibration, if

Uber did nothing, there would be a shortage of drivers. So to main-

tain equilibrium, Uber lowers the commission rate (Fig.A4 for intu-

ition). However, the Figure makes it clear that even after the

adjustment to the commission, after-tax driver revenue falls, imply-

ing drivers are worse off.29

4.2.2. Results: sales tax on Uber

The bottom panels of Fig. 3 show the effect of a sales tax on

ride-hailing apps. Unlike the unit tax, the ad valorem tax pivots

the transportation cost curves. Otherwise, all effects are qualita-

tively similar to the prior analysis. Again, the upward pivot of the

Uber to work curve will only reduce Uber usage for individuals suf-

ficiently far away from a transit line, e.g., only when the Uber to

work curve is part of the lower envelope of the overall cost curve.

At the average price of an Uber trip, this sales tax rate results

in a tax payment that is more than the fixed tax considered in

the last section, with the ad valorem tax on leisure trips being

substantially higher in dollar terms. Thus, because of these local

trips, the sales tax raises more revenue than the fixed tax.

Comparing across the columns in Tables 3/A3, the results are

qualitatively similar to the prior section. For this reason, in this

section, we focus on comparing the results to those results in

Table 2.

Given the sales tax raises more total revenue, it reduces the

share of people taking Uber to their destination by more than the

flat fee, but this reduction is not the same for all trips. Given the

composition of riders, Uber trips to CBD and local leisure trips gen-

erally have lower prices than leisure trips to downtown. This can

be seen in the comparing the driving times on Uber trips with

the prior table: trips are shorter under the sales tax. Leisure trips

to the CBD are, on average, more expensive and thus face a higher

tax in dollars under the sales tax regime. Thus, the larger decline in

Uber trips are mainly driven by this trip type. Moreover, larger

declines in total Uber ridership amplifies the fall in the Uber

commission.

Critically, this counterfactual highlights an important policy dif-

ference. A sales tax, which is a percent of the fare, will more strin-

gently penalize riders with longer trips on Uber. This in turn, will

amplify the substitution away from Uber at longer distances,

which then has important implications for congestion and the rev-

enue efficiency of the tax.

Table 2

Fixed Taxes.

Scenario Laissez Faire Tax ($0.67 per trip)

Spending No lump sum rebate Lump sum to HH Improve transit Reduce transit fare

Mode Shares: All Trips

Walking 1.18% 1.24% 1.24% 1.24% 1.20%

Total public transit (L train) 5.87% 5.97% 5.97% 6.02% 6.49%

Walking to public transit 4.82% 4.76% 4.76% 4.77% 4.88%

Taking bus to public transit 1.04% 1.22% 1.21% 1.26% 1.61%

Taking Uber to public transit 0.00% 0.00% 0.00% 0.00% 0.00%

Bus to final destination 4.66% 4.51% 4.51% 4.58% 5.05%

Taking Uber direct 4.17% 3.22% 3.22% 3.20% 3.02%

Solo driving 80.90% 81.80% 81.80% 81.74% 80.88%

Carpooling 3.21% 3.26% 3.27% 3.22% 3.36%

Uber Outcomes: All Trips

Driving time per trip (minutes) 23.48 24.42 24.42 24.48 24.91

Driving distance per trip (miles) 7.91 8.67 8.68 8.71 9.07

Average Uber price per trip (pre-tax) 16.04 17.09 17.10 17.14 17.60

Car Ownership

Total car ownership rate 89.85% 90.29% 90.29% 90.16% 89.14%

Car ownership rate for commuting 80.74% 81.87% 81.89% 81.84% 81.50%

Car ownership rate for noncommuting trips 9.11% 8.42% 8.41% 8.31% 7.65%

Driving Characteristics

Average speed on highways 45.05 45.45 45.45 45.42 45.46

Average commuting time to work 29.41 29.25 29.26 29.22 29.67

Maximum commuting distance 31.60 31.70 31.70 31.60 31.80

Public transit average waiting time (minutes) 5.00 5.24 5.24 5.18 5.92

Public transit headway (minutes) 10.00 10.00 10.00 9.76 10.00

Downtown driving speed 12.50 13.19 13.19 13.22 13.37

Uber speed near transit 25.00 25.00 25.00 25.00 25.00

Equilibrium in Ride Hail Market

Percent of profit that Uber takes 30.00% 25.11% 25.11% 24.98% 24.44%

Tax Revenue

Aggregate tax revenue (millions) 0.00 115.61 115.58 114.71 108.56

Welfare

Utility per household 1274.93 1276.41 1277.63 1276.13 1275.19

The table shows the model solution for the fixed tax on Uber. The columns correspond sequentially to the no tax case, fixed tax with external spending, fixed tax with a lump

sum return, fixed tax with transit improvements, and fixed tax with reduced public transit fare. The rows represent select endogenous variables. Other endogenous variables

are omitted from the table.

29 The change in the commission only dampens the fall in driver revenue, but driver

revenue is declining.
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4.2.3. Results: mileage tax on Uber

TablesA4/A5 show the results of mileage taxes on Uber. The

reason given for a mileage tax are that it pays for damage to the

roads by Uber. Relative to the other two tax policies, note that

the mileage tax raises similar revenue as the sales tax. Moreover,

the results are more similar to a sales tax rather than a flat fee.

The reason for this is that the mileage tax more heavily taxes

longer trips, which are also more expensive. Thus, a tax per mile

does not raise much revenue from short trips, but raises most of

the revenue from longer (higher price) trips. As a result, the effect

of using Uber on trips to downtown is dampened, but is amplified

for local trips. Interestingly, the mileage tax raises the average dis-

tance on Uber. But, this result is deceiving, because the tax individ-

ually lowers the distance of commuting trips, downtown leisure

trips, and local leisure trips. The average only goes up because

the relative shares of these trips change following the tax.

4.2.4. Results: comparing across tax policies

For all policies, the share using public transportation always

increases by more when the revenue funds fare reductions than

when it funds transit improvements. Intuitively, lowering wait

times in a meaningful way requires a massive amount of invest-

ment, and given the the magnitudes of tax revenues raised. are rel-

atively ineffective at reducing headway. Thus, price reductions

induce more substitution. Even with transit improvements, con-

gestion at transit stations still causes wait times to rise relative

to the baseline. However, the transit improvements reduce wait

times relative to the lump sum rebate case. Given the reductions

in wait times from transit improvements in Table 2 and a median

wage rate of $28 per hour, the improvements of public transporta-

tion are valued at $0.03 per trip. If the revenue is used to reduce

fares directly, the fare reduction is $0.40, which explains the larger

increase in rapid transit usage.

From this exercise, if city officials wish to increase transit usage,

subsidizing the fares with tax revenues are more efficient than

improving wait times. But in practice, none of these tax policies

is effective at increasing ridership substantially.

The increases in public transportation are due to two effects: a

‘‘push factor” where individuals substitute away from Uber due to

the taxes and a ‘‘pull factor” where individuals substitute toward

transit because its quality improves or fare decreases. With exter-

nal rebates, there is no income effect from spending so, we isolate

the pure ‘‘push factor” in that specification. This shows little differ-

ence from the lump sum rebate case, suggesting that income effect

on transit is small, though it may have effects on other quantities—

including externalities.

Notably, under all policies, public transport rises in relative

popularity for commuting trips to the no-tax equilibrium, but for

leisure trips it may rise or fall depending on how the money is

spent. When comparing lump sum rebates to transit improve-

ments, the added substitution toward transit is very small even

for commuting trips. Thus, much of the increase in transit ridership

is due to the tax pushing people away from Uber and not the

improvements due to public transit quality improvements. Com-

paring the lump-sum to the fare reduction scenario, we see that

the latter case results in a larger increase in transit ridership for

Table 3

Sales Tax.

Scenario Laissez Faire Sales tax (9.25%)

Spending No lump sum rebate Lump sum to HH Improve transit Reduce transit fare

Mode Shares: All Trips

Walking 1.18% 1.29% 1.29% 1.27% 1.17%

Total public transit (L train) 5.87% 6.03% 6.02% 6.13% 7.03%

Walking to public transit 4.82% 4.77% 4.76% 4.79% 5.03%

Taking bus to public transit 1.04% 1.26% 1.26% 1.34% 2.00%

Taking Uber to public transit 0.00% 0.00% 0.00% 0.00% 0.00%

Bus to final destination 4.66% 4.41% 4.39% 4.53% 5.50%

Taking Uber direct 4.17% 2.90% 2.89% 2.86% 2.63%

Solo driving 80.90% 82.18% 82.16% 82.01% 80.27%

Carpooling 3.21% 3.19% 3.25% 3.20% 3.40%

Uber Outcomes: All Trips

Driving time per trip (minutes) 23.48 24.29 24.31 24.41 25.09

Driving distance per trip (miles) 7.91 8.76 8.77 8.84 9.42

Average Uber price per trip (pre-tax) 16.04 17.16 17.17 17.26 17.98

Car Ownership

Total car ownership rate 89.85% 90.59% 90.62% 90.33% 88.25%

Car ownership rate for commuting 80.74% 81.95% 82.00% 81.93% 81.07%

Car ownership rate for noncommuting trips 9.11% 8.64% 8.62% 8.40% 7.18%

Driving Characteristics

Average speed on highways 45.05 45.42 45.44 45.41 45.83

Average commuting time to work 29.41 29.26 29.32 29.28 29.76

Maximum commuting distance 31.60 31.60 31.70 31.60 31.80

Public transit average waiting time (minutes) 5.00 5.43 5.41 5.28 6.58

Public transit headway (minutes) 10.00 10.00 10.00 9.52 10.00

Downtown driving speed 12.50 14.04 14.04 14.10 14.43

Uber speed near transit 25.00 25.00 25.00 25.00 25.00

Equilibrium in Ride Hail Market

Percent of profit that Uber takes 30.00% 22.23% 22.26% 22.07% 21.21%

Tax Revenue

Aggregate tax revenue (millions) 0.00 246.28 246.46 244.63 233.94

Welfare

Utility per household 1274.93 1276.56 1279.22 1276.10 1274.81

The table shows the model solution for the sales tax on Uber. The columns correspond sequentially to the no tax case, sales tax with external spending, sales tax with a lump

sum return, sales tax with transit improvements, and sales tax with reduced public transit fare. The rows represent select endogenous variables. Other endogenous variables

are omitted from the table.

D.R. Agrawal and W. Zhao Journal of Public Economics 221 (2023) 104862

15



commuting purposes. Thus, when the revenue is used to fund fare

decreases, much of the transit increase is explained by the ‘‘pull

factor”.

Our model has several important implications for policy. First,

in our model, Uber is a substitute for rapid transit: an increase in

the price of Uber increases transit ridership on the L-train even

without improving public transit. We can calculate the cross-

price elasticity of public transit with respect to the price of taking

to Uber. At the average Uber price of $16.04, the fixed tax repre-

sents a 4.18% change in the price of those trips. For the lump

sum case, the change in public transit shares implies a 1.70%

increase in rapid transit usage. This yields a cross-price elasticity

of 0.41.30 On the other hand, Uber is a complement to buses as a

means of getting directly to the final destination, as an increase in

the price of Uber lowers bus ridership by 3.2%. Intuitively, this mech-

anism works via endogenous car ownership. Higher taxes on Uber

induce some individuals to buy a car. As a result of owning a car,

buses become a less attractive mode of transportation for local trips.

In this way, because Uber taxes moderately raise car ownership, they

can harm public transit ridership. Why does this effect only induce

buses to be complements and not rapid transit? These negative

effects of car ownership on transit are more pronounced for buses

than for rapid transit because rapid transit is not generally used

for trips that do not have a radial direction. Moreover, combining

all types of public transit (bus and L train), the effect of the Uber

tax is a 0.47% decrease in transit. This implies that all public transit

modes combined are a complement, with an elasticity of �0:11. As a

result, we conclude that endogenous care ownership is an important

force that influences the cross-price elasticities.
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Fig. 3. How a Fixed Uber Tax and a Sales Tax Change Transport Curves (Post-reform: Dashed Lines). This figure shows how the commuting transportation cost curves shift in

response to various tax polices. Panel (a) focuses on the fixed tax with a lump sum rebate, panel (b) focuses on the fixed tax with a fare reduction, panel (c) focuses on the sales

tax with a lump sum rebate, and panel (d) focuses on the sales tax with a fare reduction. Recall that transportation cost curves vary by distance to the CBD and distance to the

nearest transit line. The horizontal axis of each figure corresponds to the distance to the CBD, while each panel corresponds to a given distance from the transit line. We

truncate transit lines at 15 miles from the CBD, as is the case in Chicago, and as a result the labels on the figures are the distance to transit lines for individuals no further than

15 miles from transit. Those individuals further than 15 miles from the CBD will have different distance to transit, which explains the kinks in those cost curves. For purposes

of this policy counterfactual, we only show graphs for individuals near transit lines; the shifts are qualitatively similar at other distances, although which curves are the lower

envelope are different. Pre-policy lines are solid and post-reform policy lines are dashed. Different colors denote different transit modes.

30 Cohen et al. estimate the own-price elasticity of Uber to be approximately �0.60.

As expected, our cross-price elasticity is smaller in absolute value.
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Second, our model shows that taxes on ride-hailing apps alone

cannot dramatically increase transit ridership. Rather, how the tax

revenue is spent is critical. Our results suggest that some uses are

more effective than others. Nonetheless, if increasing transit rider-

ship is a goal, simply taxing Uber and spending it on fare reduc-

tions raises overall ridership most.

4.3. Counterfactual exercises with subsidy policies

In the prior sections, we show that Uber is a substitute for rapid

transit, but a complement for buses. Now, we consider whether an

appropriate combination of government policies can shock the sys-

tem such that both Uber and public transit are separately

complements.

In order to provide the subsidy, the government deducts a lump

sum tax from each household’s income. The lump sum income

deduction is determined endogenously in equilibrium to equal

aggregate expenditures on the subsidy. In an alternative scenario,

we assume the subsidy is externally financed by nonresidents of

the city of Chicago, perhaps as a result of intergovernmental trans-

fers. This scenario also aims to simulate the effects of different sub-

sidy policies considered in several cities in the U.S.31 As they are

currently implemented in most cities, subsidies only apply to rides

to rapid transit stations.

Flat Subsidy. The first subsidy policy is a flat dollar value off the

price of taking Uber to public transit. Given the subsidy only

applies to Uber trips to transit stations, (12) is affected. Therefore,

given the flat subsidy, subsidyflat , the cost of taking Uber to transit

stations for commuting purposes subtracts subsidyflat from the per

trip cost, with a similar change applying for leisure trips. Currently,

in cities with policies like this, to correctly levy the subsidies, Uber

uses geolocation software that pinpoints whether the origin or des-

tination of the ride is near a transit line. We use the prevailing rate

of $3.

Ad Valorem Subsidy. Riders get a percentage rate off of the

price of taking Uber to public transit. Given the discount rate,

subsidydiscount , assuming there is no congestion near transit stations,

the monetary price of taking Uber to a transit station in (12)

becomes 1� subsidydiscountð Þðf 0 þ f 1jþ f 2 � j=V resÞ, with all non-

monetary costs unaffected. The additional terms with congestion

are also subsidized when they exist, and the subsidy similarly

modifies leisure trips to transit via Uber. The discount rate is set

at 50% off.

Free Public Transit. In the third subsidy policy, the government

(completely) subsidizes the public transit (L-train) or any bus fare

that involves a transfer to the L-train. Free public transit has been

debated in the media and among policy makers. With free public

transit, publicfare ¼ 0, people have more incentives to take public

transit, perhaps even increasing Uber ridership to transit stations.

In addition, we set busfare ¼ 0 and transferfare ¼ 0 for individuals

taking the bus to rapid transit.

4.3.1. Results

Fig. 4 shows the intuition of the subsidy for various distances j

from transit. The upper panels show a fixed Uber subsidy for rides

to transit stations, while the lower panels show the effect of mak-

ing transit free. The Uber subsidy dramatically lowers the cost of

taking Uber to public transit, making it a viable option for riders

that are sufficiently far away from public transit. This increased

transit usage then has general equilibrium effects that mildly shift

down the driving cost curves. However, this scenario raises the

cost of transit for people who walk or take the bus to transit

because of the added congestion to public transit from more riders.

Unlike the Uber subsidy, making transit free lowers the cost of all

modes of public transit, though these declines are dampened by

transit congestion. Unlike the Uber subsidy, free transit offsets

the added congestion time on transit.

Tables 4/A6 show the results. Critically, and unlike the tax poli-

cies, the Uber subsidy policies we consider are sufficiently large to

induce some individuals to use Uber as a last-mile service to get to

public transportation. The flat rate $3 dollar subsidy financed by a

lump sum deduction has a large effect: 4.02% of people are induced

to take Uber to a transit station and overall transit ridership is 1.2

times the baseline scenario. Given the large increase in transit rid-

ership, public transit overcrowding is critical to dampening the

effect: transit wait times increase from 5 min to over 6 min. More-

over, Uber congestion dampens speed near transit stations by

about 5 miles per hour. We re-simulate the model in the absence

of overcrowding. Our model would predict that transit ridership

would increase much more without crowding, suggesting that

transit limitations are critical for policy.

A decline in the price of Uber rides to public transit raises total

public transit ridership. For the flat-rate subsidy, most of this

increase is due to new riders who use public transit, but the

increase is dampened from riders substituting from walking/buses

to Uber as their last-mile service provider. Overall, the increase in

transit ridership reduces solo driving and the number of people

that take Uber directly to their final destination, and thus unable

to receive the subsidy. Finally, the increase in speed on highways

is larger than under the tax policies.

In the case of the 50% subsidy on Uber rides, the subsidy induces

some individuals to utilize Uber as a means of transport to transit,

but not as many as the flat rate. This is interesting because, given

the mean price of an Uber ride to transit is about $5.50, the average

subsidy is only slightly lower than the $3 flat rate. However, unlike

the flat rate, the dollar equivalent of this ad valorem subsidy is low

for short trips—which means the ad valorem subsidy is differently

targeted than the flat subsidy. An ad valorem subsidy benefits

longer trips and most trips to transit are short. Given the smaller

increase in ridership, transit congestion does not increase as much

under this specification.

In the last column, we consider the case of free public trans-

portation. In this case, transit fares fall to zero and there is a surge

in transit ridership, but in this case, individuals who are able to

walk to public transportation drive the surge rather than individu-

als taking Uber. In practice, this raises interesting equity issues,

particularly, if income is a monotonic function of distance to transit

stations. Nonetheless, the decline in public transit fares results in a

negligible share of individuals taking Uber to public transit because

such a subsidy cannot differentially shift the Uber to transit cost

curve. However, the decline in transit fares induces a substitution

away from using Uber as a means of driving to the final destina-

tion. As noted previously, public transit congestion is critical. Were

there no transit congestion—resulting from the dramatic increase

of people who walk to transit—the shifts would be amplified.

Overall, the results again imply that using Uber to get directly to

work is inversely related to taking transit to work. However, for the

Uber subsidies, the decline in individuals taking Uber to work is

small relative to the increase in individuals that take Uber to tran-

sit. As a result, we conclude that overall, Uber is a complement to

public transit. As in the prior section, we can calculate a cross-

price elasticity. Here, we use the ad valorem subsidy scenario as

an exogenous shock to the price of Uber and trace out the elasticity

of transit ridership. Recall the subsidy corresponds to a 50% decline

in the price. Focusing first on the L-train, the total change in public

transit ridership is 0.93 percentage points, which corresponds to a

15.8% change. The implied cross-price elasticity of total transit

31 For work on subsidy policies more generally, see Brueckner (2005). Given we

focus on the city of Chicago, we ignore spillovers to other municipalities (Brueckner,

2015).
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usage with respect to Uber prices is�0:32. Interestingly, the sign of

the cross-price elasticity for the L-train flips relative to the tax sce-

nario. In the case of the L-train and buses combined, a 15.2%

increase in all public transit implies a cross-price elasticity of

�0:30.

Reconciling this result with the prior section, governments can

create an appropriate policy environment to induce (or amplify)

complementarities between these means of transportation, espe-

cially with respect to rapid transit options that are likely to be used

for trips to/from downtown. Critically, various polices can induce

the equilibrium away from the corner solution where no individu-

als take Uber to public transit. In other words, the elasticities are

endogenous to the policy environment, e.g., the elasticities are a

policy choice.32

5. Alternative policies and counterfactual results

5.1. Toll policies

Congestion tolls have been imposed in different cities around

the world to relieve traffic congestion externalities.33 Uber has

opposed city-level tax policies like those considered previously,

but politically has been more supportive of a congestion toll policy

applied widely and equally to all drivers. The comparison between

tax policy and congestion toll policies adds insights into which pol-

icy is more effective at reducing traffic congestion. We consider two

scenarios, the optimal congestion toll and a sub-optimal toll that

raises the same revenue as the Uber tax.
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Fig. 4. Subsidy Policies (Post-reform: Dashed Lines). This figure shows how the commuting transportation cost curves shift in response to various subsidy policies—the fixed

subsidy in panel (a) and (b) and free public transit in panel (c) and (d). Recall that transportation cost curves vary by distance to the CBD and distance to the nearest transit

line. The horizontal axis of each figure corresponds to the distance to the CBD, while each panel corresponds to a given distance from the transit line. We truncate transit lines

at 15 miles from the CBD, as is the case in Chicago, and as a result the labels on the figures are the distance to transit lines for individuals no further than 15 miles from transit.

Those individuals further than 15 miles from the CBD will have different distance to transit, which explains the kinks in those cost curves. For purposes of these figures, panels

(a) and (c) show the transport cost curves for individuals near transit lines, while panels (b) and (d) show the transport cost curves conditional on being 1.3 miles from transit

lines. Pre-policy lines are solid and post-reform policy lines are dashed. Different colors denote different transit modes.

32 Slemrod and Kopczuk (2002) make a similar argument for the elasticity of taxable

income.

33 For studies, see as Liu and McDonald (1998) and Liu and McDonald (1999).

Brinkman (2016) considers congestion in the presence of offsetting agglomeration

externalities.
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Optimal Toll. In this scenario, optimal congestion tolls are

imposed on each car driving through the highways during rush-

hour. The toll is not levied on Uber rides to transit stations or on

local trips because these rides only drive through residential roads.

Moreover, the tolls are not levied on leisure trips to downtown

because they occur at off-peak hours. Following the simple conges-

tion model in McDonald (2004), the optimal congestion toll is cal-

culated based on the externalities created by each additional driver

on the highway. Each additional driver on the highway can delay

every commuter that is already on the highway and, therefore,

increases marginal commuting cost for each driver. As a result,

each driver’s gasoline cost and time cost of driving increase. The

toll is calculated as:

toll kð Þ ¼ N
!

kð Þ �
dMC kð Þ

dN
!

kð Þ
; ð25Þ

where N
!

kð Þ denote the traffic volume at radius k and MC kð Þ is the

marginal commuting cost for each driver at annulus k, which for

solo drivers is equal to m1 þ pg
1

G V N
!

kð Þ

� �� �þ sw 1

V N
!

kð Þ

� �. For sim-

plicity, we use the marginal cost of a solo driver, rather than the

marginal cost of the Uber consumer.34 Then, the effect of an added

vehicle on marginal commuting cost is

dMC kð Þ

dN
!

kð Þ
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Therefore, the total commuting cost for each solo driver now

adds
R k

0
toll jð Þdj per trip in (5). The same expression is added

per trip in (11). For carpools, tolls are split among riders, therefore,

it adds
R k

0 toll jð Þ=nð Þdj per trip in (7).

Fixed Toll. It can be difficult to implement an optimal conges-

tion toll policy. A fixed toll policy is more common and easier to

implement. In this scenario, the toll rate is fixed per car but the

aggregate toll revenue is equivalent to the tax revenue under the

Uber tax of $0.67 per trip, which facilitates the comparison. Denote

the fixed annualized toll as tollfixed. Then, tollfixed is added to the

commuting cost per trip in (5) and (11). For carpools, the toll is

split, so tollfixed=n is added to the per trip cost of carpooling in (7).

Again, leisure trips are unaffected.

5.1.1. Results: optimal toll

Fig. 5 shows the intuition from the optimal toll, for different dis-

tances from public transit. The upper panels show the toll with a

lump sum rebate, while the lower panels show the toll revenue

used for transit improvements. Unlike the prior figures, the largest

upward shift is for solo-driving. Moreover, conditional on a given

distance from the CBD, Uber and solo drivers pay the same toll.

However, the upward shift in the Uber cost curve is muted by

the fact that time enters Uber’s pricing formula: individuals taking

Uber save time from reduced congestion and thus are charged a

Table 4

Subsidy Policies.

Scenario Laissez Faire $3 off Uber to transit $3 off Uber to transit 50% Uber to transit Free public transit

Financing No lump sum Lump sum Lump sum Lump sum

Mode Shares: All Trips

Walking 1.18% 1.22% 1.24% 1.23% 1.00%

Total public transit (L train) 5.87% 6.70% 6.76% 6.80% 9.56%

Walking to public transit 4.82% 2.73% 2.74% 3.56% 6.26%

Taking bus to public transit 1.04% 0.00% 0.00% 0.00% 3.30%

Taking Uber to public transit 0.00% 3.97% 4.02% 3.23% 0.00%

Bus to final destination 4.66% 5.55% 5.61% 5.33% 8.71%

Taking Uber direct 4.17% 3.59% 3.55% 3.47% 3.03%

Solo driving 80.90% 79.43% 79.41% 79.71% 73.97%

Carpooling 3.21% 3.51% 3.42% 3.46% 3.73%

Uber Outcomes: All Trips

Driving time per trip (minutes) 23.48 15.74 15.73 16.91 25.73

Driving distance per trip (miles) 7.91 4.78 4.76 5.28 9.74

Average Uber price per trip (pre-tax) 16.04 10.98 10.96 11.77 18.33

Car Ownership

Total car ownership rate 89.85% 87.91% 87.77% 88.39% 81.04%

Car ownership rate for commuting 80.74% 80.54% 80.48% 80.39% 77.47%

Car ownership rate for noncommuting 9.11% 7.37% 7.30% 8.00% 3.57%

Driving Characteristics

Average speed on highways 45.05 45.67 45.45 45.67 46.47

Average commuting time to work 29.41 29.51 29.60 29.67 31.21

Maximum commuting distance 31.60 31.90 31.80 31.90 32.20

Public transit average waiting time (minutes) 5.00 6.07 6.14 6.36 8.39

Public transit headway (minutes) 10.00 10.00 10.00 10.00 10.00

Downtown driving speed 12.50 12.96 12.97 12.84 13.84

Uber speed near transit 25.00 20.19 20.11 20.95 25.00

Equilibrium in Ride Hail Market

Percent of profit that Uber takes 30.00% 36.84% 36.78% 35.39% 26.14%

Tax Revenue

Aggregate subsidy (millions) 0.00 638.08 646.26 507.70 1008.42

Welfare

Utility per household 1274.93 1272.99 1264.99 1267.63 1259.04

The table shows the model solution for various Uber subsidy policies. The columns correspond sequentially to the no tax/subsidy case, a flat rate subsidy to transit that is

externally financed, a flat rate subsidy on Uber rides to transit, an ad valorem subsidy on Uber rides to transit, and free public transit. The latter three are financed via lump

sum income deductions. The rows represent select endogenous variables. Other endogenous variables are omitted from the table.

34 Evaluating the toll at the consumer’s marginal cost would be second order.
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lower price by Uber. The public transit curves also shift upward as

the added transit usage raises congestion on public transit. How-

ever, these latter two effects are offset when the revenue is used

to improve public transit. Note that the increased transit ridership

mutes the effect of the increase from the toll on the Uber to work

curve as well, because there is less congestion on the roads. If the

revenue were used to reduce transit fares, these curves would shift

down further as the toll is large enough to make transit free.

In Tables 5/A7, the optimal congestion toll raises the average

speed on highways by as much as 7%. First consider the case where

the toll revenue is rebated to households. With respect to transit

choice, total car ridership (solo, carpool, Uber) falls by just over

1.5 percentage points, though this number is larger if not counting

carpool trips. The substitution patterns are interesting. The fall in

solo driving is dramatic, with some individuals switching to car-

pooling and to public transit. Noticeably, there is only a small

change in the share of households that take Uber directly to their

destination, perhaps explaining Uber’s preference of the policy

over taxes specifically targeting them. The optimal congestion toll

is not sufficient to induce individuals to take Uber to public transit,

however, as that cost curve does not shift downward relative to the

two other means of getting to transit. Thus, the increase in public

transit usage is driven by individuals walking or taking a bus to

transit. Critically, given the toll is very high, this initial specifica-

tion has a very large income effect from its rebate to households.

Comparing this column with to column with external rebating of

the toll, allows us to isolate the income effect of the policy on mode

choice. Transit ridership is lower with the lump sum rebate to res-

idents (higher income).

In other cases, where the toll revenue is used to improve public

transit times or to reduce transit fares, the toll is even more effec-

tive at increasing transit usage. Again, reducing public transit fares

Fig. 5. Optimal Toll (Post-reform: Dashed Lines). This figure shows how the commuting transportation cost curves shift in response to various optimal toll policies—with

lump sum rebates in panel (a) and (b) and with the revenue funding public transit improvements in panel (c) and (d). Recall that transportation cost curves vary by distance to

the CBD and distance to the nearest transit line. The horizontal axis of each figure corresponds to the distance to the CBD, while each panel corresponds to a given distance

from the transit line. We truncate transit lines at 15 miles from the CBD, as is the case in Chicago, and as a result the labels on the figures are the distance to transit lines for

individuals no further than 15 miles from transit. Those individuals further than 15 miles from the CBD will have different distance to transit, which explains the kinks in

those cost curves. For purposes of these figures, panels (a) and (c) show the transport cost curves for individuals near transit lines, while panels (b) and (d) show the transport

cost curves conditional on being 1.3 miles from transit lines. Pre-policy lines are solid and post-reform policy lines are dashed. Different colors denote different transit modes.
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are more effective at increasing transit usage than using the rev-

enue to fund wait time reductions. Nonetheless, improving transit

is more effective at increasing transit usage relative to the lump

sum rebate. In the case of fare reductions, the optimal congestion

toll doubles L-train and bus usage. The optimal toll combined with

reduced transit fares is the most effective policy—even moreso

than Uber subsidies—at increasing total public transit usage. How-

ever, unlike subsidies, it achieves the goal via more individuals

walking to transit and not Uber ridership. The $3 Uber subsidy is

more effective at increasing Uber usage to public transit, but total

transit usage does not increase as much.

Interestingly, car ownership declines only moderately in the toll

experiments. Much of this decline is a result of less households

owning a car for commuting purposes. Given this, however, more

households buy a car for leisure purposes. Only in cases where

the toll revenue funds transit fee reductions does overall car own-

ership decline substantially.

Given the congestion toll provides the largest shock to the city,

we can discuss some of the intuition using standard bid rent

curves, housing demand, and traffic, as a function of distance the

CBD and the nearest transit station. Relative to the no tax scenario,

housing prices near transit stations increase because public transit

becomes a more appealing transit mode. Commuting speed

increases and commuting time falls at all distances. The decline

in traffic congestion due to congestion tolls reduces the commuting

cost of driving, which creates incentives for households to live fur-

ther away from the CBD. The city radius increases. As the demand

for housing towards the city edge and transit stations increases,

the housing prices for households who live further away from

the CBD and near transit stations go up.

5.1.2. Results: fixed tolls

As shown in TablesA8/A9, if the toll is set to equal the revenue

generated from thefixedUber tax in our prior simulation, the tollwill

be much less effective at reducing congestion than the optimal toll.

The reason for this is that the optimal toll is much higher than the

fixed toll. The fixed toll has limited effect on speed. In particular,

the speed increase from theUber tax is either the same or larger than

the fixed toll. Otherwise, the results with respect to public transit

mode choice are similar, but muted in magnitude, relative to the

direct Uber tax. We conclude that a sub-optimal toll is less likely to

be effective at reducing congestion externalities than a tax on Uber.

5.2. Robustness checks and model extensions

Robustness. TablesA10.1–A11.2 show the robustness of our

results to changes in various parameters. We focus on the flat tax

with a fare reduction and the flat rate subsidy financed by a lump

sum deduction. To verify robustness of the model and to conduct

exercises in the spirit of comparative statics, we increase various

parameters by 10%. This allows us to verify the sensitivity of the

results. It also allows us to study the ‘‘comparative statics” in a

local neighborhood of the equilibrium. Each column in the table

represents a change where the change is the post-policy equilib-

rium value minus the laissez faire equilibrium value. The results

can then be compared to the baseline change given in the tables

Table 5

Optimal Toll.

Scenario Laissez Faire Optimal congestion toll

Spending No lump sum rebate Lump sum to HH Improve transit Reduce transit fare

Mode Shares: All Trips

Walking 1.18% 1.44% 1.38% 1.37% 1.13%

Total public transit (L train) 5.87% 7.18% 7.11% 8.15% 11.32%

Walking to public transit 4.82% 5.24% 5.16% 5.41% 6.51%

Taking bus to public transit 1.04% 1.94% 1.95% 2.74% 4.80%

Taking Uber to public transit 0.00% 0.00% 0.00% 0.00% 0.00%

Bus to final destination 4.66% 4.95% 4.80% 5.79% 9.10%

Taking Uber direct 4.17% 4.17% 4.08% 3.73% 3.06%

Solo driving 80.90% 74.42% 74.19% 72.98% 67.36%

Carpooling 3.21% 7.84% 8.44% 7.98% 8.03%

Uber Outcomes: All Trips

Driving time per trip (minutes) 23.48 23.24 23.38 24.11 25.76

Driving distance per trip (miles) 7.91 7.98 8.11 8.52 9.71

Average Uber price per trip (pre-tax) 16.04 16.04 16.19 16.79 18.31

Car Ownership

Total car ownership rate 89.85% 89.23% 89.56% 87.39% 80.19%

Car ownership rate for commuting 80.74% 76.63% 77.04% 75.97% 72.44%

Car ownership rate for noncommuting trips 9.11% 12.60% 12.51% 11.42% 7.75%

Driving Characteristics

Average speed on highways 45.05 47.28 47.42 47.51 48.40

Average commuting time to work 29.41 31.65 32.28 32.04 34.15

Maximum commuting distance 31.60 31.90 32.60 32.10 32.60

Public transit average waiting time (minutes) 5.00 7.08 7.05 5.52 9.66

Public transit headway (minutes) 10.00 10.00 10.00 6.95 10.00

Downtown driving speed 12.50 12.33 12.43 12.66 13.66

Uber speed near transit 25.00 25.00 25.00 25.00 25.00

Equilibrium in Ride Hail Market

Percent of profit that Uber takes 30.00% 30.42% 30.22% 28.88% 26.39%

Tax Revenue

Aggregate tax revenue (millions) 0.00 3335.84 3307.15 3141.32 2530.44

Welfare

Utility per household 1274.93 1257.71 1295.47 1257.16 1256.11

The table shows the model solution for the optimal congestion toll. The columns correspond sequentially to the no toll case, the optimal toll with external funding, the

optimal toll with a lump sum return, the optimal toll with transit improvements, and the optimal toll with reduced public transit fare. The rows represent select endogenous

variables. Other endogenous variables are omitted from the table.
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(e.g, Table 2 Column 5 minus Column 1). We show the change

because any change in the parameter value necessitates re-

simulating both the laissez faire and the policy-equilibrium.

As can be seen, the results are qualitatively and oftentimes

quantitatively similar to the baseline changes. We discuss some

key checks briefly. Increasing headway, transit capacity, and the

elasticity of transit improvements allow for larger increases in

public transit ridership, but other transit system changes such as

the number of lines have the opposite effects. When focusing on

the time cost parameters, there are two effects. First, an increase

in the time cost of transit, for example, raises the laissez faire share

of people taking Uber, which allows for a larger number of riders to

substitute to transit following a tax. However, the higher time cost

also dampens this response. Thus, whether the mode that experi-

ences the higher time cost has a larger or smaller change depends

on these two offsetting effects.

Simulations altering floor area ratios, road speeds, and transit

availability or capacity are designed to show if the model can cap-

ture alternative mechanisms via which Uber and transit are com-

plements. Focusing on the results of the subsidies, the higher the

road speed, the more transit capacity, and the grater the transit fre-

quency, the bigger the increase in Uber to transit and L-train usage,

implying the products are more complementary. Eliminating bus

connections to transit also mitigates the overall increase in public

transit usage, again suggesting the extent of transit availability

matters for whether Uber is a complement or substitute. These

results are consistent with the mechanisms in Hall et al. (2018).

Imposing a floor area ratio restriction has minimal effect, however.

Finally, the last column in each of these tables, shows the

results of a simple partial equilibrium analysis where we rely

entirely on the direct shifts of the transportation cost curves. To

conduct this analysis, we hold fixed housing consumption and

location choice, so the partial equilibrium analysis can be viewed

as a short-run rather than long-run effect. As can be seen, eliminat-

ing the general equilibrium effects generally amplifies the mode

choice effects, suggesting our transportation cost curve figures

would have even starker shifts in a partial equilibrium economy.

Utility is always higher under the partial equilibrium scenario.

Uber to Transit. In the laissez faire situation, no one takes Uber

to transit. This might be viewed as implausible because we know it

happens at least some. However, we do not view this as a problem,

as it means it will be even harder for us to find that policies change

the share of people making this choice. Nonetheless, a way forward

would be to assume that Uber trips to transit stations (perhaps for

leisure purposes) have an idiosyncratic benefit much like the one

we modeled for Uber trips downtown.35 As a robustness exercise,

we add such an idiosyncratic benefit, which might capture the effect

of the weather or time-of-day on the relative cost of taking Uber

rather than a bus or walking to transit stations.

Table 6 shows the results. As can be seen, random benefits of

Uber to transit move us away from the corner solution. Taxing

Uber with a lump-sum rebate, reduces the prevalence of the trips,

lowering overall transit ridership on the L-train. In this way, Uber

can become a complement to transit. Intuitively, raising the price

of Uber lowers Uber usage to transit, which also lowers usage of

public rapid transit. This result confirms some of the mechanisms

discussed in Hall et al. (2018), which notes that idiosyncratic fac-

Table 6

Random Benefits of Taking Uber to Transit.

Scenario Laissez Faire Fixed tax/rebate Fixed tax/reduce transit fare Fixed Subsidy

Mode Shares: All Trips

Walking 1.19% 1.31% 1.21% 1.28%

Total public transit (L train) 6.48% 6.40% 6.92% 8.51%

Walking to public transit 4.84% 4.77% 4.85% 1.82%

Taking bus to public transit 0.96% 1.16% 1.51% 0.00%

Taking Uber to public transit 0.68% 0.48% 0.56% 6.69%

Bus to final destination 4.38% 4.30% 4.76% 6.19%

Taking Uber direct 4.05% 3.00% 2.85% 2.86%

Solo driving 80.72% 81.79% 80.99% 77.75%

Carpooling 3.17% 3.19% 3.28% 3.41%

Uber Outcomes: All Trips

Driving time per trip (minutes) 20.27 21.51 21.30 12.49

Driving distance per trip (miles) 6.75 7.59 7.64 3.57

Average Uber price per trip (pre-tax) 14.00 15.21 15.17 8.87

Car Ownership

Total car ownership rate 90.47% 90.74% 89.75% 86.52%

Car ownership rate for commuting 79.90% 81.41% 81.09% 80.40%

Car ownership rate for noncommuting trips 10.57% 9.33% 8.66% 6.11%

Driving Characteristics

Average speed on highways 45.25 45.36 45.54 45.50

Average commuting time to work 29.32 29.36 29.54 29.52

Maximum commuting distance 31.60 31.60 31.70 31.80

Public transit average waiting time (minutes) 5.27 5.45 6.03 6.17

Public transit headway (minutes) 10.00 10.00 10.00 10.00

Downtown driving speed 14.26 14.71 15.20 18.34

Uber speed near transit 25.00 25.00 25.00 19.70

Equilibrium in Ride Hail Market

Percent of profit that Uber takes 30.00% 24.27% 23.86% 37.98%

Tax Revenue

Aggregate tax revenue/cost (millions) 0.00 124.84 122.22 1074.49

Welfare

Utility per household 1279.79 1280.79 1279.05 1266.78

The table shows the model solution for a model when individuals receive random benefits, distributed according to a Pareto distribution, from taking Uber to a rapid transit

station. The columns correspond sequentially to the no tax/subsidy case, a fixed tax with a lump sump rebate, a fixed tax with public transit fare reductions, and the fixed

subsidy for Uber to transit financed by a lump sum deduction. The rows represent select endogenous variables. Other endogenous variables are omitted from the table.

35 We did not model this directly in our baseline because we do not have data to

calibrate the distributional parameter on the idiosyncratic term.
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tors can make Uber and transit complements because individuals

no longer worry about needing to walk from transit in the rain

or at an unsafe time of day. Critically, in the absence of these ben-

efits, this mechanism did not exist and we found in the analogous

column of Table 2, that the L-train and Uber were substitutes. In

other words, there are offsetting forces that depend on the relative

magnitudes of these idiosyncratic factors. The results of the Uber

subsidy are similar to those in the text, although the magnitudes

of the responses change.

Subsidy Manipulation. It is possible that individuals may ride

Uber to a transit station, obtaining the subsidy, and then not riding

rapid transit. As with any policy program, manipulating behavior

for unintended purposes is possible. In practice, the way these sub-

sidies are designed generally does not require the person to actu-

ally take transit. Of course, the spirit of the subsidy would be

violated, if individuals who know about the subsidy deliberately

distorted their arrival or drop-off location to benefit from it. This

would be analogous to tax avoidance and would be bad from a wel-

fare perspective. In practice, this means that some of our shift to

transit may be an overestimate.

External Validity. We have calibrated the model to the city of

Chicago, but would like to discuss the generality of the results.

Hall et al. (2018) indicates that the effect of Uber is more likely

to be stronger (in absolute value) in larger cities with higher

incomes. In TablesA10.1–A11.2 we consider changes in the income

level of the city, and as expected, higher incomes amplify the tran-

sit responses. Given this, marginally lower incomes likely mute the

magnitudes of our cross-price elasticities.

In addition, smaller cities are likely to have less public transit

coverage (both in terms of geography and frequency). This effect

cuts both ways: Uber becomes more valuable because it can fill

these larger holes (stronger complement in these cities), but alter-

natively, Uber is relatively more appealing than transit for individ-

uals without a car (stronger substitute). As noted above, although

the sign of the changes is similar to the baseline, our results alter-

ing the length of transit lines, number of transit lines, transit

capacity, bus waiting times, and headway of transit find the transit

responses could be amplified or diminished depending on how the

extent of transit is altered.

Combining these exercises, income is likely positively associ-

ated with the elasticities in absolute value, but city size could be

positively or negatively correlated with the elasticities.

Another issue of generality is whether the city has a dominant

CBD like Chicago or is polycentric like the Bay Area. The way we

model local leisure trips is not dependent on city structure, as

we assume these trips are to/from an unspecified origin/endpoint.

The assumption is that there is a reasonable belief that a bus could

service the local trip. If so, the city form is unlikely to affect these

trips much except via endogenous car ownership.

Commuting trips to downtown and leisure trips to downtown

depend on city form. Leisure trips to downtown could most easily

modified by splitting them into multiple types of trips to each city

subcenter, as long as it is accessible by rapid transit. If public tran-

sit lines easily connect each of the city centers, as in the Bay Area,

where Bay Area Rapid Transit (BART) allows access to any of the

three centers (San Francisco, Oakland, San Jose), then the mecha-

nisms underlying our commuting trips still persist even if the mag-

nitudes are qualitatively affected. Because the radial lines are not

so dense in the Bay area as in Chicago, the complementary channel

may be most affected, as discussed in relation to the extent of pub-

lic transit above. If a city center cannot be accessed by public tran-

sit, that would dampen the last mile complementarity because

transit does not allow for easy travel to a core center. Commuting

trips would be more challenging to modify as, the polycentric nat-

ure of cities would require endogenizing a cutoff that determines

which sub-city individuals commute to. But absent having addi-

tional endogenous variables, we believe the qualitative mecha-

nisms would persist, but again not necessarily magnitude. Future

research might study such spatial configurations.

Of course, having a polycentric urban area also means that hav-

ing a single tax/subsidy within the urban area would require state-

level policy making. If policies remain decentralized to the cities,

then decentralized taxes or subsidies could distort leisure destina-

tions within the urban area, making it more important to endoge-

nize the number of leisure trips to each city subcenter. In the

current model, making the share of trip types endogenous is less

of a concern because of the ability to have a single uniform policy

and because the distances traveled for leisure purposes is endoge-

nous for our downtown leisure trips.

6. Welfare calculations

We now turn to the welfare implications. The approach for the

welfare analysis follows Sullivan (1985) and Borck and Brueckner

(2018). Note, we are not calculating excess burden in this welfare

analysis. There are several components in our aggregate welfare

analysis. First, imposing taxes leads to welfare losses for landowners.

The welfare losses experienced by landowners is measured by the

reduction in aggregate land rent (residential plus agricultural). To

aggregate this, the total land area used for the city and agriculture

is held constant at a 40 mile radius. We then calculate the decline

in land rents accounting for the endogenous border of the city radius,

which partitions land into residential and agricultural areas.

Second, the imposition of the tax and expenditures on transit

results in behavioral responses, but the income effect also changes

household’s utility. In particular, because households can move

within the city, changes in income have implications for housing

demand that depend on the income elasticity. Moreover, the lais-

sez faire equilibrium is not first-best due to the presence of conges-

tion externalites. As a result, any distorted quantity (e.g.,

congestion) that is affected by income effects will have a different

change in utility relative to the case of no income effects. The wel-

fare change experienced by households is measured based on the

compensating variation (CV) associated with the adoption of the

policy. The CV is calculated as the change in income required to

achieve the same utility as before the policy is imposed. To com-

pute the compensating variation in earnings, the model is re-

simulated holding households’ utility level constant—but now in

an open-city model framework. The direction of the compensating

variation can be inferred from the change in the utility level.

Thirdly, assuming each Uber driver is a self-employed (resident)

entrepreneur, then her profit is a part of the city’s welfare change.

The net profit for each Uber driver is the difference between the

total revenue from Uber rides net of Uber’s commission and the

driver’s operating cost. The operating cost includes the variable

cost of operating a car and gasoline cost. In our analysis, the firm’s

profit (Uber’s) does not enter into the welfare analysis of the city,

as we assume it is owned by non-residents.36

We aggregate these individual components into the total

change in welfare and then present the change as a percent of

aggregate urban income in Table 7.

Focusing on the $0.67 trip tax with a lumpsum rebate, the wel-

fare effect of taxing Uber is negative, although smaller in absolute

value than the revenue raised. This negative effect is the net of

two counteracting forces: the fact that a tax on Uber distorts the

optimal mode choice, but at the same time improves congestion

on roadways. The first of these effects dominates because the tax

affects many trips (leisure) that are not subject to congestion exter-

36 Alternatively, we could assume it makes zero profit: the commission just covers

costs of the platform.
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nalities. Interestingly, the welfare decline resulting from using the

revenue to subsidize public transit is larger in absolute value than

the lump sum return. In part, this is likely a result of how this added

subsidy reduces car ownership, while only having a relatively small

increase in transit usage. The effects are qualitatively similar for

other tax policies, except that the sales tax and mile tax may have

positive welfare effects under the lump sum rebate. In part, this is

due to themagnitude of these taxes, which raisemore revenue than

the $0.67 trip tax. As a result, the lump sum rebates are larger in

these scenarios, and thus the income effects have larger effects on

initially distorted quantities. To verify this, we resimulate the flat

per-trip tax with lump-sum rebates at different values, and can

show that welfare is increasing in the tax rate, suggesting that from

an optimally perspective, the choice of the tax rate is important. The

laissez faire equilibrium is not optimal, nor is the 0:67 tax, but there

do exist tax policies that improve welfare.

With respect to the subsidy policies, given they are effective at

increasing transit ridership, they reduce congestion in the city. But,

at the same time when they are financed via income reductions,

those income losses have adverse effects. Although effective at

improving transit ridership, the welfare effects are negative, likely

because they are inefficiently targeted. In particular, the subsidies

reduce rush-hour transportation for commuting trips, but at the

same time, the city spends money on subsidies for leisure trips that

occur at off-peak hours. For these latter trips, the subsidies have no

externality-reducing effect, but reduce income. If the subsidies

were only targeted to Uber trips to transit stations for commuting

purposes, then the welfare effects would likely be more positive.

Moreover, when the subsidies are externally financed, they

improve a welfare, just like a ‘‘free lunch”.

The welfare effects of the optimal toll with a lump sum rebate

are also positive. However, the welfare effects of the congestion toll

may sometimes come with some negative effects. Although the

marginal damage is internalized and speed increases, the average

commuting time to work increases. This is partially a result of

the congestion toll increasing urban sprawl because individuals

further away have less viable options to substitute toward.

Nonetheless, the large lump sum return from the congestion toll

combined with the increases in speed, raises welfare. This is not

the case when the toll is externally rebated or when revenue is

then used to improve transit or reduce fares. With respect to the

latter two, this suggests that these policies are excessive relative

to the already levied optimal toll, which internalizes the marginal

damage of congestion. This result might no longer hold if we

accounted for additional environmental externalities, which could

be added, in the welfare calculation.

7. Conclusion

Technological changes create important new challenges and

opportunities for cities and their public finances. Ride-hailing apps

represent one of the most important technological changes of the

last decade for urban transportation, but the effect of government

policies on these companies remains uncertain. We provide evi-

dence that some of the existing policies targeting ride-hailing apps

are ineffective at meeting their stated goals of reducing congestion

externalities and increasing public transit usage. Instead, subsidies

for ride-hailing apps or congestion tolls are more effective of meet-

ing these two goals. Our results suggest that taking Uber directly to

the final destination is a substitute for rapid transit. At the same

time, Uber being a substitute to rapid transit does not mean it is

also a substitute for buses, as lower Uber prices can endogenously

lower car ownership decisions, possibly raising bus transportation

for trips where rapid transit does not go. But, Uber and rapid transit

can be complements if cities adopt appropriate policies to encour-

age Uber to be a ‘‘last-mile” service provider. In other words, the

cross-price elasticities are not immutable, and can be chosen by

the policies set by cities.

While we have made much progress studying the taxation of

ride-hailing apps, much more research is needed. While our

robustness exercises provide some evidence, future research might

consider how results differ depending on the size of the city. Given

sufficient density is critical for public transit system, the mecha-

nisms we identify may be even more applicable in smaller cities

where buses or other modes of transit do not readily cover subur-

ban parts of the urban area. Finally, our model does not feature any

regulatory policies (Mangrum et al., 2020) on taxis or ridehail

applications, but such policies could have their own effects on

the cross-price elasticities of demand, and thus merit further study.

Our model represents a comprehensive model of transit choice

in urban areas. As evidenced by the wide array of policies we can

consider, the model is flexible enough to study other policy inter-

ventions on completely unrelated topics, making the modeling

contributions in our paper important—in their own right—for the

study of transportation choices in cities.
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Table 7

Aggregate Welfare Analysis (Percent of Income)

Policy 1 Policy 2 Policy 3 Policy 4

Panel A: Tax Policies

no rebate lump sum rebate improve transit reduce transit fare

Trip tax (67 cents per trip) �0.09% �0.06% �0.05% �0.13%

Sales (9.75%) �0.08% 0.06% �0.12% �0.26%

Mile tax (20 cents per mile) �0.11% 0.03% �0.11% �0.27%

Pane B: Subsidy Policies

$3 off Uber to transit $3 off Uber to transit 50% Uber to transit Free public transit

externally financed lump sum deduction lump sum deduction lump sum deduction

Subsidy 0.01% �0.46% �0.36% �1.15%

Panel C: Congestion tolls

no rebate lump sum rebate improve transit reduce transit fare

Optimal toll �1.14% 1.06% �1.28% �1.49%

Fixed toll �0.01% 0.02% �0.06% �0.12%

This table shows the welfare effects of each policy. The welfare calculations account for aggregate (residential plus agricultural) land rent, the welfare of households as

measured based on compensating variation, Uber driver profits net of Uber’s commission. Uber’s profits are not in the welfare calculation as we assume Uber’s profits accrue

to shareholders/owners primarily outside of the city of Chicago. We normalize the welfare numbers to be a percent of aggregate income in Chicago.
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Online appendix

Supplementary data associated with this article can be found, in

the online version, athttps://doi.org/10.1016/j.jpubeco.2023.

104862.
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