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A Model-Fitting Implementation of the DeFries-Fulker

Model for Selected Twin Data
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In this research note, DeFries-Fulker (DF) regression analysis is reframed in model-fitting terms,
where an individual’s expected score is modeled as a function of their co-twin’s proband sta-
tus. This more flexible implementation of the DF model allows DZ-O twins to be incorporated
in a sex-limitation model. Brief simulation results are presented along with the Mx scripts used.
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DeFries and Fulker (1985, 1988) proposed a method
for analyzing twin data based on a simple multiple re-
gression model in which a cotwin’s score is predicted
from a proband score and the twin-pair’s coefficient of
genetic relatedness. This model is particularly suited to
twin data ascertained for extreme scores. Alternatively,
probands may be defined as extreme scorers in a larger
unselected sample. In this way, the etiology of deviant
scores can be addressed, as opposed to that of individ-
ual differences over the normal range. In this research
note, the basic DF model is reframed in model-fitting
terms. One advantage of this reframing is illustrated in
the easy inclusion of opposite-sex DZ twins in a sex-
limited analysis. Other extensions should also be pos-
sible, including bivariate analysis.

For twin pair i, a proband with score P; is selected
if P; is greater than (or less than, depending on the di-
rection of selection) a threshold 7. The original DF
model predicts the score of the co-twin C; as a function
of P; and R, the coefficient of genetic relatedness for
pair i, coded 1 for MZ twins and 0.5 for DZ twins:
C; = by + b\P; + byR; + &;. The coefficient b, is there-
fore an estimate of heritability based on the differential
regression to the mean of MZ versus DZ co-twins, pro-
viding the data are transformed such that the proband
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mean is 1 and the population means is 0. In this case,
b, is equal to twice the difference between MZ and DZ
transformed co-twin means, as these reflect the twin cor-
relations. Pairs with two probands are double-entered;
pairs with no probands are excluded from analysis.

This model can be easily specified in model-fitting
terms: an individual’s expected score is a function of their
co-twin’s proband status. Each observation in the raw
datafile corresponds to a twin pair, rather than a proband-
cotwin pairing, and contains the following information:
zygosity (coded 1/2 for MZ/DZ), continuous trait score
for twin 1 and twin 2, and proband status for twin 1 and
twin 2 (coded 0/1). Prior to analysis, the data must be
transformed in such a way that an individual’s score x
becomes (x — X,)/(x; — X,) where X, is the population
mean and ¥, is the proband mean. These means are typ-
ically zygosity-specific, although zygosity non-specific
means should be acceptable too.

For transformed scores, the expected means vec-
tor [m; m,] is [a*> + ¢*] ® P for MZ twins and [a?/2 +
c?] ® P for DZ twins, where P = [p, p,] and p;is 0 if
twin j is not a proband or 1 if twin j is a proband. The
parameters a® and ¢? represent proportions of variance
in the general population attributable to additive ge-
netic and shared environmental effects respectively;
nonshared environmental variance is e* = 1 — a* — ¢%.
The covariance structure for both MZ and DZ twins is

v + dp, 0
0 v +dp |
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The parameter v is the residual variance; the parame-
ter d accounts for the difference in variance between
individuals with proband cotwins and those without.
An Mx script to implement this model is presented in
Appendix A. Boundaries and confidence intervals on
a, and ¢, can be implemented within Mx, as well as
other benefits of a model-fitting approach.

In the regression method, the standard error of the
b, estimate must be modified to account for the double-
entry procedure by multiplying by a factor of V' N/n
where N is the number of probands and » is the number
of pairs with at least one proband. A x} statistic may be
obtained using the Wald test, (b,/SE,,)>. In the model-
fitting method, the likelihood ratio statistic for a model
with a? estimated versus a submodel with a” fixed to 0
provides a test of genetic influence. A 7 statistic is cal-
culated as minus twice the difference in log-likelihoods.

Table I clarifies the differences in data structures
under the two methods. For the original DF method (P
is proband score, C is co-twin score) note that twin pair
2 is entered twice (both members are probands) whereas
twin pair 3 is not entered at all (neither member is a
proband). In contrast, for the model-fitting method, the
data is entered as in the original file, only with proband
status variables appended. Note that before analysis
these data would also have to be transformed. Utility
scripts used in the preparation of datasets can be ob-
tained from the website http://statgen.iop.kcl.ac.uk/df/.

SIMULATION

Eights models were simulated 50 times each as shown
in Table II under two unselected sample sizes: 1,000
MZ and 1,000 DZ pairs; 5,000 MZ and 5,000 DZ pairs.
The genetic effect increases from 0% to 75% in 25%
intervals for the first four models; the rest of the vari-
ance is nonshared between twins. The next four mod-

Table I. Data Formats for DF Regression and Model-Fitting
Methods: Probands Defined as Scoring Greater Than or Equal to 7

Raw data Original DF Model-fitting DF

ID Zyg TI T2 ID Zyg P C ID Zyg Tl T2 PI P2

1 MZ 8 5 1 Mz 8 5 1 MZ 8 5 1 O
2 M2 9 7 2 MZ 9 7 2 MZ 9 7 1 1
3 b2z 4 5 2 MZ 7 9 3 DZ 4 5 0 O
4 Dz 2 8 4 Dz 8 2 4 DZ 2 8 0 1

Scores would also have to be transformed prior to analysis. For the
original DF, P is the proband score and C is the co-twin score; note
how twin pair 2 is double-entered and twin pair 3 is excluded.
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Table II. Basic DF Simulation Models

Model a? c? e’
1 0.000 0.000 1.000
2 0.250 0.000 0.750
3 0.500 0.000 0.500
4 0.750 0.000 0.250
5 0.000 0.500 0.500
6 0.250 0.375 0.375
7 0.500 0.250 0.250
8 0.750 0.125 0.125

els are similar, except that half of the non-genetic vari-
ance is shared between twins. Individuals scoring in
approximately the top 5% on the normally-distributed
continuous trait were designated as probands, using a
threshold of 1.64485 standard deviation units. Therefore,
for the N = 2,000 samples, we would expect 50 probands
of each zygosity; for the N = 10,000 samples, we would
expect 250 probands of each zygosity.

Table III presents the simulation results for the
basic model. As expected, the model-fitting and re-
gression approaches give identical parameter estimates
for a® and ¢? and so these are not shown separately. In
practice, it might be desirable to place boundaries on
these parameters (e.g., estimating a rather than a?).

In general, power to detect a genetic effect using
the DF model on a selected sample will always be much
lower than for individual differences analysis per-
formed on the entire sample. That is, the DF model
would only be used when the proband-ascertained
structure of the sample dictates, or when the question
of deviant versus normal scores is of interest. If only
the selected sample were available, individual differ-
ences model-fitting could not be straightforwardly ap-
plied without correction for ascertainment, and would
probably not offer greater power in this case.

The DF likelihood ratio test statistic appears to be
equivalent to the corrected Wald test. For models 1 and
5, both with no genetic component, we would expect
an average 7 value of 1.0 if the tests are valid under
the null. Although we observe values higher than ex-
pected under the null, it is common to both methods
and, more importantly, only seen for the smaller sam-
ple size—asymptotically, both tests appear not to be
liberal. Under non-null simulation models, the average
X7 always exceeds the critical value associated with a
5% type 1 error rate and one degree of freedom
(3.84146). The test statistics from the simulations with
10,000 pairs are reproduced in Figure 1 to show their
overlap. It is possible that the regression method, based
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Table III. Basic DF Model Simulation Results: Full Sample N = 2,000 and N = 10,000 Pairs
N = 2,000 N = 10,000
Model a? c? e? LRT Wald a’ c? e’ LRT Wald
1 0.013 0.000 0.987 2.07 2.03 0.003 —0.003 1.000 1.05 1.02
2 0.247 —0.001 0.753 4.52 4.33 0.267 —-0.012 0.745 20.02 19.26
3 0.502 —0.008 0.506 15.81 15.27 0.503 0.000 0.497 76.73 74.07
4 0.754 —0.002 0.248 40.95 41.60 0.750 —0.001 0.251 196.12 194.94
5 0.035 0.471 0.494 1.41 1.29 —0.003 0.503 0.500 0.81 0.75
6 0.259 0.365 0.376 5.50 5.14 0.243 0.378 0.379 22.78 21.01
7 0.508 0.237 0.255 20.17 19.35 0.504 0.245 0.251 100.35 94.99
8 0.784 0.088 0.129 52.49 53.42 0.737 0.139 0.124 228.67 229.26

Top 5% selected as probands; likelihood ratio test (LRT) gives average X7 difference obtained by fixing a® to 0; Wald test statistic gives test

of a* from regression-based DF method.

on least squares, may be more robust to violations of
normality however.

SEX-LIMITATION

Although the regression approach can be modified
to account for sex-differences in the estimates of heri-
tability, it is not possible to straightforwardly incorpo-
rate opposite-sex DZ twins in a sex-specific analysis.
Essentially, we now have five pieces of information
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(the co-twin mean of each sex-zygosity) but only four
non-redundant parameters (a> and ¢? for males and fe-
males) so the problem is over-identified. The model-
fitting approach facilitates an easy extension to the sex-
limited case including DZ-O twins, however, in a
manner directly analogous to sex-limitation in standard
individual differences twin model-fitting.

If the means and covariance structures for MZ and
DZ same-sex male twins are coded as above, we shall
introduce two new parameters g> and s° for additive ge-
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Fig. 1. Basic simulation results: 10,000 pairs; for each model the left box represents the model-fitting likelihood ratio test statistic, the right
box represents the regression-based Wald test statistic.
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netic and shared environmental effects for females. The
expected means vectors are [g* + 5*] @ P for female
MZ twins and [g*2 + s*] & P for female DZ twins. For
opposite-sex DZ twins, the expected means vector is
[Zag + cs] ® P, where Z is typically fixed to 0.5 al-
though it can also be estimated to test for sex-limitation.
Because the “regression to the mean” phenomenon is di-
rectly indicative of the underlying twin correlations, we
are able to specify effects as path analysis would sug-
gest for correlational data: i.e. where the DZ-O effect is
the chain of paths Zag. As an example, consider the fol-
lowing scenario: a trait 100% heritable in males, 100%
shared environmental in females. The following pattern
of transformed co-twin means (i.e. reflecting the corre-
lations) would be expected (Table IV).

A test of sex-differences in the relative balance of
effects is given by comparing the model that equates a
with g and ¢ with s against a model that does not. A test
of sex-specific genetic effects is given by comparing a
model that fixes Z to 0.5 against a model that does not.
For both female and opposite-sex twins, the residual co-
variance structure is the same as for males, namely

v + dp, 0
0 V+dp1.

Appendix B gives the Mx script for sex-limited DF
analysis.

If there is a mean difference by sex or zygosity (or
a sex X zygosity interaction including DZ versus DZ-O
sex-specific differences, e.g. in the presence of a strong
sex effect and sibling interaction) then it might be desir-
able to use sex- and zygosity-specific proband and pop-
ulation means when transforming the data. In this case,
each individual is transformed using their own group-
specific means, such that females, for example, regress
back to the female population mean irrespective of the
sex of their twin. However, arbitrary use of group-spe-
cific means is not advised, as the increasingly small group
sizes will reduce the accuracy of the estimated means.
Moreover, true differences can be better incorporated by

Table IV. Expected Co-twin Scores When a®> = 1, ¢> = 0, ¢*> = 0
and g2 =0,5°=1,u>=0and Z = 0.5

Sex-zygosity Expected transformed co-twin score

MZ male 1.00
DZ male 0.50
MZ female 1.00
DZ female 1.00
DZ opposite sex 0.00
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modeling the putative effect, e.g. including a sex effect
or adjusting the scores prior to analysis to account for
sibling interaction, based on, for example, an estimate of
the sibling interaction effect from the entire sample. In
an analogous manner, fitting to twin correlation matrices
as opposed to covariance matrices inappropriately avoids
zygosity differences in variance, rather than appropriately
accounting for them. It is possible to parameterize the
model in terms of the raw co-twin means, which are then
transformed after analysis — this approach may facilitate
incorporating group-specific effects in the model.

SIMULATIONS: INCLUDING DZ-O TWINS

Four models were simulated 50 times each to il-
lustrate the DF sex-limited model. In each case 2500
unselected pairs of each sex-zygosity were simulated
(i.e., 5 X 2500 pairs in total) and a 5% threshold used.
As shown in Table V, model 1 represents no differ-
ences between males and females; in model 2, males
and females have dramatically different magnitudes of
genetic effect; in model 3 males and females have less
dramatic differences; in model 4 males and females
have similar magnitudes of effects but completely dif-
ferent genes operating (i.e. rpz_o = 0).

The results indicate accurate recovery of the sex-
specific parameters. The test for different genes oper-
ating in males and females (LRT)) is significant at the
p = 0.05 level only for model 4, as predicted. The test
for different magnitudes of male and female effects is
significant for models 2 and 3 only, as predicted. As
the critical value for a x> with 2 degrees of freedom at
the p = 0.05 level is 5.99146, the results suggest good
power to detect sex differences given this relatively
large sample size. Finally, although r;; , under model
2 is quite low (0.276), the correlation will be empiri-
cally under-identified when there is no genetic effect
in males (so the concept of a correlation with the
genetic effects in females is meaningless) (Table VI).

Table V. Four Models Simulated for Analysis under the
Sex-limited DF Model

Model a? c? e’ I's 52 w>  rpzo
1 0.50 0.00 0.50 0.50 0.00 0.50 0.5
2 0.00 0.50 0.50 0.50 0.00 0.50 0.5
3 0.50 0.25 0.25 0.25 0.50 0.25 0.5

~

0.50  0.00 0.50 0.50 0.00  0.50 0.0

Parameters for males are a, ¢ and e. Equivalent parameters for females
are g, s and u. The genetic correlation for DZ-O twins is rpz.o.
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Table VI. Sex-Limitation Simulation Results

Model a’ c? e’ I's 52 u? Tpz-0 LRT, LRT,
1 0.471 0.029 0.500 0.463 0.031 0.506 0.469 0.20 1.68
2 0.054 0.459 0.488 0.490 0.010 0.500 0.276 0.11 37.64*
3 0.476 0.272 0.252 0.242 0.506 0.252 0.458 0.53 15.11%*
4 0.464 0.033 0.504 0.463 0.030 0.506 0.040 8.75% 2.14

LRT, is the likelihood ratio test statistic for rp,_o = 0.5 (1 df), LRT, is the likelihood ratio test statistic for equating male
(a% ¢*) and female (g2, s°) parameter estimates, rp;_o, free in both cases (2 df); tests significant at p = 0.05 are marked with

an asterisk (*).

SUMMARY

This research note presents DF analysis in a
model-fitting context where an individual’s expected
score is a function of their co-twin’s proband status.
Implementations of the basic model and an extension
to a sex-limited model are also presented. Other ex-
tensions that could easily be made with this imple-
mentation of the DF model include testing an ADE
model instead of an ACE model, or incorporating G X
E interaction, for example.

Although we have implied a large random unse-
lected sample from which above- (or below-) thresh-
old probands are drawn, this need not be so. Twin pairs
might only be ascertained where at least one member
has an extreme score. In this case, the population mean
must be estimated a priori in order to transform the
scores appropriately. The exclusion of twin pairs con-
cordant for nonproband status will have no impact on
the estimation of @ and ¢? and the associated likeli-
hood ratio test statistics.

In the above simulations, all genetic effects are
polygenic effects homogeneous for the whole popula-
tion. Under these conditions, estimates of heritability
based on an unselected sample (i.e. individual differ-
ences analysis) are expected to equal estimates based
on a selected extreme sample appropriately analysed
(i.e., DF analysis). For real data, a significant differ-
ence between the two estimates is consistent with a
number of scenarios. If, for example, a trait is found to
be ‘more genetic’ at the extreme, this could implicate
(1) different genes, (2) the same genes with different
effects or (3) distributional properties of the measure-
ment. For example, scenario (1) might describe a rare
allele with a large effect, and one which is therefore
present in the extreme proband group but virtually
never found in the rest of the population. This genetic
factor, therefore, does not account for very much vari-
ation within the entire sample, but it does within the

co-twins of probands. Scenario (2) might describe an
epistatic effect: two loci A and B have main effects and
epistatically interact. Extreme probands are more likely
to have risk alleles at both loci, and so a greater level
of genetic non-additivity is observed in the extreme
group (similarly, gene-by-environment interaction
could lead to this pattern if one replaces locus B with
environment B). Finally, for (3), heteroscedasticity or
censoring effects could lead to different estimates of
heritability based on a selected part of the sample as
opposed to the entire sample.

Proband status may alternatively be based on a sep-
arate dichotomous variable: for example, proband sta-
tus may reflect a diagnosis of major depressive disor-
der whilst a continuous measure of depressive symptom
severity is the co-twin trait of interest. The results would
not directly estimate the variance components of the
symptom severity measure, however — the relationship
between severity and diagnostic status will possibly
have a complex impact on parameter estimates.

Proband status could instead be defined in terms
of a threshold on a different variable: for example, Pur-
cell et al. (2001) illustrated the so-called bivariate DF
model with verbal and nonverbal cognitive develop-
ment measures. In the bivariate case, rather than per-
forming two separate bivariate DF analyses (e.g.
proband on X — co-twin on Y; proband on Y — co-
twin on X) as well as the two univariate DF analyses
(e.g. proband on X — co-twin on X; proband on Y —
co-twin on Y), yielding hard-to-interpret results, a sin-
gle analysis could be performed using the model-fit-
ting method. A further advantage would be the ability
to place certain testable constraints and conceptual
models on the nature of the associations between
proband status and continuous variation for the two
variables.

In the context of the augmented DF model, an
analogous regression-based method for unselected sam-
ples, Kohler and Rodgers (2001) note that the logic of
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the Wald test’s double-entry correction may be con-
servative and provide an alternative correction based
on asymptotic regression theory. Although the model-
fitting method does not utilize double-entry, some of
the underlying issues raised may be relevant. In par-
ticular, it is well known that the DF model is het-
eroscedastic—MZ residual variance is less than DZ
residual variance if the trait is heritable. Although po-
tential heteroscedasticity may be modeled by defining
the d parameter in the covariance structure

v + dp, 0
0 v + dp,

to be zygosity-specific, this does not seem to have any
significant impact on the likelihood ratio test statistics
when applied to the simulated data. Additionally, resid-
ual variance components will tend to be negatively cor-
related between twins, whereas the current model fixes
the residual twin covariance to 0. Using regression meth-
ods, the residual covariance structure can be partitioned
to account for this effect; using ML methods, where
means and variances are simultaneously and interde-
pendently estimated, it is not possible to make such an
adjustment. In any case, we believe the flexibility of a
model-fitting implementation outweighs these concerns.

APPENDIX A
Basic DF Model

The following Mx script expects a transformed data
file, called data.raw with six variables: ID, zygosity
(1/2), transformed continuous trait scores for twin 1
and 2, proband status for twin 1 and 2. A utility to per-
form the transformation automatically can be down-
loaded from the URL http://statgen.iop.kcl.ac.uk/df/.
Deleting the free keyword after the declaration of the
A matrix (and commenting out the Matrix A 0.1 com-
mand) specifies a submodel with no genetic effect.

| DeFries-Fulker group analysis
! Mx Implementation

! S. Purcell, Nov 2001
Gl: Matrices

Data Calc NGroups=4
Begin Matrices;

! Model parameters

Full 1 1 free !
Full 1 1 free !
Full 1 1 free !

additive genetic effect

shared-E effect

< o »

residual variance
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D Full 1 1 free ! variance

! Constants and other variables

H Full 1 1 ! constant
I Full 1 1 ! constant
N Full 1 1 ! constant
Y Full 1 2 !

End Matrices;
! Starting values
Matrix A 0.1
Matrix C 0.1
Matrix V 0.8
Matrix D 0.0
! Constants
Matrix I 1
Matrix H .5
Matrix N 0
End

G2: MZ

difference

Data NInput_vars=6 NObservations=0

Missing =-—9

RE File=data.raw

Label id zyg vl v2 pl p2
17/

Select vl v2 pl p2 /

Select if zyg =

Definition pl p2 /

Matrices = Group 1
! DF model
Means (A+C) @ Y /

! Residual variance / covariance

Covariance
v ilnN _
N|v) + (DN _
N[ D) * \v2d(y) /

! Defintion variables
Specify Y —2 —1 !
End

proband status

G3: DZ

Data NInput_vars=6 NObservations=0

=-9
RE File=data.raw

Missing

Label id zyg vl v2 pl p2
2/
Select vl v2 pl p2 /

Select if zyg =

Definition pl p2 /

Matrices = Group 1
! DF model
Means (H*A+C) @ Y /

! Residual variance / covariance

Covariance

1/2
1
0

proband status
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(v | N _ End Matrices;
N|Vv) + (D|]N _ ! Starting values and boundaries
N | D) * \v2d(Yy) / Matrix A 0.1
! Definition variables Matrix C 0.1
Specify Y —2 —1 ! proband status Matrix G 0.1
End Matrix S 0.1
Matrix V 0.8
G4: Collect estimates Matrix D 0.0
Calculation Matrix R 0.50
Matrices = group 1 Bound 0 0.5 R 1 1
Begin Algebra; ! Constants
zZ = A _ Matrix I 1
Cc _ Matrix H .5
I — (A+C) / Matrix N 0
End Algebra; ! (Un)comment to equate sex-specific estimates or not
End ! Equate A 1 1 G 1 1
! Equate ¢ 1 1 s 1 1
APPENDIX B End

Sex-Limited DF Model

. . . G2: MZ Mal
The following Mx script expects a transformed data file aes

as above. Sex-zygosity is coded 1-5 for MZ male, DZ
male, MZ female, DZ female, DZ opposite-sex re-
spectively. Deleting the free keyword after the R ma-
trix declaration fixes the DZ-O coefficient of genetic
relatedness to 0.5, to perform the test of different genes
operating for males versus females. Uncommenting one
or more of the Equate commands tests for a difference
in magnitude of genetic and/or environmental effect.

Data NInput_vars=6 NObservations=0
Missing =-9
RE File=data.raw
Label id sexzyg vl v2 pl p2
Select if sexzyg = 1 /
Select vl v2 pl p2 /
Definition pl p2 /
Matrices = Group 1
! DF model
Means (A*A+C*C) @ Y /
* Defries-Fulker group analysis ! Residual variance / covariance
! Sex-limited model Covariance
(v N _
N|Vv) + D]N_
N | D) * \v2da(y) /

! Defintion variables

! Mx Implementation
! S. Purcell, Nov 2001

Gl: Matrices

Data Calc NGroups=7 X
up Specify Y —2 —1 ! proband status

Begin Matrices;

End
! Model parameters
A Full 1 1 free ! male additive genetic
C Full 1 1 free ! male shared-E G3: DZ Males
G Full 1 1 free ! female additive genetic Data NInput_vars=6 NObservations=0
S Full 1 1 free ! female shared-E Missing =-9
V Full 1 1 free ! residual RE File=data.raw
D Full 1 1 free ! difference Label id zyg vl v2 pl p2
R Full 1 1 free ! DZ OS coef. of rel. Select if zyg = 2 /
! Constants and other variables Select vl v2 pl p2 /
H Full 1 1 ! constant = 1/2 Definition pl p2 /
I Full 1 1 ! constant = 1 Matrices = Group 1
N Full 1 1 ! constant = 0 ! DF model
Y Full 1 2 ! proband status Means (H*A*A+C*C) @ Y /
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! Residual variance / covariance
Covariance
wilnN _
N|v) + (D]N_

N[ D) * \v2d(y) /
! Defintion variables
Specify Y —2 —1 ! proband status
End

G4: MZ Females
Data NInput_vars=6 NObservations=0
Missing =-9
RE File=data.raw
Label id sexzyg vl v2 pl p2
Select if sexzyg = 3 /
Select vl v2 pl p2 /
Definition pl p2 /
Matrices = Group 1
! DF model
Means (G*G+S*S) @ Y /
! Residual variance / covariance
Covariance
v In _
N|v) + (DN _
N[ D) * \v2d(y) /
! Definition variables
Specify Y —2 —1 ! proband status
End

G5: DZ Females
Data NInput_vars=6 NObservations=0
Missing =-9
RE File=data.raw
Label id sexzyg vl v2 pl p2
Select if sexzyg = 4 /
Select vl v2 pl p2 /
Definition pl p2 /
Matrices = Group 1
! DF model
Means (H*G*G+S*S) @ Y /
! Residual variance / covariance
Covariance
v InN _
N|v) + (DN _
N | D) * \v2d(y) /
! Definition variables
Specify Y —2 —1 ! proband status
End
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G6: DZ Opposite sex
Data NInput_vars=6 NObservations=0
Missing =-9
RE File=data.raw
Label id zyg vl v2 pl p2
Select if zyg = 5 /
Select vl v2 pl p2 /
Matrices = Group 1
! DF model
Means (R*A*G+C*S ) @ Y /
! Residual variance / covariance
Covariance
N _
N|v) + (D]N_
N[ D) * \v2d(y) /
! Definition variables
Specify —2 —1 ! proband status
End

G7: Collect estimates
Calculation

Matrices = group 1

Begin Algebra;

z = A*a | G*G_

c*c | s*s _

I- (A*A+C*C) | I—(G*G+S*S)
RI|R /

End Algebra;

End
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