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SUMMARY 
The multifactorial model for the inheritance of disease liability (Falconer [1965]) is 

discussed. In this model, the probability that an individual has the disease depends on the 
value of some underlying continuous quantity x. The quantity x is assumed to have a 
genetic component leading to correlations between relatives. For certain family groups, the 
probabilities of all possible patterns of disease occurrence are shown to be calculable from 
single integrals involving only univariate Normal density and cumulative distribution 
functions. Using these probabilities, the recurrence risk for an individual can be calculated 
from a knowledge of the occurrence of the disease in the family. Relative recurrence risks 
are tabulated for individuals belonging to families in which there is information on one or 
both parents, or on two or three full-sibs (or, equivalently, one parent and one or two full- 
sibs). Recurrence risks in families containing a pair of monozygous twins are also given. 

1. INTRODUCTION 

Models have been proposed for disease liability in which the probability 
that an individual succumbs to the disease depends on the value of some 
underlying quantity, x. This quantity is generally assumed to have a genetic 
component leading to correlations between relatives (see, e.g. Carter [1969], 
Edwards [1969], Falconer [1965; 1967] and Smith [1970; 1971]). By a suitable 
choice of origin and scale, the mean and standard deviation of the distribution 
of x over the population at risk can be taken as 0 and 1 respectively. If the 
distribution of x is continuous, then a suitable transformation can always 
be found to transform the distribution to Normality. We shall henceforth 
assume that this transformation has been carried out. The x-values of members 
of the same family will be assumed to be correlated, and the joint distribution 
of these x-values to be multi-Normal with the correlation coefficients repre- 
senting the effects of genetic correlation, common environment, and, possibly, 
infections within the family. 'Models of this kind have been suggested for 
liability to, among others, the following diseases: congenital pyloric stenosis, 
diabetes mellitus, peptic ulcer, and talipes equinovarus (club foot) [see 
references]. The model has been tested for some of these diseases but little 
has been so far achieved in determining the nature of the underlying 
quantities, x. 

We shall write fk (x1 , X2, * , Xk; LO) for the density function of the k- 
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932 BIOMETRICS, DECEMBER 1972 

variate standardized Normal distribution with correlation matrix e, and 
S(x) for the probability that an individual with value x succumbs to the 
disease. The (i, j)th element of e will be written pii . The probability that 
all k members of the family succumb to the disease is then 

r+ r0+ r0 + 0 
f1y f1 . 

f 
fk (Xl i X2 Xk 

*S(xl)S(x2) ... S(x,) dxl dx2 ... dXk, (1.1) 

provided only that the probabilities of any set of relatives succumbing to 
the disease are independent given their respective x values. The probability 
that any particular set or nuinber of relatives succumbs, and the remainder 
do not, can be calculated from integrals of the same form as (1.1) but with 
the S(x) functions of those not succumbing replaced by [1 - S(x)]. This 
leads to a number of integrals of the same form as (1.1) but of lower, or the 
same, dimension. 

Great simplification results if the S(x) function can be assumed to be of 
a sigmoid form i.e. 

S(x) = x- ), 
where 

(Z= exp _ {_t2} dt, 

is the cumulative standard Normal distribution function. ,u is then the value 
of x at which there is a probability of - of succumbing to the disease and 1/l 
is a measure of the sensitivity of the probability to the value of x. The prob- 
ability that all k relatives succumb is then 

r+ 0+ co + 0 J J y y~~ (Xl, X2, Xk;) 

-(X~~~~~~A X A - A 

( 
4 

(f ).*.*. O(- - dxi dX2 
... 

dXk. 

Because all the integrals are from - o to + o, this is the probability that 

Z < Z2 < Zk < 

where zi (i = 1, 2, k, ) are uncorrelated standardized Normal variables 
distributed independently of xI, x2 , xk . This probability is also the 
probability that 

1 - V(1 + o2) < - , 

2 =2 _1+ 2 < -e, ..., Yk = Zk ( Xk < -e Y2 + a2) ~V(+ a2) 
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MODEL FOR INHERITANCE OF LIABILITY TO DISEASE 933 

where 

e- A 0 (1 + _2) 

and Yi, Y2, , k are standardized Normal variables with correlation matrix 
9* where p* = pii/(l + 0_2)(i 3? j). Therefore the probability that all k 
relatives succumb is 

J-e 1J X fk (Y1 Y2 , , Yk ; Q*) dy1 dY2 dyk . (1.2) 

The probability that any particular set or number of relatives succumb 
and the rest do not is of the same form as (1.2) but with the integrals for 
those who do not succumb having lower and upper limits -0 and + c 
instead of - o and -0. This leads to a number of integrals of exactly the 
same form as (1.2) but of lower, or the same, dimension. This will be il- 
lustrated later with examples. The frequency of the disease in the population 
at risk corresponds to k = 1 in (1.2) and is 

-e 
P1 = j f1(y1) dy1 = 1(-e). 

In setting S(x) = I[(x - ,q)/l], we have assumed that S(- o) = 0 
and S(+co) = 1. We could take S(x) = a + (b - a)>[(x - u)/o] and so 
allow S(x) to increase from a > 0 to b < 1 as x increases from - X to + o. 
This would introduce two extra parameters, a and b, that would have to be 
estimated from population data. This may well be difficult. 

The approach in this paper is mathematically equivalent to Falconer's 
abrupt threshold model (Falconer [1965; 1967]). In Falconer's model, a 
random quantity z is added to the underlying x value for an individual and 
all individuals with values of (x + z) greater than a certain threshold, T, 
succumb while those with (x + z) less than T do not. S(x) is then the prob- 
ability that z > (T - x) and is therefore related to the cumulative distri- 
bution function of the quantity z. The larger the value of the threshold, T, 
the lower the frequency of the disease in the population. There is some 
arbitrariness in the division between x and z when, as is generally assumed, 
x is Normally distributed and the S(x) function sigmoid. All that matters 
is that the z-values for different individuals must be independent. Although 
the mathematics is the same, the idea of an abrupt threshold is less acceptable 
biologically than the idea of a risk function (Edwards [1969] and Smith 
[1970; 1971]). Edwards [1969] presented a model in which x was Normally 
distributed but his risk function was exponential and tended to infinity 
as x tended to infinity, whereas a risk function, by definition, should never 
exceed one. 

All the probabilities derived above depend only on 0 (or equivalently 
on P1 , the frequency of the disease in the population at risk) and on the 
correlation coefficients, p?* = pij/(l + 0_2) (i j). Smith [1970] in considering 
pairs of related individuals wrote pit = R and 17(1 + 02) = h2, the "heri- 
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934 BIOMETRICS, DECEMBER 1972 

tability". h2 is a heritability only if, in the abrupt threshold model, x is 
entirely genetic, z entirely environmental and correlations between relatives 
are entirely genetic. 

Most papers to date have concentrated on the estimation of h', or p,. 
from a comparison of the frequency of the disease among pairs of mono- 
zygotic twins, or among first degree relatives of those affected, with the 
frequency in the general population. The values of h2, or p,* , are then used to 
predict the frequency of the disease among less closely related individuals. 
These predictions can sometimes be used to check the model against data. 

We shall assume that the correlation coefficients of the x-values of any 
pair of full-sibs or of any parent and an offspring are all equal. This would 
be true if the genetic variance of x was entirely additive and the environ- 
mental and infective correlations between full-sibs or between parents and 
offspring were all equal. The x-values of parents will be assumed to be un- 
correlated. Allowance could be made for a correlation between parents but 
it would introduce a further parameter that would have to be estimated 
or specified. 

The results depend directly on the values of p?* = pij/(l + o_2) rather 
than on the values of pij . For full-sibs and for parent and offspring, we shall 
take pi = 2, the value to be expected when the correlations are entirely 
genetic and due to additive genetic variation. (Dominance variation would 
affect the full-sib correlations but not the parent-offspring correlations). 
Other values of pii and T2 are also covered because the results do depend 
only on p,* = pi/(l + a2). All that matters is that the value of p,* must 
be estimated appropriately from disease incidence data (see ?6). 

Smith [1970] divided the range of values of the underlying quantity into a 
large number of small non-overlapping intervals. For the ith interval he 
calculated the frequency fi; the probability, Pi , that an individual with 
underlying value at the midpoint of the interval succumbs to the disease 
and the probability, P , that a particular relative, e.g. a full-sib, succumbs. 
The frequency of the disease among these relatives is then 

EfiPiP' 
EfiP. 

where the summation is over the intervals. By increasing the number of 
intervals any desired accuracy can be achieved. Smith graphed for various 
values of pA = Rh2, the frequency of the disease in relatives of affected 
individuals against the frequency, P1 , of the disease in the whole population. 
He also showed the relationship of the concordance rate of monozygotic 
twins to h2, for various frequencies of the disease in the general population. 

Generally, information is available about more than one close relative 
and these relatives may themselves be related. In a further paper, Smith 
[1971] discussed recurrence risks in individual families given varying amounts 
of information, both positive and negative, about members of the family. 
Smith's method was an extension of his approach to pairs of relatives. The 
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MODEL FOR INHERITANCE OF LIABILITY TO DISEASE 935 

distributions of x for all original and all intermediate members of inde- 
pendent branches of the family were split into classes of calculable frequency. 
The probabilities of patterns of occurrence of the disease for given sets of 
classes were added over all combinations of classes, weighted by their fre- 
quencies. Smith discussed the calculation of confidence limits for recurrence 
risks; the possibility of taking account of sex and age differences in frequency 
and "heritability"; approximations to recurrence risks; and the use of disease 
rates in the whole population and disease rates among relatives to estimate 
genetic correlations and "heritability" and to test genetic models of in- 
heritance. For h2 = 1/(1 + a_2) = 0.8, he plotted values of recurrence risks 
against the population frequency, P1 , when information was available on 
various sets of first, second, or third degree relatives. Also tabulated were 
the recurrence risks for sibs when there is information on both parents and 
on up to four full-sibs. The heritabilities considered were 0.2, 0.5, 0.8 and 
1.0 and the population frequencies were 0.001, 0.01 and 0.1. 

In this paper, recurrence risks and relative recurrence risks for some 
of the simpler sets of information about relatives will be obtained rather 
more directly by showing that the multiple integrals (1.2) can sometimes be 
written as single integrals that can be evaluated easily on a computer. This 
reduction to single integral form always occurs when information is available 
on only two relatives (Curnow and Dunnett [1962], and by a special argument 
when one correlation, e.g. between parents, is zero). We shall generally be 
discussing first degree relatives having p,* = pil/(l + o-2) = 1/[2(1 + o2)]. 

To simplify the notation we shall define p as p = 1/[2(1 + o2)]. Numerical 
results will be given for a range of values of p and P1 when there is informa- 
tion on two first degree relatives, or on three full-sibs (or equivalently, one 
parent and two full-sibs). Families containing monozygotic twins will also 
be considered. Special calculations may be needed for recurrence risks when 
there is a more complex pattern of disease occurrence in a family. The methods 
of this paper may be useful when these calculations can be reduced to the 
evaluation of single integrals. Results obtained here and elsewhere may 
be useful in deriving approximate formulae for recurrence risks in more 
complex situations. 

Wherever possible, the results in this paper have been compared with 
those obtained by Smith [1970; 1971]. No important discrepancies have 
been found. 

2. DERIVATION OF FORMULAE FOR PROBABILITIES AND RELATIVE 
RECURRENCE RISKS 

The probability that a random individual succumbs to the disease is 
the frequency of the disease in the population. This is, from (1.2) with k = 1, 

, -e 
P1 J f1(y) dy = 4(-0). (2.1) 

The probability that a parent and a child, or two full-sibs, are both affected is 
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936 BIOMETRICS, DECEMBER 1972 

P2= f f f2(Y1, Y2, p*) dy1 dy2, (2.2) 

with p where p I 

Now, P2 = prob (y, < -e, Y2 < -s), where Yi and Y2 are standardized 
Normal variables with correlation coefficient p. Defining x, z1 , and z2 as 
independent standardized normal variables, we can write 

Yi = \/p x + -/(1 - P)Z1 

Y2 = V/p x + V0(1-P)Z2, 
(see Curnow and Dunnett [1962] for the general method and references). 
P2 becomes 

P2 = Prob z, < (L<v( \_ p) ,Z2 < (l - p) ] 

or 

P2 = f I (x){ / - )jj dx. (2.3) 

This single integral form is much more convenient for numerical evaluation 
than the previous bivariate form (2.2). 

By a similar argument, the probability that three full-sibs, or one parent 
and two children, are all affected is 

p3 fn 1 (x)t@ [-CD + v p X)]3 dx (2.4) 

The probability that a child will have the disease, given that a parent 
or a full-sib has it, is a conditional probability and is the ratio of the prob- 
ability that both are affected to the probability that one is affected i.e. P2/P1 v 
The relative risk, i.e. the risk relative to the risk for a random individual 
in the population, is therefore P2/P1 

The relative risk for a child with one parent unaffected or one full-sib 
unaffected, will be 

(P1 - P2) 

(1 -PjPj 

The numerator is the probability that one is affected but not the other. 
Similar formulae are given in Table 1 for the relative risks when informa- 

tion is available on two full-sibs or on one full-sib and a parent. If neither 
of the two full-sibs are affected, the relative risk will be 

(Pl - 2P2 + P3) 
(1 - 2P, + P2)PI 

The numerator is the probability that two full-sibs are unaffected and another 
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MODEL FOR INHERITANCE OF LIA13BLITY TO DISEASE 937 

TABLE 1 
FAMILIAL PATTERNS OF DISEASE AND FORMULAE FOR RELATIVE RECURRENCE RISKS 

Disease Status of Relatives Relative Recurrence Risk 

Parent 1 Parent 2 Full-sib 1 Full-sib 2 

1 -- - P2/1 

- - 1 - P/P 

O - - - (P -P2VP1( 1 

- _ O _ (P--P2VP1 ( 1P1 

1 1 - - I/P1 

1 O 0 (P2-I )/P1 2(1-P1 1 0 o _ ( 2 1 1 

o _ 1 _ (P 12P +i)/P (1-1 2 

- - 1 P/ 

1 - o -~~~~~~~~~~~~~~~5 

o - (P 2-P3)/P1(p1-P2) 

_ _ o 1 (P2-P3)/ 1(P 1-P2) 

o - - (P-i2P2+P3VP1(1-2P1+P2) O _ O _ ( ~1 23) 1 12) 

- _ o (P 12P2+P 3)/P 1(1-2P1+P2) 

O Unaffected 

1 Affected 

- Unknown 

For definitions of P1, P2' P3 and I, see ? 2. 

is affected. This can be seen from straightfor-ward probability arguments. 
Alternatively, from (1.1), the numerator is 

r+ O + 0r+ 0 

] j I f3(x,, X2, x3 ; e)[l-S(x1)]L- S(x2)]S(X3) dX1 dx2 dx3 

r+ co+ 0 + 0 
fl(X3)S(X3) dX3 -2 f f2(x1, x3 ; )S(x1)S(x3) dxl dx3 

r+ r+ r+ 
+ I f f f3(x1, X, x3 ; P)S(xl)S(x2)S(x3) dxl dx2 dx3 

-a -00 -?? 

-Pi-2P2 + P3. 

The remaining situation where information is available on only one or 
two first-degree relatives is when information on both parents is available. 
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938 BIOMETRICS, DECEMBER 1972 

The probability that both parents and a child succumb is, from (1.2), 

fJ f Jfr f(Yl Y2 , Y3; e*) dy1 dY2 dy3 
where 

I 0 p 

Q* 0 1 p. 

'P P 1" 

After some manipulation this multiple integral can be written in single 
integral form as 

I= JA if l(x)1 [ j(X P 2 ]2)2(x 
- V2' 0) - 1} dx. 

The formulae, involving I, for the relative risks for a child given information 
on two parents are given in Table 1. 

3. TABULATION OF RELATIVE RECURRENCE RISKS 
The four integrals P1, P2, P3 and I depend on two parameters, 

- g - and 
ea(1+ e2) 

The value of 0 determines the frequency of the disease in the population 

P1 = (-e ) 
o values have been chosen to give the following values of P1 

P1 0 
0.5 0 
0.05 1.6449 
0.02 2.0537 
0.01 2.3263 
0.005 2.5758 
0.001 3.0902 

p can take values between 0 and 0.5. p = 0 corresponds to ca2 = o and the 
occurrence of the disease is then unrelated to the x-value and the relative 
recurrence risks are all 1. p = 0.5 corresponds to C_ = 0. This means that 
x has a threshold effect and so all individuals having x above -, succumb 
while all individuals with x below , do not succumb. Table 2 shows the 
relative recurrence risks (relative to P1 , the risk for a random member of 
the population) for the various familial patterns, for the six disease fre- 
quencies, P1 , and for five values of p from 0.1 to 0.5. 

4. FAMILIES CONTAINING MONOZYGOUS TWINS 

Tables 3 and 4 give values of the relative recurrence risks in families 

This content downloaded from 91.238.114.31 on Sat, 28 Jun 2014 15:58:59 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


MODEL FOR INHERITANCE OF LIABILITY TO DISEASE 939 

TABLE 2 
RELATIVE RECURRENCE RISKS USING INFORMATION ON ONE OR Two FIRST DEGREE 

RELATIVES 

Disease Status of Relatives 

Parentl 1 - Q 1 1 0 1- 10 0- 
Parent 2 1 0 0 -0 -- 

Full-sib 1 -1 -O - - - 1 1 0 1 0 0 0 
Full-sib 2 - - - -1 --1 - 0 

.5 01 i.06 .94 1.13 1.00 0.87 1*12 1.00 0.88 

.5 0.2 1.13 .87 1.26 1.00 0.74 1.23 1.00 0.77 

.5 0.3 1.19 .81 1.-39 1.00 0.61 1.32 1.00 0.68 

.5 o.4 1.26 .74 1.52 1.00 o.48 1.42 1.00 0.58 

.5 0.5 1.33 .67 1.67 1.00 0.33 1.50 1.00 0.50 

.05 0.1 1.48 .97 2.14 1.45 0.95 2.02 1.44 0.95 

.05 0.2 2.10 .94 3.96 2.00 0.89 3.33 1.95 o.89 

.05 0.3 2.85 .90 6.56 2.66 0.81 4.83 2.52 o.83 

.05 o.4 3.77 .85 10.0 3.44 0.72 6.44 3.15 0.75 

.05 0.5 4.88 .80 14.2 4.39 0.61 8.14 3.82 0.67 

.02 0.1 1.72 .98 2.83 1.70 0.97 2.62 1.69 0.97 

.02 0.2 2.75 .96 6.50 2.67 0.93 5.12 2.61 0.93 

.02 0.3 4.16 .94 12.8 3.99 o.87 8.37 3.78 o.88 

.02 0.4 6.03 .90 22.2 5.70 0o80 12,2 5.19 0.82 

.02 0.5 8.47 .85 34.4 7.94 0.70 16.5 6.84 0.74 

.01 0.1 1.93 .99 3.52 1.91 0.98 3.20 1.90 0.98 

.01 0.2 3.39 .98 9.53 3.33 0.95 7.13 3.26 0.95 

.01 0.3 5.56 .95 21.3 5.41 0.91 12.8 5.14 0.91 

.01 0.4 8.66 .92 40.8 8.34 0.85 19.9 7.59 o.86 

.01 0.5 12.9 .88 67.5 12.4 0.76 28.3 10.7 0.79 

.005 0.1 2.16 .99 4.38 2.15 0.99 3.91 2.14 0.99 

.005 0.2 4.19 .98 14.04 4.14 0.97 9.96 4.06 0.97 

.005 0.3 7.46 *97 35.8 7.32 0.94 19.6 6.99 0.94 

.005 0.4 12.5 .94 75.4 12.2 o.89 32.6 11.1 0.89 

.005 0.5 19.9 *90 133.0 19.3 0.81 48.6 16.7 0.83 

.001 0.1 2.84 1.00 7.34 2.83 1.00 6.29 2.83 1.00 

.001 0.2 6.89 .99 35.0 6.-86 0.99 21.9 6.79 0.99 

.001 0.3 14.9 .99 120 14.8 0.97 53.3 14.3 0.97 

.001 0.4 29.5 .97 317 29.2 0.94 104 27.2 0.95 

.001 0.5 54.3 .95 646 53.7 o.89 174 47.4 0.90 

For definitions of Pi and p see section 2. Equivalent information on relatives (see 
Table 1) is shown together above each column. 

0 O Unaffected 
1 Affected 
- m Unknown 

containing monozygous twins. The correlations, p,i and p,. for monozygous 
twins are assumed to be double that for ordinary full-sibs. This will be true 
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TABLE 3 
RELATIVE RECURRENCE RISKS FOR A TWIN 

DISEASE STATUS OF RELATIVES 

Full-sib or Parent - - 1 1 0 0 

Twin 1 0 1 0 1 0 

P1.i 

.5 0.1 1.13 o.87 1*18 0.93 1*07 0.82 

.5 0.2 1.26 0.74 1.35 o.85 1.15 0.65 

.5 0.3 1.41 0.59 1.51 0*73 1.27 0.49 

.5 o.4 1.59 0O.41 168 0.56 1.44 0.32 
a5 0.5 2.00 0 2.00 0 2.00 0 

.05 0.1 2.10 0.94 2.73 1.39 2.05 0092 

.05 0.2 3.77 o.85 5.24 1.73 3.60 o.8i 

.05 0.3 6.21 0.73 8.37 1.93 5.85 o.67 

.05 o.4 9.90 0.53 12.2 i.81 9.37 0.4? 

.05 0.5 20 0 20 0 20 0 

.02 0.1 2.75 0.96 3.92 1.64 2.71 0.95 

.02 0.2 6.03 0.90 9.34 2.37 5.84 o.87 

.02 0.3 11.6 0.78 17.2 2.98 11.1 0.74 

.02 o.4 21.1 0.59 27.6 3.o8 20.2 0.54 

.02 0.5 50 0 50 0 50 0 

.01 0.1 3*39 0.98 5.19 1.86 3.35 0.9? 

.01 0.2 8.66 0.92 14.6 3.00 8.45 0.90 

.01 0.3 18.8 0.82 2907 4.14 18.1 0.79 

.01 o.4 37.7 o.63 51.3 4.62 36.4 0.59 

.01 0.5 100 0 100 0 100 0 

.005 0.1 4.19 0.98 6.89 2.11 4.16 o.98 

.005 0.2 12.5 0.94 22.8 3o79 12.3 0o93 

.005 0.3 30.5 0.85 48.0 5.89 29.8 o.83 

.005 o.4 67*5 o.67 95.8 6.94 65.6 0o.64 

.05 0.5 200 0 200 0 200 0 

.001 0*1 6.89 0.99 13.4 2.81 6.87 0.99 

.001 0*2 29*5 0.97 65.3 6.49 29.2 0.97 

.001 0.3 94.8 0.91 i88 12.3 93.4 0.90 

.001 o.4 264 0.74 407 18.o 259 0.72 

.001 0.5 1000 0 1000 0 1000 0 

For definitions of P an see 2. 

O Unaffected 

1 Affected 

- Unknown 
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TABLE 4 
RELATIVE RECURRENCE RISKS FOR A FULL SIB (OR PARENT) OF MONOzYGOUS TWINS 

Disease Status of Twins 

Pwin l 1 1 0 

Twin 2 1 0 0 

Ps 

.5 0.1 1.11 1.00 0.89 

.5 0.2 1.20 1.00 o.80 

.5 0.3 1.28 1.00 0.72 

.5 0.4 1.33 1.00 o.67 

.5 0*5 1.33 - o.67 

.05 0.1 1.93 1.43 0.95 

.05 0*2 2.91 1.91 0.90 

.05 0.3 3.85 2.41 0*85 

.05 o.4 4.65 2.91 0.80 

.05 0.5 4.88 _ 0.80 

.02 0.1 2.45 1.68 0.97 

.02 0*2 4.26 2.54 o.94 

.02 0-3 6.15 3.56 o.89 

.02 o.4 7.87 4.69 0.85 

.02 0.5 8.47 - o.85 

.01 0.1 2.95 1.89 o.98 

.01 0*2 5.70 3.17 0.96 

.01 0.3 8.80 4.82 0.92 

.01 o.4 11.8 6.77 o.89 

.01 0*5 12.9 - o088 

.0O5 0.1 3.56 2.13 0.99 

.005 0.2 7.65 3.96 0.97 

.005 0.3 11.8 6.69 0,94 

.005 0.4 17.7 9.81 0.91 

.005 0.5 19.9 - 0.90 

.001 0.1 5.52 2.82 1.00 

.001 0*2 15.3 6.64 0.99 
.001 0*3 29.6 13.4 o.98 
.001 0.3 29.6 13.4 o.98 
.001 o.4 45.5 23*8 0*96 
.001 0.5 54.3 - 0.95 

For definitionis of P1 and p see section 2. 0 denotes unaffected, 1 denotes affected, - denotes 
impossible situations. 
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942 BIOMETRICS, DECEMBER 1972 

if the correlations are entirely genetic and the genetic variation entirely 
additive. Table 3 gives the relative recurrence risks for one of the twins 
given information about the other twin or about the other twin and a full-sib 
or parent. The appropriate formulae for relative recurrence risks, derived as 
before, are: 

Monozygous Full-sib 
Twin or Parent 

1 - T/P1 
o - (P1 - T)/P1(l - P1) 
1 1 A/PIP2 
1 0 (P2- A)/P1(P -P2) 
0 1 (T - A)/P1(P -P2) 
O O (P1-T-P2+ A)/P1(l-2P1+ P2). 

In these formulae, 

T = f, (X Dd co, { -(\/(I 2p) ) 

and 

A = I ;f x0 - 0+ \(2p)x} 2 e + \(pl2 d)x 

T is the probability two monozygous twins both have the disease and A is 
the probability that both twins and a full-sib, or parent, have the disease. 
In Table 4, the relative recurrence risks are calculated for a full-sib or parent 
when information is available about both monozygous twins. The appropriate 
formulae are: 

Monozygous Twins 
1 1 A/(P1T) 
1 0 (P2 - A)/P1(P1 - T) 
0 0 (P1 - 2P2 + A)/P1(l - 2P1 + T). 

When p = 0.5, twins must both have the disease or both not have the disease 
since their genetic correlation is 1 and o2 = 0. 

5. INFORMATION ON THREE FIRST-DEGREE RELATIVES 

In Table 5, the relative recurrence risks are given when there is informa- 
tion on three full-sibs or two full-sibs and one parent. The requisite formulae 
are obvious extensions of those already derived for two full-sibs or one full- 
sib and a parent. 

6. USE OF TABLES AND OTHER APPLICATIONS 

The tables in this paper can be used to calculate the recurrence risks 
for the relatives when the frequency of the disease in the population at 
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TABLE 5 
RELATIVE RECURRENCE RiSI-S FOR A FOURTH FIRST DEGREE RELATIVE 

Number of First Degree 
Rel2atives 'ith Disease 

P 0 1 2 3 

.5 0.1 0.83 o.94 1.o6 1.17 
*5 0.2 o069 0).90 1.10 1.31 
.5 0.3 Co58 0.86 1.14 1. 42 
.5 0o4 o.L48 0o83 1.17 1 o52 
.5 0*5 0oY+O 0.80 1.20 1 06 

.05 0.1 0*93 1i4QO 1.96 2.59 
co5 0.2 0o85 1.83 3.009 4.5 5 
,05 0.3 o.76 2*27 k.*27 6.59 
.05 o468 2.72 504L 8.57 
.05 0.5 0*58 3.18 6.57 1004 

.02 0.1 0.6 1i66 2.56 3.66 

.02 0.2 Oo90 2*49 4L82 7.76 

.02 0.3 ?o84 3.47 7.53 12.6 

.02 o.4 0o76 4.58 10.5 17.6 

.02 0*5 0*67 5.79 13.5 22.6 

901 0.)1 0097 1i88 3515 4.78 
.01 002 0.93 3.14 6.78 11.7 
.01 0.3 0o88 4.79 i 6 20.6 
.01 0.4 c.*81 6,8c 17.3 30.6 
.01 0.5 0.73 9.15 27.o4 40*7 

.005 001 0.698 2.12 3.87 6e26 

.005 0*2 0.395 3.95 9.56 17.7 
9005 Oo 0,91 6.6o i88c 34,,o 
.005 o.4 0.85 10.1 28.6 53.2 
.0C5 0.5 0.78 14e5 40o,6 73*7 

.001 0*1 1.00 2.82 6a26 11o8 

.001 0.2 0,98 6.69 21.3 46 .6 

.001 03. 0o96 1538 50.1 110 

.00)1 o.4 0,92 25.4 93.1 195 

.0001 0.5 o.86 42k4 148 295 

For definitions of P1 and p see section 2. 
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risk, P1 , and the correlation coefficient p are both known. For a particular 
disease, the tables may first have to be used to estimate p from known values 
of P1 and the frequency of the disease amono first-degree relatives of affected 
individuals, then used again to calculate the risks for other sets of information 
about relatives. 

The tables are a little difficult to initerpret in aniy general way. F'igure 1 
shows the recurrence risks plotted against the frequency of the disease 
in the population when p = 0.3. The scales on both axes are logarithrnic. 
Each line corresponds to different inlformation about the family. The par- 
ticular types of family have been chosen to illustrate some fairly obvious 
conclusions that can be drawn from the tables. In Figure 1, the highest 
recurrence risks occur when two uncorrelated parents are both affected. 
Next comes families in which a parent and a full-sib, or two full-sibs, are 

'[0 RECURRENCE 

>01' ~ ~ ~ ' 1 0.01 4 

// P~~~~~~~~0-3 

//0 ( P1, P,, FS10 FS 

0.001 a 

POPULATION FREQUENCY 

FIGURE 1 

RECURRENCE RISKS WHEN p - 0.3 PLOTTED AGAINST THE POPULATION FREQUENCY OF THE 

DISEASE. BOTH SCALES ARE LOGARITHMIC. EACH CURVE CORRESPONDS TO DIFFERENT 

INFORMATION ABOUT THE FAMILY. THE ORDER OF PRESENTATION IS (PARENT 1, 

PARENT 2, FULL-SIB 1, FULL-SIB 2). 1 INDICATES AFFECTED; 0, UNAFFECTED; 

AND-, NOT KNOWN. SOME CURVES MAY REFER TO MORE TI-IAN ONE SET O1' 

INFORMATION ABOUT TrHE FAMILY-SEE TABLE 2, 
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affected. The line corresponding to oine parent or onie full-sib affected, is 
roughly half-way between the line for two parents affected and the linie 
in which the recurrence risk equals the population frequency. The other 
two lines, (1, 0, -, -,) and (0, O, -, -,) show that, whatever the population 
frequency, the knowledge that some relatives are unaffected does not ap- 
preciably reduce the recurrence risk when p = 0.3. The curves of Figure 1 
can be compared with similar curves for p = 0.4 (h` = 0.8) given in Figures 
3 and 4 of Smith [1971]. 

The results of this paper may be useful, not only in studies of disease, 
but in any situation where the attribute observed is the observable expres- 
sion of an underlying continuous character containinig a genetic component. 
The cause of the correlation between ldifferent observations of the attribute 
could also be in the nature of a repeatability rather than a heritability. 
This would apply, for example, when calculating the probabilities of a still- 
birth; a male or a female; or twins at a future birth, given the corresponding 
information on previous births. Tabulations may then be needed for values 
of p > 2 

Allowances could be made for the effects of age or sex on disease fre- 
quencies by allowing 0 to take different values for individuals of different 
age or sex. 
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LE MODELE -MULTIFACTORIEL POUR LA TRANSMISSION GENETIQUE DE 
LA SENSIBILITE A LA MALADIE ET SES IMPLICATIONS SUR LE 

RISQUE A PARTIR DES PARENTS 

RESUAME 

On discute le mod'ele muiltifactoriel pour I'etude de la transmission de la senisibilite aux 
maladies (Falconer [1965]). Dans ce modele, la probabilit,e qu'un individu soit malade 
depend d'une quantite continue sous-jacente x. x est suppose comporter une composante 
g6n6tique conduisant a des correlations entre parents. Pour certains groupes familiaux, 
les probabilites de tous les schema.s po, sibles de realisations de maladie sont calculables 
a partir d'integrales coniprenant seulement la densite normale a une variable et des fonctions 
de distribution cumulables. En utilisant ces probabilites, le risque repete pour uin individu 
peut Stre calcule a partir de la connaissance de hi pr6esence de la maladie dans la famille. 
Des risques relatifs sont tabules pour des individu;s app.artenant a des familles sUIr lesquelles 
on poss'de de l'information concernant Uin (ou les deux) parent, oti deux oil trois pleiins 
freres (ou de fagon equivaliente tin parent et tun ou deux pleins freres). Des risques recurrenits 
dans les familles contenant une paire de jumneauix monozygotes sonit donn6s. 
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