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Firms arguably price at ninety-nine-ending prices because of left-digit bias—the tendency of con-
sumers to perceive a $4.99 as much lower than a $5.00. Analysis of retail scanner data on 3500 products
sold by twenty-five U.S. chains provides robust support for this explanation. I structurally estimate the
magnitude of left-digit bias and find that consumers respond to a one-cent increase from a ninety-nine-
ending price as if it were more than a twenty-cent increase. Next, I solve a portable model of optimal
pricing given left-digit biased demand. I use this model and other pricing procedures to estimate the level
of left-digit bias retailers perceive when making their pricing decisions. While all retailers respond to
left-digit bias by using ninety-nine-ending prices, their behaviour is consistently at odds with the demand
they face. Firms price as if the bias were much smaller than it is, and their pricing is more consistent
with heuristics and rule-of-thumb than with optimization given the structure of demand. I calculate that
retailers forgo 1-4% of potential gross profits due to this coarse response to left-digit bias.
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1. INTRODUCTION

Companies often interact with consumers who are affected by various biases and heuristics.
In such situations, companies need to take these behaviours into account and decide how to
respond. However, these behaviours are often not appreciated or formalized by researchers nor
firms, which can lead to sub-optimal responses. This paper studies one such leading example.

A common practice by firms, documented for at least eighty years (Ginzberg, 1936), is set-
ting prices that end with ninety-nine." A leading explanation is that these prices are set as a
response to left-digit biased consumers. Left-digit biased consumers are insensitive to the cents
component of the price, and therefore demand is relatively inelastic when the left-digits do not
change, but very elastic when they do. In turn, firms are correct to price at ninety-nine-ending
prices.

Yet, as much as left-digit bias had been studied in the past, we know very little about its
implications on firm behaviour and welfare—in theory and in practice. For a start, we do not
have an understanding of left-digit bias’ magnitude, i.e., what level of left-digit bias, if any, do

1. See also Aalto-Setala (2005), Anderson et al. (2015), Anderson and Simester (2003), Ashton (2014), Ater and
Gerlitz (2017), Conlon and Rao (2016), El Sehity ef al. (2005), Kalyanam and Shively (1998), Levy et al. (2011), Macé
(2012), Schindler and Kibarian (1996), Strulov-Shlain (2019a), Snir et al. (2017), and Stiving and Winer (1997).

The editor in charge of this paper was Nicola Gennaioli.
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consumers exhibit in their daily purchase decisions. This lack of quantification results in the
common wisdom of “ninety-nine-ending prices might be a good idea”, and not much beyond
that. Furthermore, we know relatively little about how firms price in practice and how that
compares to the optimum; we often assume they optimize in a particular way. Perhaps firms
converged to optimal behaviour by decades of trial and error or internal research; alternatively,
they might consistently deviate in specific ways.

The goal of this paper is to study firms’ response to left-digit bias in three steps: estimat-
ing consumers’ bias (demand), quantifying firms’ pricing procedures (supply), and studying
the implications of the supply response given demand. First, I parameterize left-digit bias into
consumers’ price perception, which allows me to incorporate left-digit bias into demand and
estimate the magnitude of left-digit bias. Second, I solve for optimal pricing and heuristic pric-
ing given left-digit bias. The prices set by firms reveal their beliefs about left-digit bias and the
pricing procedures they use to set prices. Third, the first two steps allow me to compare how
firms price in practice to how they should have priced, and study implications on welfare.

I use data from NielsenIQ (2020) on twenty-five retailers. While they all use ninety-nine-
ending prices, their behaviour is consistently at odds with the structure of demand since they
frequently use low-ending prices. Firms price as if the bias were much smaller than it is, and
their pricing is more consistent with heuristics and rule-of-thumb than with optimization given
the structure of demand. I estimate roughly 1-4% of forgone profits from pricing with underap-
preciation of the bias and ambiguous effects on consumer surplus. The persistent underreaction
and mischaracterization of the bias, and the costliness of this deviation—similar to uniform
pricing (DellaVigna and Gentzkow, 2019) and costlier than non-seasonal pricing (Butters et al.,
2019)—is the main finding of the paper.

In order to study the effects on firms, I first define demand with left-digit biased consumers.
As in DellaVigna (2009) and Lacetera et al. (2012), left-digit bias is defined as a distortion
in the perception of numbers. In the setting of grocery prices which are almost entirely under
$10 (i.e., a single dollar digit), the bias can be thought of as excess weight on just the dollar
digit of the price versus the exact price. A price of $4.99 is perceived as a mix between $4.99
and “$4 something”. This distortion causes a dampened perception of an only-cents change, but
over-perception of a left-digit change. The bias is modelled with a single parameter 6 ranging
between 0 (no bias) and 1 (full bias).> For example, with left-digit bias of & = 0.2, the dif-
ference between $4.99 and $5.00 is perceived as more than twenty cents, while the difference
between $5.00 and $5.01 is perceived as 0.8 of a cent. In turn, this perception distortion trans-
lates to less elastic demand when only cents change, and more elastic demand when the left-digit
changes.

I find strong left-digit bias in demand data. I analyse aggregate demand from retail data using
a panel of sales data of almost 3500 popular products (UPCs, or a Universal Product Code) sold
by twenty-five national U.S. supermarket chains. I estimate flexible models to find the residuals
of quantity sold, i.e., unexplained demand, by price. These residuals exhibit a sawtooth pattern:
as prices increase, residual demand is increasing within each dollar-digit and then dropping when
the dollar digit changes. The sawtooth pattern is consistent with the above-mentioned distortion
of left-digit bias. I then quantify the level of left-digit bias that explains these patterns and find
that it is about 0.2 on average.

2. For more digits, we can think of different weights for each digit, as in Lacetera et al. (2012). For simplicity
sake, and because it is inconsequential given the empirical setting, I keep the one parameter formulation. I discuss the
relative weight of dimes versus cents when appropriate.
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Left-digit bias affects optimal pricing because it effectively creates discontinuities in demand,
which lead to a bunching response in pricing and missing prices. Intuitively, if demand dis-
continuously drops at round prices, prices that were otherwise set just above the discontinuity
should be lowered to just below it. Therefore, there should be masses of prices just below round
numbers and regions of missing prices with low price-endings. I solve a model of monopolistic
pricing facing left-digit biased demand to quantify the response. The model prescribes levels of
excess ninety-nine-endings and ranges of missing prices from primitives of left-digit bias, price
elasticity, and marginal costs.

Firms’ pricing patterns imply under-response to the bias. Prima facie, firms respond to the
bias with 30-40% of prices ending with ninety-nine. Yet, the level of response that these num-
bers represent is far from what is predicted by the model. With left-digit bias of 0.2, and any
reasonable price elasticity, all prices should end with ninety-nine. Using identification stemming
from the discontinuities in demand, I estimate retailers’ perceived elasticities and left-digit bias
needed to rationalize the pricing behaviour. I find that while the true bias on the consumer side is
0.20, firms perceive it to be as low as 0.01-0.03. Furthermore, all chains underestimate the bias
they face. In an alternative interpretation of correct beliefs but with partial incorporation of the
bias into pricing, I find that in these cases the bias is incorporated in 30-50% of pricing instances
across chains. The best-fit rationalizations of pricing behaviour are those that allow for both
partial incorporation and underestimation of the bias, or further, a rule-of-thumb pricing where
in 40% of cases both lower and higher prices are rounded to the nearest ninety-nine-ending
prices.

Finally, I find the above-mentioned pricing procedures lead to welfare losses. I compare gross
profits under optimal price setting—when elasticities and left-digit bias levels are known—to
cases in which there is mischaracterization of the bias as estimated above. Under a broad set
of scenarios and assumptions, I find that underappreciation of left-digit bias leads to substantial
losses of gross profits. In contrast, the effect on consumer surplus is undetermined: prices are
higher than if firms were responding optimally, but the sign of the average effect depends on
non-testable assumptions.

The contribution of the paper is providing an internally valid and robust quantitative study
of optimal and actual behaviour of companies that face biased consumers. While the paper also
contributes examination of the bias across thousands of products in two dozen chains, the main
contribution of the paper is leveraging the demand estimates to quantify the gap between firms’
predicted response and their actual pricing response to the bias. It serves as an example of
“behavioural firms” that make consistent mistakes about demand.

More broadly, the paper questions the reality of firms’ optimization. Big retail chains are
making a costly mistake in pricing, one of their core activities. The assumption of optimiza-
tion, extensively questioned for individuals in past decades, should be questioned for firms as
well. Rather than optimizing, firms might be using heuristics or rely on partial learning.> Firms
respond in the right direction, but stop short of optimization.

Left-digit bias and nine-ending prices have been previously explored. Some papers focus
on documenting the prevalence of prices ending with nine (Levy et al., 2011; Hackl et al.,
2014) or reversion to nine following currency changes (Aalto-Setala, 2005; El Sehity ef al.,
2005; Strulov-Shlain, 2019a) as evidence of firms’ revealed preference for nine-ending prices
due to their benefits. Experimental papers explore underlying mechanisms (e.g., Carver and

3. The paper by Strulov-Shlain (2019a) analyzes chains pricing response to a reform in Israel and reaches similar
results. In particular, that firms operate under partial knowledge and persistently sub-optimize.
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Padgett, 2012).* Fewer papers examine the effects of nine-ending prices on demand, either in
field experiments (e.g., Anderson and Simester, 2003; Ashton, 2014),3 or in observational data
(e.g., Stiving and Winer, 1997).% These papers find that nine-ending prices increase demand,
with some mixed results (e.g., Backus et al., 2019). This paper adds to the literature by providing
rigorous and robust evidence for the bias and its magnitude across multiple chains, products, and
years.’

The paper also adds to the literature in behavioural IO in two ways. First, by studying a
market where firms respond to biased consumers (see Heidhues and Koszegi, 2018, for review),
and second, by studying a case where the firms are also “behavioural”, in the sense that they are
not profit-maximizing in a systematic way.® The closest paper, by List et al. (2021), follows a
similar approach to mine. They look at left-digit bias for a highly sophisticated company offering
two main products, and find substantial left-digit bias which is not taken into account in pricing
decisions. The magnitude of left-digit bias and effects on revenues is similar to the magnitude
I calculate. They then run a field experiment corroborating the counterfactual predictions of the
effect of left-digit bias on revenues.

The structure of the paper is as follows. In Section 2, I define and document left-digit bias
in demand data. Section 3 investigates how firms should price and quantifies how they actually
price in practice. Section 4 studies the implications of the actual pricing patterns versus the
expected pricing given demand. Finally, Section 5 concludes the paper.

2. DEMAND

To understand how firms should price in response to left-digit biased consumers we first need
to understand demand. I specify a model of left-digit biased consumers, showing left-digit bias’
effect on demand and its manifestation in the demand data. Next, in order to incorporate the bias
in firms’ pricing problem, I structurally estimate the bias parameter as prescribed by the model.

2.1. Left-digit biased consumers and demand

This section provides a simple parameterization of left-digit biased demand. The main idea
is that consumers perceive prices with a distortion captured by a parameter 6. I use a similar
approach to the parametric modelling of left-digit bias by DellaVigna (2009), Lacetera et al.
(2012), and Busse et al. (2013). Like in Lacetera et al. (2012), I assume that this distortion
is a primitive of consumers’ behaviour and not a function of firms’ actions, an assumption I

4. See Bizer and Schindler (2005), Carver and Padgett (2012), Schindler and Wiman (1989), Schindler and Kirby
(1997), Schindler and Chandrashekaran (2004), Snir et al. (2017), and Thomas and Morwitz (2005). A summary table
is available in Carver and Padgett (2012).

5. See Anderson and Simester (2003), Ashton (2014), Bray and Harris (2006), Dalrymple and Haines Jr (1970),
Dube et al. (2017), Ginzberg (1936), and Schindler and Kibarian (1996).

6. See Blattberg and Wisniewski (1988), Hackl et al. (2014), Jiang (2020), Kalyanam and Shively (1998), Macé
(2012), and Stiving and Winer (1997). Observational data papers usually find higher demand for ninety-nine- or nine-
ending prices by including a dummy for these. Surprisingly, these papers rarely discuss the issue of price averaging that
is common across these data.

7. A few papers document that prices tend to end with nine, or ninety-nine, and ask questions on the effect of this
phenomenon on price stickiness (Levy et al., 2011; Anderson et al., 2015; Ater and Gerlitz, 2017) and the pass-through
of taxes (Conlon and Rao, 2016). This paper adds to this literature by micro-founding this stickiness as an optimal

pricing response of firms.
8. See Cho and Rust (2008), Cho and Rust (2010), DellaVigna and Gentzkow (2019), Goldfarb and Xiao (2011),

and Hanna et al. (2014).
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STRULOV-SHLAIN MORE THAN A PENNY’S WORTH 5

discuss in Section 4.3.° Although there can be multiple sources for left-digit bias, e.g., inattention
or categorization, the bias parameter has an intuitive interpretation as the extra weight put on
left-most digits.'”

Consider a product with a price p between 1 and 9.99.!" Assume that a consumer perceives
the price as p

p=pp:0,0)=10-0)p+0(lp]+4) ()

where | -] is the floor operator. The perceived price is a mix of the true price, with weight 1 — 6,
and the price with the correct left digits but a focal price ending A € [0, 1) with a weight 6.
The distortion increases with 8 € [0, 1], the left-digit bias parameter. For example, if p = 4.99,
0 =0.5and A =0.19, then p = 0.5-4.99 +0.5 - (4.00 4 0.19) = 4.59.1?

Left-digit bias creates two effects on perceived price changes: discontinuities when the left-
most digits change, and attenuated perception of changes in right-most digits. First, a 0.01 price
increase is perceived as being roughly 0.01 + 6 if the left-most digit changes (e.g., 2.99-3.00);
second, a 0.01 price increase is perceived to be lower than in the standard model, being 0.01(1 —
), if only one digit changes (e.g., 2.95-2.96). In turn, these price distortions strongly affect
demand.

The focal price ending parameter, A, does not affect pricing but has first-order effects on
welfare. A almost does not affect pricing because 6 dominates these effects via the discontinu-
ities. In contrast, A causes all prices to be perceived as lower (A = 0 = p < pVp) or larger (if
A = 0.99) than they are, hence shifting demand—causing consumers to over- or under-consume.

If a consumer has utility of the form U(y, q) =y + (g/A)'*"/¢/(1 + 1/€) where y is the
residual income, g is the quantity purchased of a good, and A is translating quantity to numeraire
value, then overall demand will be of the form'?

D(p;0,A)=Ap=A(1—-0)p+6(Lp]+ D) (@)

The effects of left-digit bias on demand lead to an intuitive visual and empirical test. Figure 1(a)
illustrates constant-elasticity demand curves with and without the bias, ie., logQ = A +
€log(p), for & = 0 on the left panels and § > 0 on the right. On the left, without bias, demand
is smooth. On the right, the slope is flatter within each dollar digit, and demand discontinuously
drops when the dollar digit changes (highlighted by different shades). The dashed line is the fit-
ted line from a log(quantity) on log(price) regression. Figure 1(b) shows the residuals by price
from these regressions. If there is no bias, as on the left panel of Figure 1(b), residuals are a flat

9. This assumption is the main difference between this model and theoretical treatments of similar price
perception biases (e.g., Basu, 2006; Matéjka, 2015)

10. In other papers, 6 is termed “inattention” (see Gabaix, 2019). However, other forces might lead to observa-
tionally equivalent behaviour. Such mechanisms are imperfect price recall, price categorization, or a tendency to choose
round numbers to represent internal values or reference-prices. Therefore, I use the term left-digit bias which captures
all of these, and remain agnostic about the behavioural mechanism.

11. While the model can be extended to include more distortions, the empirical setting includes mostly prices
that are below $10. It also makes the exposition simpler. I discuss extensions in the final section of the paper.

12. Analternative interpretation is that a @ share of consumers replace the lower digits with the focal price ending.
Though different in interpretation, these two models lead to similar qualitative predictions (Supplementary Material,
Appendix B, solves for a pure price competition model, providing an example for when these two models differ). The
former interpretation is a bit simpler to solve algebraically, and also captures the observation that “4.99 feels lower than
5.00” at the person-specific level. Furthermore, Morrison and Taubinsky (2019) find evidence against the pure multiple
types interpretation.

13. Conversely, if there is type mixture then following the same formulation will lead to demand of the form
D(p: 6, A) = A[(1 — )p +6(Lp) + AF.
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line at zero (if the fitted model is misspecified, it will exhibit some other general shape). On the
right, left-digit biased demand residuals exhibit a sawtooth pattern with discrete drops when the
dollar digits change. This shape is the key diagnostic of left-digit biased demand.

2.2. Data

This project relies on supermarket prices and purchase behaviour on a big set of products and
chains, allowing a robust investigation of the bias and firms’ response to it.

Data are weekly store-product quantities and prices of about 3500 consumer packaged goods
sold by twenty-five supermarket chains in the U.S. from 2006 to 2019.

The exact price paid is a key variable, but it is not measured directly. The price in the data
is a quantity-weighted average of all prices paid for a product in a store in a week. If the price
changed mid-week, or different consumers paid different prices, the average price in the data is
not a price any consumer actually paid. Therefore, while scanner data provide a broad coverage
of products and a long panel, they require some data cleaning to determine which observations
represent the exact price consumers paid. I discuss the main points here and elaborate on these
issues in Supplementary Material, Appendix D, which goes into details about the data cleaning
procedure; in addition to some standard restrictions, I focus on chains and stores that report
“clean” prices. These are chains that are likely to be changing their prices on a weekly frequency
and in alignment with the frequency with which NielsenlQ collects the data, and are also such
chains that do not have different prices for members versus non-members, nor use personalized
pricing. To operationalize this goal, I select chains and stores with (an admittedly arbitrary rule
of) a maximum of 2% of prices with one, two, or three in the cents digit following the logic that
these prices rarely appear on the shelf. In addition, because we need price variation to see how
demand sensitivity changes when left-most digits change, I explicitly require some variation in
dollar digits at the product level (this is implicitly done by other papers since products whose
price does not change do not contribute to demand estimation). Since some of these issues are
not discussed elsewhere, I encourage researchers interested in or concerned about exact prices in
scanner data to read Supplementary Material, Appendix D, for a description of price construction
procedures.

NielsenlQ Retail Scanner (RMS) and Consumer Panel (HMS) data are provided by the Kilts
Center at the University of Chicago Booth School of Business. RMS records weekly UPC-store
level quantity and revenues. After selecting a subset of forty-one modules used by DellaVigna
and Gentzkow (2019) and thirty-four chains with the potential of reporting accurate prices in
such data, I start with 5.2 billion observations from 3602 stores, covering the period of 2006—
2019. Summary statistics are described in Table 1. The final sample consists of 78 million
observations of 3475 products, in 1502 stores, with a total of 1.18 billion units sold for $4.3
billion. The main level of analysis is at the product-chain level, and there are 9107 such pairs.
The average price is $4.84 with an inferred transitory sales frequency of 16%. 41% of prices end
with ninety-nine, and 87% end with nine as the last digit. I elaborate on the variables construction
process in Supplementary Material, Appendix D.

2.3.  Reduced-form evidence

The shape of demand residuals by price provides a test for left-digit biased demand (as in
Figure 1). Specifically, focusing on the shape of demand residuals—net of factors such as
seasonality, store and product characteristics, promotion mix, and price elasticities—allows
to aggregate over more flexible demand structures, such as different elasticities and price
distributions for different products.
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Illustration: Demand with left-digit bias
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Illustration: Residualized demand from log-log regression with left-digit-biased demand
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FIGURE 1

7

Demand and residuals with and without left-digit bias. (a) Demand with left-digit bias. (b) Residualized demand from
log-log regression with left-digit-biased demand

Notes: The figures illustrate simulated demand curves under a model of left-digit bias. The top figures show simulated log(quantity)-
price demand curves. Shades represent different dollar digits. The dashed line is the curve of best fit from a log(quantity) on log(price)

regression. The bottom figures show the residualized demand by price—actual demand minus predicted demand. The right figures are for

left-digit biased demand with § = 0.16, and the left figures are for the standard case of no bias, 8 = 0.
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TABLE 1
Summary statistics and data selection

Full Clean stores Clean

6] @ (€©)
Observations (millions) 5177.6 181.56 77.87
Products 189,722 6187 3475
Stores 3602 1953 1502
Weeks 730 730 730
Chains 34 25 24
Product-chain 979,092 18,486 9107
Total dollar sale ($billions) 147.73 10.49 4.29
Total units sold (billions) 51.19 4.06 1.18
First date 2006-01-07 2006-01-07 2006-01-07
Last date 2019-12-28 2019-12-28 2019-12-28
Average price 4.27 4.08 4.84
Share on-sale N/A N/A 0.16
Share ninety-nine-ending 0.32 0.33 0.41
Share nine-ending 0.69 0.78 0.87
Share zero-ending 0.16 0.12 0.07

Notes: The table presents summary statistics for the NielsenIQ scanner data. Column (1) is the initial data set of the
thirty-four chains with high data quality, and stores and products with long enough presence in the data. Column (2)
shows the sample after keeping product-stores with few price-endings with one, two, or three cents. Column (3) is the
main sample used in the paper for the pricing analysis.

Figure 2 shows a semi-parametric demand curve. The figure shows the result of regressing
log-quantity on price dummies with a rich set of fixed effects (estimation details below). The
figure shows estimates of the price fixed-effects for thirty-seven “ground and whole bean coffee”
products, which were found to have a similar price elasticity and hence can be plotted together
on the same curve. The shape of the demand curve closely resembles that of Figure 1(a), show-
ing drops in demand between dollar digits and an attenuated slope within each dollar digit. To
examine all data, I aggregate the residuals net of product-chain level price elasticity which then
allows me to combine evidence from products with different price elasticities (slopes).

Corroboration of the model—a sawtooth pattern of residuals—is shown in Figure 3 for 9107
product-chain pairs. The horizontal axis is price and the vertical axis is residualized demand,
where each dot is a ten-cent bin of prices. Like the illustration in Figure 1(b), residualized
demand is increasing within a dollar-digit and drops across digits. I now turn to a detailed
explanation of the generating process of this figure and show that this is a robust pattern.

The test requires estimating the exact shape of demand curves, a process which raises three
challenges. Like in other demand estimation exercises, we first care about the overall slope of
how quantity changes in response to price changes. Second, unlike other exercises, we need exact
demand by precise price since otherwise discontinuities will be blurred. Third, we also require
enough variation to separate within-dollar slopes from between-dollars change in demand. These
three requirements inform the estimation procedure and data construction, and are elaborated
on in Supplementary Material, Appendix D. First, to estimate demand I use a now common
approach of a flexible log—log estimation on a sample of clean prices (e.g., Hausman, 1996;
Rossi, 2014; Hitsch et al., 2017; DellaVigna and Gentzkow, 2019) justified by institutional
knowledge of how retail chains set prices—well in advance, with quasi-random sales, and uni-
formly across stores. Second, the precise price measurement is addressed in the data cleaning
process. Third, obtaining enough price variation across dollar digits is satisfied by data selection,
and enough variation across price-endings is satisfied because chains use multiple price endings
for all products in the sample.
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FIGURE 2

Demand curve of thirty-seven products, exhibiting drops at dollar digits
Notes: The figure shows a non-parametric demand curve. Data are for thirty-seven unique products with similar elasticities (between
—1.35 and —1.65) from the module “ground and whole bean coffee”. Each dot is the estimand from regressing log-quantity sold on a
ten-cent dummy (e.g., $4.90-$4.99), controlling for prices of competing products, and fixed-effects which are the interactions between
UPC-chain and store, month-of-year, week-of-month, last digit, and promotional flags. Standard errors are clustered at the store level,
and opaqueness in the figure is inverse to standard errors.

The key remaining identifying assumption is that there is no sorting of price-endings accord-
ing to demand shocks. If products are priced at high-ending prices when demand is expected
to be high, and proportionally so at low-ending prices when demand is expected to be low,
it will generate the aforementioned sawtooth pattern.'* Therefore, the analysis requires the
explicit assumption that price-endings are not set in response to shifts in demand. Indeed, nei-
ther previous literature nor popular press recommends correlating the price-ending with demand
fluctuations. Furthermore, interviews I conducted with retail executives support this assumption:
according to them, price levels are determined by costs, competition, and price sensitivity, and
price endings are the result of occasional rounding. Therefore, the observed sawtooth pattern
of the residuals are characteristics of left-digit biased demand—rather than a result of firms’
deliberate price-endings sorting according to demand shocks.

The above requirements and assumptions lead to the following regressions. I am using the
following specification at the product-chain level, i.e., I run 9072 separate regressions:

log(Q + 1)iss = €;10g Pigy + ajolog Pe(iys + i1 10g Pi(ysr + @iz 10g Poiyss
+ ,Bis + Vi,yearr) + 5i,m0nth(r) + Vi week(r) ,uisaleist + ¢ispeu'lengthi5r + eig
3)

where i is the product-chain, s is the store, and ¢ is the period. QO is number of units sold,
and P is the price. € captures the product-chain elasticity as the coefficient on log-price. The

14. An example of a violation of that assumption is if positive demand shocks increase prices from $3.59 to
$3.99, but not from $3.99 to $4.29.
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FIGURE 3

Sawtooth patterns of residualized demand by price
Notes: The figure plots demeaned log-demand by price, residualizing UPC-chain level price elasticity, seasonality, cross elasticities, store
fixed effects, and promotion effects. Each of the dollar digits is represented by a different shade. The size of each circle represents the
number of observations. Within-dollar linear fits, weighted by number of observations, are added as solid lines. Plotted fixed effects
estimated at ten-cent bins (e.g., $3.90-$3.99).

as capture cross-elasticities, where log P is the average log-price of other products of the
same product category c(i) in the same store s at the same period ¢, and similarly 1(i) and
2(i) are the first and second most popular items in the category of i (excluding i itself). § is a
store fixed effect capturing a time-invariant product average demand in a store; y is a year fixed
effect capturing product-level shifts in demand; J is month-of-year fixed effect capturing product
specific seasonality; and y is a week-of-month fixed effect capturing micro-seasonality within a
month.'3 Finally, 1 and ¢ capture transitory and dynamic effects of transitory sales: Sale;,; is an
indicator for a transitory sale (whether a product’s price is lower than the inferred base price in
week ¢ in store s); Spell-length;, is the number of consecutive weeks for which the same price
was set for product i in store s at week +—to address issues of stockpiling and different pricing
strategies.

The residuals from these regressions are, by definition, the unexplained component
of demand. T take these residuals, é;;,, and calculate a simple average across products,
stores, and time, at ten-cent bins.'® I annotate the different price bins as p (e.g., p =
{$2.90, $2.91, ..., $2.99} is one bin):

A ey zéistl(pist € ﬁ)
P = 5o € p)

15. See, e.g., Hastings and Shapiro (2018).
16. Due to some extreme outliers, I winsorize the residuals at the 1% and 99% of the distribution.
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Figure 3 shows the estimated O( p), the average residuals of demand per price bin (ten-cent
bins). It shows that quantity purchased, netted of price, product, store, sales, and seasonality
effects, is increasing within each dollar-digit and drops at dollar crossings.

Next, I conduct several tests with different methods and samples to verify that the findings
are robust. First, I show the results from the same procedure as described above, only modifying
specification (3) to use leave-one-out price as instrumental variables (commonly referred to as
Hausman instruments). That is, the log-price of a product i in store s at time 7 is instrumented
with the average price of product i at time ¢ but in other stores of the same chain in other markets
(other designated market areas (DMAs)). The idea is that changes in prices of the same product
in the same chain outside of the DMA reflect changes in costs that are shared across markets
but are not associated with shocks to local demand.'” The results are shown in Supplementary
Material, Appendix Figure A-1(a). Next, the patterns are robust for other demand structures at
the product level—constant semi-elasticity which results from regressing log-quantity on prices
rather than log-prices (Supplementary Material, Appendix Figure A-1(b)), or a flexible fifth-
degree polynomial in prices (Supplementary Material, Appendix Figure A-1(c)). Finally, if the
model is correct, regressing log-quantity on price and floor(price) incorporates the bias as mod-
elled and should eliminate the sawtooth pattern. Indeed, Supplementary Material, Appendix
Figure A-1(d), shows that parameterization of left-digit bias is a good description since adding
the floor of the price as a regressor flattens the residuals (cf. Supplementary Material, Appendix
Figure A-1(c)).

Furthermore, I test whether these discrete drops in demand when the dollar digits change are
statistically significant. I regress demand at the UPC-chain level by adding two dummy variables
capturing discrete jumps in demand at two round prices—the floor and ceiling of a product-
chain’s median price.'® For example, if the median price is $3.42, I estimate discrete changes
at $3 and $4. Although this estimation is somewhat noisy due to the small number of prices
at the product-chain level, it shows that demand drops on average by about 6-7% when dollar
digits change (over and above the price elasticity). Further details on the distribution of drops
are shown in Table 2, panel A, and in Supplementary Material, Appendix Figure A-2.

In summary, sawtooth patterns are exhibited across various specifications, samples, products,
and retailers, and are eliminated when the structure of the bias is incorporated into the model.
Taken together, these patterns support the existence and soundness of the model and justify a
structural estimation.

2.4. Structural estimation of left-digit bias

I now turn to connect the reduced-form evidence with the model by estimating the left-digit
bias parameter . This is a parameter of interest for multiple reasons. First, it provides a clear
interpretation by quantifying the fraction of the cents-component consumers ignore. Second,
structural estimation allows to describe the demand curve with a functional form and find

17. These instruments are strong because chains implement uniform pricing across stores, making them similar
to OLS as uniform pricing means that pricing is not a response to demand at the local level.

18. Call these floor and ceiling dummies Dij; and Dicst’ e.g., Di{t = 1(pist = |Pic(s)))- Then the specification
Irunis

log(Q + 1)isr = € log Pigt + o 10og Pe(j)s + a1 108 P(i)sr + 2108 Pa(iyst
+p! DJ, + DS,

ist

+ Bis + Vi, year(t) + 5i,m0nth(t) + Vi, week(t) + u;Salejg + ‘»bispell'lengthist +eist (18)

0z Alenugad || uo Jasn Aleiqi] seousiog yiesH - |IIH [@dey) 1e euljoie) YUON Jo Alsiaaiun Aq Z181£69/2800BP./PNIS8I/S60 L 0 L/I0p/8|o1B-80UBAPER/PNISE./WO0D dNo oIWapeoe//:sdpy Wol) PSPEOjUM


http://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdac082#supplementary-data
http://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdac082#supplementary-data
http://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdac082#supplementary-data
http://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdac082#supplementary-data
http://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdac082#supplementary-data
http://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdac082#supplementary-data

12 REVIEW OF ECONOMIC STUDIES
TABLE 2
Estimates of drops and left-digit bias parameter
Percentile
Mean estimate Number of estimates 25th Median 75th
Panel A: Drops in demand (% change)
(1 Chain —6.61 25 —8.68 —6.83 —3.34
2) Module —6.36 41 —8.27 —6.40 —4.73
3) Module-chain —6.24 872 —12.21 —6.10 —0.62
4) UPC —7.28 3206 —14.79 —6.43 1.33
) UPC-chain —6.62 13,760 —16.85 —5.74 4.49
Panel B: Left-digit bias estimates
(6) Chain 0.22 25 0.17 0.22 0.25
7 Module 0.21 41 0.17 0.21 0.28
8) Module-chain 0.20 869 0.11 0.21 0.31
9) UPC 0.22 3196 0.06 0.20 0.36
(10) UPC-chain 0.22 7900 0.04 0.21 0.40

Notes: Panel A shows distributions of changes-in-demand at dollar crossing, and panel B shows the distribution of left-
digit bias estimates. Changes in demand are estimated as discrete breaks in demand at the UPC-chain median price’s
dollar digit and the digit above it (e.g., if the median price is $3.42, it will have drops at $3 and $4). The numbers in the
column titled “Number of estimates” may be larger due to the doubling effect (e.g., the number of estimated drops is
larger than the number of UPC-chains). The estimates describe the discontinuous change in demand at these thresholds.
For example, a mean estimate of —6.61 means that demand drops on average by 6.61% when the dollar digit changes,
above and beyond the price sensitivity. All rows display shrunk estimated drops at the UPC-chain-digit level, aggregated
at different levels. Row (1) shows estimated drops in demand averaged at the chain level; row (2) is averaged at the
module level; row (3) is averaged at the module-chain level; row (4) shows product-level estimates; and row (5) shows
the underlying UPC-chain level estimates.

Panel B shows estimates of left-digit bias and their distributions. For example, a mean estimate of 0.22 means that
the difference between a ninety-nine-ending price and the round price above is perceived as about twenty-two cents
difference. Rows display averaged left-digit bias based on UPC-chain level estimates. Row (6) averages estimates at
the chain-level; row (7) averages at the module level; row (8) is averaged to module-chain; row (9) is at the UPC level
(across chains); and finally, row (10) shows the underlying UPC-chain level shrunk estimates.

Supplementary Material, Appendix Table A-1, displays the equivalent estimates estimated directly at the various levels
(chain, module, etc.)—both raw and shrunk.

(analytical) optimal pricing. Finally, resulting quantification enables to conduct counterfactual
exercises.

The left-digit bias parameter is estimated at the product-chain level—I estimate multiple 6;.s
where i is UPC and c is chain—for two main reasons. First, an alternative aggregated estimation
can lead to a form of statistical aggregation bias by ignoring different price elasticities (and it
indeed leads to larger estimates). Second, it allows to explore heterogeneity of the left-digit bias
estimates across modules, chains, and products.

I estimate 0 by substituting the perceived price p as the explanatory variable instead of price.
That is, I run a similar specification to specification'® (3) and replace log-price with the price
linearly, resulting with the following specification:

log(Q + D)ise = B Piyy + ﬂinJ LP list + aio Pegiyst 4 a1 Pigyse + 0iz Pagiyst

+ ﬂi‘v + Vi,year(t) + 5i,month(t) + Wi week(t) + ,uisaleist + ¢ispeu'lengthi31 + eig
(5)

19. Notice that A is not identified because it is absorbed by the constant.
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Since I define the perceived priceas p = (1 —0)p + 0 - (Lp] + A), doing so effectively equates
to regressing log-quantity on p, with the coefficient on p being the semi-elasticity.?’ Therefore,
the estimated left-digit bias parameter is

h= I
BP + pLrl

where ﬁ” is the coefficient on the exact price and ,[;’ LP] is the coefficient on the floor of the price.
Standard errors, which are clustered at the store level, are obtained using the Delta-method.?!

Because of the high number of estimands, estimation is noisy and calls for some regular-
ization. This a common issue with scanner data estimation, and it has a common solution of
Bayesian shrinkage of the estimates (see Butters et al., 2019; DellaVigna and Gentzkow, 2019).
Specifically, I take the most precise estimates—those with below-median standard errors—and
calculate their mean and variance, denoted as & and Var(6), respectively. Then, I recalculate
each estimated 6, as 0;, = (Var(®) - 6. + 62(6;.) - 0)/(Var(0) + 62(6;.)). In other words, the
estimates are being “shrunk” to a prior with mean & and variance Var(#), a procedure in which
the more precise the estimate (the lower its standard error o (6;.)), the lower the weight on the
prior.?

Panel B of Table 2 shows the results. The procedure generates estimates at the product-
chain level with an average left-digit bias of 0.22 and median of 0.21, with interquartile range
of 0.04-0.40. The full distribution can be seen in Figure 4. An advantage of the UPC-chain
level estimation is the ability to calculate left-digit bias at more aggregated levels—such as
across-chains or product-modules. As evident in Table 2 and Figure 4, a significant hetero-
geneity between chains and modules remains. For example, the interquartile range between
chains is 0.17-0.25. In the next section, I explore the relationship between the above-mentioned
heterogeneity and pricing.”

2.5. Exploring left-digit bias heterogeneity

Product-chain level estimates allow to explore the bias’ correlation with the characteristics of
each product and its clients. While the demand-side model makes no assumptions on the source
of the bias, correlated factors with left-digit bias can inform us on possible mechanisms that
might generate it, or shed light on its source (see also Macé, 2012; Jiang, 2020; Sokolova et al.,
2020). As this is not at the core of the paper, I defer the analysis and discussion to Supplementary
Material, Appendix F. There, using the characteristics data from the NielsenlQ Consumer Panel,
I find that, unlike factors such as buyers’ education, income, or purchase frequency, a higher

20. In a previous version of the paper (Strulov-Shlain, 2019b), I used two additional methods to estimate left-
digit bias—using the drops in demand coupled with separately estimated elasticities, and non-linear least squares. Since
all methods generated nearly identical results, for brevity’s sake, I opted for the simplest one here.

21. The raw estimates without Bayesian shrinkage are presented in Supplementary Material, Appendix
Table A-1.

22. Thave also estimated the parameters at those more aggregated levels directly, and they are consistently larger.
For example, while in the main approach (averaging across UPC-chain by chain) the interquartile range is 0.17-0.25,
in the aggregated version in which I directly estimate the bias at the chain level, the interquartile range is 0.36-0.58.
Similarly, estimating a single parameter, even with very flexible controls, gives an estimate of 0.570 (0.009)—a less
credible estimate due to the aforementioned statistical aggregation bias.

23. In Supplementary Material, Appendix B, I solve a case of firms pricing under Bertrand-Nash price-
competition with left-digit biased consumers. The case of a multi-product monopolist is analysed in Supplementary
Material, Appendix C.
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FIGURE 4
Histogram of product-level left-digit bias estimates from drops in demand at the dollar-digit
Notes: The figure shows histograms of left-digit bias shrunk estimates from regressing log(quantity) on the perceived price and controls
(details in Section 3.4). The light-grey background highlights thetas (LDB) of 0-1. Inside textbox displays the level at which left-digit
bias is aggregated—chain, module, module-by-chain, and product.

average price of an item is associated with a stronger bias. For example, over and above the
price elasticity, ninety-nine cents seem to get lower weight in the perceived price for a $7.99
item versus a $1.99 item.

3. FIRM PRICING

Building on the findings of the demand structure in Section 2, I investigate firms’ pricing
response—what it should be and what can describe it in practice. I estimate firms’ beliefs about
demand as revealed by their pricing behaviour, and also entertain alternative pricing procedures.

3.1. Optimal pricing

To study pricing, I analyse a model of monopolistic pricing facing left-digit biased demand since
it is estimable and allows me to incorporate the demand analysis. In the existing literature, there
are only a few models of firm pricing that relate directly to nine-ending prices (Basu, 1997, 2006;
Stiving, 2000), and for those that do, their predictions for optimal pricing are either only ninety-
nine-ending prices or none. Another approach, of bounded-rationality models, generates discrete
price-setting behaviour, but these discrete prices need not be nine-ending (Chen et al., 2010;
Gabaix, 2014; Matéjka, 2015). The model in this paper consists of left-digit-biased consumers
and monopolistic firms.?* Consumers choose a quantity to purchase to maximize utility, but may

24. This is a common feature of models with inattention (e.g., Farhi and Gabaix, 2015; Gabaix, 2019), in which
there is a discrepancy between the true utility and maximized utility on the consumer side, causing distortions.

0z Alenugad || uo Jasn Aleiqi] seousiog yiesH - |IIH [@dey) 1e euljoie) YUON Jo Alsiaaiun Aq Z181£69/2800BP./PNIS8I/S60 L 0 L/I0p/8|o1B-80UBAPER/PNISE./WO0D dNo oIWapeoe//:sdpy Wol) PSPEOjUM



STRULOV-SHLAIN MORE THAN A PENNY’S WORTH 15

misperceive the price. Firms price to maximize profits according to their beliefs of consumer
misperception.

Consider a monopolist who faces a demand function as in Section 2, D(p; 0, A) = Ap*,
a function of prices and left-digit bias. The firm earns p per unit, and pays a fixed unit cost
¢. Consumers perceive the price as p(p; 8, A) and choose quantities accordingly. Then, the
monopolist’s gross profits (absent fixed costs) are

M(p:0,A\)=D(p;0,A)-(p—c)=Ap - (p—c)

i.e., demand is driven by the perceived price while per unit profits are governed by the true
price.?

For ease of exposition, I decompose a price p into its decimal basis components, such that,
P = p1+ po.1 + pooi- For example, p = 3.49 =3 + 0.40 + 0.09, so p; = 3.

The discontinuity in demand when p — p; is easy to see. In the limit from below, demand
is A(py +0A —0)¢ versus A(p; + 0 A)¢ from above. To simplify the solution, assume that
prices can be chosen from all real numbers between a natural number and a ninety-nine-
ending number—bJ[ql, q] C Ry whereq; € Nand g = q; + 0.9 + 0.09. Proofs to the following

1

propositions and corollaries appear in Supplementary Material, Appendix A.
Solving for optimal pricing yields the following result:

Proposition 1 (optimal pricing formula, for small 8). For any cost c and parameters € and 9, find
the appropriate .99 ending number q = (q1, .9, .09) such that ¢ € [¢,, ¢, ;] L2lg-A+1/e) +
/1 —-0)-(q+A)/e, (g+1)-(1+1/e)+60/(1—80)-(q1 + 1+ A)/€l. Then, the optimal
price for that cost c is

q ifce I:ngq]

0 g +14+A € i e[_ )
c— . . ifce|c,,c
1-6 € 1+€ 1 =g+l

where ¢, and ¢, | are defined above, and ¢, is defined below as the minimal cost for which it is
profitable to price strictly above g (¢, solves Equations (7) and (8)).

The pricing behaviour in Equation (6) is different from standard pricing with no-bias in two
ways. First, the top case in Equation (6) represents that a region of costs maps to ninety-nine-
ending prices, and some of these costs would have otherwise been mapped to prices just above
ninety-nine-ending prices.’® Second, the bottom case describes interior solutions as a modified
markup rule with an added component driven by the bias. The price is slightly higher than it
would have been absent the bias because left-digit bias makes demand less elastic for changes
within the same first digit.

To further elucidate Equation (6), I elaborate on the three threshold costs Cqs Cyits and ¢,.
The former two, ¢, and ¢, , are the costs for which the monopolist’s profit is maximized as an
interior solution at g and g + 1, respectively, i.e., where the first-order condition is satisfied at
ninety-nine-ending prices. The image of costs in [¢,» ;41118 hence prices in [¢, ¢ + 1], which
allows to plug in g and ¢; in the two cases in Equation (6). The third threshold, ¢,, is the
cost for which prices will switch from g to a price in the segment [¢; + 1, g + 1]. At ¢, two

p(c;0,A €)= (6)

25. The top equation shows that prices are set at ninety-nine-ending prices (¢) for a range of unit costs, and hence
with varying markups. Thus, this model generates price stickiness that is not driven by frictions on the supplier side.
26. For a very low 6, there is no gap, and P = g1 + 1.
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conditions are met: (1) the profit is maximized (with an internal solution) on some price P €
[g1 + 1,9 + 1] > g; and (2) profits are equal at that price, P, and at g:>’

py =P +0(P+A)

~ c(1-0)
Cq = ﬁ‘~P—c}‘-q 7)
ﬁe_ée

Definition 1 (Next-Lowest Price). The Next-Lowest Price P is the lowest price used above
a ninety-nine-ending price ¢, and is a function of the parameters 6 and € as defined by the
following implicit equation:

1=OP+O(Pi+A) (I=OPH+OP+A)P—((1=0g+0(q+A)qg
e(1-0) (1=0)P+0(PL+A) = ((1=0)g +0(q+A)

P+
®)

This equation is not analytically solvable, but can be easily solved numerically for P. Given
P, we can recover ¢, from either part of Equation (7). The empirical meaning of P is that no
prices should be set between ¢; + 1 and P.

The pricing schedule is illustrated in Figure 5, showing price as a function of cost under
left-digit biased demand. The diagonal grey line are prices without bias, and the thick lines
are the optimal prices with the bias. The figure demonstrates regions of costs translating to
ninety-nine-ending prices (some with lower markups than absent a bias), and higher markups
for non-bunching prices.

The testable predictions of the model—bunching at ninety-nine-ending prices, with asym-
metry of missing prices only above the round price thresholds—are the key to taking the model
to the data (see also Dube et al., 2017).

Proposition 2 (Comparative statics of the Next-Lowest Price). For € < —1, the next-lowest
price is lower when demand is more elastic, i.e., 0P /d|e| < 0. For q; > 0, the next-lowest price
is higher when there is more bias, i.e., 0P /60 > 0.

Proposition 2 shows that more elastic demand leads to a lower next-lowest price, but this is
a result of counteracting forces. The first-order effect is that more elastic demand will cause a
steeper decline in profits for the same price difference, and hence leads to a lower P to preserve
profit indifference. On the other hand, a higher elasticity means lower markups overall and a
shift in the profit curves. After some algebra, the latter can be shown to be a weaker effect.

The second part of Proposition 2 states that higher bias leads to higher next-lowest prices.
The effect of higher bias is simpler to understand. Fix some optimal P and consider an increase
in 8. The infra-marginal benefits from changing the price to the lower ninety-nine are now larger
(because the perceived gap, P— g, has increased) while the costs of increasing the price above
P are lower because of the lower sensitivity of within-left-digit demand. So P must increase.

A corollary is that the right-digits component of the next-lowest price is increasing from one
threshold to the next:

Corollary 1. For € < —1, conditional on 6, the lower digits of the Next-Lowest Price (i.e.,
P — Py) are increasing with the first digits.

27. Rule-of-thumb pricing is similar to what Dube ez al. (2017) find in wage setting by employers. Interestingly,
they do not find left-digit bias on the employees side.
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FIGURE 5
Tllustration of the optimal price schedule
Notes: Panel A: The thick lines in different shades illustrate optimal prices of a monopolist facing constant elasticity demand with left-
digit biased consumers, displayed as a function of cost. The thin grey line represents the no-bias counterfactual where p = c(e/(€ + 1)).
The horizontal sections of the thick lines are the ninety-nine-ending prices, which are the optimal prices for regions of costs. The lowest
cost that translates to a ninety-nine-ending price is when this cost is the interior solution at ninety-nine, and the highest cost is when there
is profit indifference between ninety-nine and the next-lowest price. The resulting ranges of missing prices are highlighted by vertical
arrows. Panel B: Illustration of the resulting price distributions with uniform costs for different pricing procedures. From top to bottom:
optimal pricing (matches panel A); with partial incorporation; with rule-of-thumb pricing.
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This corollary means that nominally more expensive products have larger regions of missing
prices. For example, for the same parameters of left-digit bias and elasticity, the lowest observed
price above $4 should be $4.30 and above $5 should be $5.32.

Proposition 2 and Corollary 1 show that left-digit bias and price elasticity map into next-
lowest prices and excess mass. Therefore, point identification of left-digit bias and elasticity
from these price moments is theoretically possible. The parameters have differing effects on the
moments of missing prices and excess mass at ninety-nine-ending prices, which can be pinned
down with some further assumptions.

3.2.  Other pricing procedures

While the model in Section 3.1 prescribes optimal pricing, firms can follow other pricing pro-
cedures, and I consider two classes of deviations: “partial incorporation” and “rule-of-thumb
rounding”. The first class of deviations, partial incorporation, means that firms take left-digit
bias into account and use the optimal pricing formula but only sometimes. The motivation for
this deviation is that different people or rules set prices at different times, stores, or products.
On aggregate, a firm can understand the bias but only incorporate it into pricing in some occa-
sions. The second class of deviations is model-free occasional price-rounding behavior. It is
motivated by price setters who learned that ninety-nine-ending prices are good, but are not sure
when and why (see also Strulov-Shlain, 2019a). A natural pricing rule is then rounding to a
ninety-nine-ending price if the price is “close”.

To operationalize partial incorporation pricing, consider a price p(c; 9, A, €) from Equation
(6). Under partial incorporation, the actual price set is a mixture of that optimal price with
probability ¢ and a price that ignores left-digit bias:

¢ _ [P(C; 0, A, e) with probability ¢ o)

p(c; 0, A, €) with probability 1 — ¢

In contrast, rule-of-thumb pricing, is not based on direct optimization. Instead, I assume that
companies believe that potentially “better” prices are ninety-nine-ending or forty-nine-ending
without employing careful calculation when should they be used (forty-nine-ending prices are
also prevalent in the data yet are not associated with excess demand, see Figure 1). To match
patterns in the data, since not all prices end with ninety-nine or forty-nine, I further allow them
to apply that belief only occasionally. Specifically, the price is rounded to ninety-nine or forty-
nine with probability £, and rounded to the nearest ninety-nine-ending if it falls within a d-width
segment centred at ninety-nine (otherwise rounded to nearest forty-nine); with probability 1 — &,
it is set as in the standard case, as if there is no left-digit bias. That is,

round(p) —0.01 if |p — (round(p)
P = lpl +0.49  otherwise
p(c; 0,¢€) with probability 1 — &
(10)

—0.01 =z
00D = 2 with probability ¢

The three procedures—optimal, partial incorporation, and rule-of-thumb—differ in predictions
about the shape of the price distribution. While all pricing procedures generate excess mass at
ninety-nine-ending prices, they differ in the predictions for low versus high price endings. This
is illustrated in Figure 5(b), showing the distribution of prices under each pricing procedure
(assuming uniform cost distribution). Optimal pricing leads to excess mass at ninety-nine-ending
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prices and missing mass of low-ending prices. The partial incorporation procedure keeps the
asymmetry in which there are fewer low-ending prices than high-ending, but unlike the optimal
pricing procedure, it predicts a positive mass of prices everywhere, and in particular, for low-
ending prices (of measure 1 — ). In contrast, the rule-of-thumb procedure leaves a positive mass
of prices everywhere, symmetrically pulling prices into ninety-nine-ending prices from above
and below.?

3.3. Pricing patterns in the data

Given the large magnitude of left-digit bias in demand, the next step is to examine firms’ pricing
behaviour in response to the bias. The optimal pricing model predicts: (1) excess mass at ninety-
nine, (2) missing prices with low price-endings, and (3) more missing prices with higher dollar
digits. In contrast, partial incorporation predicts fewer prices with low price endings rather than
none at all (changing prediction 2), and rule-of-thumb pricing means symmetric distribution
of low and high price-endings. I first examine the stylized patterns in the data to see if they
are indeed in-line with these predictions, and which procedure seems most aligned with the
empirical patterns.

Figure 6 shows the price-endings histogram for all prices in the final sample across all prod-
ucts and chains. This sample is the same one used for demand estimation, thus being internally
consistent. Pricing in that sample should be driven by the estimated demand-side parameters.

First, there is an excess mass at ninety-nine: 41% of prices indeed end with ninety-nine. Fur-
thermore, almost all prices end with nine as the cent digit—with a share of 87%.%° Furthermore,
there is a noticeable spike at forty-nine-ending prices with 14% of the total prices. Note that in
contrast, in demand data in Figure 1, there is no excess demand at these forty-nine-ending prices
(except, perhaps, at the price bin of $2.40-$2.49).

Second, Figure 6 shows that there are marginally fewer low price endings. There are fewer
prices ending with cents component lower than nineteen, especially for regular prices. However,
while there are almost no 09-ending prices (0.08% compared with 4.5% for nineteen-ending
prices), 3.8% of prices end with 00—of which 38% are on-sale prices. The different price ending
distribution for regular prices versus on-sale prices is noticeable but for simplicity, I ignore it in
this paper. Overall, it does not seem the excess mass at ninety-nine is drawn asymmetrically and
exclusively from otherwise low-ending prices. This conclusion will be tested formally in the
next section.

Finally, Figure 6 masks the heterogeneity of how price endings differ between low and high
dollar digits. Under optimal left-digit bias facing pricing, next-lowest prices should increase
with the dollar digit if the bias and elasticity are constant. Recall that Supplementary Material,
Appendix F, shows correlates of the bias with covariates, finding that the bias is increasing with

28. The latter finding also implies that there might be an added bias ignoring the last digit of the price, hence
leading to many nine-endings. This effect is probably true but impossible to estimate, exactly because there is a lack
of variation in the last digits, and hence the drops in demand at the dime thresholds cannot be estimated. However, I
show that conclusions are insensitive to assuming additional bias regarding the last digits (that is, assume that with some
measure ¢, consumers see the price as the dollar and dime digits but ignore the cents), in Supplementary Material,

Appendix Table A-3.
29. In Public Economics, the idea is that a non-linear tax schedule creates incentives for tax payers to change

their reported income (or labour supply) and bunch at kinks or notches of the tax schedule. The duality can be seen as
follows: the tax schedule is the dual of the demand curve (elasticity); the notch given by the tax schedule is like the
left-digit bias parameter; the utility function is like a profit function; and the latent ability distribution is like the cost
distribution—estimated from the observed income distribution in the tax literature and from the non-bunching price
distribution here.

0z Alenugad || uo Jasn Aleiqi] seousiog yiesH - |IIH [@dey) 1e euljoie) YUON Jo Alsiaaiun Aq Z181£69/2800BP./PNIS8I/S60 L 0 L/I0p/8|o1B-80UBAPER/PNISE./WO0D dNo oIWapeoe//:sdpy Wol) PSPEOjUM


http://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdac082#supplementary-data
http://academic.oup.com/restud/article-lookup/doi/10.1093/restud/rdac082#supplementary-data

20 REVIEW OF ECONOMIC STUDIES
0.4+
0.3
type
o
E 0.2 . on-sale price
(%]

. regular price

0.1+

it vl

99

) 19 29 39 49 59
price ending [cents]

FIGURE 6
Pricing response: Price-endings distributions

Notes: The figure shows the price-endings histogram of cleaned Nielsen data across twenty-four chains (77.4 million observations, see
Table 1 for more details). Light bars represent on-sale prices, while dark bars represent regular prices. Main patterns are excess mass at
nine- and ninety-nine-ending prices, and some missing prices at low price endings.

the price, thus this prediction becomes more pronounced. The increase in next-lowest prices is
illustrated in the by-dollar CDF of price endings in Supplementary Material, Appendix Figure
A-3, where the darker lines represent lower prices (lower dollar digit). Indeed, Supplementary
Material, Appendix Figure A-3, shows that the distribution of price-endings is shifting to the
right, meaning that for higher dollar digits, there are fewer low price-endings.

3.4. Structural estimation of pricing procedures

Firms’ behaviour is only partially consistent with patterns of optimal pricing facing the left-digit
biased demand found in the data: prices bunch at ninety-nine; there are some missing prices
with low price endings but without a pronounced asymmetry; and the price-ending distribution
is shifting to the right with higher prices as dollar digits increase. I now turn to analyse more
granular pricing patterns in order to learn about the pricing procedures of the different chains
and in the aggregate.

Optimal pricing given the demand parameters should lead all prices to end at ninety-nine, but
less than half do. Consider an optimal pricing with left-digit bias of 0.2 and an elasticity of —1.5.
With these parameters, “next-lowest prices” are ninety-nine. i.e., regardless of the underlying
costs, all prices should end at ninety-nine. Since only 41% of actual prices end with ninety-nine,
59% of prices are dominated (by a lower or higher ninety-nine-ending price). Quantifying the
effects of this mis-optimization requires a structural interpretation of firms’ behaviour.

To quantify the deviation and study its implications, I fit each pricing procedure—optimal,
partial incorporation, and rule-of-thumb—to explain the actual price distribution. For each pric-
ing procedure I search for the parameter values that minimize distance between predicted and
actual prices. The pricing procedures are “as if”” models used to infer the perceived left-digit bias
levels (and other parameters of partial incorporation and rule-of-thumb pricing) that rationalize
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TABLE 3
Perceived parameters of pricing procedures
Frequency of Rule-of-
LDB thumb Goodness of
Specification Elasticity ~ Perceived LDB incorporation frequency fit
(1) Rule-of-thumb ninety- —1.5 0.4 0.0018
nine or forty-nine [0.29, 0.58]
(2)  Estimate left-digit bias —1.5 0.017 0.61 0.0023
and its incorporation [0.015, 0.02] [0.53, 0.68]
(3)  Estimate left-digit bias -3 0.07 0.6 0.0023
and its incorporation [0.062, 0.088] [0.53,0.68]
(4)  Assume left-digit-bias -3 0.1 0.5 0.0026
(0.1), estimate [0.43, 0.56]
incorporation
(5)  Estimate left-digit bias -3 0.032 1 0.0033
[0.024, 0.039]
(6)  Estimate left-digit bias —-1.5 0.0075 1 0.0034
[0.0058, 0.0094]
(7)  Assume left-digit-bias —1.5 0.2 0.29 0.0048
(0.2), estimate [0.25, 0.33]
incorporation

Notes: This table presents estimated parameters of pricing procedures. Each row represents a different pricing procedure
or assumptions. Numbers in brackets represent the range of 2.5% and 97.5% of estimated parameters under different
assumptions with 300 bootstraps for each; if there are no square brackets, the parameter value was assumed and not
estimated. Rows are ordered by their goodness-of-fit measured as the average sum-of-squared errors (SSE) between
predicted and empirical moments. Row (1) assumes the companies know the demand estimated price elasticity of —1.5,
and round prices to ninety-nine-ending nearest prices in 40% of instances. Rows (2)—(7) show estimates of a pricing
procedure in which firms price according to their perceived left-digit bias level, with some frequency of incorporation.
Row (2), for example, shows estimates where left-digit bias is taken into account when pricing in 61% of instances, and
when it does, firms price as if left-digit bias level is 0.017. Row (6) can be thought of as based on incorrect belief yet
sophisticated benchmark. In row (6), firms follow the optimal pricing procedure, but with potentially wrong beliefs about
left-digit bias levels. Indeed, perceived left-digit bias is estimated at 0.0075 (cf. the demand estimated bias of more than
0.2). In addition, the average SSE is 0.0034 versus 0.0018 for the rule-of-thumb nearest rounding pricing procedure.

retailers’ pricing behaviour. That is, I assume that retailers are pricing according to different
models, predict prices given the underlying parameters for each procedure, and examine the
parameters of each pricing procedure and its goodness of fit. If in Section 2, I estimate the elas-
ticity and left-digit bias that explain demand behaviour, here I estimate the elasticity, left-digit
bias, and other parameters that rationalize supply behaviour.

The results of these estimates are shown in Table 3, but before discussing the results, I discuss
the estimation procedure.

Estimation procedure. As shown in Section 3.1, excess mass and missing prices can iden-
tify perceived left-digit bias. This is similar to identification of labour supply elasticity from
notches in the tax schedule (see Saez, 2010; Kleven and Waseem, 2013).3° The similarities are
that discontinuities lead to bunching. A key component in estimation is determining which part
of the bunched mass is “excess” mass and which masses are missing. To learn those quantities

30. In fact, the same assumption is taken in the taxation literature, often implicitly. There, the argument is that
excess mass at a tax notch is driven by the notch and not because there is a mass of people with skills who happen to
earn exactly that amount.
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requires creating a counterfactual distribution of the masses absent the notch. The tax literature
often relies on the assumption that there are no distortions below or far enough above the dis-
continuities. In contrast, as Proposition 6 shows, in our setting all prices are affected. Therefore,
I take a more structural approach that uses the entire price distribution rather than just the excess
mass. It requires an explicit assumption of a smooth cost distribution, i.e., that masses at ninety-
nine-endings are not due to a particular combination of costs and elasticities.?' Since each of the
models described in Section 3.3 translates cost, elasticity, and perceived left-digit bias, or pric-
ing rules parameters, to prices, a cost distribution predicts the price distribution. I first show in
detail how the perceived left-digit bias under the optimal pricing model is identified from the
price distribution, and I then discuss the latter pricing procedures.

I estimate the models using simulated minimum distance. I create the empirical density
function of prices at ten-cent bins , and do so at several levels of aggregation. For example, I
calculate the empirical PDF, the share S, of each price p set by retailer X between $1.29 and
$7.89. These price densities are the empirical moments to be matched by the predictive pric-
ing procedures. Aggregating prices at ten-cent bins across products is done to satisfy the need
for a smooth price distribution; estimation using Minimum Distance is done to treat outliers
(such as 00-ending prices) as random errors under the optimal pricing model, and to identify
¢ in the partial incorporation procedure.*? I describe the technicalities of the estimation proce-
dure, with a detailed step-by-step algorithm in Supplementary Material, Appendix E. The idea
behind the estimation is to generate a theoretical distribution of prices given the parameters, S D
and search for the parameters that minimize the distance between the empirical distribution S,
and the predicted one—a simulated method of moments estimation. Predicted price densities
are simulated given the cost distribution, price elasticity, and left-digit bias. The main insight
is that given elasticity and left-digit bias, the cost distribution is a known monotonic transfor-
mation of the price distribution, such that non-bunching prices provide a counterfactual shape
parameters. Given the shape of the cost distribution we now have all the information required to
generate the predicted pricing distribution for each parameters set. This is illustrated in Supple-
mentary Material, Appendix Figure A-4, showing an example of empirical price distribution and
the smoothed polynomial fitted on a subsample of the prices. The algorithm then uses the shape
of the cost distribution together with perceived left-digit bias and elasticity to create a predicted
price distribution and searches for the parameters that minimize its distance from the empirical
distribution.

I use the same algorithm to estimate the partial incorporation pricing procedure which
assumes that a share 1 — ¢ of prices are priced ignoring left-digit bias. That is, given the cost
distribution, predicted prices are a mixture of two distributions: prices governed by perceived
left-digit bias 6 with a weight ¢, and prices set as if there was no bias with weight 1 — (.

Estimating the rule-of-thumb pricing procedure is straightforward. Given the predicted
smooth cost (and price) distribution absent left-digit bias, a share ¢ -d of counterfactual
prices is rounded to match the excess masses at ninety-nine-ending prices (and ¢ - (1 — d) at
forty-nine-ending prices).

Estimating multiple models. 1 estimate several restricted and unrestricted versions of the
pricing procedures, and estimate those at the aggregate and at the chain level. First, I estimate

31. Kleven and Waseem (2013) face a similar issue in which they observe income in certain regions of the income
distribution where there should be none. They interpret it as frictions and implicitly assume that they are random. The
approach I follow takes a similar stance as I put equal weight on pricing above or below the dollar threshold.

32. Supplementary Material, Appendix E, details the estimation algorithm, and also discusses the feasibility of
estimating the price elasticity from the price distribution.
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the optimal pricing procedure assuming chains know the price elasticity but might have wrong
beliefs on the bias, and estimate their perceived left-digit bias. Second, I estimate the partial
incorporation procedure assuming that firms know the demand structure correctly, but some-
times choose to ignore it. Third, I allow for both wrong beliefs on left-digit bias and partial
incorporation. Finally, I estimate the rule-of-thumb pricing.

Considering that the underlying true elasticity is a key parameter as it impacts the estimated
bias, I test the implications of twice-as-elastic demand. The average elasticity is roughly —1.5
with an accompanied left-digit bias of 0.2. However, absent truly random variation in prices,
there is a concern that elasticity estimates are biased upward. If that is the case, and maintaining
the assumption that price endings are uncorrelated with demand shocks, an actually more elastic
demand will also mean that true left-digit bias is proportionally lower. Therefore, to increase
credibility of the results, I take a wide range of elasticity estimates as the “truth”—between the
average estimate of —1.5 to double that number (—3) with a corresponding updated “true” bias
of 0.1.%3

I estimate the perceived parameters in multiple ways to mitigate the sensitivity to func-
tional form assumptions and to learn about heterogeneity. To limit the sensitivity of the inferred
parameters to incidental assumptions, I use a variety of sub-samples from each chain (namely, I
sample different parts of the price distribution and bootstrap those), and I make various assump-
tions on the counterfactual smooth distribution (i.e., the polynomial degree, the moments used
for estimating the shape). For each pricing procedure version and assumed elasticity, I make
sixteen assumption combinations,** times 300 product-level bootstraps of the underlying price
distribution for each.

Results. The results are shown in Table 3 for the aggregate sample. Each row reports the esti-
mated parameters, a 95% bandwidth of estimates, and mean SSE (difference between predicted
and empirical moments). If a parameter is assumed rather than estimated it has no estimates
bandwidth. Models are ordered according to their average goodness-of-fit.>> An example of the
empirical moments versus the predicted ones for one sample and one set of assumptions is shown
in Supplementary Material, Appendix Figure A-5.

A few robust findings arise, showing that either there is substantial underestimation and par-
tial incorporation, or that firms use rule-of-thumb pricing. First, firms’ pricing behaviour reflects
significant underestimation of the true left-digit bias. In Table 3, row (6), assuming firms know
the correct elasticity and take the bias into account in all their pricing decisions, I find an esti-
mated bias of 0.0075 [0.006, 0.009] instead of 0.2, which is twenty-six times lower. Even in the
extreme hypothetical case assuming the true elasticity is —3, I still find a perceived left-digit bias
of 0.032, which is three times lower than the hypothetical lower left-digit bias of 0.1 (row 5).
However, these models fare worse in terms of fit than those that allow for partial incorporation of
the bias. The better fit is driven by allowing for a positive mass with low price endings. In rows
(2)—(4), I find that a good description of pricing is one in which the left-digit-bias-led pricing
is incorporated in 50-60% of pricing instances and ignored in the other 50-40%. Importantly,
estimates show that even in instances when the bias is taken into account, the perceived bias is

33. 1 take all combinations of {bottom — cents} x {top — cents} X {lowest — dollar} x
{highest — dollar} x {polynomial — degree} = {0.29,0.59} x {0.89} x {$1, $2} x {$5, $7} x {5, 7}

34. Alternative measures of goodness-of-fit, by ranking per estimation, are displayed in Supplementary Material,
Appendix Table A-2. The ranking remains unchanged.

35. The force that pushes prices up is the lower elasticity within a dollar-digit price change, while the force that
pushes prices down is the discontinuity in demand at round prices. Both of these forces exist due to 6 regardless of A
even though their magnitude is affected to some degree. See Proposition 1 for more detail.
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much lower than the true one. For example, assuming an elasticity of —1.5, the incorporation
frequency is 61% , but the perceived bias conditional on incorporation is 0.017, or eleven times
lower than the true bias (Table 3, row 2). Finally, the pricing pattern that best fits the data is the
“rule of thumb” pricing, in which firms use ninety-nine-ending prices randomly, i.e., not based
on profit maximization. It is the best fitting model on average (Table 3, last column), and case
by case (Supplementary Material, Appendix Table A-2). It is best fitting because the price dis-
tribution is more symmetric around ninety-nine- or forty-nine-ending prices. In 40% of pricing
instances, a company will round to the nearest ninety-nine or forty-nine (only counterfactual
prices ending between forty-five and fifty-five are rounded to forty-nine and the rest to ninety-
nine. See Supplementary Material, Appendix Figure A-6); in the rest, it will price as if demand
is smooth.

Heterogeneity between chains. Interestingly, there is no substantial heterogeneity of pricing
procedures and perceived parameters between the twenty-five chains. Results by chain are shown
in Supplementary Material, Appendix Figures A-6 and A-7. This is perhaps surprising given the
large documented between-chain differences in price levels (Hitsch et al., 2017; DellaVigna and
Gentzkow, 2019) and pricing style (Ellickson and Misra, 2008). While there is variation in the
magnitude of the perceived bias and incorporation frequency, they do not differ in a conceptually
meaningful way. All firms, except perhaps “9-874”, strongly underestimate the bias and only
incorporate it partially, with similar magnitudes. Figure 7 shows the average left-digit bias faced
by a chain on the horizontal axis against the average perceived left-digit bias on the vertical one.
Even under the assumption of highly elastic demand, and allowing for partial incorporation,
the perceived bias (conditional on incorporation) is well below the 45-degree line, with a weak
slope between chains. Regardless of the left-digit bias a retailer faces—and some face much
stronger bias than others—they all price as if the bias is about an order of magnitude smaller
than it actually is, and this behavior is similar across chains. Furthermore, at the chain level,
twenty out of twenty-five chains are characterized with having “rule of thumb” as the best fitting
pricing procedure. Comparing goodness-of-fit of non-nested models does not show which model
is “correct”, but it is informative that the “rule of thumb” is frequently selected as better fitting
the data, driven by the symmetry of shares of non-ninety-nine-ending prices.

In summary, firms’ pricing reveals that they under-respond to the bias and pricing mistakes
are weakly reduced by incentives. These findings are driven by the propensity to use low-ending
prices and forty-nine-ending prices. The analysis quantifies chains’ pricing procedures, allowing
to study the implications of actual pricing against the estimated structure of demand. The next
section studies these implications.

4. EFFECTS ON PROFITS AND WELFARE

Left-digit bias and firms’ response to left-digit bias jointly affect welfare. Left-digit bias of
consumers has direct effects on demand conditional on prices, and the perceived left-digit bias
of firms has further effects on pricing itself. Together, these forces affect firm profits, consumer
surplus, and deadweight loss.

I examine two counterfactuals to study these effects: the effects of left-digit bias levels, and
the effects of the sub-optimal pricing procedures. First, I study the effects of the magnitude of
left-digit bias itself, assuming firms optimize. Second, I fix the bias level and study the con-
sequences of underestimation of the bias by the pricing firm. The main findings from these
exercises are that, (1) through its effect of lowering prices, left-digit bias has ambiguous effects
on welfare, and might even increase consumer surplus and lead to a more efficient outcome;
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Estimated supply-perceived LDB versus estimated LDB
Notes: The figure plots firms’ estimated perceived left-digit bias against the estimated left-digit bias from demand. The dotted line repre-
sents a 45-degree line. The plot displays estimations using four different assumptions regarding the pricing procedure, each represented
by a different shape and colour. Each point is the estimated perceived left-digit bias for each chain by specification. Vertical lines span
the 2.5% and 97.5% estimates from 300 cluster-bootstraps of the moments at the UPC-chain level.

(2) firms lose a few percent of gross profits by underestimating the bias, with small effects on
consumer surplus.

The first-order effects of left-digit bias on demand levels are driven by the non-identified A
(recall, the perceived priceis p = (1 — 8)p + 6( p] + A)). To illustrate why, consider the cases
of A =0and A = 0.99.If A = 0, then perceived prices are lower, and hence demand and profits
are higher everywhere; while if A = 0.99, demand and profits are lower. However, A cannot
be inferred from the demand nor supply estimations. Since this is an untestable assumption, I
focus on comparative statistics conditional on various levels of A, and highlight those that hold
regardless of its level.
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Unlike the demand effects, pricing decisions are insensitive to A, and are a function of what
the firm perceives left-digit bias to be, i.e., .36 Conditional on the perceived left-digit bias é, the
true bias, 8, does not affect prices. A price governed by 6 > 0 versus § = 0 can be higher (e.g.,
4.29 instead of 4.20) or lower (e.g., 3.99 instead of 4.20). These mixed movements of prices are
key to understanding the overall effects.

Together, the demand and pricing effects lead to distortions in consumers’ choice and firms’
performance.

4.1.  The effects of left-digit bias (6 > 0)

Consumers’ left-digit bias creates opportunities (or constraints if A = 0.99) for the firm since
it distorts perceived prices, but comes at a cost for consumers as consumption distortions. The
net effect, on both consumers and deadweight loss, is inherently undetermined due to the often
opposing effects of excessive consumption at lower prices. Supplementary Material, Appendix
G, derives these quantities.

The effects on prices, consumer surplus, and deadweight loss are illustrated in Figure 8.
The figure shows equilibrium prices and quantities comparing § > 0 to 6 = 0. The key idea in
interpreting the figure is that welfare is governed by the frue demand curve, prices, and costs even
if prices are perceived with distortion. Assume first that A = 0 as in Figure 8, panel A. The no-
bias price point is x, while under a bias of 8 > 0, the equilibrium price can either be the ninety-
nine-ending price below, y, or a higher price, y’. In the former, consumers enjoy the lower price
p(y) and purchase more of it, leading to an increase in consumer surplus represented by the grey
trapezoid; but consumers over-consume because p(y) < p(y), leading to a transfer of surplus
from consumers to firms, represented by the triangle. Therefore the overall consumer surplus
effect of a lower price depends on which effect dominates, which is a function of parameters and
cost distribution. However, the price may actually go up, as in y’, and in which case, consumers
are unequivocally worse off. Supplementary Material, Appendix Figure A-8, shows that the
average price goes down with stronger left-digit bias. Deadweight loss is also ambiguous in
sign since the overall quantity sold increases for prices at ninety-nine-ending prices (as in y) but
decreases if prices increase due to the bias (as in )3

Importantly, A interacts with the effects of price distortions. To see why, note that a stronger
0 leads to more ninety-nine-ending prices. But if A = 0 then a ninety-nine-ending price is the
most distorted perceived price, while if A = 0.99 then a ninety-nine-ending price is perceived
correctly.

That is, two forces create ambiguity about the effects of stronger left-digit bias. First, the
effect of left-digit bias reducing the price level may counteract the increased distortion. Second,
A interacts with the price-level effects. Therefore, the overall effects of an increase in left-digit
bias are undetermined.

4.2.  The effects of firms underestimating the bias @ < 0)

Now consider the findings of Section 3, in which firms underestimate the bias and follow other
pricing procedures. Quantifying these effects is crucial because a plausible explanation of the

36. The effects in Figure 8, panel B, when A = 0.99, are similar. Moving from x to y leads to an increase in
consumer surplus unambiguously because the ninety-nine-ending perceived price is closest to the truth. Still, a change
from x to y’ leads to a decrease.

37. As Butters et al. (2019) argue for lack of seasonal adjustments.
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Ilustration of welfare effects. (a) Equilibrium outcomes with A = 0. (b) Equilibrium outcomes with A = 0.99

Notes: The figures describe the optional equilibrium quantities and prices under different levels of left-digit-bias and firm perception of the
bias. Point x is the solution in the standard no-bias case, on the solid grey no-bias demand line. The no-bias demand line captures the true
underlying valuation of the product. In contrast, the dotted lines show the demand under the perceived price p = (1 — 8)p + 6(Lp] + A).
Panel A shows the biased demand when the focal price-ending is 0, and hence demand is higher everywhere; while panel B shows the
biased demand when the focal price ending is ninety-nine. Points y and y’ describe the new possible equilibrium outcomes when there is
left-digit bias 6 = & > 0. Point y is the outcome when the optimal price is the lower ninety-nine-ending price, and point y’ is the outcome

for interior price updating. Finally, point z is the outcome when there is bias & > 0, but the firm prices as if there is no bias, 6 = 0.
Consumer surplus is the area between true demand and the price for all quantity sold. Over-consumption (as in point y of panel A), where
the price is higher than the true demand, implies a negative consumer surplus. Producer surplus, or firm profits, is the area between the
price and marginal cost for all quantity sold. Deadweight loss is the area between true demand and marginal cost for all unsold quantity
in which demand is higher than cost.

existence of these pricing procedures is that they are not consequential to the bottom line.*®
Fundamentally, if the firm ignores the bias, then there are no price effects but only consumption
distortions for consumers. Pure distortions, of course, unambiguously harm consumers (point z
in Figure 8). In contrast, an underestimated bias that is not zero also leads to price changes. As
in the previous subsection, the effects on consumer surplus and deadweight loss are mixed.

By definition, pricing at the non-optimal price lowers profits. I simulate two sets of
prices—optimal and actual. For optimal prices I simulate prices based on the model with esti-
mates from the demand side as “the truth”. For the actual pricing simulations I use the descriptive
pricing procedures estimates from Section 3.4, with © as the set of pricing procedures param-
eters of perceived left-digit bias, partial incorporation, or rule-of-thumb parameters. I compare
profits between the optimal and actual price distributions. Namely, I calculate firm profits under
the assumptions that price setting p(..., C:)) is governed by pricing procedures ©, and demand
D(...,0) is determined by the true bias & (I further assume that the firm knows the true price
elasticity € and focal price ending A). Profits are then demand times price minus costs, integrated
over the cost and parameters distributions:

H:/D(p(c;e,A,@);e,A,H)'(p (c;e,A,C:))—c)dF (C,E,Q,A,(:))

38. For example, consider two products with unit costs of $1 and $1.25, price elasticity of —2, and a bias of 0.15.
Absent the bias, the products should be priced at $2.00 and $2.50, respectively, but with the bias both should be priced
at $1.99. The gains of changing a naive $2 to an optimal $1.99 are 15.5% in profits, while the gains from changing a
naive $2.50 to an optimal $1.99 are much lower, at 2.6%.
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Table 4 shows gross profits lost by pricing according to O relative to the profits generated by
pricing according to 6. The results are shown for different distributions of elasticity, left-digit
bias, incorporation, rule-of-thumb pricing, and perceived left-digit bias parameters. Panel A
shows profits lost under different pricing procedures corresponding to the estimated scenarios
in Table 3 (and assuming A = 0). Profits are 0.6-4.1% lower relative to the case in which the
firm prices according to the true parameters. In panel B, I include additional scenarios, allowing
for heterogeneity of the true or perceived left-digit bias and elasticity. I also consider the max-
imal loss in which the firm were to ignore left-digit bias in its pricing. Finally, I consider the
effects when a firm sells two substitute products with a cross-elasticity of 0.1. These scenarios
lead to similar magnitudes of relative lost profits. In Supplementary Material, Appendix Table
A-3, panel A, I repeat the same exercise for the case in which there is additional left-digit bias
on the dime digit versus the cent digit (and assume the firm knows that); in panel B, I repeat the
exercise for the case of A = 0.99, meaning that prices are perceived as higher than they are. The
effects on profits are largely unaffected due to additional bias, and they are somewhat weaker if
consumers round up but are still on the same magnitude (losses of 0.74—2.2%). That is, under a
broad range of assumptions, chains forgo a few percent of profit because their pricing does not
match the demand structure they face.

The effects on profits, of a few percent of loss, are substantial in magnitude. If, as in Mont-
gomery (1997), operating margins are about 12%, it means that the firm is losing 5-34% of
operating profits by underestimating the bias. While these numbers are large, the conclusions
are supported in other papers. Following circulation of a previous version of this paper, Hilger
(2018) conducted the same empirical exercise on proprietary online subscriptions of private
vendors and finds similar effect sizes, and (List e al., 2021) find similar results for a large
marketplace firm.

Table 4 and Supplementary Material, Appendix Table A-3, also show that effects on con-
sumer surplus are potentially large but depend on the unobservable A. Therefore, the sign of
the effects on consumer surplus is ambiguous. It seems that for the assumed parameters and
costs, the effects are negative and large in the most part. However, when consumers round up
(panel B of Supplementary Material, Appendix Table A-3), the sign indeed flips. Since A is not
identifiable, the effects on consumer surplus remain unknown. Nonetheless, it is interesting that
consumers are not necessarily harmed by firms responding to their biases, nor necessarily helped
by firms under-responding to their biases.

While the model of monopolistic pricing is simple, the exercise is internally consistent
and shows low sensitivity to many assumptions. The magnitude of the effects is robust and
economically meaningful.

4.3.  Discussion

How can it be that firms concurrently respond to the bias and yet stop short of fully optimizing?

One alternative is that there is no discrepancy, and the model is wrong. For example, if the
bias is endogenous to pricing, or if the model is missing something fundamental about market
conduct. Another alternative is that firms are making a consistent mistake even though they try
to optimize.

One limitation of the model is the assumption of exogeneity of parameters, assuming that
consumers will not be differently biased if the price distribution changes. Instead, perhaps, 6
and A are endogenous to the price distribution such that if all prices were to end at ninety-nine
as the estimation suggests, the bias would have become much lower. Note, however, that from a
rational inattention standpoint the opposite should hold for —if all prices end with ninety-nine,
there is no point in paying attention to the rightmost digits and § — 1. In contrast, the focal price
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ending A is more likely to change in this alternative model. That is, if the price distribution shifts
toward high price-endings, the focal price-ending A will increase and in turn suppress demand.
Yet, it is reasonable to assume that the firm is a “A-taker”, meaning that the focal price-ending
is not store-contingent. In this case, and even in the case in which firm’s own pricing has a
low effect on A, the optimal pricing is as stated above. Indeed, even large sophisticated firms
selling only a handful of products, such as smartphones (Samsung, Apple), or subscriptions
(Netflix, Amazon Prime), use ninety-nine-ending prices for their small set of products. If there
were cases of endogenous A, these will be it, which should have led to a different distribution
of price endings. Finally, left-digit bias might be driven by long-term human learning processes
of mental number representation and encoding, which are also unlikely to be affected by a few
firms’ pricing decisions. However, I do not attempt to predict what will happen if all prices
everywhere were to end in ninety-nine. That is, I do not argue that if all firms were to follow
the paper’s recommendations left-digit bias would remain the same, but I do argue that in the
current situation individual firms are making a costly mistake.

Another explanation is that the optimal pricing model is simplistic. First, the model simplifies
competitive forces to enter through the price elasticity. A model of pure price competition with
left-digit biased consumers also leads to missing prices as shown in Supplementary Material,
Appendix B, but it is hard to take to the data. Insofar as elasticity is a good approximation for the
strength of competition between retailers, it does reduce the ranges of missing prices. However,
as shown in Section 3.4, we need to believe that chains think demand is extremely elastic (many
times more than reflected in demand estimation) in order to think that firms price according to
the correct level of left-digit bias. Furthermore, since optimal response to the bias lowers the
average price level (see Supplementary Material, Appendix Figure A-8), the optimal response
does not hinder between-chain competition over prices. A second limitation regards substitution
between products within a store. Consider the case of a multi-product monopolist, as retailers
are. Keeping same-price elasticity and left-digit bias fixed, substitution between products leads
to higher next-lowest prices. This result holds whether the other product is more or less elastic,
and whether its cost is higher or lower (see Supplementary Material, Appendix C, which solves
a two-product monopolist problem and simulates price distributions). The conclusion is that
adding cross elasticities to the counterfactual analysis is likely to make the discrepancy between
the predicted and the observed retailers’ behaviour even stronger, though possibly making the
effects on profits somewhat smaller (rows 13—15 in Table 4).

The third explanation, which I find more plausible, is that firms follow heuristics rather than
purely optimizing. I was able to interview three chief executives in various retail chains. They
were in charge of pricing and pricing strategy in several of the United States’ largest chains.
Although their pricing strategies were quite different, their reasoning of ninety-nine-pricing was
similar: There is a belief in the industry that $2.99 is perceived as less than $3.00, and although
they themselves are not sure if that is correct, there is a lot of “inertia”/“legacy”/*copycat
behaviour”. In terms of the model, they do believe there may be some left-digit bias, but think it
is not meaningful and hence do not incorporate it quantitatively into their pricing decisions. Their
descriptions of what they actually do are more heuristic in nature: when the “absent-bias” desired
price point is close to ninety-nine, they sometimes round to ninety-nine, or if their own past price
or competitors’ prices are two-something, they will not want to cross to three-something. These
lines of reasoning imply a heuristic approach to pricing.

These pricing heuristics can create bunching and missing prices while being consistently
wrong. Indeed, prices are more easily explained by the partial incorporation or rule-of-thumb
pricing procedures. To see how heuristics are not enough, note that it makes intuitive sense that
an absent-bias price of $2.00 should be adjusted to $1.99, but it might be less clear how to adjust
$2.50. Furthermore, not only is it more intuitive to make small changes in prices, but the impact
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on profits is larger for the small changes which makes complete experimentation and learning
less likely. So, given the counter-intuitive nature of big adjustments in price, and considering
the relatively lower gains of big adjustments (masked in fluctuations in demand in real data),
it seems reasonable that firms would stop shy of full adjustment. Making the full adjustment
requires either “brave” and large scale experimentation with prices, or a rigorous analysis with
a quantitative model-based decision making.

A companion paper (Strulov-Shlain, 2019a) analyses a policy reform and finds support for
fundamental misunderstanding of left-digit bias. Following a reform, firms had to change prices
and became increasingly likely to use low-ending prices. The main argument is that firms try
to optimize but stop short of full optimization, probably due to partial learning. Partial learning
can sustain either sub-optimal model-free decision making or beliefs in a wrong model used for
decision making in the long-run.

5. CONCLUSIONS

In this paper I argue that a model of left-digit biased consumers and partially-optimizing firms
offers a better description of retail data than the standard assumptions over unbiased consumers
and sophisticated firms. Consumers exhibit substantial left-digit bias in everyday choices while
shopping at supermarkets. The supermarkets, in response, are using ninety-nine-ending prices
which indeed lead to higher profits. However, retailers also seem to underestimate the extent
of left-digit bias and misunderstand its source and structure. I find that firms do better than if
they were to price as if there is no bias at all, but behave far from optimally. I estimate that the
chains lose 0.6-4% of gross profits from such deviations with ambiguous effects on consumer
surplus.

One limitation of the study is that it is confined to a specific setting and price level—single
dollar-digit items in U.S. supermarket chains. However, I cover a large and arguably representa-
tive sample of products and chains. Left-digit bias was found in other domains and price levels
(e.g., Repetto and Solis, 2018; Jones and Strulov-Shlain, 2021, for tens- and hundreds-of thou-
sands and millions), but it is indeed rare to observe high prices ending with ninety-nine cents.
A study that allows for finer, less parametric, treatment of digits can be interesting for future
research.

Another limitation is that the data used have clear issues—no direct measures of prices,
no random variation, and no information on what prices were displayed to consumers among
other marketing techniques. I believe that the data cleaning procedures deal with the systematic
concerns, and that noise is absorbed by the large number of estimates. Furthermore, a previous
version (Strulov-Shlain, 2019b) used completely different data and reached similar estimates of
left-digit bias, and so did a separate group of authors using data from an online marketplace (List
etal.,2021).

Left-digit bias is an acknowledged yet underestimated force in the academic and public dis-
course. Its effects go beyond prices and profits documented here and elsewhere. Left-digit bias
represents a distortion of number processing, and since numbers are ubiquitous to decision mak-
ing in multiple domains, it has far and wide effects. For example, because left-digit bias leads to
price discretization, it can cause price stickiness (Nakamura and Steinsson, 2008; Eichenbaum
et al., 2014) and affect tax pass-through (Conlon and Rao, 2016). Furthermore, since it affects
number perception in general, left-digit bias distorts negotiation outcomes (Jiang, 2020), affects
education attainment via tests retakes (Goodman et al., 2020), and affects credit scores via credit
monitoring (Fong and Hunter, 2022).

The existence and magnitude of left-digit bias, found in this and other recent papers, is
now well documented but there are some promising avenues for future research. First, A is an
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unknown parameter, with first-order effects on welfare. Second, future research can dive deeper
into what might affect the bias magnitude (e.g., Sokolova et al., 2020), or use left-digit bias as a
tool to study other phenomena (e.g., the examples above, or Strulov-Shlain, 2019a on how firms
learn and make decisions).

This paper serves as an example of large and experienced firms making a persistent mistake.
Chains set prices that are potentially driven by wrong beliefs about the parameters of demand,
but more likely because they have the wrong model in mind, if they have any model at all. The
assumption of firms’ optimization should be further scrutinized.
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