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This article attempts to ® nd out how the Korean economy has grown so rapidly in a

short time span of less than 30 years. For that purpose, it focuses on the development

of the Korean semiconductor industry ± more speci® cally, the memory-chip segment

of the industry ± as a case in point. To test the hypothesis that the learning curve

eŒects have been signi® cant in the memory-chip industry, `yield factor’ (the ratio of

sellable chips to total chips in a wafer) in semiconductor production is used as a
measure of the learning progression. That is, by tracing how the yield factor for each

generation of memory chips has increased, one is able to see how well the Korean

chip makers have exploited the learning eŒects. This article improves the learning-

by-doing modelling by introducing a richer set of yield data; and the unit of analysis

employed throughout the article is at the ® rm level, which is not common in the
literature dealing with East Asian development as well as the economics of tech-

nology, thus enhancing understanding of the industry dynamics.

I . INTRODUCTION

This article focuses on the development of the Korean

semiconductor industry which has experienced an impress-

ive growth for little more than 20 years. The country’s

semiconductor chip producers at the outset focused on

producing products relatively easy to manufacture using

mature technology imported from abroad. By producing

these products in high volume, mainly memory chips

such as dynamic random access memories (or DRAMs)

and static RAMs (or SRAMs), the Korean producers

were able to capture the bene® ts of learning eŒects and

economies of scale,1 thus reducing their production costs

and diŒusing capabilities acquired in the process to other

product areas.

From technical perspective, the learning curve eŒect in

the semiconductor industry is represented by yield factor,

which is de® ned as the ratio of nondefective (and sellable)

chips to total wafer area fabricated. In an initial production

run for a speci® c generation of chips, the production yield

typically remains below 10% . The yield, as the production

experience accumulates, in many cases asymptotically

increases up to 95% . The trajectory of this increase is called

the learning curve, which since the report on the phenom-

enon at the US airframe (or airplane fuselage) manufactur-

ing site in the 1930s has been extensively used by many

economists and management decision makers.2

Using the concepts introduced above, i.e., the yield fac-

tor and the learning curve, one can begin to analyse the

Korea’s chip-making industry. That is, by tracing how the

yield factor for each subsequent generation of memory

chips has increased one can see how well the country’s

producers exploited the learning eŒects to increase produc-

tivity and reduce costs.

This study relies on the data collected from Dataquest, a

US high-tech market research ® rm, and a Korean semicon-
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1
Learning eŒects give rise to dynamic economies of scale which diŒer from (static) economies of scale. In the case of dynamic economies

of scale, increasing current production reduces future costs, not current costs. In econometric modelling thus, the former concept is
usually represented by cumulative output and the latter by current output.
2

See Wright (1936). This article is considered the seminal paper on the subject.
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ductor company, then tests the hypothesis that the learning

curve eŒects were signi® cant in the country’s industry. The
® rst estimation uses the price data, based on the conven-

tional learning curve models. After ® nding out that this

estimation yields poor results in terms of coe� cients well

out of expected ranges and low t-statistics, the second esti-

mation employs yield data instead of prices as a dependent
variable. A signi® cant learning curve eŒect is found in the

estimation, with the learning ratio of 17% for 64K

DRAMs and 9% for 256K DRAMs, con® rming the learn-

ing hypothesis in the case of the Korean industry.

II . THE ECONOMIC LITERATURE ON

LEARNING3

Wright, an aeronautical engineer, reported in 1936 that the
direct labour cost of producing an airframe (fuselage of an

airplane) declined with the accumulated number of air-

frames of the same type produced. That is:

Y ˆ aXb …1†

where Y is the direct labour cost, X is the cumulative out-

put of airframes, a is the cost of the ® rst unit of airframe

(a > 0†, and b is the learning elasticity (0 5 b 5 ¡ 1),
which de® nes the slope of the learning curve.

In so far as Second World War airframe data were con-

cerned, every doubling of cumulative airframe output was

accompanied by an average reduction in direct labour

requirements of about 20% . This so-called `eighty per

cent curve’ is the precursor of the present-day learning

curve. Following Wright’s article, most research eŒort
has been directed at ® nding an appropriate functional

form of the learning curve and applying the theory to

diverse industries, using diŒerent proxy variables for learn-

ing, such as time, cumulative output, and so on.

Joskow and Rozanski (1979) apply the learning principle
to nuclear plant operations. There are two distinctive fea-

tures in the model: The ® rst one is that, unlike other mod-

els, they utilize capacity factor4 of nuclear plants as a

dependent variable in their model. For them, capacity fac-
tor re¯ ects power generation cost more accurately than do

price data, the usual proxy in other models. So the higher

its capacity factor, the lower is the average unit cost of
power generated.5

The general form of the learning curve to be estimated is:

y ˆ Ag…x†eu …2†

where y ˆ annual plant capacity factor; A ˆ asymptotic

value of the capacity factor; x ˆ increasing measure of

experience (i.e., cumulative output) (x > 0); and

g…x† ˆ function describing the nuclear operators’ learning
process.

The second feature of their model is that they extend this

general model to account for s̀upplier learning’ in addition

to `operator learning.’ As cumulative output increases,

capacity factor increases due to learning on the part of
the plant’ s operators. This is depicted as the function

g1…x†A1 in Fig. 1 that approaches an asymptote A1. The

eŒect of learning by the suppliers (e.g., plant designers and

engineers) responsible for building the plant are modelled

as a shift upward in the asymptotic capacity factor. This is
shown as a shift in the asymptote from A1 to A2.

The model to be estimated is:

PF ˆ A CAPbecVg…x† …3†

where PF ˆ plant capacity factor (see note 4 for de® ni-
tion); CAP ˆ gross plant capacity (i.e., rated capacity);

V ˆ the month during which the plant began commercial

474 S. Chung

Fig. 1. Supplier and operator learning

3
For those interested in history, structure, and dynamics of the semiconductor industry, refer to Kraus (1973), Sciberras (1977), Braun

and MacDonald (1978), Hazewindus and Tooker (1982), Dosi (1984), Malerba (1985), United Nations Centre on Transnational
Corporations (1986), Steinmueller (1987), Howell et al. (1988), Langlois et al. (1988), Green (1996) and Flamm (1996). However,
most of these studies focus on the US and European semiconductor industry. Some of these deal with the Japanese industry, but
only in relation to trade con¯ ict with the United States. In these publications, the semiconductor industry of Korea and Taiwan is only
treated as passing notes.
4

The annual capacity factor of a plant is de® ned as the energy generated (Y ) divided by the rated power output of the plant (CAP) times
the number of hours in the year (H ˆ 8760 except in leap years). That is, capacity factor PF…%† ˆ Y…WH†=‰CAP*…W†HHoursŠ. It is equivalent
to saying: capacity factor ˆ [actual energy generated]/[potential capacity*time].
5

The capacity factor in nuclear power generation is notionally identical to the yield factor in the semiconductor industry.
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operation (a measure of the vintage of the plant); and

g…x† ˆ operators’ learning function.6

Except the constant term A, each term in the equation

represents a diŒerent source of learning: The ® rst term

represents supplier learning, the second one the eŒect of

time and the third operator learning. The regression results

reported in Joskow and Rozanski (1979) show that the
learning eŒect is important in nuclear plant operations,

with learning rate approximately 5% per annum.

Generally, these empirical studies con® rm the import-

ance of learning phenomenon in reducing costs in their

respective industries. It will now be seen how these learning

economies has shaped the structure of the semiconductor
industry.

Gruber (1992) comes up with the following learning

equation for memory chips:

Pijt ˆ AQ­
ijtV

®
ijtH

¯
ijt exp …uijt† …4†

where A ˆ constant, price of the ® rst unit produced;

Pijt ˆ average real selling price for memory chips of type

i and generation j in year t (proxy for cost); Qijt ˆ annual

shipments for memory chips of type i and generation j in

year t; ­ ˆ indicator of static economies of scale (­ < 0†;
Vijt ˆ Qijt, cumulative shipments for memory chips of

type i and generation j up to year t; ® ˆ learning elasticity

(® < 0†; Hijt ˆ age of memory device, or time elapsed since

production began, i.e., Hijt ˆ 1 for the ® rst year when

generation j is introduced; ¯ ˆ indicator of the eŒect of
generation age (alternative indicator for learning by

doing); and uijt ˆ random error term.

Taking log for each term:

pijt ˆ ¬i ‡ ­ iqijt ‡ ® i¸ijt ‡ ¯ihijt ‡ uijt …5†

where lower cases indicate logarithms. From this he ® nds

the results as shown in Table 1.

Gruber ® nds no signi® cant learning for DRAMs and

SRAMs. Only for EPROM did he ® nd a signi® cant learn-

ing, which is somewhat counterintuitive. His model meas-

ures the learning eŒects, with cumulative shipments of
semiconductor devices and the elapse of time; as well as

static economies of scale, with annual shipments of mem-

ory chips. The reason he uses average selling prices as a

proxy for costs is not diŒerent from others; i.e., the un-

availability of cost data. So he reiterates the conditions
under which reliable estimates of the learning curve can

be obtained from price data. That is, (1) price-cost margins

are constant over time, (2) price-cost margins change in a

way controlled for by other variables, or (3) changes in the

margin are small in relation to changes in marginal cost.7

Then he goes on to say that the condition (1) and possibly
condition (3) are hard to apply to the semiconductor pro-

duction, since it is well known that in this industry pro® t

margins ¯ uctuate considerably over the life cycle of a gen-

eration of chips.

Nevertheless, he argues that these ¯ uctuations can be
controlled for by using variables that are closely correlated

with the margins. That is, he says that the time pro® le of

pro® t margins for a given generation is U-shaped. In other

words, the margins are large at the beginning and at the

end of the product life cycle, while in-between margins are
depressed due to entry of ® rms and strong competition.

Current shipments for a given generation have a time pro-

® le which is inversely related to the time pro® le of pro® t

margins. Thus the ¯ uctuations of the margins can be con-

trolled for by the current shipments variable. But given the

dramatic changes in the conditions of competition over the
product cycle, price-cost margins might decline steeply as

the product matures, which invalidates the Gruber’s pro-

cedure to control for ¯ uctuations in price-cost margins.8

III . REGRESSION ANALYSIS OF THE

LEARNING CURVE MODEL

The learning-by-doing model

In many manufacturing operations in which tasks are per-

formed relatively in a repetitive manner, it has been

reported that workers tend to learn from their experiences
thereby reducing the time and costs it takes to complete

given tasks. Many empirical studies have so far attempted

to ® nd out signi® cant cost-reduction eŒects of a cumulative

production experience.

Con® ning the focus on the semiconductor industry,
Webbink (1977) reports a coe� cient of ¡0:40 on cumula-

tive production, indicating that, with every doubling of

cumulative output, cumulative average price falls by

24% . Dick (1991) reports regressions of industry price on

lagged cumulative production (an aggregate of US and
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Table 1. Summary of regression results

EPROM DRAM SRAM

Economies of scale *
Learning curve *
Generation age * *

Note: * Indicates signi® cant presence.

6
In Joskow et al. g…x† is speci® ed as e

k=x
. They say this form has the advantage that it can be linearized easily and so simpli® es

estimation.
7

Lieberman (1984).
8

For example, each generation of memory chip is introduced by a pioneering ® rm, and later on faces considerable competition, thus
being forced to cut price-cost margins.
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Japanese ® rms) of 1K and 4K DRAMs based on annual

data for 1974± 1980 and 1976± 1981, respectively. He ® nds a

19% learning curve in 1K DRAMs and a 7% learning

curve in 4K DRAMs. Gruber (1992) estimates similar

models for DRAMs, EPROMs, and SRAMs, but ® nds

no signi® cant learning for DRAMs. Irwin and Klenow

(1994) use broader dataset encompassing quarterly, ® rm-

level data on seven generations of DRAMs over 1974±

1992, for which they ® nd average of 20% learning curve

on cumulative output.

Since cost data are kept secret by companies and thus

di� cult, if not impossible, to obtain, most empirical learn-

ing curve studies, including those mentioned above, have

proxied unit costs with a real price variable and then

regressed the log of real price on a constant term and the

log of cumulative output. This procedure introduces a

major problem and makes separate identi® cation of the

learning curve eŒect very di� cult. When one uses price

data for the dependent variable, several problems arise.

For one thing, the justi® cation for using the proxy is

given by the assumption that prices move fairly in synchro-

nization with costs, with a certain constant markup. In

other words, it assumes that price-cost margins are con-

stant over time, price-cost margins change in a way con-

trolled for by other variables, or changes in the margin are

small in relation to changes in marginal cost.9

Yet, given the tumultuous state of competition in the

semiconductor market in which each generation of product

is introduced by a leading ® rm and later faces a large num-

ber of competitors resulting in a substantial drop in prices

as the product matures, price-cost margins cannot be stable

over time, rather they decline steeply.10 It is even more so in

the case of the East Asian semiconductor producers,

including the Japanese and the Korean ® rms, who have

frequently been the target of dumping accusations which

alleged that their semiconductor components were sold at

prices below actual production costs.

Aside from this di� culty, there is another problem in

using a proxy variable. As evidenced from the 1996± 1997

downturn in the semiconductor market, the price move-

ments in the semiconductor market before and during the

period have largely been dictated by the forces of supply

and demand, rather than by the learning principle by which

prices fall continuously over time. Nearly three years from

1993 to 1995, the semiconductor prices, notably those of

memory chips, have been propped up by unprecedented

high demand from personal computer manufacturers,

bringing in pro® t margins of over 70% for some chip

makers. As the market conditions reversed in early 1996,

however, the chip prices fell to a level comparable to or

lower than its production costs.11 Under these circum-
stances, it is hard to expect the price-cost margins are

within a certain stable range, let alone constant. This poss-

ible wide divergence between prices and costs forces us to

reconsider the feasibility of the price proxy.

To see this point more clearly, suppose that there are two
® rms with identical learning curve experiences. Assume

that one ® rm adopted a forward pricing strategy in which

the price was initially set very low, thereby increasing

demand, market share, and production, while the other

® rm adopted a `cream-skimming’ pricing strategy in

which the initial price was set very high and lowered gra-
dually (Intel is a typical ® rm that has adopted the pricing

strategy of cream skimming). If one regressed price on

cumulative production for these two ® rms, one would

obtain very diŒerent estimates of the learning curve elasti-

city, even though the potential learning curve eŒects were
identical by assumption. If, instead, unit cost data had been

adopted, this diŒerence would not have occurred. It shows

that it is preferable to adopt unit cost rather than price data

in estimating learning curve parameter, since using price

data confounds the eŒects of pricing strategy with `pure’
learning curve eŒects.

In general, the learning curve model estimates the extent

to which the accumulation of production experience con-

tributes to the reduction of costs. The simplest and most

commonly used form of the learning curve is as follows:

Ct ˆ AV¬1
t eut …6†

where Ct is unit cost of production in time period t, Vt is
cumulative output produced up to time period t, A is the

cost of the ® rst unit of output, ¬1 is the learning elasticity

(0 5 ¬1 5 ¡ 1), and ut is a stochastic disturbance term.

Equation 6 can be rewritten in logarithmic form as

ln Ct ˆ ln A ‡ ¬1 ln Vt ‡ ut …7†

The learning curve elasticity parameter ¬1 can be esti-

mated by ordinary least squares, provided that relevant
data on unit costs and output are available. The following

formula for log transformations implies that every time

cumulative experience doubles, cost will decline to s per

cent of its previous level:

s ˆ 2¬1 …8†

Therefore, if cost declines to 70% of its previous level as

cumulative output doubles, then the learning curve is said

to have a 70% slope. However, when one runs a simple

regression for a model such as Equation 7, regressing unit

476 S. Chung

9
This assumption is found in Lieberman (1984) and Gruber (1994a).

10
Irwin and Klenow (1994, p. 1209).

11
For 4M DRAM, the price fell as low as $2.50, a level that industry experts say is below production costs. A break-even point for

memory chips is approximately a dollar per megabit; for example, it is $4 for 4M DRAMs and $16 for 16M DRAMs.
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production cost on cumulative output, it is often di� cult to

distinguish the cost-reducing eŒects of learning from that
of scale economies. Thus the learning curve elasticity may

be over- or under-estimated by omitting the variable repre-

senting scale economies. In order to separate the two

eŒects, we add a current output variable to the Equation

7 as follows:

ln Ct ˆ ln A ‡ ­ 1 ln Vt ‡ ­ 2 ln Xt ‡ !t …9†

where Xt is current output, ­ 2 is a coe� cient representing
the extent to which economies of scale contribute to cost

reduction, and ­ 1 is same as ¬1 in Equation 6, and !t is

random disturbance term.

By running both the simple regression on Equation 7

and the multiple regression on Equation 9, we can ® nd
the diŒerence in coe� cients for cumulative output V . The

bias resulting from omitting ln Xt from the learning curve

equation is called the `omitted variable bias.’ 12 To analyse

the issues of omitted variable bias, it is convenient to intro-

duce a new equation, called an auxiliary regression equa-

tion, in which the omitted variable ± in this case ln Xt ± is
related to the included variable ln Vt and a disturbance

term "t.

ln Xt ˆ ¯0 ‡ ¯1 ln Vt ‡ "t …10†

Now label the least-squares estimates of the ¬’ s, ­ ’ s, and

¯’ s as a’ s, b’ s, and d ’ s, respectively. The relationship

between a1 (the least squares estimate of ¬1) and b1 (the

least squares estimate of ­ 1) can be shown to be as follows:

a1 ˆ b1 ‡ d1b2 or a1 ¡ b1 ˆ d1b2 …11†

The bias from omitting ln Xt is simply equal to a1 ¡ b1

which is equal to d1b2. This omitted variable bias will be

zero only if at least one of the following two conditions is

satis® ed:

(1) d1 ˆ 0, i.e., the log of current output and cumulative

output are uncorrelated;

(2) b2 ˆ 0, i.e., unit cost of production does not depend

on current production. Alternatively, returns to scale

are constant.

If neither of the two conditions is met, an omitted vari-
able bias will result, meaning that if one estimated the

learning curve elasticity using Equation 7 and omitting

ln Xt, one would obtain a biased estimate of the true learn-

ing curve parameter. In many cases, one might expect
returns to scale to be increasing, so it is plausible to expect

that a1 ¡ b1 will be negative. Further, since a1 and b1 are

typically negative in value, a1 ¡ b1 < 0 corresponds to b1

being smaller in absolute value than a1. In such a case,

estimation of the simple learning curve equation yields a

larger estimate of the learning curve elasticity (in absolute
value) than if one includes the current output variable as in

Equation 9. Hence in this case the learning curve elasticity

is overestimated in absolute value.13

The model with price variable

The ® rst equation to be estimated would be the one based
on price dependent variable as in most of the conventional

models. This way, the problems of the price proxy

explained above can be veri® ed. The model is as follows:

Pi ˆ AV ­ 1

i X ­ 2

i eui …12†

where P is average selling price in real terms, i is type of

memory chips, and the rest are identical to the notations in

Equations 6 and 9.
Taking log in each term of Equation 12,

ln Pi ˆ ln A ‡ ­ 1 ln Vi ‡ ­ 2 ln Xi ‡ ui …13†

Following the modi® ed model used in Joskow and

Rozanski (1979) which employs the inverse of cumulative

output:

ln Pi ˆ ln A ‡ ­ 1 ln …1=Vi† ‡ ­ 2Xi ‡ ui …14†

This functional form has the advantage that it can be
linearized easily and simpli® es estimation.14 To obtain a

real price for the memory chips, the average selling prices

have been divided by the US implicit price. There are two

reasons for choosing the US price de¯ ator to calculate the
real prices: First, the average selling price data provided by

Dataquest, the source of the dataset, are quoted in US

dollars; and second, the US market has been the

largest market for memory chips for most of the observa-

tion period.15

There are 350 observations from the ® rst quarter of 1994
to the second quarter of 1996 in the dataset for 19 com-

panies (4M DRAMs) and for 16 companies (16M

DRAMs). In addition to estimations of individual com-

pany learning parameters, industrywide learning curve

has been estimated for both memory products. The regres-

sion results based on ordinary least squares are reported in
Tables 2 and 3.

As can be seen in Tables 2 and 3, regression results are

completely out of expectations based on our hypothesis

that as cumulative output increases real prices decrease,
thus taking negative coe� cients in ln …1=Vi† terms. In the

case of 4M DRAMs, all the regressions for 19 individual

companies yielded positive coe� cients in their cumulative

output variable (ranging from 0.044 to 0.490), as opposed

The learning curve and the yield factor 477

12
Berndt (1991, pp. 76± 8).

13
For further discussion of omitted variable bias, see Section III subsection 3 ± the yield model.

14
Joskow and Rozanski (1979) p. 164.

15
Gruber (1994a), p. 47, note 5.
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to their expected range of ¡1 to 0. In the case of 16M

DRAMs, only ® ve out of 16 regressions yielded negative

coe� cients in their cumulative output variable (¡0.010 to

¡0.256). For all the ® ve cases, however, coe� cients are

found to be insigni® cantly based on t-test (t-statistics

below 2.0).

It is also noteworthy that four out of 19 cases in 4M

DRAMs and only one out of 16 cases in 16M DRAMs

produced the Durbin± Watson statistic higher than 2.0,

which indicates the positive serial correlation in disturb-

ance terms.16 Some of the estimates have low F -statistics,17

implying that none of the independent variables in¯ uences

the dependent variable, thus the speci® cation is meaning-

less. However, the subject is not gone into in detail because

the estimates obtained above are well out of the expected

range anyway. The results for overall industry estimations

478 S. Chung

Table 2. Regression results for 4M DRAMs (price as dependent variable)

Cumulative Current
Company Constant output output R

2
D± W stat F-stat

Samsung ¡0.334 0.092 0.891 0.890 1.676 28.202
(¡0.554) (2.804) (5.989)

Hyundai 2.047 9.276 0.499 0.819 1.255 15.885
(7.537) (5.635) (4.128)

LG Semicon 2.217 0.306 0.566 0.821 1.131 16.083
(1.268) (5.630) (4.135)

Texas Ins 1.132 0.324 0.835 0.727 0.542 9.325
(1.669) (4.237) (2.984)

Micron Tech 1.818 0.358 0.675 0.871 0.927 23.727
(7.630) (6.727) (5.240)

Motorola 0.102 0.090 1.264 0.964 2.549 92.906
(0.377) (4.545) (10.925)

IBM 2.047 0.305 0.578 0.817 0.871 15.611
(7.819) (5.556) (4.037)

NEC 1.196 0.214 0.658 0.757 1.917 10.905
(1.956) (4.377) (3.359)

Toshiba ¡0.537 0.145 1.140 0.865 3.048 22.364
(¡0.745) (4.135) (5.184)

Hitachi ¡0.342 0.232 1.092 0.649 1.171 6.467
(¡0.222) (5.533) (2.339)

Fujitsu 2.201 0.279 0.483 0.506 0.586 3.586
(3.100) (2.175) (1.202)

Mitsubishi ¡1.631 0.198 1.826 0.582 0.954 4.872
(¡0.656) (2.942) (1.899)

Oki 0.781 0.113 0.825 0.928 1.567 45.242
(2.448) (4.178) (7.508)

Matsushita 3.041 0.044 ¡0.270 0.586 0.827 4.954
(14.651) (0.459) (¡1.422)

Nippon Steel 2.712 0.184 0.119 0.458 0.690 2.963
(19.331) (1.483) (0.592)

Sharp 2.485 0.172 0.090 0.548 0.754 4.239
(16.701) (1.379) (0.610)

Siemens 1.996 0.101 0.365 0.966 2.389 99.070
(19.107) (5.793) (11.464)

Mosel-Vitelic 2.652 0.122 ¡0.079 0.629 1.024 5.943
(22.455) (1.559) (¡0.916)

Vanguard 2.502 0.490 0.489 0.993 2.938 72.792
(48.637) (9.167) (6.584)

Industry Total ¡1.209 0.326 1.032 0.808 0.730 14.748
(¡1.009) (5.421) (3.970)

Note: For raw data which these estimates are obtained, see Chung (1998).
t-statistics in parentheses. Number of observation for each company estimation (ˆ n) is 10.

16
In the next estimation using yield factor data, the problem of positive serial correlation indicated by a low Durbin± Watson statistic will

be corrected by adding to the equation the ® rst-order autocorrelation term AR(1).
17

For example, Fujitsu and Nippon Steel Semiconductor in the case of 4M DRAMs, Micron Technology and Nippon Steel for 16M
DRAMs have low F-statistics, assuming the critical value of F-statistic is 4.
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(for both 4M and 16M DRAMs) are similar to those of the

individual company regressions, yielding positive coe� -

cient for cumulative output variables or negative but insig-

ni® cant coe� cients. Unreported estimations of simple

regressions, regressing the log of real price against the log

of cumulative output alone, did not improve the results.

The reasons for this `bad ® t’ can be found in the follow-

ing reasons. First the quarterly average rate of price drop

has not been high enough to produce a substantial learning

curve eŒect. The quarterly rate of price fall has been 5.30%

for 4M DRAMs and 7.84% for 16M DRAMs for the two

and half year period. Excluding the last two observations

(the ® rst and second quarter of 1996) in which the price

drop has been steepest, the average rate of drop has been

only 0.44% and 2.44% , respectively. This is because the

period from 1993 to 1995 is characterized by a strong

demand from PC manufacturers that has propped up the

chip prices, reversing the usual pattern of steady and sub-

stantial fall in prices. Second, quarterly output has been

increasing at a slower rate. Especially in the case of 4M

DRAMs, the quarterly rate of increase in industry total

output has been only 2.44% .18 The observation period of

1994 to 1996 has corresponded to the transition period in

which the 4M DRAM generation was being phased out, so

the output has not been increased in spite of the high

demand. Third, the initial period in which the mass pro-

duction has begun is not captured in the analysis for both

products. In the case of 4M DRAMs, the mass production
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Table 3. Regression results for 16M DRAMs (price as dependent variable)

Cumulative Current
Company Constant output output R2 D± W stat F -stat

Samsung 4.440 0.125 ¡0.082 0.739 1.202 9.908
(29.595) (0.872) (¡0.397)

Hyundai 4.173 0.513 0.525 0.866 1.655 22.562
(57.587) (4.101) (3.378)

LG Semicon 4.179 0.364 0.339 0.713 1.148 8.685
(34.319) (2.079) (1.344)

Texas Ins 4.121 0.294 0.231 0.689 0.973 7.754
(22.431) (0.796) (0.488)

Micron Tech 3.974 0.240 0.225 0.507 0.898 3.085
(17.513) (1.308) (0.890)

Motorola 3.940 0.159 0.015 0.713 1.022 8.708
(18.262) (0.726) (0.051)

IBM 4.057 0.241 0.168 0.659 0.963 6.768
(11.848) (0.476) (0.236)

NEC 4.318 ¡0.143 ¡0.451 0.864 0.535 22.184
(51.024) (¡1.331) (¡2.813)

Toshiba 4.372 ¡0.256 ¡0.696 0.723 1.442 9.155
(28.740) (¡0.642) (¡1.052)

Hitachi 4.282 ¡0.090 ¡0.382 0.820 1.398 15.966
(42.015) (¡0.628) (¡1.862)

Fujitsu 4.060 0.024 ¡0.192 0.804 1.342 14.372
(39.995) (0.194) (¡1.232)

Mitsubishi 4.100 ¡0.010 ¡0.214 0.673 0.941 7.210
(33.324) (¡0.032) (¡0.464)

Oki 4.066 0.273 0.179 0.700 0.871 8.148
(14.516) (1.022) (0.447)

Matsushita 3.428 ¡0.074 ¡0.359 0.966 1.063 99.818
(58.250) (¡10.803) (¡6.504)

Nippon Steel 6.454 0.793 1.652 0.870 3.386 3.347
(1.670) (1.461) (0.901)

Siemens 3.981 0.078 ¡0.133 0.684 1.125 7.751
(29.030) (0.497) (¡0.519)

Industry Total 4.766 ¡0.067 ¡0.320 0.731 1.211 9.531
(16.068) (¡0.246) (¡0.818)

Note: t-statistics in parentheses. Number of observation for each company estimation …ˆ n† is 10.

18
For 16M DRAMs, the average rate increase in quarterly output has been 35.05% , partially weakening the second claim that the not-

high-enough quarterly output increase was responsible for the bad ® t.
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has started from 1989, while that of 16M DRAMs from

1990. Given the dataset encompasses the years from 1994
to 1996, well after the products were introduced in the

market, it is understandable that a substantial part of the

learning curve eŒects is not represented in the observation.

The weak presence of the learning curve eŒect in the

dataset leads one to test if economies of scale have been
strong instead. The following model estimates the in¯ uence

of scale economies on real-price reduction by regressing the

log of real price against the log of inverse of shipments:

ln Pi ˆ ln A ‡ ­ 1…1=Xi† ‡ ui …15†

Since the serial correlation has been found in most of the

estimations, the term AR(1) is added to the equation.
Unreported estimations reveal that in the case of 4M

DRAMs seven out of 19 individual company regressions

had signi® cant economies of scale.19 For the industry as a

whole, the cost-reducing eŒect coming from economies of

scale turned out to be overwhelming 44.02% (correspond-
ing coe� cient is ¡0.837). However, in the case of 16M

DRAMs, none out of 16 regressions produced signi® cant

economies of scale, all of whose coe� cients are positive.

The yield model

Instead of using price data which yielded results that are

inconsistent with the learning hypothesis, yield data are

used as the dependent variable obtained from a Korean
semiconductor company, say Company A, for 64K and

256K DRAMs.20 This richer set of data includes yield

and shipment data for Company A from the ® rst quarter

of 1985 to the fourth quarter of 1993, consisting of 36

observations.21 All the estimates are obtained by ordinary

least squares.

The yield factor model to be estimated here is identical to
Equation 14 except that the price variable Pi is replaced by

the yield variable Yi as follows:

ln Yi ˆ ln A ‡ ­ 1 ln…1=Vi† ‡ ­ 2Xi ‡ ui …16†

where Y is yield factor, and the rest are identical to the
notations in Equations 6± 12.

A simple regression model is the one without a current

output variable ln Xi.

ln Yi ˆ ln A ‡ ¬1 ln …1=Vi† ‡ ui …17†

This way, we can estimate the learning parameter more
directly without employing proxy variable or complicated

procedures to estimate production costs. The only model

which analysed the semiconductor industry based on the

yield factor data is found in Gruber (1994a). However, its

dataset includes only 7 quarters for 4 generations of a sin-

gle product, EPROM from one European ® rm, SGS-
Thomson, which is too limited to deduce any meaningful

conclusion. Therefore, the current yield model that covers

quarterly data of a Korean company for nine years for two

important memory items can be considered a major

improvement of the model.
First, in the case of 64K DRAMs, if one runs a simple

regression where the log of yield factor is regressed against

the log of cumulative output, the coe� cient for ln …1=Vi†
turns out to be ¡0.182 with the corresponding learning

ratio of 11.843% , which implies that every doubling of

cumulative output would result in the yield improvement
of 11.8% , which in turn reduces the production costs by

the same amount. Then we add a current output variable

ln Xi and run a multiple regression to separate the learning

eŒect from the cost-reducing eŒect of economies of scale.

The estimation results in the learning coe� cient of ¡0.176,
slightly lower in absolute value than that of the simple

regression with the learning ratio of 11.493% .

To see if omitting the current output variable would

result in an estimation bias, an auxiliary regression equa-

tion similar to Equation 10 is run.

ln Xi ˆ ¯0 ‡ ¯1 ln …1=Vi† ‡ "i …10a†

According to Equation 11, the sign of the diŒerence

between a1 (the least squares estimate of ¬1) and b1 (the
least squares estimate of ­ 1† determines whether the omit-

ting variable over- or under-estimates the coe� cient. That

is,

a1 ¡ b1 ˆ d1b2 …11†

(1) a1 ¡ b1 > 0 (the learning curve elasticity is under-

estimated when the current output variable is

omitted)
(2) a1 ¡ b1 ˆ 0 (the current output variable has no

correlation with yield; that is, constant returns to

scale)

(3) a1 ¡ b1 < 0 (the learning curve elasticity is overesti-

mated).

Plugging in coe� cients obtained from the estimation of
the auxiliary regression equation, a1 ˆ ¡0:182, b1 ˆ
¡0:176, d1 ˆ 0:111, and b2 ˆ ¡0:051, it is

¡0:006 º ¡0:005661. Since a1 ¡ b1 is negative, Equation

16 exhibits increasing returns to scale and the simple
regression Equation 17 overestimates the learning curve

elasticity.

In the case of 256K DRAMs, the simple regression pro-

duces the coe� cient of ¡0:165 for the ln …1=Vi† term and

480 S. Chung

19
`Signi® cant,’ means estimates that satisfy the following conditions: ¡1 < ­ 1 < 0, t-statistic> 2, and Durbin± Watson statistic > 2.

20
The source for the data, a high-ranking o� cial at the company’s corporate research institute, asked for anonymity, which will be

maintained throughout.
21

Actually the number of observation is 26 for 64K DRAMs and 32 for 256K DRAMs.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
W

as
hi

ng
to

n 
L

ib
ra

ri
es

] 
at

 1
7:

18
 2

9 
Se

pt
em

be
r 

20
12

 



the corresponding learning ratio of 10.807% . The estima-

tion for the multiple regression with the current output

variable ln Xi results in the learning coe� cient of ¡0:145

with the learning ratio of 9.572% .

Running an auxiliary regression equation to check

the presence of omitted variable bias yields following

numerical results: a1 ˆ ¡0:165, b1 ˆ ¡0:145, d1 ˆ ¡0:277,

and b2 ˆ 0:071; therefore, a1 ¡ b1 ˆ ¡0:020 º d1b2 ˆ
¡0:019667. That is, a1 ¡ b1 < 0 and Equation 16 exhibits

increasing returns to scale and the simple regression over-

estimates the learning curve elasticity. All the estimates for

both memory products are reported in Tables 4 and 5.

However, it is notable that Durbin± Watson statistics

turn out to be 1.476 for 64K and 0.941 for 256K

DRAMs which are well below 2, an indication of the pres-

ence of positive serial correlation in the residuals. In order

to incorporate the serial correlation in the equation, the

® rst-order autocorrelation term AR(1) is added. With the

new regression, there is a better ® t in terms of the Durbin±

Watson statistics close to or higher than 2 as shown in the

fourth row of each table.

As reported in Tables 4 and 5, the learning ratios of

16.841% (for 64K DRAMs) and 9.382% (for 256K

DRAMs) are consistent with the hypothesis that with

every doubling of cumulative output production yield

increases by the same percentage. However, the learning

slopes are not as steep as expected, usually reaching as

high as 30% . The reason for this rather low ratio can be

traced to the following fact: the year when Company A

introduced 64K DRAMs to the market was 1984, and

the ® rst year for 256K DRAMs was 1985; meanwhile,

the observation period in the analysis starts from 1985

and 1986, respectively, one year later than each product’s

market introduction year. Due to this lack of data for the

year the learning curve eŒect could have been most pro-

nounced, the learning curves for the two memory items are

estimated at approximately 17% and 9% as reported in the

tables.

Figures 2 and 3 have been plotted using the log of the

inverse of cumulative output as X-axis and the log of yield

as Y-axis. These learning curve diagrams resemble fairly

well the ones drawn by other studies, including, Joskow

and Rozanski (1979, p. 163).

Aside from the above empirical evidence which shows

that the Korean semiconductor industry has grown by

rapidly moving down the learning curve,22 there is an

The learning curve and the yield factor 481

Table 5. Regression results for 256K DRAMs (yield factor as dependent variable)

Regression Current Cumulative D± W Learning
type Constant output output R

2
stat F-stat ratio (% )

Simple ¡1.228 N.A. ¡0.165 0.893 0.703 250.085 10.807
(¡23.871) (¡15.814)

Multiple ¡1.290 0.071 ¡0.145 0.924 1.941 176.858 9.572
(¡27.176) (3.463) (¡13.690)

Regression ¡1.248 0.060 ¡0.142 0.903 2.119 83.731 9.382
with AR(1) (¡5.495) (1.484) (¡4.180)

Note: N.A.: Not applicable.
t-statistics in parentheses. Number of observation …n ˆ 32†

Table 4. Regression results for 64K DRAMs (yield factor as dependent variable)

Regression Current Cumulative D± W Learning
type Constant output output R

2
stat F-stat ratio (% )

Simple ¡1.378 N.A. ¡0.182 0.656 1.455 45.743 11.843
(¡11.700) (¡6.763)

Multiple ¡1.268 ¡0.051 ¡0.176 0.680 1.476 24.448 11.493
(¡8.883) (¡1.319) (¡6.569)

Regression ¡1.765 0.0003 ¡0.266 0.860 1.886 43.085 16.841
with AR(1) (¡11.470) (0.009) (¡9.087)

Note: N.A.: Not applicable.
t-statistics in parentheses. Number of observation …ˆ n† is 26.

22
Although the analysis based on yield and shipment data of a Korean company produced substantial learning eŒects for both memory

products, 17% for 64K DRAMs and 9% or 256K DRAMs, one cannot claim from the results that the Korean companies have moved
down the learning curve faster than any other ® rms in the advanced countries because there is no comparable dataset available for the
analysis.
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ample amount of anecdotal evidence demonstrating the

Korean industry’ s high production yield and resulting

high productivity. The yield of 4M DRAMs produced by

the Korean chip makers had, for example, run up to 95%

in 1995, the year at which the product had reached the

maturity stage. According to o� cials of a Korean com-

pany, although varied by company and product, the yield

of the Korean chip makers is in general 10% higher than

that of the Japanese, and the yield of Japanese chip makers

is again 10% higher than that of the American.

In the semiconductor manufacturing process, from raw

wafer manufacturing to circuit design, mask generation

and wafer processing, almost all processes are automated,

so there is little room for quality variations. In these pre-

assembly processes, the purity of silicon wafers, the quality

of processing chemicals, and the stricter standard of the

clean-room operations are important factors aŒecting the

processing yields. But at the stage of assembly and ® nal

inspection, human factors largely determine the production

yield. This is where ®̀ nger tips’ of young female workers of

Korea have proven important. For example, in a Samsung

assembly plant that employs 15 000 female workers, the

average age of assembly workers is 21, which is 10 years

younger than that of their counterparts in Japan.23 The

reason the Korean chip makers have been able to enjoy

higher yield is given also by the fact that, similar to the

cost advantage of the Japanese makers, most of the Korean
® rms are large conglomerates with a� liates in consumer

electronics, which require components with less stringent

performance standards than military or industrial-purpos e

chips, thus helping to achieve higher yields.

VI. CONCLUSION

The chip-making industry of Korea deserves special atten-
tion because of its great reliance of the production tech-

nology on foreign sources and its intense eŒorts to

internalize the imported technology into its own produc-

tion, thus making a good study subject for the learning-by-

doing theory. Nevertheless, no full-length academic endea-

vour has been made on the subject except some of the
contributions narrowly focusing on the case of one com-

pany. Such examples include Kim (1997) and Choi (1996).

When analysing an industry, there may be two distinct

approaches; detailed descriptive approach and quantitative

approach. Both are complementary in the sense that what
the quantitative part cannot account for can be explained

by the rich examples of the country’ s chip-making industry,

thus providing us with the whole picture of the industry

and its dynamics. However, this article has employed quan-

titative approach alone. Those who wish to understand the
Korean semiconductor industry more in depth may refer to

Chung (1998), which includes descriptive part as well as the

quantitative analysis.
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