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Abstract

We analyze the impact of wind turbines on house prices, distinguishing between effects of 
proximity and shadow flicker from rotor blades covering the sun. By utilizing data from 
2.4 million house transactions and 6,878 wind turbines in Denmark, we can control for 
house fixed effects in our estimation. Our results suggest strong negative impacts on house 
prices, with reductions of up to 12 percent for modern giant turbines. Homes affected by 
shadow flicker experience an additional decrease in value of 8.1 percent. Our findings 
suggest a nuanced perspective on the local externalities of wind turbines regarding size 
and relative location.
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1 Introduction

Wind power is the second-fastest-growing renewable energy source for electricity pro-
duction globally (IEA 2020)1, playing a significant role in the transition towards a more 
sustainable global energy mix to combat climate change (IBRD 2020). However, while 
wind turbines offer substantial benefits by reducing the global externalities associated with 
conventional fossil fuels, they also pose negative local externalities, as evidenced by their 
impact on house prices (Lang et al. 2014; Dröes and Koster 2016, 2021; Sunak and Madle-
ner 2016; Dong et al. 2023).

One notable concern among property owners is the visual disturbance from turbines. 
Indeed, the adverse aesthetic appeal and the disruption of the perceived scenic quality of the 
surrounding landscape have been shown to suppress house prices (Gibbons 2015). Addi-
tionally, turbines produce a less subtle visual nuisance known as shadow flicker. When the 
sun shines through rotating blades, they cast shadows on nearby houses, creating a sensa-
tion of pulsating light intensity. Research shows that homeowners perceive the shadows 
as flicker (Haac et al. 2022) and report higher levels of annoyance (Voicescu et al. 2016). 
However, less is known about the willingness-to-pay to avoid shadow flicker or the mon-
etary value of this disamenity.

In this paper, we present new insights into the effect of proximity to turbines and the 
impact of shadow flicker on house prices. However, estimating the local damages of wind 
turbines is a complex problem, primarily due to two key factors. First, the impacts of wind 
turbines vary with the relative position of properties and turbines. While some externalities 
like noise are predominantly influenced by the distance to turbines, shadow flicker only 
occurs in specific locations where the rotor blades block sunlight. Second, wind turbines 
are not randomly distributed across geographic areas, introducing potential biases when 
comparing house prices near and far from turbines. To disentangle the effects of proxim-
ity and shadow flicker, we leverage comprehensive data from Denmark, encompassing 
the universe of housing transactions and operating wind turbines over a 28-year period. 
We measure proximity by calculating the distance between turbines and houses based on 
their geographic coordinates, capturing disamenities associated with proximity. To assess 
shadow flicker, we determine whether the sun’s position is ever blocked by rotor blades as 
observed from each house.

To establish causal effects, we employ a generalized difference-in-differences frame-
work, leveraging the timing of newly established turbines and decommissioned turbines. 
Our estimation strategy includes granular geographic, time, and property controls to account 
for potential confounding factors and unobserved trends. The long time horizon implies that 
many properties are traded multiple times, which allows us to control for house fixed effects. 
Our repeat sales model ensures that our estimates are robust to arbitrary correlation between 
wind turbine exposure and time-constant unobservable characteristics of houses. The large 
sample of 2.4 million transactions and 6,878 turbines ensures that the inclusion of fixed 
effects does not compromise the precision of the estimates.

We find that setting up turbines that are taller than 60 m within 2 km of houses reduces 
property values by 3.8 percent. These negative price effects exhibit substantial heterogene-
ity across distance and turbine height. Small turbines of less than 60 m in total height exhibit 
no effect on house prices. Medium-sized turbines between 60 and 120 m show treatment 

1 Solar power had more net capacity addition since 2016.
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effects of −4.5 percent at 1 km distance and −2.9 percent at 2 km. Their impact fades out 
at distances of more than 2 km. Dwarfing these impacts, though, are modern giant turbines 
of 120 m and higher, which reduce property prices by 12 percent at 1 km distance and 10 
percent at 2 km. Their impact declines slowly with distance to the property and fades out 
after 5 km.

Our results for shadow flicker reveal comparatively sizable impacts on house prices. 
Exposure to shadow flicker of severe intensity—potentially more than 20 hours per year—
results in a 7.7 to 8.1 percent decrease in house prices. Importantly, this effect is net of the 
impact of turbine proximity. The size of the shadow flicker estimate implies that the place-
ment of turbines outside of the affected areas can severely dampen the house price effects 
from proximity to turbines.

Understanding the extent and nature of local damages and global benefits caused by wind 
turbines is crucial for policies aimed at transitioning to a green energy sector, as well as for 
spatial and urban planning policies. Based on our estimates and the projected avoidance of 
carbon dioxide from wind energy production, we calculate the societal benefits and costs 
of wind turbines. Assuming a high (low) social cost of carbon, the medium sized turbines 
between 60 and 120 m exhibit a societal benefit of €5.9 million (€1.5 million) during their 
lifetime, while giant turbines of 120 m and larger save carbon emissions worth €22.5 mil-
lion (€5.6 million). As a thought experiment, we calculate how many houses could be in the 
vicinity of a turbine without the damages to property prices exceeding the societal benefits 
of the turbine. Using our damage estimates and assuming a high social cost of carbon, one 
could have 900 average houses with equally large lots within 2 km of a giant turbine before 
the damages exceed the benefits. Another interpretation of this number is that the public 
would be willing to compensate up to 900 homeowners for their damages to operate a giant 
turbine. Interestingly, for smaller turbines fewer houses should be placed within 2 km. This 
results comes from the fact that although the absolute damages are smaller from theses tur-
bines, they are relatively larger compared to their smaller social benefits. The second result 
from this exercise is that the damages are several times larger if the houses are located in the 
shadow flicker area of the turbine. Avoiding this area vastly improves the social cost-benefit 
balance of turbines.

Our paper is related to the literature that uses hedonic pricing approaches (Rosen 1974) 
to estimate the local damages of wind turbines. A small branch of the literature investigates 
the visual disamenity of nearby turbines. Gibbons (2015) focuses on the impact of the direct 
view of wind farms using models of elevation and topography of the landscape. The results 
suggest that house prices in England and Wales fall by 5.8 percent if a wind farm is visible 
within 2 km. Lang et al. (2014) analyse viewshed of turbines in Rhode Island and find no 
effect on house prices. Sunak and Madlener (2016) analyze the impact of the visibility of 
four wind farms in Germany on house prices and find large negative effects. Only few stud-
ies attempted to estimate the impact of shadow flicker with inconclusive findings, often due 
to small samples of affected properties (see, e.g., appendix in Lang et al. (2014) or Sims 
et al. (2008)).

A larger branch of the literature analyses the proximity effects of wind turbines. Dong 
et al. (2023) estimate the impact of turbines in two US states, Massachusetts and Rhode 
Island, and find that house prices decline by 2.5 to 4.5 percent within 1 km of the turbine 
after construction. The authors do not find anticipatory price changes after the assumed 
announcement date. Brunner et al. (2024) specifically focus on announcement effects of tur-
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bines, using information on the universe of turbine sites in the United States and a large sam-
ple of house transactions. They find that house prices within one mile of a turbine decrease 
by 15% after announcement but recover 5 years after installment. Dröes and Koster (2016, 

2021) estimate the effects of distance to turbines on house prices in the Netherlands. They 
find that the first turbine within 2 km of a property decreases house prices by on average 1.4 
to 1.8 percent with sizable anticipation effects, where medium-sized turbines of 50–150 m 
height reduce house prices by 3 percent and turbines taller than 150 m by 5.4 percent. While 
this evidence consistently shows negative effects on house prices, earlier literature, based 
on partly small samples and case studies, did not unequivocally demonstrate declines in 
prices. Using selected turbines and limited transactions, several studies found no significant 
effect of proximity on house prices in the United States and the United Kingdom (Sims and 
Dent 2007; Sims et al. 2008; Hoen et al. 2011). In contrast, a study using one single wind 
farm with nine turbines and 1,405 transactions found very large negative effects on house 
prices in Germany (Sunak and Madlener 2017). Studies with larger, medium-sized samples 
still showed considerable variation in the results, ranging from very large negative effects 
in New York State (Heintzelman and Tuttle 2012) to moderate negative effects in Denmark 
(Jensen et al. 2014, 2018), and no effects in Ontario, Massachusetts, Rhode Island, and 
across the United States (Vyn and McCullough 2014; Lang et al. 2014; Hoen and Atkinson-
Palombo 2016; Hoen et al. 2015).

Our paper distinguishes itself from the existing literature in several important ways. First, 
we provide the first estimates of shadow flicker exposure on house prices on a large scale. 
To achieve this, we overcome the challenge of small samples and measurement issues in the 
literature2 by running a full simulation of shadow flicker for every house in Denmark over a 
long period of time. Our estimates show that houses affected by shadow flicker are subject 
to considerable losses in value. This local damage has profound implications for the optimal 
positioning of wind turbines relative to properties. Second, the scale of our data base makes 
it particularly suitable for a full repeat sales approach. We can include controls for property-
level fixed effects for our entire analysis including heterogeneity tests while maintaining 
reasonable precision in the estimates. The house fixed effect specification is important for 
the causal interpretation of the results as it ensures that the estimates are based on the same 
houses before and after the turbine is installed and holds all stable unobserved house char-
acteristics constant. Other examples of repeat sales approaches in the literature, typically as 
robustness checks for models with coarser aggregation at a regional or neighborhood level, 
include Lang et al. (2014), Dröes and Koster (2016, 2021), and Dong et al. (2023). Third, 
our estimates are substantially larger than what the newest literature finds, even when con-
sidering the heterogeneity across turbine height and distance. The comparatively large esti-
mates highlight the importance of studying the impacts in different environments, including 
a country like Denmark with many spatially dispersed wind turbines.

Lastly, our findings also relate to the literature on the physical and mental health effects 
of wind turbines. Previous research has shown that low-frequency noise emissions from 
turbines are associated with cardiovascular diseases (Poulsen and Raaschou-Nielsen 2018). 
Zou (2017) shows that noise from nearby turbines leads to increased suicide rates.

2 Attempts with engineering-based tools as in Lang et al. (2014) did not yield any significant results but were 
subject to very little variation. Others have used rules-of-thumb approximations of shadow flicker that did 
not result in conclusive findings (Atkinson-Palombo and Hoen 2014; Dröes and Koster 2016).
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The remainder of the paper is organized as follows. Section 2 introduces the data. Sec-
tion 3 describes the estimation strategy. Section 4 presents the estimation results and dis-
cusses policy implications. Section 5 concludes.

2 Data

2.1 Data Sources

For our analysis, we combine two data sources: (i) a dataset covering the universe of prop-
erty transactions in Denmark and (ii) a register of wind turbines.

Property trades. We select all 2,811,188 property transactions in Denmark 1992–2019 
using publicly available transaction registers.3 After first excluding 349,159 transactions 
within the same family and subsequently excluding 97,627 price outliers as the two lower 
and upper percentiles, our main analysis sample consists of 2,364,402 transactions. These 
transactions involve 1,230,698 unique residential units, providing rich variation for specifi-
cations with house fixed effects. The data includes exact address information, selling price, 
date of sale, living area size, and unit type (apartment, row house, detached house, farm-
house, or holiday home). We obtain coordinates from the addresses and match the ground 
elevation to each house in order to correct elevation differences between houses and turbines.

Wind Turbines. The Danish Energy Agency provides publicly available information on 
all wind turbines that have been in operation since 1977 (Danish Energy Agency (2021)). 
This dataset includes geographical coordinates, commissioning and decommissioning 
dates, and various physical attributes such as ground elevation, turbine height, rotor blade 
diameter, and power capacity.

We include all onshore wind turbines operating at some point between 1977 and 2019, a 
total of 6,878 turbines, to be used in the analysis.4 We use separate proximity indicators for 
short turbines (< 60 m) and tall turbines (≥ 60 m). We define the total height of a turbine as 
the axis height plus half the diameter of the rotor blades. For the heterogeneity analysis, we 
split the tall turbines into medium-sized (60−120 m) and giant turbines (>120 m). Figure 1 

displays a map of the turbines included in our analysis sample. From this we can see that 
turbines are particularly concentrated along the western coast where wind conditions are 
favorable. Other than that, turbines are fairly evenly distributed across the entire landmass 
of Denmark.

2.2 Treatment Variables

Our analysis centers around two key variables: the effect of a nearby turbine and the impact 
of shadow flicker. To determine the distances between traded properties and operational 
turbines, we calculate haversine distances using the latitude and longitude coordinates from 
the housing data. These distances are calculated for all properties and turbines in operation 
during the year of the transaction.

3 The data were retrieved from boligsiden.dk in June 2020.
4 We are not including wind turbines that are operated next to a property and primarily provide electricity to 
the same property, so-called domestic wind turbines (“husstandsvindmølle”).
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Our main distance treatment variables indicate whether a short or tall turbine is operat-
ing close to an address. To construct these indicators, we first define the distance diwt of 

each house i to every turbine w = {1, ..., W} in year t. Next, we define the distance to the 
nearest short (<60 m) turbine d<60

it
 as minw:hw<60mdiwt, where hw is the height of tur-

bine w in meters, and equivalently the distance to the nearest tall (≥60 m) turbine d≥60

it  as 

minw:hw≥60mdiwt. Based on the distance to the nearest turbine in each height category, we 
define two treatment indicators 

 
D<60

it
= 1

{

d<60

it
≤ 2km

}

, (1)

 and

 
D

≥60

it = 1

{

d
≥60

it ≤ 2km
}

, (2)

where D<60

it
 takes the value of one if house i in year t is less than 2 km away from its clos-

est turbine that is less than 60 m tall, and zero otherwise. Similarly, D≥60

it  is defined for 
turbines being at least 60 m tall. For heterogeneity analyses, we use flexible specifications 
with distances of up to 6 km.

Fig. 1 Onshore turbines in Denmark.
Notes: The figure shows all onshore turbines in Denmark that were in operation between 1977 and 2019
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Our second treatment variable, shadow flicker, refers to the rhythmic change in light 
caused by the rotating turbine blades partially blocking sunlight for a split second. To pre-
dict shadow flicker at a specific address, we project all turbines and sun positions throughout 
the year onto a 360-degree panorama as seen from the property. The projection creates a 
two-dimensional (azimuth, elevation) coordinate system, where the turbine blades span a 
circle representing the area they sweep. Shadow flicker occurs when the sun is within this 
circle of the swept area, with the radius of the circle corresponding to the rotor blade radius. 
The shadow flicker variable at a given minute m is the product of two indicator functions:

 
sfm = 1

{

(se − re)2 + (sa − ta)2
≤ (r − 0.25)2

}

· 1

{

se ≥ 3

}

, (3)

where se denotes the sun’s elevation, re denotes the rotor midpoint elevation (adjusted for 
ground elevation of the property and the turbine), sa is the sun’s azimuth, ta is the turbine 

azimuth, and r is the rotor radius. All units are in degrees, and all sun positions are computed 
at a one-minute resolution using standard spherical geometry relations.5 We consider tur-
bines at distances of up to 15 times their rotor diameter as shadow flicker candidates because 
the diffusion of light beyond that limit reduces the visibility of shadow flicker (Haac et al. 
2022).

The first factor of equation (3) measures whether the sun is within the swept area circle, 
taking into account the solar disk diameter by subtracting 0.25 from the radius. The second 
factor of equation (3) reflects that flickering is unlikely to occur at sun elevations below 
three degrees, considering factors like vegetation and building screening (UK Government, 
Department of Energy and Climate Change 2011).

For our analysis, we use two indicators for the prevalence of shadow flicker defined as 
follows:

 

SF
(0,20]
it = 1

{

0 <

M
∑

m=1

sfm ≤ 20 ∗ 60

}

 (4)

and

 

SF
>20

it
= 1

{

M
∑

m=1

sfm > 20 ∗ 60

}

, (5)

where m = 1 is the first minute of January 1 and M the last minute of December 31. If 
the total sum of the one-minute indicators sfm is between 1 minute and 20 hours, SF

(0,20]
it  

5 The elevation angle of the sun is given by α = sin−1[sin δ sin lat + cos δ cos lat cos h], where lat is 

the latitude of the address, and δ is the declination due to the seasonal tilt of the earth’s axis given by 
δ = −23.44◦ cos[(360/365)(d + 10)], where d denotes the number of days since January 1. The solar 
hour angle h describes how far the sun moves away from the zenith at noon. Due to the earth’s rotation, the 
sun moves 15 degrees per hour and thus the hour angle is given by h = 15◦(LST − 12), where LST is 

the local solar time (i.e., the time that passes in hours relative to the local solar noon). The azimuth angle of 
the sun is then given by azimuth = cos−1[(sin δ cos lat + cos δ sin lat cos h)/ cos α]. The sun position 
simulation is implemented in the R-package suncalc.
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equals one and is zero otherwise. Accordingly, SF
>20

it  is an indicator for shadow flicker that 
exceeds 20 hours.

It is important to note that our simulation of shadow flicker represents a worst-case sce-
nario, assuming constant sunshine, continuous turbine rotation, and no screening from build-
ings or trees. During turbine site planning in Denmark, public entities are recommended to 
limit actual shadow flicker at houses to 10 hours per year. The shadow flicker threshold 
remains a recommendation rather than a strict regulatory mandate and was for the first time 
distributed in a guidance document related to a government directive on turbine site plan-
ning in March 2001. In practice, it may mean that owners are compensated or that turbines 
limit actual shadow flicker by pausing operations temporarily. As a result, our estimates 
reflect a lower bound of the potential impact of shadow flicker on house prices. Observed 
shadow flicker typically deviates from predicted shadow flicker by a factor of three to four 
(Haac et al. 2022). Therefore, our 20-hour worst-case threshold indicator corresponds to 
approximately 5–7 hours of visible shadow flicker.

Panel (a) of Fig. 2 provides a visual representation of a full 360-degree projection for a 
specific address in our dataset. The x-axis represents the azimuth, spanning from due north 
(0 degrees) to due east (90 degrees), due south (180 degrees), and due west (270 degrees). 

Fig. 2 Example of shadow flicker.
Notes: Figure shows shadow flicker from three distinct turbines for one of the houses in the dataset. Each 
gray dot represents a minute of the sun’s azimuth and elevation from the perspective of the house for 
different days throughout the year. The black diamonds mark the upper and lower points of the turbine 
blades. The red dots represent minutes where the turbine exposes the house to shadow flicker. Panel (a) is 
a 360-degree panorama, while panel (b) zooms in on the area where the turbines are located
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The y-axis represents the elevation angle, where values above zero degrees indicate visibil-
ity. The gray area represents the sun’s positions throughout the year, with the lower bound-
ary indicating the winter solstice (sunrise and sunset south of 90 and 270 degrees) and the 
upper boundary representing the summer solstice (sunrise northeast and sunset northwest). 
The projection highlights three turbines in the eastern direction that cause shadow flicker at 
the given address.

Panel (b) of Fig. 2 zooms in on these turbines, with black diamonds denoting the highest 
and lowest points of the rotor blades. Each dot represents a one-minute sun position, show-
casing the simulation for every second day of the year.6 The dots are colored in red if the 
rotor blades fully blocks the sun, while sun positions below three degrees are disregarded. 
This figure emphasizes an important aspect of shadow flicker prevalence. Turbines situ-
ated closer to the summer solstice boundary in the northeast (and northwest) result in more 
shadow flicker due to smaller azimuth angle changes than those seen in spring and fall. The 
same applies to turbines near the winter solstice. Additionally, the sun passes the turbines 
twice a year during its transition between the summer and winter solstice. The total count of 
minutes with sun blockage contributes to the definitions of SF

>20

it
 and SF

(0,20]
it .

Figure 3 provides an overview of the positions of houses in relation to turbines that cause 
shadow flicker in the dataset. The triangular midpoint represents the normalized position of 
all turbines. Each dot represents a property that experiences shadow flicker, and the distance 
on the axes indicates the proximity of the turbine to the house in the north-south and west-
east directions.

Due to the changing elevation angle of the sun throughout the day, houses located east 
and west of the turbines have the highest likelihood of experiencing shadow flicker. In the 
northern direction from the turbines, shadows are only present if the house is very close, 

6 This restriction is only imposed to make the graph easier to read. For the variable definition, the simulation 
runs for every day.

Fig. 3 All shadow flicker transactions.
Notes: Figure shows the positions of houses in relation to turbines that cause shadow flicker. All turbines 
are centered at the triangular midpoint. Yellow dots are properties that experience shadow flicker from 
short turbines of less than 60 m, orange dots denote properties that experience shadow flicker from tur-
bines between 60 and 120 m, and red dots represent the largest turbines of more than 120 m in height. The 
distance on the axes indicate the proximity of the turbine to the property in a coordinate system
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as the sun tends to be elevated and passes above the turbine for the most part. By contrast, 
shadows never appear in the southern direction from the turbines.

This shadow pattern implies that there are houses that are the same distance to turbines 
that will never experience shadow flicker due to their relative angles to the turbine. Addi-
tionally, the houses are color-coded to indicate the height of the turbine that causes the 
shadow flicker. Small turbines below 60 m in height predominantly cause shadow flicker 
in close proximity to houses, while giant turbines above 120 m can cause shadow flicker at 
distances of up to 2 km.

2.3 Descriptive Statistics

Table 1 presents the mean values for the variables used in the analysis, along with the stan-
dard deviations in parentheses for continuous variables. We show means for the full sample 
in column 1, and means for the sample of properties with repeated sales in column 2. The 
key variables of interest are property prices and the main treatment indicator, which identi-
fies properties located within 2 km of a wind turbine in a given year.

The average price of a property is €200,959. 19 percent of all properties in the dataset 
are within 2 km of a turbine at the time of sale, 13 percent of properties are within 2 km of a 
short turbine (<60 m), and 6 percent are near a tall turbine (≥60m). The table also indicates 
that 0.53 percent of all properties are affected by shadow flicker at the time of sale. Further-
more, 0.4 percent of properties experience shadow flicker for between 0 and 20 hours per 
year, while 0.1 percent of the properties endure shadow flicker for over 20 hours.

In the lower section of Table 1, we present the distribution of property types and char-
acteristics of properties among the sales. The majority of transactions, 56 percent, involve 

Table 1 Mean values for main sample
Full sample Multiple trades
(1) (2)

Price 200,959 (146,184) 199,880 (142,900)
Below 2 km 0.19 0.19
Below 2 km x < 60 m 0.13 0.13
Below 2 km x > 60 m 0.06 0.06
Shadow flicker
Any shadow flicker 0.0053 0.0051
Shadow flicker 0–20h 0.0043 0.0042
Shadow flicker > 20h 0.0010 0.0009
House type

Apartment 0.22 0.26
Farmhouse 0.02 0.02
Holiday home 0.11 0.11
Row house 0.09 0.09
Detached house 0.56 0.52
House characteristics

Size (m2) 124 (54) 120 (54)
Sales year 2005 (8) 2005 (8)
Observations 2,364,402 1,776,490
Notes: Table shows mean values along with standard deviations in parentheses (only for continuous 
variables). Prices are in 2021 euros
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detached houses, while 9 percent are row houses. Another 22 percent of sales come from 
apartments. Farmhouses, meanwhile, represent a smaller portion, comprising only 2 percent 
of the transactions. Additionally, our sample includes holiday homes, which account for 11 
percent of the sales.

One concern with the repeat sales approach is the potential lack of representativeness of 
the properties that contribute to the identification relative to the broader housing market. 
As indicated by the means in column 2 of Table 1, properties that have undergone multiple 
sales do not significantly differ from the average transaction within the market. The most 
notable distinction is that repeat sales are 4 percentage points more likely to involve apart-
ments rather than detached houses. Additionally, the similarity between the two samples is 
underscored by the observation that repeat sales constitute approximately 75 percent of the 
overall sample.

Figure 4 illustrates the growth in house prices for properties located above and below 2 
km from a tall wind turbine, respectively. Throughout all years, properties in close proxim-
ity to a turbine tend to have lower prices, which can be attributed to a combination of treat-
ment effects and selection effects. The primary objective of the initial part of the analysis is 
to determine the extent to which the price difference can be attributed to the proximity of 
wind turbines.

With the exception of the setback caused by the financial crisis, both types of properties 
exhibit a secular price growth over time. However, the price gap between the two groups is 
widening. This widening gap can be influenced by factors such as differential price growth 
between urban and rural areas, changes in treatment effects, or variations in the composition 
of properties being sold.

3 Methodology

Identifying the causal effect of turbines on house prices is challenging because turbine prox-
imity is not randomly assigned to properties. Indeed, wind conditions, land value, and gov-
ernment regulation affect the decision of where to install turbines. Accordingly, the sites are 
often close to the coast, where stable wind promises higher efÏcacy, and in areas with low 

Fig. 4 Average prices by treatment status (2021 euros).
Notes: Figure shows the average property prices from 1992–2019 by treatment status of being within 2 
km and turbine above 60 m of any onshore turbine
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land values that keep costs down. Governments may impose minimum distances to settle-
ments and compensation for property owners. Any of the factors involved in the decision 
to place turbine sites in particular locations is a potential determinant of or correlated with 
property prices, yielding a bias in cross-sectional regressions.

Our identification strategy exploits variation in terms of when and where turbines are 
installed. We use information on the commissioning and decommissioning date for every 
turbine to identify whether a property is close to an operating turbine at any point in time. 
We exploit the fact that turbines are installed and scrapped in the proximity of houses, while 
other properties either never or at a different point in time have a nearby turbine. Thus, we 
essentially compare houses before and after a nearby turbine was installed or scrapped to 
houses in the same period that did not experience any change in nearby turbines.

Our proximity treatments D<60

it
 and D

≥60

it  for turbines within 2 km capture both the 
commissioning and decommissioning of turbines at close distance, so we assume in the 
baseline that both events have the same impact magnitude with opposite signs. An active 
turbine may affect close properties through noise exposure (see Zou (2017)) and visibility 
(see Gibbons (2015)). Given that both impacts increase with proximity and decrease with 
blockages in direct sight, we regard noise and visibility effects as indistinguishable. Our 
second treatment, shadow flicker (SF

(.)
it

), however, is in fact distinguishable because the 
exposure is only partially correlated with proximity.

Our main outcome variable in the hedonic pricing regressions is the log price of a prop-
erty. The identification strategy builds on a flexible repeat sales estimation approach with 
fixed effects for the address and year. Our baseline estimation equation at the address-year 
level is

 log(Yit) = αi + λt + γ1D<60

it + γ2D
≥60

it + δ1SF
(0,20]
it + δ2SF

>20
it + εit. (6)

The dependent variable is the logarithm of the house price Y at address i in sales year t. As 
turbines are not randomly allocated, it is important to control for factors determining both 
the location of turbines and house prices. Typically, turbines would be placed in more rural 
areas with cheaper land. To exclude fixed differences in house prices between addresses, we 
include address fixed effects in αi, controlling for all time-constant house-specific unob-
servable characteristics. To capture temporal rises and falls in house prices that might be 
correlated with turbine expansions, we include fully flexible year fixed effects in λt. These 
year effects are allowed to differ between the four house types: detached houses, apartments, 
farmhouses, and vacation homes.

It should also be noted that differential trends in house prices that correlate with tur-
bine installments could bias the results. As the above controls only capture common price 
changes over time within the same house type, the estimates are biased if turbines are placed 
in areas that are on the decline (or rise) relative to the control areas. Therefore, we also 
include municipality-specific year fixed effects that flexibly exclude deviations from com-
mon changes over time. The results are therefore robust to turbine positioning that reacts 
to temporal price shifts in municipalities, rendering the common trend assumption less 
demanding.

The parameters γ1 and γ2 identify the effects of short and tall turbines within a 2 km 
radius, while the parameters δ1 and δ2 identify the effects of low and high intensity of 
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shadow flicker. The parameters identify the effect of a turbine on house prices under the 
assumptions of being homogeneous across time and addresses, and of having the same 
magnitude with opposite signs for the commissioning and decommissioning of turbines. 
Standard errors are clustered at the postal code level to allow for arbitrary correlation across 
houses in the same area and over time.

4 Results

We begin by discussing the role of address fixed effects in the estimation of turbine prox-
imity impacts, before introducing the shadow flicker treatments. Table 2 presents the main 
results. Our first set of results is based on the 2 km proximity indicators for short and tall tur-
bines. We document in columns 1 and 2 how the price effect is moderated by address fixed 
effects. The estimates without address fixed effects are very large. The decreases of 9.7 and 
13.0 percent7 for short and tall turbines are very likely overestimated. Turbines are placed 
close to houses of significantly lower value than the average, as is evident from the drop in 
the coefÏcient when we include address fixed effects in column 2. The negative effect falls 
to 4.0 percent for tall turbines, still implying a significant drop in market prices for houses 
when a tall turbine is set up in a 2 km radius. The estimate for short turbines is close to zero 
and statistically insignificant.8 Note that the impact of the first turbine is amplified by the 
presence of additional turbines. In Appendix Table 6, we separate the effects based on the 
number of tall turbines installed within 2 km of an address, assigning each of the first five 
turbines its own treatment effect. The first turbine consistently shows a significant negative 

7 The coefÏcients from the log-level regression are transformed into percentage effects by (eβ
− 1) ∗ 100.

8 Although based on a different sample of houses and turbines and estimated without address fixed effects, 
Jensen et al. (2018) find comparable results. The effect of an additional turbine averaged across all turbine 
heights is a price drop between 0.2 and 1.1 percent.

Table 2 Effect of wind turbine proximity on log house prices for different specifications
Dependent variable
Model

ln (Price)
(1) (2) (3) (4)

Below 2 km× >60 m −0.122*** −0.039*** −0.037*** −0.040***
(0.019) (0.008) (0.008) (0.009)

Below 2 km× <60 m −0.093*** −0.003 −0.003 −0.005
(0.013) (0.009) (0.009) (0.010)

Shadow flicker 0-20h −0.021 −0.024
(0.019) (0.020)

Shadow flicker >20h −0.096*** −0.090***
(0.030) (0.030)

Controls

Year×Home type Yes Yes Yes Yes
Address No Yes Yes Yes
Municipality×Year Yes Yes Yes Yes
Sample Full Full Full < 6 km
Observations 2,364,402 2,364,402 2,364,402 1,840,087
Notes: Table shows estimation results of equation (6). Standard-errors clustered at postal code in 
parentheses. Significance levels:∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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impact on house prices. Our main estimate is roughly equivalent to the combined impact of 
the first and second turbines.

In column 3, we add the shadow flicker treatments and show the results for the full speci-
fication in equation 6. Low shadow flicker exposure produces an insignificant −2.1 percent 
effect on house prices, whereas high exposure to shadow flicker of more than 20 hours 
yields statistically significant price decreases of 10.1 percent. Including the shadow flicker 
treatment does not change the proximity estimates. Thus, shadow flicker, only partially cor-
related with distance, has an additional negative effect on house prices on top of the distance 
effect. As we assume that the view of the turbine is unobstructed, some houses enter the 
estimation as affected by shadow flicker although they are not, implying that our estimates 
are lower bounds of the impacts from shadow flicker.

In column 4, we restrict our sample to houses that are not farther away from turbine loca-
tions than 6 km. With this restriction, we rely on a control group of houses that are more 
localized. None of the estimates significantly change compared to the estimates in column 
3, using the full sample. This lack of change in the estimates highlights that our identifica-
tion, based on house fixed effects estimations, does not rely on local control groups. Instead, 
the untreated observations only contribute to the identification of the common controls and 
fixed effects in the estimation.

Several hypotheses could explain the decline in housing market prices. Potential buyers 
may gather information on property-specific assessments of nuisances and compensations 
paid to homeowners living near newly installed turbines. While the value of these compensa-
tions may directly influence house valuations, buyers might also anticipate greater damages 
from future wind park expansions or a deterioration in neighborhood quality. One potential 
counteracting mechanism to falling house prices is preference-based sorting, where buyers 
less affected by turbine nuisances are willing to purchase these properties at reduced or even 
no discounts. However, empirically, this sorting mechanism does not appear strong enough 
to significantly limit the observed price declines.

Taking into account the staggered timing of the turbine treatments and the fact that the 
underlying treatment effects were heterogeneous across houses, the estimates from the fixed 
effects regressions may be subject to biases from negatively weighted and poorly identified 
treatment effects that are described in more detail in Goodman-Bacon (2021) and Borusyak 
et al. (2022).9 We use an imputation estimator (Borusyak et al. 2022) to test for the robust-
ness of our main estimates against arbitrary heterogeneity in treatment effects and find very 
similar results. The robust estimator for our tall turbine proximity indicator is also −0.037 
with a standard error of 0.009.10 It is not surprising that in this setting, where there are large 
numbers of never-treated houses, the estimates are fairly stable.

The dummy specifications in Table 2 for distance and shadow flicker are motivated by 
the literature and convenience in interpretation, but they may mask important heterogeneity. 
We therefore estimate a flexible specification of distance to the closest turbine, where each 
bin dummy represents a 500-m-wide circle of the radius around the property, and show coef-

9 The large number of never-treated observations in our data alleviates the potential for bias from negative 
weights; see Borusyak et al. (2022).

10 The estimates rely on the simplifying assumption that a property is forever treated after the first time 
a turbine is located within its 2 km radius. The robust estimate for the long duration of shadow flicker is 
similar, too. The imputation estimator yields -0.113 with a standard error of 0.022. Note that this estimate is 
conducted under a further simplifying assumption that the first (tall) turbine within 2 km determines the year 
of the first shadow flicker.
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ficients in panel (a) of Fig. 5 with 95% confidence bands. The negative house price effects 
are largest at short distances and decay up to a 2km distance. All estimates thereafter are 
close to zero, and the threshold of 2 km in the baseline estimation is thus supported by the 
data.11

We similarly test the shadow flicker specification by estimating a flexible binned version of 
flicker duration in 5-hour bins in panel (b) of Fig. 5. There is a negative effect for up to 5 hours 
of shadow flicker of approximately −5 percent and the confidence interval just includes zero. 
Estimates for 5 to 20 hours of flicker are statistically insignificant and relatively close to zero. At 
a flicker of 20 hours or more, the three estimates become strongly negative at around −10 per-
cent. All confidence bands reach close to the zero mark. They are large because there are fewer 
observations in the 5-hour bins, which is still consistent with significant impacts of the broader 
category in the baseline estimation. The results suggest that a split at 20 hours of shadow flicker 
would be sufÏcient to capture the treatment intensity differences.

Figure 5(b) also suggests that the effective cap could be reduced to about 15 hours of 
worst case scenario shadow flicker, or 3.75–5 hours of actual flicker, while avoiding detri-
mental house price effects. It is worth considering the tradeoff between reduced electricity 
production and nearby real estate values, or alternatively, to invest in systems that shut down 
the turbines at exactly the times at which shadow flicker occurs ( Res-Group (2024)).

In Fig. 6, we investigate the timing of the turbines’ impacts before and after commission-
ing, for which we focus on the effect of tall turbines. An involved planning phase precedes 
the installment of new turbines, which can create anticipation effects. The process of setting 
up a wind turbine requires an application at the municipality and, usually, an environmental 
impact assessment. The municipality is given up to one year to decide whether the project 
can be included in a local plan if the turbine should be placed in a pre-approved area for 
turbine developments. The process may take longer if it concerns a location outside the 
development areas. After a positive municipal evaluation, the local plan is made public. 
Typically within eight weeks of the evaluation, stakeholders are then permitted to comment 
and litigate, after which the physical building phase can begin. Hence, anticipation effects 
of one year are not unlikely. If all price effects are realized immediately, we would expect 
the property prices to drop once and remain at a lower level.

In the analysis shown in Fig. 6, we set the baseline period to t = −2. From 10 years prior 
to three years before commissioning, we see no significant price changes and no indica-
tion of differing pre-trends between the treated and non-treated properties. Moreover, one 
year prior to commissioning there is only a slightly negative coefÏcient but no statistically 
significant anticipation effect. Thus, we do not find that the housing market anticipates the 
installment of turbines.12 In the year of commissioning, the coefÏcients turn negative to just 
over 2 percent and are at the border of statistical significance. The estimates remain similar 
until four years later, and increase in magnitude to approximately −4 percent in year 8 and 
−6 percent in year 10.

Although the point estimates are increasing in magnitude in later years, they lack some 
precision and their confidence bands all include the main estimate of −4 percent. Taking the 

11 For comparison, Dong et al. (2023) find effects mostly within 1 km, Dröes and Koster (2016, 2021) use a 2 
km impact limit, while other studies suggest farther reach (e.g., Gibbons (2015); Sunak and Madlener (2016); 
Jensen et al. (2018); Zou (2017)).
12 This finding of weak or no anticipation effect mirrors the finding in Dong et al. (2023). In contrast, there are 
strong anticipation effects in Dröes and Koster (2016), see Fig. 5 therein for comparison.
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Fig. 5 Effects of distance and shadow flicker duration.
Notes: Panel (a) shows the estimated coefÏcients for turbine proximity split into 500 m bins of distance 
to the property, while panel (b) shows the estimated coefÏcients for shadow flicker divided into length 
intervals of 5 hours and a category of 30 hours or more. The estimation controls for the fixed effects, as in 
column 2 of Table 2. The whiskers show 95% confidence intervals
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point estimates at face value, compositional and technical reasons are candidate explana-
tions for the increase over time. First, salience of damages to house prices may take time 
to take full effect after the establishment of a turbine. Local newspapers may report about 
lower sales values and local opposition may grow over time, exacerbating the impacts. Sec-
ond, when houses are sold for lower prices, the socio-economic composition of the neigh-
borhood may change and lead to prices falling further. Third, we are estimating the impact 
of the first turbine in proximity. The impacts could be exacerbated by additional turbines 
being added to the site in later years. Fourth, our estimation sample is an unbalanced panel 
and may include a varying composition of turbines across years, and indeed we find a more 
stable pattern of impacts in later years when we restrict the sample of turbines.13 One of 
the main differences of our results compared to estimates from the United States is that the 
reductions in house prices do not rebound in Denmark, while they largely do in the United 
States (Dong et al. 2023; Brunner et al. 2024). We can only speculate about the reasons for 
these differences. One compelling argument put forward in Dong et al. (2023) hypotheses 
that individuals with lower intrinsic disutility from turbines may sort into affected areas over 
time and counteract the initial price drops.

13 We show an event study graph with an alternative setup in the Appendix, where we exclude turbines 
established after 2009 and before 2002. This restriction allows all pre- and all post-periods to be affected by 
the same turbines, whereas the estimates in Fig. 6 are potentially from different sets of turbines. Appendix 
Fig. 11 shows a comparable pattern of dynamic treatment effects, however, the estimates are more stable at 
just under -5 percent even after 10 years. The late increase in Fig. 6 may therefore also be caused by a change 
in the composition of turbines.

Fig. 6 Event study of turbine proximity effects.
Notes: Figure shows the estimated coefÏcients for tall turbines within 2 km with yearly lags and leads 
from 10 years prior until 10 years post the commissioning. The excluded category is t = −2. The estima-
tion controls for the fixed effects, as in column 3 of Table 2. The whiskers show 95% confidence intervals
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4.1 The Role of Turbine Height

Not all turbines are alike and therefore they do not represent a uniform treatment. The 
height of a turbine in particular shapes the effect of distance as taller turbines are more eas-
ily visible, have longer blades (implying a larger nuisance), and host stronger and louder 
generators. In Fig. 7, we split the effect of the closest turbine by the total height, measured 
at the highest point of the blades, in 30 m bins. There is no effect whatsoever for the smallest 
turbines of up to 60 m in height, but we begin to see a negative and statistically significant 
effect for 60–90 m high turbines of around −3 percent. The effect then increases to −5 per-
cent for the next larger turbine category. The bin is sparse, which is why the confidence band 
becomes too wide to distinguish the effect statistically from zero. Finally, for the largest 
turbines of 120 m and taller, we find a strong and statistically significant effect of roughly 
−11 percent. Turbine height thus has a huge influence on the impact on house prices. The 
tallest turbines, which are also the newest and most powerful generators, inflict six times as 
much damage as the medium turbine at 2 km distance.

Our estimates for the tallest turbines are about twice as large in magnitude as those found in 
Dröes and Koster (2021). They show three height categories—0–50 m, 50–150, and more than 
150 m—where the largest effect size for the tallest turbines is −5.4 percent. Overall, the pattern 
of increasing impacts with turbine height in our results is consistent with their findings.

Going one step further, we allow distance to have a differential impact according to the 
height of the turbine in Fig. 8. Consistent with the above, turbines shorter than 60 m inflict 
no damage at any distance to a house. Meanwhile, turbines in the 60–120 m category have 
a moderate impact at distances up to 2000 m. The effect size then very gradually diminishes 
before falling to zero at distances above 2,000 m. Giant turbines, by contrast, have a large 
and statistically significant effect of around 12 percent (10 percent) on house prices for 
distances up to 1000 m (2000 m).14 The effect then decreases with distance and drops to 5 
percent and is statistically insignificant above 2,000 m. The point estimates suggest a mean-
ingful negative impact of up to 5000 m and fall to zero above 5000 m.

14 Giant turbines are sparse, which means they require a cruder distance bin width.

Fig. 7 Effects on log house prices 
of nearest turbine below 2 km 
away—interacted with height.
Notes: Figure shows estimated 
coefÏcients for turbine proximity 
split into turbine height catego-
ries of 0–30m, 30–60m, 60–90m, 
90–120m, and 120m and higher. 
The estimation controls for the 
fixed effects, as in column 2 of 
Table 2. The whiskers show 95% 
confidence intervals
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4.2 Robustness of Shadow Flicker Results

The previous results highlight the heterogeneous effects of shadow flicker, depending on the 
intensity of the treatment. To test a more agnostic model, we summarize shadow flicker into 
one dummy variable irrespective of intensity, as shown in column 1 of Table 3. The effect 
of any intensity of shadow flicker on house prices is a modest 3.7 percent reduction, which 
is just about statistically significant.

Turbines can cause differential damages to house prices depending on their height and 
distance from the property. Closer and taller turbines potentially cause more shadow flicker 
because they cover larger areas of the visible horizon. However, given that shadow flicker 
intensity is correlated with distance and height, its impact on prices may be partly con-
founded. To address this, we test the robustness of shadow flicker in estimations where we 
exclude the variation originating from distance and height combinations.

The result in column 2 of Table 3 repeats the main estimates from Table 2 for compari-
son. In columns 3 to 7, we test the robustness of the shadow flicker intensity results. Column 
3 introduces the same distance by height controls as in Fig. 8. Compared to the main esti-
mate, the high-intensity shadow flicker effect is somewhat reduced from 10.1 to 8.0 percent, 
but the estimates are not statistically different from each other. As in the baseline, there is 
no detectable impact of the low-intensity shadow flicker. In columns 4 and 5, we introduce 
more granular distance bins and we find comparable impacts from high-intensity shadow 
flicker of 7.7 resp. 8.1 percent. Column 4 includes bins that are half the size of those in col-
umn 3, and column 5 uses turbine height intervals of 0–40, 40–60, 60–80, 80–100, and >120 

Fig. 8 Effects on log house prices of nearest turbine—by height and distance.
Notes: Figure shows the estimated coefÏcients for turbine proximity with a combination of distance inter-
vals and turbine height. The yellow line denotes the effects of short turbines below 60 m, while the orange 
line represents medium-sized turbines between 60 and 120 m of height. Both lines depict coefÏcients for 
500 m distance intervals. The red line, meanwhile, indicates tall turbines above 120 m in height with coef-
ficients for 1000 m distance intervals. The estimation controls for the fixed effects and shadow flicker, as 
in column 3 of Table 2. The whiskers show 95% confidence intervals

 

1 3

749



C. Andersen, T. Hener

meters, and distance in 100 meter intervals. In summary, the estimates are largely unaffected 
by the finer distance controls and height interactions.

To the best of our knowledge, these estimates are not directly comparable to any findings in 
the literature. However, it confirms findings that visual pollution in itself has an impact on sur-
rounding property prices. In particular, Gibbons (2015) and Sunak and Madlener (2016) find that 

Table 3 Effect of shadow flicker on house prices for different specifications
Dependent 
variable

ln (Price)
(1) (2) (3) (4) (5) (6) (7)

Any shadow 

flicker
−0.036**

(0.017)
Below 2 km × 
> 60 m

−0.037*** −0.037*** −0.037*** −0.031***

(0.008) (0.008) (0.008) (0.009)
Below 2 km × 
> 60 m

−0.003 −0.003 −0.002 0.002

(0.009) (0.009) (0.009) (0.010)
Shadow flicker 
0–20 h

−0.021 −0.010 −0.013 −0.016 −0.020 −0.020

(0.019) (0.020) (0.021) (0.021) (0.019) (0.019)
Shadow flicker 
> 20 h

−0.096*** −0.077** −0.074** −0.078** −0.096*** −0.096***

(0.030) (0.030) (0.033) (0.036) (0.030) (0.030)
Controls

Distance by 
height in bins

Yes

Distance by 
height in bins 
(as Fig. 8)

Yes

Distance by 
height in 
bins (fine 
granularity)

Yes

Direction of 
turbine

Yes

Number of 
turbines

Yes

Year × Home 
type

Yes Yes Yes Yes Yes Yes Yes

Year × 
Municipality

Yes Yes Yes Yes Yes Yes Yes

Address Yes Yes Yes Yes Yes Yes Yes
Observations 2,364,402 2,364,402 2,364,402 2,364,402 2,364,402 2,364,402 2,364,402
Notes: Table shows the effects of shadow flicker for various sets of controls. Column (2) replicates column 
(3) of Table 2. Column (3) controls for the distance by height indicators from Fig. 8. In column (4) we 
replicate column (3) but with distance indicators that are twice as granular (i.e., the tall turbine category 
is now in 500m-bins, and the other turbines in 250m-bins). Column (5) includes the finest granularity 
of distance by height controls, with turbine height intervals 0, 40, 60, 80, 100, and >120, and distance in 
100 meter intervals. Column (6) controls for the direction of the nearest turbine (west or east). Column 
(7) controls for the number of turbines within 2 km flexibly with the following dummies for the number 
of turbines: 1, 2, 3, 4, 5, 6–10 and 10 or above. Standard-errors clustered at postal code in parentheses. 
Significance levels:∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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the visibility of turbines has negative price effects. It is, therefore, important for the interpreta-
tion of the shadow flicker estimates to recognize that turbine visibility is a necessary condition 
for shadow flicker. If we assume that the probability of turbine visibility is determined by the 
interaction of height and distance, the estimates in columns 3–5 of Table 3 isolate the effect of 
shadow flicker irrespective of visibility. These estimates essentially compare houses at the same 
distance from turbines of equal height, with shadow flicker being present or absent depending 
solely on direction (see Fig. 3). However, the estimate in column 2 only roughly controls for 
distance and may, therefore, capture a combined effect of visibility and shadow flicker, which is 
approximately 2 percentage points larger than the preferred estimates.

In column 6, we test whether the direction of the turbine relative to the property affects 
the estimates by including an indicator for whether the nearest turbine is east or west. The 
direction matters both for whether shadow flicker appears in the morning or evening and 
for how the sound travels with the dominant winds. Notably, the estimates do not change 
in comparison to our main estimates—neither the shadow flicker estimates nor the distance 
estimates. In column 7, we take account of the number of turbines within 2 km by including 
indicators for 2, 3, 4, 5, 6 to 10, and 10 or more turbines. Again, none of the estimates is 
affected by the additional control variable and the main estimates are robust to the number 
of turbines in proximity to the property.

Finally, comparing shadow flicker estimates with other externalities helps put them into 
perspective. For instance, the presence of a power plant within 2 miles reduces house prices 
by 4–7 percent in the United States (Davis 2011). In Taiwan, house prices within 15 miles of 
a large coal-fired thermal plant decline by as much as 25 percent (Tsai 2022).

4.3 E�ect Heterogeneity Across Population Density and House Type

The issue of wind turbines affecting house prices is increasingly becoming an urban phe-
nomenon when land-use areas are sparse. In panel A of Table 4, we document how turbines 

affect house prices across population densities. Density is split into three equal-sized groups 
based on 1x1 km grids of houses. House prices decline by 3.8 percent in rural areas when 
a tall turbine is active within 2 km, while the point estimate is even larger (−5.3 percent) in 
medium-density areas, which are mostly composed of suburbs and local towns. Thus, the 
effect of turbines carries over to more densely populated areas. We do not find any effect, 
though, in high-density areas, where other local amenities and disamenities are more impor-
tant for price differences and there is a greater probability of negative externalities from 
turbines being physically blocked or dampened.

The disamenity from turbines affects houses because residents can see or hear the turbines 
from inside their houses or from their balconies, terraces, and gardens. Larger effects should thus 
manifest in properties with windows on many sides, outside areas around the house, and unob-
structed views. In panel B, we show estimates for separate types of houses as approximations of 
susceptibility. We control for short turbines in the first row. The house-type-specific effects are 
from tall turbines within 2 km of the respective house types. The entire negative effect on prices 
is driven by detached houses, which is consistent with the susceptibility hypothesis. Detached 
houses are also the most common properties in the medium population density areas, where we 
find the largest impacts. By contrast, we find no significant effect on row houses or apartments, 
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which are often situated in more densely populated areas. Nor do we find a significant effect on 
farmhouses or holiday homes, which are most common in rural areas.15

4.4 Societal Costs and Bene�ts of Turbines

To provide a policy-relevant comparison of the social costs and benefits of turbine install-
ments, we provide additional estimates. First, we discuss an estimate of the environmen-
tal benefits of wind turbines as the monetary value of avoided greenhouse gas emissions. 
Second, we estimate the total damages of a turbine in a hypothetical residential area as a 
comparison. Third, we discuss the policy implications of different scenarios for the social 
cost of carbon and the placement of the turbine.

15 A limitation of this analysis is, of course, whether we are sufÏciently powered to detect differences. For 
example, the estimate on holiday homes (-0.034) is just within the 95% confidence interval of the estimate on 
detached houses (-0.048+0.008 1.96), although the holiday home estimate is not statistically different from 
zero with its standard error of 0.028. Further, different types of houses are treated to a different extent (see 
notes of Table 4).

Table 4 Effect of wind turbine proximity on house prices for different specifications
Dependent variable ln (Price)
Panel A: By population density Low density Medium density High density
Below 2 km× >60 m −0.037∗∗∗ −0.052∗∗∗ −0.005

(0.009) (0.014) (0.018)
Below 2 km× <60 m −0.001 −0.017 0.0004

(0.009) (0.015) (0.023)
Observations 781,890 778,752 803,760
Panel B: Interaction by home type

Below 2 km× <60 m −0.003
(0.009)

Below 2 km× >60 m×...
Apartment −0.005

(0.016)
Farm house −0.052

(0.032)
Holiday home −0.034

(0.028)
Row house −0.009

(0.022)
Detached house −0.048∗∗∗

(0.008)
Observations 2,364,402
Controls

Year×Home type Yes Yes Yes
Year×Municipality Yes Yes Yes
Address Yes Yes Yes
Notes: Table shows estimated coefÏcients for turbine proximity. In Panel A, the sample is split by population 
density, coefÏcients for short and tall turbines are reported. In Panel B, the effect of tall turbines is split by 
housing types. The share of treated observations by house type is 3.0% for apartments and holiday homes, 
16.1% for farm houses, 4.0% for row houses and 8.1% for detached houses. Standard-errors clustered at 
postal code in parentheses. Significance levels:∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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Societal benefits. The social benefits of turbines accrue from avoiding pollution of tradi-
tional forms of electricity production and the associated damages of pollution. We focus on 
avoided carbon dioxide emissions as the major contributor to the environmental damages of 
production. To do so, we require estimates of the electricity production of a turbine and the 
amount of replaced carbon dioxide emissions. The potential power output of medium-sized 
turbines 60–120 in height in our dataset is 0.811 MW, while that of giant turbines taller than 
120 m is 3.095 MW. To calculate the total production of a turbine, we assume conserva-
tive estimates of a lifetime of 20 years and capacity usage of 30 percent. The two types of 
turbines run for 175,200 hours16 and, thus, produce 42,606 resp. 162,699 MWh over their 
lifetime. The emission replacement factor for Danish turbines is 0.69 (Christensen et al. 
2021), implying that for every MWh of electricity produced, one avoids 0.69 tonnes of 
carbon dioxide emissions from other forms of production. We assume a range of values for 
the social cost of carbon (SCC). The lowest value of €50 corresponds roughly to the SCC 
assumed by the Biden Administration of 190 that the United States Environmental Protec-
tion Agency considers the most likely actual cost (EPA 2021).

Table 5 summarizes the benefits of the two types of turbines. Medium-sized turbines (60–
120m) produce 42,606 MWh during their lifetime, avoiding 29,398 tonnes of carbon dioxide 
emissions. Giant turbines produce as much as 162,699 MWh, reducing the emissions of carbon 
dioxide by 112,262 tonnes. Assuming the high SCC of €200, medium-sized turbines have a 
social benefit of 5.9 million Euros, while giant turbines save society 22.5 million Euros. These 
figures are likely lower bounds because a full account of the social benefits would also include 
the reduction in air and toxic pollutants other than greenhouse gases.

Societal costs. The societal costs of a turbine from reduced house prices depend on the 
number of affected houses, the values of those houses, the distance to the turbine, and the 
location with respect to the shadow flicker. There are numerous ways to illustrate the total 
costs in order to compare them to the societal benefits. We show in the following how 
densely populated an area around a turbine can be before the costs exceed the benefits.17

To do this, let us assume an illustrative settlement in the shape of a square. All houses 
in the settlement have the same quality and the same lot size. We assume a house value of 
€250,000, corresponding to roughly the average price of transactions in 2019. To determine 
the lot size, we assume that 20 percent of the land is used for infrastructure and 80 percent 
for residential housing. Turbines are in reality seldom placed in the middle of a settlement. 
Thus, for this illustration, we place the turbine on one of the corners of the residential area, 
as depicted in Fig. 9. The circles around the turbine show the affected areas with distances of 

16 Assuming the turbines run at 30 percent capacity for 24 hours on 365 days over 20 years.
17 We deliberately do not exploit the realized spatial distribution of houses, turbines, and damages as it would 
not be informative about the optimal distribution or the damages of the marginal turbine.

60–120 m ≥ 120 m

Lifetime production 42,606 MWh 162,699 MWh
Avoided CO2 29,398 t 112,262 t
Social benefits (in €)
High SCC (€200) 5.880mill. 22.452mill.
Low SCC (€50) 1.470mill. 5.613mill.

Table 5 The social benefits of a 
turbine
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up to 2km. The dashed lines indicate where the settlement is located towards the southeast 
of the turbine. This enables us to compute the total area that can be occupied by housing as 
80 percent of a quarter circle, for a total area of 2,356,194 m2. The first affected inner circle 
from 500 to 1,000 m hosts a residential area of 471,239 m2, the second from 1,000 to 1,500 
m an area of 785,398 m2, and the third from 1,500 to 2,000 m an area of 1,099,557 m2. No 
houses are placed within 500 m of the turbine.

We now ask how many houses we can fit into the residential areas such that the benefits 
of the turbine are equal to the damages on house prices. The benefits as described above 
are the social cost of carbon SCC multiplied by the turbine-height-specific carbon dioxide 
savings CO2Sh, where height categories h are medium-sized and giant. The total costs are 
a function of the lot size l and the damage estimates βh,d specific to the turbine height h and 

the distance ring d ∈ (1, 2, 3) for 500–1,000 m, 1,000–1,500 m, and 1,500–2,000 m. We can 
write the equality of benefits and costs as

 

SCC × CO2Sh = C(l, βh,d)

=

3∑

d=1

βh,d × 250, 000 ×

Ad

l
,
 (7)

where Ad is the available area in each of the distance rings d and €250,000 the uniform 
house price. We can solve for the lot size and insert the area values as in

 
l =

250, 000 × (βh,1 × 471, 239 + βh,2 × 785, 398 + βh,3 × 1, 099, 557)

SCC × CO2Sh

 (8)

Fig. 9 Illustration of turbine with 
affected housing areas
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We solve equation 8 by using the damage estimates βh,d that are specific to each of the three 
distance rings from Fig. 8 and the carbon dioxide savings from Table 5 for medium-sized and 
giant turbines.

We plot the resulting lot size from equation 8 as a function of the SCC separately for 
medium-sized and giant turbines in Fig. 10. As the benefits increase with the SCC, the lot 
size decreases such that more houses can be close to a turbine without the damages exceed-
ing the benefits. For giant turbines and an SCC of €200, lot sizes can be as small as 2,600 m2

. In the hypothetical settlement area, this lot size corresponds to approximately 900 affected 
houses. This means that it is still beneficial from a societal perspective to place a giant tur-
bine in the proximity of up to 900 affected houses if the SCC is €200.18 Notably, the solid 
line for giant turbines is always below the solid line for medium-sized turbines, implying 
that the housing density can be larger closer to giant turbines. This result stems from the 
fact that even though giant turbines inflict larger damage to house prices, they also produce 
much more energy and, thus, avoid more emissions.

The estimates above ignore the damages caused by shadow flicker. To illustrate how 
shadow flicker affects the social costs, we extend Eq. 8 using the estimates from column 4 of 
Table 3 and assume that all houses are affected by high-intensity shadow flicker. The dashed 
lines in Fig. 10 that take into account the damages from shadow flicker are far above the 
solid lines. This implies that if houses are subject to shadow flicker, turbines are much less 
worthwhile close to a settlement. This is especially true for the smaller turbines that avoid 
fewer emissions and have smaller societal benefits. These additional costs illustrate how 

18 Our analysis does not account for distributional inequities. While turbines provide societal benefits, the 
associated costs are primarily borne by a few affected property owners. Additionally, as shown in Fig. 4, 

homes close to a turbine are significantly less valuable, likely also for reasons unrelated to any treatment 
effect of nearby turbines. A more comprehensive analysis would need to incorporate the mitigating role of 
compensation payments, which, at least partially, address these distributional concerns.

Fig. 10 Cost-benefit analysis: break-even lot sizes of houses.
Notes: Figure shows the break-even lot size for equidistant houses that equate the benefits and damages 
of a single turbine. Calculations are based on the specification in Fig. 8 and column 4 of Table 3. There 
were 4054 active onshore turbines in 2019
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important it is not only to determine how close a turbine is to a certain location but also to 
determine the direction in which the turbine is facing. Indeed, the additional shadow flicker 
damages can be avoided, for example, by placing turbines north of settlements.

5 Conclusion

We have shown that wind turbines inflict significant damage on the value of nearby proper-
ties. Moreover, this impact increases in line with the turbine’s height, such that more modern 
giant turbines reduce housing values more heavily. Houses within the area where turbines 
produce shadow flicker suffer an additional drop in value. While the house price effects are 
significant both in a statistical and an economic sense, wind turbines, especially newer tall 
versions, mostly overcompensate for their more considerable damages with savings in car-
bon dioxide emissions when the social costs of carbon are assumed at conventional levels.

For policy purposes, our results have several implications. First, to fully compensate 
property owners for their losses, at least three indicators—distance, turbine height, and 
shadow flicker—must be taken into account. Second, turbines produce a considerable social 
net benefit. Thus, expanding wind farms is socially beneficial even if it means adversely 
affecting multiple houses. Strict minimum distance requirements, such as maintaining a dis-
tance of four or ten times the turbine height from residential buildings, overlook the fact that 
turbines can still provide net benefits in moderately populated areas. Third, giant turbines 
with greater efÏciency are preferable even if their damage is more substantial.

Appendix

See Table 6 and Fig. 11.
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Table 6 Effect of shadow flicker on house prices for different specifications
Dependent variable ln (Price)

(1) (2) (3) (4) (5)
Below 2 km x >60 m − 0.0229∗∗ − 0.0228∗∗ − 0.0229∗∗ − 0.0229∗∗ − 0.0228∗∗

(0.0106) (0.0106) (0.0106) (0.0106) (0.0106)
≥2 tall turbines − 0.0242∗∗

(0.0119)
2 tall turbines − 0.0138 − 0.0138 − 0.0137 − 0.0136

(0.0158) (0.0158) (0.0158) (0.0158)
≥3 tall turbines − 0.0289∗∗

(0.0126)
3 tall turbines − 0.0227 − 0.0227 − 0.0226

(0.0148) (0.0148) (0.0148)
≥4 tall turbines − 0.0355∗∗

(0.0160)
4 tall turbines − 0.0408∗∗ − 0.0412∗∗

(0.0167) (0.0167)
≥5 tall turbines − 0.0314

(0.0209)
5 tall turbines 0.0009

(0.0325)
≥6 tall turbines − 0.0561∗∗∗

(0.0204)
Controls

Year×Home type Yes Yes Yes Yes Yes
Year×Municipality Yes Yes Yes Yes Yes
Address Yes Yes Yes Yes Yes
Observations 2,364,402 2,364,402 2,364,402 2,364,402 2,364,402
Notes: Table shows estimation results of equation 6 with an alternative treatment specification. In columns 
1 to 5, the treatment is split into dummies for the first and subsequent turbines, with a top-coded category. 
In column 1, a dummy for the first turbine and a dummy for subsequent turbines is included. In column 2, a 
dummy for the first and one for the second turbine as well as a dummy for subsequent turbines is included. 
In column 5, dummies for each of the first five turbines is included. Standard-errors clustered at postal 
code in parentheses. Significance levels:∗∗∗p < 0.01,∗∗ p < 0.05,∗ p < 0.1.
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