
as neither C25 nor A26 is recognized specifically.
Although 3′hExo can remove the last three nu-
cleotides of the SL (9), further degradation is not
possible because the 3′-end of the shortened SL
can no longer reach the active site of 3′hExo in
the ternary complex (Fig. 3B), thereby explain-
ing how SLBP protects histone mRNAs from
excessive trimming by 3′hExo.

Besides recognizing the SL RNA, another
function of SLBP is the recruitment of U7 snRNP
and stabilization of its interaction with the his-
tone pre-mRNA for 3′-end processing (fig. S1)
(23, 29). The 20 residues immediatelyC-terminal to
the RBD of SLBP are required for this processing
(29). These residues are present in the recombinant
SLBP used in the current structural studies, but
they are disordered. A second region required for
processing is located in helix aB of the RBD,
especially the Tyr-Asp-Arg-Tyrmotif (Fig. 1B and
fig. S6), where mutation of the Asp and Arg resi-
dues to Gln and Cys, respectively, did not affect
binding but abolished processing (23). Our struc-
ture shows that these two regions are likely located
close to each other (fig. S6) and therefore also
identifies a surface feature of SLBP that is involved
in histone pre-mRNA 3′-end processing (fig. S14).
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Identifying Personal Genomes by
Surname Inference
Melissa Gymrek,1,2,3,4 Amy L. McGuire,5 David Golan,6 Eran Halperin,7,8,9 Yaniv Erlich1*

Sharing sequencing data sets without identifiers has become a common practice in genomics.
Here, we report that surnames can be recovered from personal genomes by profiling short tandem
repeats on the Y chromosome (Y-STRs) and querying recreational genetic genealogy databases.
We show that a combination of a surname with other types of metadata, such as age and state,
can be used to triangulate the identity of the target. A key feature of this technique is that it entirely
relies on free, publicly accessible Internet resources. We quantitatively analyze the probability of
identification for U.S. males. We further demonstrate the feasibility of this technique by tracing back
with high probability the identities of multiple participants in public sequencing projects.

Surnames are paternally inherited in most
human societies, resulting in their co-
segregation with Y-chromosome haplotypes

(1–5). Based on this observation, multiple genetic
genealogy companies offer services to reunite dis-
tant patrilineal relatives by genotyping a few dozen

highly polymorphic short tandem repeats across
the Y chromosome (Y-STRs). The association be-
tween surnames and haplotypes can be confounded
by nonpaternity events, mutations, and adoption of
the same surname by multiple founders (5). The
genetic genealogy community addresses these
barriers with massive databases that list the test
results of Y-STR haplotypes along with their cor-
responding surnames. Currently, there are at least
eight databases and numerous surnameprojectWeb
sites that collectively contain hundreds of thou-
sands of surname-haplotype records (table S1).

The ability of genetic genealogy databases to
breach anonymity has been demonstrated in the
past. In a number of public cases,male adoptees and
descendants of anonymous sperm donors used
recreational genetic genealogy services to genotype
their Y-chromosome haplotypes and to search the
companies’ databases (6–9). The genetic matches
identified distant patrilineal relatives and pointed
to the potential surnames of their biological fathers.

By combining other pieces of demographic in-
formation, such as date and place of birth, they fully
exposed the identity of their biological fathers.
Lunshof et al. (10) were the first to speculate that
this technique could expose the full identity of
participants in sequencing projects. Gitschier (11)
empirically approached this hypothesis by testing
30 Y-STR haplotypes of CEU participants in these
databases and reported that potential surnames
can be detected. [CEU participants are multigen-
erational families of northern and western Euro-
pean ancestry in Utah who had originally had their
samples collected by CEPH (Centre d’Etude du
Polymorphisme Humain) and were later recon-
sented to participate in the HapMap project.]
However, these surnames could match thousands
of individuals, and the study did not pursue full
re-identification at a single-person resolution.

Our goal was to quantitatively approach the
question of how readily surname inference might
be possible in a more general population, apply
this approach to personal genome data sets, and
demonstrate end-to-end identification of indi-
viduals with only public information. We show
that full identities of personal genomes can be
exposed via surname inference from recreational
genetic genealogy databases followed by Internet
searches. In all cases in which individuals were
studied who had donated DNA samples, the in-
formed consent statements they had signed stated
privacy breach as a potential risk and the data usage
terms did not prevent re-identification. Represent-
atives of relevant organizations that funded the
original studies were notified and confirmed the
compliance of this study with their guidelines (12).

As a primary resource for surname inference,
we focused on Ysearch (www.ysearch.org) and
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SMGF (www.smgf.org), the two largest public
genetic genealogy databases with free-of-charge,
built-in search engines. The interfaces of these
engines are quite similar and allow users to insert
a combination of Y-STR alleles and search for
matching records on the basis of genetic simi-
larity. The retrieved records contain surnames
typically with information about the patrilineal
line, such as geographical locations, potential
spelling variants, and pedigrees. In total, these
databases contain ~39,000 unique surname entries
from~135,000 records. The distribution of records
per surname is significantly correlated (R2 = 0.78,
P < 1.20 × 10−6) with surname frequencies in the
United States, suggesting an overall good repre-
sentation of this population (Fig. 1A).

To test the probability of surname inference,
we challenged the two databases with an orthog-
onal cohort of Y-STR haplotypes consisting of
34 markers (table S2) from 911 individuals, pri-
marily with Caucasian ancestry, whose surnames
are known (table S3). This cohort was compiled
from YBase, a distinct genetic genealogy data-
base, and contains individuals with 521 surnames
that segregate in the U.S. population. In each
haplotype query, our surname recovery algorithm
began by retrieving the database record with the
shortest time to most recent common ancestor
(TMRCA) with the input haplotype (fig. S1 and
table S4). Then, it calculated a confidence score
that the surname match of the retrieved record
is significantly better than other matches. If the
score passed a user-defined threshold, the algo-
rithm assigned the record’s surname to the input
haplotype; otherwise, it categorized it as “un-
known.”We tested the algorithmwith a range of
confidence thresholds to explore the trade-off be-
tween successful versus wrong recovery of sur-
names. Finally, we weighted the results using a
stratified sampling approach to reflect the fre-
quency of surnames in the U.S. population (13).

Our analysis projects a success rate of ~12%
(SD = 2%) in recovering surnames of U.S. Cau-
casian males (Fig. 1B and fig. S2). This rate can
be accomplished with a conservative threshold
that would return a wrong surname in 5% of cases
and label 83% of cases as unknown. Higher suc-
cess rates of up to 18% can be achieved at the
price of increased probability to recover an in-
correct surname. Because our input cohort is based
on individuals who were tested with genetic gene-
alogy services, our results are presumably mostly
relevant to socio-economic groups with high par-
ticipation in these services—namely, upper- and
middle-class U.S. Caucasians.

Combining the recovered surname with ad-
ditional demographic data can narrow down the
identity of the sample originator to just a few in-
dividuals. The analysis above indicated that most
recovered surnames are quite rare, with frequen-
cies of less than 1:4000 in the U.S. population,
corresponding to <40,000males (Fig. 1C and fig.
S3) (13). We considered a scenario in which the
genomic data are available with the target’s year
of birth and state of residency, two identifiers

that are not protected by the United States Health
Insurance Portability and Accountability Act
(HIPAA) (14). Searching individuals by year of
birth, state, and surname combinations is sup-
ported by various online public record search
engines, such as PeopleFinders.com or USA-
people-search.com. On the basis of extensive
simulations with the U.S. Census data, our re-
sults predict that year of birth and state alone

are weak identifiers and searches based on their
combination would match at least 60,000 U.S.
males in 50% of cases (Fig. 1D). However, when
surname information is added to the search, the
median list size shrinks to only 12males, which are
few enough matches to investigate individually.

Next, we established the feasibility of Illumina
sequencing to produce accurate Y-STR hap-
lotypes. Using lobSTR, an algorithm for STR

Fig. 1. Quantitative assessment of identification via surname inference. (A) The number of Ysearch and
SMGF records as a function of surname prevalence in the U.S. population. The best-fit line is shown in
blue. (B) Expected performance of surname recovery. The probability of successful recovery (closed bars)
and wrong recovery (open bars) is shown at different surname confidence thresholds. The star indicates
themiddle-range performance threshold that was described in themain text. (C) The expected distribution
of recovered surnames as a function of their prevalence. Most recovered surnames are expected to have a
frequency of 1:4000 individuals or less. (D) The cumulative distribution function of U.S. males with a
profile that matches a specific age, state, and surname combination (black) compared to the distribution
when only age and state are known (red). The median is labeled with a dashed line.

Fig. 2. The top five records retrieved after
searching Ysearch with the Y-STR haplo-
types of Michael Snyder, John West, and
Craig Venter. The expected number of gen-
erations to the MRCA is given in parenthe-
ses for each record. Searching with Craig
Venter returned a “Venter” record (closed
bar) as the top match.
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profiling from raw sequencing reads (15), we
processed 10 high-coverage male genomes from
the Human Genome Diversity Panel (HGDP).

lobSTR produced Y-STR haplotypes with an av-
erage number of 53 out of the possible 79 gene-
alogical markers (table S5). Comparing these
haplotypes to capillary electrophoresis results re-
vealed 99% accuracy. We further found that even
at lower sequencing coverage of 10×, informative
haplotypes can be obtained by lobSTR (fig. S4).
To test the ability to retrieve genetic genealogy
records with the Illumina haplotypes, we profiled
STRs from the genome of a U.S. Caucasian male
from our lab collection that was sequenced with
Illumina 100–base pair (bp) reads to a coverage
of 13×. In parallel, we submitted this sample to
the genealogy service of Sorenson Genomics and
created a Ysearch record based on their results. A
search with the Illumina haplotype returned his
Ysearch entry as a top record (fig. S5).

The National Center for Biotechnology Infor-
mation archives host a small number of genomes
from identified individuals, providing good test
cases for identification via surname inference. We
used lobSTR to extract Y-STR haplotypes from the
genomes of John West (16), Michael Snyder (17),
andCraigVenter (18) (table S6). SearchingYsearch
and SMGFwith theY-STR haplotypes ofWest and
Snyder did not return their surnames and resulted
in low matches to records with relatively ancient
MRCAs 23 to 28 generations ago (13). A search
with CraigVenter’s haplotype returned a clearmatch
to a “Venter” record that was concordant at all 33
comparablemarkers andwith an estimatedTMRCA
of less than eight generations (Fig. 2 and table
S7).We further testedwhether it would be feasible
to trace back Craig Venter by combining the in-
ferred surname with demographic profiling. A
query for “Surname: Venter; Year of Birth: 1946;
State: California” in online public record search
engines retrieved twomatching records of males,
one of whom was Craig Venter himself.

Surname inference from personal genomes puts
the privacy of current de-identified public data sets
at risk (19). We focused on the male genomes in
the collection of Utah Residents with Northern and
Western EuropeanAncestry (CEU). The informed
consent of these individuals did not definitive-
ly guarantee their privacy and stated that future
techniquesmight be able to identify them (20). To

test the ability to trace back the identities of these
samples from personal genomes, we processed
with lobSTR 32 Illumina genomes of CEU male
founders that reside in public repositories of the
1000 Genomes Project (21) and the European
Nucleotide Archive that were sequenced with read
lengths of at least 76 bp. Most of these genomes
were sequenced to a shallow depth of less than 5×
and produced sparse Y-STR haplotypes. We se-
lected the 10 genomes that had themost complete
Y-STR haplotypes with a range of 34 to 68 markers
to attempt surname recovery. Searching the ge-
netic genealogy databases returned top-matching
records with Mormon ancestry in 8 of the 10 in-
dividuals for whom the top hit had at least 12
comparable markers. Moreover, for four individ-
uals, the top match consisted of multiple records
with the same surname, increasing the confidence
that the correct surname was retrieved. This poten-
tially high surname recovery rate stems from a
combination of the deep interest in genetic geneal-
ogy among this population and the large family
sizes, which exponentially increases the number of
targeted individuals for every person who is tested.

In five surname recovery cases, we fully iden-
tified the CEU individuals and their entire families
with very high probabilities (Table 1). These five
cases belonged to three pedigrees, in two of which
the surnames of both the paternal and maternal
grandfathers were recovered. Our strategy for
tracing back individuals relied on the recovered
surnames as well as publicly available Internet re-
sources such as record search engines, obituaries,
and genealogical Web sites, and demographic
metadata available in the Coriell Cell Repository
Web site. The year of birth was inferred by subtract-
ing the ages in Coriell from the year of collecting
samples. Each complete pedigree re-identification
took 3 to 7 hours by a single person. The identified
families matched exactly to the corresponding
pedigree descriptions in the Coriell database: The
number of children, the birth order of daughters
and sons, and the state of residence were iden-
tical. All grandparents were alive in 1984, the year
that the CEU cell line collection was established
(22). In the two cases of a dual surname recovery
from both grandfathers, the surname of the father

Fig. 3. Illustrations of the three CEU pedigrees
(black) showing how genetic information from dis-
tant patrilineal relatives (arrow; red, patrilineal lines)
can identify individuals. Filled squares represent se-
quenced individuals. To respect the privacy of these
families, only abbreviated versions are presented.
The sex of the CEU grandchildren was randomized.
The numbers of grandchildren are not given.

Table 1. Comparison of CEU identification cases.

Feature Pedigree 1 Pedigree 2 Pedigree 3

Genome for surname recovery Paternal grandfather Maternal grandfather Paternal grandfather Maternal grandfather Father
Surname freq. in U.S.* Rare Rare Common Rare Rare
Meioses between target

and source
3 5 5 7 2

Relationship between target
and source

Nephew First cousin once removed Great-great nephew Second cousin
once removed

Grandchild

Supporting evidence State of residency,
pedigree structure,

age, and maiden name
are the same

State of residency,
pedigree structure,

age, and maiden name
are the same

State of residency,
pedigree structure
are the same

(ages are not given)
P (random match)† <5 × 10−9 <5 × 10−6 <10−5

*Common: surnames with a prevalence of >10−4; Rare: surnames with a prevalence of ≤10−4. †The estimated probability of finding at least one family with the same characteristics after
scanning all Utah households.
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and the maiden name of the mother matched ex-
actly to the grandfathers’ surnames, substantially
increasing the confidence of the recovery. Coriell
also lists the ages (23) during sample collection
for these two pedigrees, which agreed with the
age differences of all tested cases with the iden-
tified family members. Using genealogical Web
sites, we traced the patrilineal lineage that con-
nects each identified genome through theMRCA
to the record originator in the genetic genealogy
database (Fig. 3). This analysis revealed that two
to seven meiosis events link the CEU genome to
the record source. Finally, we calculated that the
probability of finding random families in the Utah
population with these exact demographic charac-
teristics is less than 1 in 105 to 5 × 109 (13). In
total, surname inference breached the privacy of
nearly 50 individuals from these three pedigrees.

This study shows that data release, even of a
fewmarkers, from one person can spread through
deep genealogical ties and lead to the identifica-
tion of another person who might have no ac-
quaintance with the person who released his
genetic data. The propagation of information
through shared male lines amplifies the range
of identification, allowing ~135,000 records to
potentially target several million U.S. males. An-
other feature of this identification technique is
that it entirely relies on free, publicly available
resources. It can be completed end-to-end with
only computational tools and an Internet connec-
tion. The compatibility of our technique with pub-
lic record search engines makes it much easier to
continue identifying other data sets in the same
pedigree, including female genomes, once one
male target is identified. We envision that the
risk of surname inference will grow in the future.
Genetic genealogy enthusiasts add thousands
of records to these databases every month. In ad-
dition, the advent of third-generation sequencing
platforms with longer reads will enable even higher
coverage of Y-STRmarkers, further strengthening
the ability to link haplotypes and surnames.

Similar to other genetic privacy issues (24–30),
preventing surname inference from public whole-
genome data sets might be quite challenging.Mask-
ing Y-STRmarkers could limit the effectiveness of
the method presented in this study, but this ap-
proach is not sustainable (13). Our analysis sug-
gests that Y-STR haplotypes can be imputed back
from single-nucleotide polymorphisms (SNPs) on
the Y chromosome (Y-SNPs) when a large refer-
ence set ofmale genomeswill be available (fig. S6).
In addition, community efforts, such as the Y
Chromosome Genome Comparison, have already
started exploring the association between Y-SNPs
and surnames (table S1) and might allow bypass-
ing Y-STRmasking.We also posit that restricting
genetic genealogy information is not practical, as
some of the data are already scattered in multiple
end-user Web sites and genealogy mailing lists.

Existing policy tools, such as controlled-access
databases with data use agreements, maymediate
the exposure of genomic information to surname
inference. However, in our view, the appropriate

response to genetic privacy challenges is not for
the public to stop donating samples or for data
sharing to stop. These would be devastating re-
actions that could substantially hamper scientific
progress. Rather, we believe that establishing clear
policies for data sharing, educating participants
about the benefits and risks of genetic studies
(31), and the legislation of proper usage of genetic
information (32) are pivotal ingredients to sup-
port the genomic endeavor.
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GDE2 Promotes Neurogenesis by
Glycosylphosphatidylinositol-Anchor
Cleavage of RECK
Sungjin Park,1* Changhee Lee,1* Priyanka Sabharwal,1 Mei Zhang,1

Caren L. Freel Meyers,2 Shanthini Sockanathan1†

The six-transmembrane protein glycerophosphodiester phosphodiesterase 2 (GDE2) induces
spinal motor neuron differentiation by inhibiting Notch signaling in adjacent motor
neuron progenitors. GDE2 function requires activity of its extracellular domain that shares
homology with glycerophosphodiester phosphodiesterases (GDPDs). GDPDs metabolize
glycerophosphodiesters into glycerol-3-phosphate and corresponding alcohols, but whether
GDE2 inhibits Notch signaling by this mechanism is unclear. Here, we show that GDE2, unlike
classical GDPDs, cleaves glycosylphosphatidylinositol (GPI) anchors. GDE2 GDPD activity
inactivates the Notch activator RECK (reversion-inducing cysteine-rich protein with kazal
motifs) by releasing it from the membrane through GPI-anchor cleavage. RECK release
disinhibits ADAM (a disintegrin and metalloproteinase) protease-dependent shedding of
the Notch ligand Delta-like 1 (Dll1), leading to Notch inactivation. This study identifies a
previously unrecognized mechanism to initiate neurogenesis that involves GDE2-mediated surface
cleavage of GPI-anchored targets to inhibit Dll1-Notch signaling.

Thetransition from cellular proliferation to
differentiation is tightly controlled so as
to ensure appropriate numbers of distinct

cell types are formed and to prevent the deple-
tion or uncontrolled proliferation of progenitor
cells. Glycerophosphodiester phosphodiesterase 2

18 JANUARY 2013 VOL 339 SCIENCE www.sciencemag.org324

REPORTS



DOI: 10.1126/science.1229566
, 321 (2013);339 Science

 et al.Melissa Gymrek
Identifying Personal Genomes by Surname Inference

 This copy is for your personal, non-commercial use only.

 clicking here.colleagues, clients, or customers by 
, you can order high-quality copies for yourIf you wish to distribute this article to others

 
 here.following the guidelines 

 can be obtained byPermission to republish or repurpose articles or portions of articles

 
 ): April 11, 2015 www.sciencemag.org (this information is current as of

The following resources related to this article are available online at

 http://www.sciencemag.org/content/339/6117/321.full.html
version of this article at: 

including high-resolution figures, can be found in the onlineUpdated information and services, 

http://www.sciencemag.org/content/suppl/2013/01/17/339.6117.321.DC2.html 
http://www.sciencemag.org/content/suppl/2013/01/16/339.6117.321.DC1.html 

can be found at: Supporting Online Material 

 http://www.sciencemag.org/content/339/6117/321.full.html#related
found at:

can berelated to this article A list of selected additional articles on the Science Web sites 

 http://www.sciencemag.org/content/339/6117/321.full.html#ref-list-1
, 6 of which can be accessed free:cites 23 articlesThis article 

 http://www.sciencemag.org/content/339/6117/321.full.html#related-urls
33 articles hosted by HighWire Press; see:cited by This article has been 

 http://www.sciencemag.org/cgi/collection/genetics
Genetics

subject collections:This article appears in the following 

registered trademark of AAAS. 
 is aScience2013 by the American Association for the Advancement of Science; all rights reserved. The title 

CopyrightAmerican Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. 
(print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by theScience 

 o
n 

A
pr

il 
11

, 2
01

5
w

w
w

.s
ci

en
ce

m
ag

.o
rg

D
ow

nl
oa

de
d 

fr
om

 

http://oascentral.sciencemag.org/RealMedia/ads/click_lx.ads/sciencemag/cgi/reprint/L22/1374065112/Top1/AAAS/PDF-Bio-Techne.com-Admarc-1714222/Bio-techne-Extended-PDF.raw/1?x
http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/about/permissions.dtl
http://www.sciencemag.org/content/339/6117/321.full.html
http://www.sciencemag.org/content/suppl/2013/01/16/339.6117.321.DC1.html 
http://www.sciencemag.org/content/suppl/2013/01/17/339.6117.321.DC2.html 
http://www.sciencemag.org/content/339/6117/321.full.html#related
http://www.sciencemag.org/content/339/6117/321.full.html#ref-list-1
http://www.sciencemag.org/content/339/6117/321.full.html#related-urls
http://www.sciencemag.org/cgi/collection/genetics
http://www.sciencemag.org/

