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The Causes of Individual Differences 

General Abstract 

The aim of personality psychology is to explain the causes and consequences of varia­

tion in behavioral traits. The three papers collected in this dissertation attack this problem 

using a variety of empirical and theoretical approaches. (1) The first paper presents the re­

sults of a genome-wide association study of over 100 human phenotypes in a sample of 

401 participants. The study failed to find any genetic variants significantly associated with 

the personality traits. Research on twins and other kinships have shown that these traits are 

highly heritable, and thus the study supports the view that their heritabilities are attributable 

to many loci of small effect. Drawing on Fisher's geometric model of adaptation, I offer the 

hypothesis that the different evolutionary trajectories of the traits examined in the study ac­

count for their disparate genetic architectures. (2) The second paper reports several studies 

focusing on the personality trait of general intelligence and its negative correlation with reac­

tion time in elementary laboratory tasks. The studies found that the correlation is attributable 

to the time taken by a serial decision-making stage; the parallel perceptual and motor stages 

surrounding this serial stage do not contribute to the correlation. If this association between 

intelligence and speed of serial processing reflects a causal relationship, then it paves the 

way for a mechanistic understanding of ability variation at the neural and cognitive levels. 

(3) Personality research has long been dogged by controversies over the extent to which 

causal inferences can be drawn from observational data. In recent years the computer scien-
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tist Judea Pearl has used a graphical approach to extend the innovations in causal inference 

developed by the population geneticists Ronald Fisher and Sewall Wright. Besides shedding 

much light on the philosophical notion of causality itself, this graphical theory now contains 

many powerful concepts of relevance to the controversies just mentioned. The third paper 

applies Pearl's theory to areas of personality research where questions of causation arise. In 

one part of the paper, I reanalyze a dataset bearing on the question of whether intelligence is 

cause of social liberalism. 
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General Introduction 

Personality psychology is concerned with variation in behavioral traits (Ashton, 2007). 

Notwithstanding the great achievements of the discipline in the last century, a number of 

fundamental barriers have hampered its further progress. These barriers can be grouped 

under three broad headings: 

1. technological barriers to the direct observation of theoretical entities; 

2. disciplinary barriers to integration with other relevant branches of psychology; and 

3. conceptual barriers to drawing casual inferences from observational data. 

Each of the three papers collected in this dissertation addresses one of these problematic 

areas. Causal inference, the last of these problems, is actually closely related to the previous 

two; it provides a perspective from which all three problems appear to be facets of the same 

problem. 

I will discuss these problems in their enumerated order. 

The Direct Observation of Theoretical Entities (Genetic Variation) In the past many 

of the variables hypothesized to be responsible for causing individual differences could not 

be "directly observed." For example, when reading Fisher's (1930) classic The Genetical 

Theory of Natural Selection, we should remember that at the time a "gene" was an abstrac­

tion whose existence was deduced from certain regularities in the inheritance of phenotypes. 

That is, no one knew what kind of physical entity a gene might be. Such a grounding had 

to await the observations using X-ray crystallography that culminated in the discovery of 
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DNA's double-helical structure (Watson & Crick, 1953). In the history of science, there are 

many similar examples of improvements in measurement technology enabling enormous 

empirical and theoretical advances (Gribbin, 2002). 

We are arguably experiencing another such wave of technological improvements: the 

rapidly declining cost of measuring genetic variation at the DNA level. This decline has 

already allowed geneticists studying diseases and anthropometric traits to carry out genome-

wide association studies (GWAS) in which single-nucleotide polymorphisms (SNPs) scat­

tered throughout the genome are tested for association with a phenotype of interest (Well­

come Trust Case Control Consortium, 2007; McCarthy et al., 2008). A recent spectacular 

example of this approach is the discovery of over 180 genomic regions containing a variant 

affecting height in a sample of 180,000 individuals (Lango Allen et al., 2010). Moreover, a 

comparison of alleles associated with increased height found that they are more common in 

Northern Europe than in Southern Europe (Turchin, 2011). Interestingly, the magnitude of 

the difference in allele frequencies is correlated with the effect size of the height association, 

providing evidence that the divergences have been driven by natural selection specifically 

for body size. Population-genetic considerations suggest that this selection must have oc­

curred within the last 10,000 years, prompting a number of intriguing hypotheses regarding 

the adaptive pressures driving the divergence (Bellwood, 2005; Anthony, 2007; Cochran & 

Harpending, 2009). This astounding series of findings provides a strong motivation for ap­

plying genome-wide association studies to personality variation. Knowledge of the genetic 

architecture underlying cognitive abilities, cooperation, and other key facets of human be­

havior may shed light not only on proximate biological mechanisms but also the ultimate 

evolutionary forces that have shaped the commonality and diversity of humankind. The first 
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paper in this dissertation takes a small step toward this goal by reporting a GWAS of several 

human phenotypes, including many traits of interest to behavioral scientists. 

The results of the first paper are negative in the sense that no significant associations 

with personality traits were found. I claim that these results are owed to inadequate sam­

ple size to discover the "typical" causal variant under the influence of natural selection. But 

these results might lead a skeptical outsider to ask: What reason is there to believe that the 

genetic variants hypothesized to affect personality do in fact exist? How can we be sure 

that the increasing the sample sizes of personality genome-wide association studies will not 

prove to be a wild goose chase? Personality psychologists believe that the traits that they 

study are heritable because of certain patterns in the correlations between relatives (Fisher, 

1918; Falconer & Mackay, 1996; Lynch & Walsh, 1998; Visscher et al., 2008). Genetic the­

ory provides strong constraints on these correlations, and from their numerical values we can 

estimate the proportion of the trait variance caused by genetic differences. Applications of 

these methods to personality traits have led to reports of substantial heritability (Bouchard 

& Loehlin, 2001; Bouchard & McGue, 2003), which might seem to justify the expansion of 

genome-wide association studies to these traits. It is a rather curious sociological fact, how­

ever, that many geneticists do not believe these heritability estimates. One prominent human 

geneticist has said, "I won't believe that there are genes for being smarter until you point 

me to the actual genes." At meetings and presentations where the heritability of personality 

is raised, human geneticists and other biologists continue to assail these findings, claiming 

either that the data are fraudulent or that nothing worthwhile can be concluded from them.1 

'This apparently widespread disbelief is curious because the exact same methods—studies of twins, 
parents-children, adoptees, and other kinships—are routinely relied upon by the human genetics community 
to provide estimates of "missing heritability" benchmarking the progress of genome-wide association studies in 
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In summary, for reasons that are not entirely clear, the available evidence from the cor­

relations between relatives has failed to convince many scientists that genetic differences 

are an important cause of personality differences. It is thus apparent that genome-wide 

association studies of behavioral traits may be necessary, not only to advance personality 

psychology to new frontiers, but also to solidify its past achievements. However, without ad­

dressing the important issue of causal inference in genome-wide association studies,2 there 

is a danger that skepticism toward gene-trait causation will simply transfer from traditional 

biometrical studies to molecular studies. Biometrical studies of twins and other kinships rely 

on an "indirect" chain of inferences from the correlations between relatives to their causal 

sources that was worked out by Fisher (1918) well before the discovery of heredity's molec­

ular substrate, and it is perhaps understandable that modern geneticists feel uneasy about 

causal inferences within a framework where genes need be nothing more than invisible and 

weightless theoretical entities. Turkheimer (2008) has argued, however, that the seeming 

straightforwardness of examining correlations with "direct" measures of genetic variation 

should not excuse genome-wide association studies results from being regarded with similar 

disdain. His argument is essentially that the techniques employed in genome-wide associa­

tion studies—multiple regression, principal components, within-family designs, null hypoth­

esis testing, and so forth—have proved to be inadequate positive tools of causal inference in 

the social sciences and therefore, by analogy, their applications in genomics will prove to be 

just as worthless. 

identifying loci associated with disease and anthropometric traits (Manolio et al, 2009) 
2Here I am not referring to the problem of isolating the precise causal variant within a genomic region 

associated with a phenotype (Pomerantz et al., 2009; Stacey et al, 2010; Musunuru et al, 2010, Holm et al, 
2011). I am referring to the logically prior problem of determining whether an associated region contains a 
causal variant at all 
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Turkheimer's warnings have been entirely disregarded by the human genetics commu­

nity. Even those who criticize genome-wide association studies on other grounds agree that 

the great majority association signals reflect the causal effects of nearby markers (Goldstein, 

201 lb). But what is wrong with Turkheimer's argument? What justifies the confidence of 

complex trait geneticists? Unavoidably we are led to the more general problem of drawing 

causal inferences from observational data, a major topic of the third paper in this disserta­

tion. In that paper the specific context of genome-wide association studies is discussed at 

some length. 

The Integration of Personality and Experimental Psychology Given the bare fact that a 

personality trait is heritable, there is still a causal chasm between the precise genetic variants 

affecting the trait and measurements of the trait itself. The purpose of GWAS is obviously 

to narrow this chasm from the genetic side. We can also begin narrowing the chasm from 

the phenotypic side by seeking to explain high-level personality traits in terms of more basic 

neural properties or psychological constructs. Such a reductionistic endeavor seems to re­

quire a closer integration of personality psychology (the study of individual differences) and 

experimental psychology (the study of species-typical behavior), since it is the latter that is 

concerned with the mind as a causal system. 

Unfortunately, throughout the twentieth century, a deep divide persisted between per­

sonality and experimental psychology. In his Presidential Address to the American Psy­

chological Association, Cronbach (1957) decried the separation of "the two disciplines of 

scientific psychology" and called for their unification. Before the time of Cronbach's ad­

dress, however, a shotgun marriage of the two psychologies would probably have proven 
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barren. Behaviorism, the reigning paradigm in experimental psychology through World War 

II, focused on the relations between stimuli (causes) and responses (effects) while neglect­

ing any intervening mental structure. It is the postulation and validation of such a qualitative 

structure, however, that supports an interface with personality psychology. It is then natural 

to hypothesize that quantitative variation in certain elements of the structure gives rise to the 

individual differences that personality instruments record. 

At the time of Cronbach's address, behaviorism had begun to give way within experi­

mental psychology to cognitivism, which is committed to the existence of mental structure 

(Pylyshyn, 1984). In the last few decades, cognitive psychologists have discovered several 

striking facets of this structure that may serve as a foundation for the research program that 

Cronbach envisioned. The second paper in this dissertation begins building such a founda­

tion by exploring the nature of the negative correlation between IQ scores and reaction time 

(RT) in elementary cognitive tasks. Specifically, I test the hypothesis that the IQ-RT correla­

tion is due solely to a serial decision-making stage that maps the stimulus to the appropriate 

response (Pashler, 1998; Sigman & Dehaene, 2005, 2006). The corollary is that the parallel 

perceptual and motor stages surrounding this decision-making stage make no contribution 

to the IQ-RT correlation. I test this hypothesis using several distinct techniques developed 

by experimental psychologists following the cognitive revolution (Sternberg, 1969; Ratcliff, 

1978; Pashler, 1994), suitably extending these techniques when necessary to deal with indi­

vidual differences. Thus, the studies in the second paper depart from other recent attempts 

to use constructs of experimental psychology in intelligence research (e.g., Conway et al., 

2007); unlike these other attempts, the studies make intimate use of experimental methods 

to test precise and telling predictions. Other approaches that simply take "working raem-
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ory capacity," "executive control of attention," and the like, treating them indistinguishably 

from psychometric common factors in a purely correlational study, are arguably much less 

revealing. 

The studies reported in the second paper take two basic approaches. The first approach 

is to subject RT to various experimental manipulations, each posited to affect a distinct 

stage, and determine whether those manipulations known to affect the serial decision­

making stage also show a privileged relationship with IQ (Sternberg, 1969; Wagenmakers 

et al., 2007; Grasman et al., 2009). The second approach is more direct. By presenting two 

stimuli in each trial and varying the time between their onsets, one can infer from the man­

ner in which the two responses interfere with each other whether the IQ-associated stage is a 

serial stage. 

There are several reasons why isolating the IQ-RT correlation to a particular processing 

stage would advance the subbranch of personality psychology concerned with ability dif­

ferences closer to Cronbach's call for a unified discipline. First, the temporal position and 

time-sharing properties of the IQ-associated stage would suggest several fruitful avenues 

for integrating individual differences with theoretical accounts of problem solving, analogy 

making, "mental modeling," and other multistep cognitive processes (Carpenter et al., 1990; 

Hofstadter & the Fluid Analogies Research Group, 1995; Johnson-Laird, 2006). Second, it 

has already been shown that the serial decision-making stage contains a noisy accumulation 

of evidence picking out one of a few alternatives (Sigman & Dehaene, 2005, 2006; Ratcliff 

et al., 2008), which is suggestive of the neural mechanism by which this stage computes the 

appropriate discrete response to an analog input (Wong & Wang, 2006; Gold & Shadlen, 

2007). 
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Tracing the explanatory chain forward from the genes, and backward from behavior 

through cognitive architecture and the brain, should eventually result in a consilient meet­

ing. A problem that haunts this entire enterprise, however, is the nature of the connection 

between causality and observational data. Confirming the hypothesis of an exclusive associ­

ation of IQ with a serial, stochastic decision-making RT stage offers the promise of explana­

tory progress only if this association reflects a causal effect of individual differences in this 

stage on complex thought processes in a variety of settings. But how might this leap from 

association to causation be made? Experimental manipulations can rule out certain stages 

as the source of the IQ-RT correlation, but they do not by themselves support the remaining 

stage as playing a causal role. 

Some psychologists claim that the only study design supporting causal inferences is the 

random assignment of participants to different levels of the putative causal variable (Nisbett, 

2009; Chabris & Simons, 2010).3 This claim reflects a deep antipathy of experimental psy­

chologists toward the goals and methods of personality psychology that Cronbach discussed 

at some length in his address. This skepticism toward whether personality psychology is 

indeed a science of causes and effects has even been abetted by some personality psychol­

ogists themselves. Under the influence of Edwardian scientists who thought that the notion 

of causality could not be formulated mathematically, these personality psychologists have 

denied that causation is what their non-experimental methods aspire to demonstrate (Burt, 

1940; Lubinski & Dawis, 1995). These writers would have us think that one of Cronbach's 

two psychologies is a "science of causes" and the other a "science of correlations"; the rele-

3It is true that these authors wield this claim rather selectively, citing observational data whenever they 
happen to support their favored theories. 
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gation of personality psychology to the latter is then asserted to be a virtue! 

My own claim is that if the extreme positions just summarized are correct, then a re­

search program beginning with the association between IQ and a particular processing stage 

must quickly run into a dead end; it is difficult to imagine the circumstances under which the 

relevant neural variables could be identified and experimentally controlled. It is clear, how­

ever, that these extreme positions are untenable. First, they cannot account for the many ex­

amples from the physical sciences (the moon causing the tides) and epidemiology (tobacco 

causing lung cancer) where widely accepted causal inferences have been drawn from ob­

servational data. Second, they come dangerously close to defining causation as a difference 

following randomization rather than treating randomization as a tool for revealing causation. 

The further integration of personality and experimental psychology would appear to 

benefit greatly, then, from a systematic and explicit framework that both defines causality 

without reference to randomization and explains the effectiveness of randomization as a tool. 

Such a framework is the subject of the third paper. 

Causality and Observational Data Each of the first two papers concerns a non-manipulable 

hypothesized cause of individual differences. In both papers I present evidence that is con­

sistent with the causal hypothesis (although in the first paper this evidence does not extent 

beyond physical traits such as eye color). How strongly is the causal hypothesis supported, 

however, by the presented evidence or evidence that might be gathered in future studies? 

The answer to this question depends on considerations only briefly sketched in the papers 

themselves. The third paper in this dissertation is an extended exposition of these considera­

tions. 
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The notion of association is precisely captured by the concept of conditional proba­

bility in probability theory. Scientists are so used to working with conditional probability 

(expressed variously as a correlation coefficient, regression coefficient, and so forth) that it 

may come as a surprise that the notion of causation is not at all embraced by this concept. 

The word cause is not in the vocabulary of standard probability theory. It is an 
embarrassing yet inescapable fact that probability theory, the official mathemat­
ical language of many empirical sciences, does not permit us to express sen­
tences such as "Mud does not cause rain"; all we can say is that the two events 
are mutually correlated, or dependent—meaning that if we find one, we can ex­
pect to encounter the other. Scientists seeking causal explanations for complex 
phenomena or rationales for policy decisions must therefore supplement the lan­
guage of probability theory with a vocabulary for causality, one in which the the 
symbolic representation for the causal relationship "Mud does not cause rain" 
is distinct from the symbolic representation for "Mud is independent of rain." 
Oddly, such distinctions have yet to be incorporated into standard scientific anal­
ysis. (Pearl, 2009, p. 134, emphasis added) 

In this passage the computer scientist Judea Pearl rightly points out that causality has re­

mained a merely informal, non-mathematical concept despite its vital scientific importance. 

As evidenced by the discussion of the first two papers, such informality can only be a stum­

bling block in fields (such as personality psychology) where attempts at causal inference 

have attracted controversy. Building on the foundations laid by the population geneticists 

Ronald Fisher and Sewall Wright, the computer scientist Judea Pearl has achieved the re­

markable feat of formalizing causal reasoning in a manner that is both deep and accessible. 

The third paper in this dissertation shows how Pearl's theory provides tools to clarify 

the problems of causal inference arising in personality psychology. As just one example of 

this theory's power, consider the problem of what variables to statistically control in order to 

obtain an unbiased estimate of a causal effect using multiple regression (or some closely re-

10 



lated method). The typical student's methodological training will include advice to the effect 

that one should control for all measured variables that are correlated with both the putative 

cause and effect. Although this advice was criticized by Meehl (1970), Pearl's theory shows 

with unprecedented precision the fallacy of this approach: there are some variables that must 

be statistically controlled and others that must not be so controlled. In other words it is un­

true that statistically controlling variables correlated with both putative cause and effect will 

either take us closer to the truth or do no harm; sometimes such "control" can take as fur­

ther from the truth. I illustrate this insight and many others delivered by Pearl's theory in a 

number of realistic examples and a reanalysis of the Deary et al. (2008) data on intelligence 

and social liberalism. I also provide an extended discussion of why the techniques that have 

failed as tools of causal inference in so many other contexts have proved so robust in GWAS. 

Pearl explains his motivation for writing his book as follows: 

Ten years ago, when I began writing Probabilistic Reasoning in Intelligent Sys­
tems (1988), I was working within the empiricist tradition. In this tradition, 
probabilistic relationships constitute the foundations of human knowledge, 
whereas causality simply provides useful ways of abbreviating and organizing 
intricate patterns of probabilistic relationships. Today, my view is quite differ­
ent. I now take causal relationships to be the fundamental building blocks both 
of physical reality and of human understanding of that reality, and I regard prob­
abilistic relationships as but the surface phenomena of the causal machinery that 
underlies and propels our understanding of the world. (Pearl, 2009, pp. xv-xvi) 

Such a philosophical commitment to causality over probability implies that there can be 

no "science of correlations." My hope is that the third paper convinces the reader that it is 

desirable and feasible for personality psychology to shed this label and convince its skeptics 

that its subject matter is indeed the causes of individual differences. 
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1 A Genome-Wide Association Study of 100+ Physical and 

Behavioral Traits Finds Few Loci of Large Effect 

James J. Lee1, Gregoire Borst2, Jonathan P. Beauchamp3, Daniel J. Benjamin4, Edward L. 

Glaeser3, Steven Pinker1, David I. Laibson3, Christopher F. Chabris5 

1 Department of Psychology, Harvard University, Cambridge, MA, USA 

2 Groupe d'Imagerie Neurofonctionnelle du Developpement, Universite Paris Descartes, 

Sorbonne Paris Cite, Paris, France 

3 Department of Economics, Harvard University, Cambridge, MA, USA 

4 Department of Economics, Cornell University, Ithaca, NY, USA 

5 Department of Psychology, Union College, Schenectady, NY, USA 

Abstract 

We present the results of a genome-wide association study of over 100 human pheno-

types, including body size, pigmentation, and many traits of interest to behavioral scientists. 

In a scan of over 660,000 single-nucleotide polymorphisms assayed in more than 400 par­

ticipants, we replicate "positive control" associations reported in previous studies (most no­

tably eye and hair color) but fail to detect appreciable signal for cognitive ability, personality, 

and the other behavioral traits. In particular, there is a conspicuous failure to replicate find­

ings from previous gene-trait association studies of these traits that employed similar sample 
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sizes. Studies of twins and other kinships have shown that behavioral traits are highly her­

itable; our findings support the view that these traits resemble height or BMI in that their 

heritabilities are attributable to many loci of very small effect. Drawing on Fisher's geomet­

ric model of adaptation, we offer the hypothesis that the different evolutionary trajectories of 

the traits examined in our study account for their disparate genetic architectures. 

1.1 Introduction 

Genome-wide association studies (GWAS) offer the potential to uncover much of a 

given trait's genetic architecture: the genomic locations, average effects, and allele frequen­

cies of the DNA variants affecting the trait. The identification of a trait's genetic architec­

ture, even if only fragmentary, should prove a great boon to scientists studying the basic 

biological mechanisms connecting genetic and phenotypic variation. In addition, whereas 

an individual's genome provides a partial blueprint for the development of the phenome 

forward in time, our species' array of genomic data provides a partial record of our evolu­

tionary history backward in time. Thus, knowledge of the genetic architecture may shed 

light not only on proximate biological mechanisms, but also the ultimate evolutionary forces 

that have shaped the commonality and diversity of humankind. These powerful motivations 

compel extending GWAS to behavioral traits of fundamental importance in differential and 

evolutionary psychology. 

Here we present the results of a GWAS of over 100 human phenotypes, including body 

size, pigmentation, and many traits of interest to behavioral scientists. To our knowledge this 

study is the first to examine associations between a genome-wide panel of single-nucleotide 

polymorphisms (SNPs) and such a broad spectrum of phenotypes; in particular, most re-
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ported gene-trait association studies of behavioral traits have singled out only a few can­

didate genes. We do not observe any novel and unambiguous SNP-trait associations at an 

appropriately stringent significance threshold. Since many of our measured phenotypes are 

known to be heritable (Plomin et al., 2008), the absence of strong associations in our data 

indicates that our traits of interest are affected in the main by numerous loci of small effect. 

Given the findings to date from GWAS of diseases and anthropometric traits (Manolio et al., 

2009), this conclusion is perhaps unsurprising. In our Discussion we offer a novel extension 

of Fisher's (1999) geometric model of adaptation, providing evolutionary rationales for (1) 

why a typical genetic architecture consists of many "infinitesimal" loci and (2) why excep­

tions to this trend can be found. We then discuss the implications of our findings for future 

association studies of behavioral traits. 

1.2 Results 

As can be seen in Table 1, we found at least marginal signal for all SNPs previously 

found to be associated with eye color, hair color, freckling, and skin color (Stokowski et al., 

2007; Sulem et al., 2007, 2008; Sturm et al., 2008; Han et al., 2008; Eriksson et al., 2010)— 

except those reported by Liu et al. (2010) using digital quantification of eye color—and that 

were either present in our cleaned set of genotyped SNPs or represented by a proxy SNP 

with an r2 > .6. Note that the effects of the intronic SNP rsl2913832 in HERC2 on eye and 

hair color were statistically significant at the stringent threshold appropriate for GWAS. 

A meta-analysis has identified over 180 genomic regions containing a variant affecting 

height (Lango Allen et al., 2010). Due to the weak effect of any single variant, we did not 

replicate any of these loci at a stringent significance threshold. However, of the 94 loci either 
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Table 1: Association results for pigmentation phenotypes. 

Lh 

trait 

eye darkness 
eye darkness 
eye darkness 
eye darkness 
hair darkness 
hair darkness 
hair darkness 
red hair 
red hair 
freckling 
freckling 
freckling 
freckling 
skin darkness 
skin darkness 
skin darkness 

reported 
SNP 
rsl2913832 
rs 12896399 
rsl393350 
rs 1408799 
rsl2913832 
rs 12896399 
rs 12821256 
rs 1805007 
rsl015362 
rs 1805007 
rs 1042602 
rs2153271 
rs619865 
rs 1805007 
rs 1042602 
rs619865 

proxy 
SNP 

rsl075830 

rsl075830 

rs 1416742 

r1 

.615 

.640 

.949 

minor 
allele 
A 
A 
A 
T 
A 
A 
C 
T 
T 
T 
A 
G 
A 
T 
A 
A 

sample 
MAF 
.222 
.460 
.266 
.313 
.223 
.460 
.095 
.076 
.278 
.076 
.346 
.384 
.098 
.076 
.346 
.098 

HapMap 
MAF 
.208 
.308 
.192 
.300 
.208 
.308 
.142 
.147 
.233 
.147 
.417 
.373 
.108 
.147 
.417 
.108 

effect 
size 
.998 
.167 

-.154 
.095 
.840 
.372 

-.352 
7.44 
.507 
.613 

-.223 
-.139 

.178 
-.267 
-.118 
-.156 

p-value 

2 x 10~68 

.003 

.02 

.11 
1 x 10~13 

9 x 10"5 

.03 
2 x 10"6 

.09 
6 x 10"6 

.005 

.07 

.15 

.005 

.03 

.07 

gene 

HERC2 
SLC24A 
TYR 
TYRP1 
HERC2 
SLC24A4 
KITLG 
MC1R 
ASIP 
MC1R 
TYR 
BNC2 
ASIP 
MC1R 
TYR 
ASIP 

Eye darkness was reported on a 3-point scale. Hair darkness was recorded on 9-point scale. Red hair was 
recorded as a dichotomous trait, and its effect size is reported as an odds ratio. Freckling and skin darkness were 
recorded on 5-point scales. All effect sizes for non-dichotomous traits are reported as the expected change in trait 
value per each additional copy of the minor allele. All alleles are coded according to NCBI build 36 coordinates 
on the forward strand. 



as 

trait 

standing height 
standing height 
standing height 
standing height 
standing height 
standing height 
standing height 
standing height 
standing height 
standing height 
strength 

Table 2: Association results for physical phenotypes. 
reported 
SNP 
rs7460090 
rs237743 
rs6439167 
rs889014 
rs7274811 
rs7759938 
rs3764419 
rs3791675 
rs724016 
rs 1351394 
rsl815739 

proxy 
SNP 

rs3213183 
rs369065 
rs9890032 

rs7968682 
rs540874 

rl 

.692 
1 
.982 

.983 
1 

minor 
allele 
C 
A 
T 
T 
A 
C 
G 
T 
G 
T 
A 

sample 
MAF 
.134 
.231 
.201 
.347 
.304 
.332 
.401 
.228 
.428 
.499 
.428 

HapMap 
MAF 
.117 
.308 
.183 
.375 
.267 
.364 
.375 
.275 
.483 
.517 
.458 

effect 
size 

-.188 
.175 

-.191 
-.124 
-.140 

.172 
-.188 
-.305 

.121 
-.120 

.252 

p-value 

.07 

.04 

.03 

.10 

.07 

.02 

.009 
4 x 10-4 

.10 

.10 

.006 

gene 

SDR16C5 
ZNFX1 
C3orf47 
BOD1 
ZNF341 
LIN28B 
ATAD5/RNF135 
EFEMP1 
ZBTB38 
HMGA2 
ACTN3 

Effect sizes for height are reported in standard deviation units. Note that these effect sizes tend to be inflated 
because of the "winner's curse." Strength was reported on a 5-point scale. 



present in our set of SNPs or represented by a proxy, 65 loci had estimated effects with the 

correct sign (binomial test p < I x 10~4). There is also an enrichment of low p-values; 

whereas only nine or ten p-values less than .10 were expected under the null distribution, 

we observed 16 (binomial test p < .05). These trends are consistent with most of these loci 

being true positives despite our inability to extract strong signal from them. A selection of 

the height variants showing marginal significance in our data is shown in Table 2, along 

with the nonsynonymous SNP rsl815739 in ACTN3 known to affect athletic performance 

(MacArthur et al., 2007). 

Another recent meta-analysis has identified 32 genomic regions containing a variant af­

fecting body mass index (BMI) (Speliotes et al., 2010). The genetic architecture of BMI, rel­

ative to that of height, seems to be distributed among even more loci of small effect. In line 

with this trend, 11 of the 17 known BMI loci represented in our data had estimated effect 

sizes of the correct sign, but the wrong-signed loci were the most statistically significant. 

Table 3 shows our results for a selection of SNPs previously reported to be associated 

with general cognitive ability (Payton et al., 2003; Plomin et al., 2004; Gosso et al., 2006; 

Zinkstock et al., 2007), personality (van den Oord et al., 2008; de Moor et al., 2011), work­

ing memory (Egan et al., 2001), and episodic memory (Papassotiropoulos et al., 2006). 

We observed little evidence of signal among these SNPs. In concordance with Need et al. 

(2008), replication of the association between KIBRA and episodic memory failed despite 

putative functional validation in the original study by both analysis of gene expression and 

fMRI. This suggests that most of the SNPs reported in earlier association studies of behav­

ioral traits may represent either false positives or overestimates of the effect sizes. Applying 

a threshold of 5 x 10~8, we did not observe any loci significantly associated with the traits in 
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trait 

general cognitive ability 
general cognitive ability 
general cognitive ability 
general cognitive ability 
general cognitive ability 
Conscientiousness 
Neuroticism 
paired-associate recognition 
3-back accuracy 

3: Association results for the bi 
reported proxy r2 

SNP SNP 
rs2760118 rs7775073 .982 
rs324650 
rs363050 
rsl7571 rsl7834326 .781 
rs760761 rs2619545 1 
rs2576037 rs7233515 .879 
rsl2883384 
rs 17070145 
rs4680 

avioral phenotypes. 
minor sample HapMap 
allele 
G 
T 
G 
A 
C 
A 
A 
T 
A 

MAF 
.316 
.464 
.444 
.083 
.196 
.400 
.410 
.338 
.449 

MAF 
.317 
.467 
.475 
.083 
.192 
.408 
.317 
.267 
.517 

effect p-value gene 

size 
.062* 

.026 
-.027 

- .051* 
- .033* 
-.038 

-.014* 
.065 
.027 

.42 

.72 

.72 

.70 

.72 

.60 

.85 

.37 

.72 

ALDH5A1 
CHRM2 
SNAP-25 
CTSD 
DTNBP1 
KATNAL2 
MAMDC1 
KIBRA 
COMT 

Effect sizes are reported in sample standard deviation units. An asterisk indicates that the estimated effect in our 
study had a sign opposite to what had been previously reported. 



Table 3. 

We did find a significant association between political conservatism and rs 10952668 

(Table 4). This SNP lies in LOC642355, a pseudogene on chromosome 7. The SNP also 

showed an association with the highly correlated trait of Democrat vs Republican ((3 = .260, 

p < .02). We also observed a significant association between rsl402494 and gambling 

frequency; rsl402494 lies in a gene desert on chromosome 4. It happens that rsl0952668 

showed marginal evidence for association with the personality traits Openness (|3 = .142, p 

< .06) and Agreeableness (P = .130, p < .08). This raises the possibility that the associa­

tion between political conservatism and rs 10952668 is attributable to selection bias. Since 

to our knowledge this potential artifact has not been discussed in the genetic epidemiology 

literature (although it has parallels in the effects of natural selection on linkage disequili­

brium), we discuss it at some length in the Materials and Methods. Upon the addition of 

general cognitive ability, Openness, Neuroticism, and Agreeableness as covariates in an 

attempt to control for selection bias, the association of rs 10952668 and conservatism dimin­

ished and fell short of significance. The association of rsl402494 and gambling frequency 

appears robust against our attempts to control for selection bias, although it too fell short of 

significance after further adjustment. We conclude that both of these associations require 

replication in future studies. 

The two SNP-trait associations in Table 4 were the only novel ones reaching the signifi­

cance threshold 5 x 10~8 in our study. In summary, of all the traits in Table 5, only eye color, 

hair color, political conservatism, and gambling frequency yielded significant associations. 
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Table 4: Novel association results for behavioral phenotypes. 
trait 

liberal vs conservative 
gambling frequency 

reported 
SNP 
rsl0952668 
rs 1402494 

minor 
allele 
T 
G 

sample 
MAF 
.458 
.206 

HapMap 
MAF 
.392 
.241 

effect 
size 

.552 (.478) 

.278 (.276) 

p-value 

2 x l 0 - 8 ( l x l 0 - 6 ) 
3 x 10~8 (6 x 10~8) 

Liberal vs conservative was reported on a 7-point scale. Gambling frequency was reported on a 5-point scale. 
Effect sizes and p-values after adjustment for general cognitive ability, Openness, Neuroticism, and 
Agreeableness are given parenthetically. The effect estimates may be inflated as a result of the winner's curse. 



1.3 Discussion 

Given a significance threshold of 5 x 10 - 8 , our study had a power approaching .80 to 

detect any locus accounting for more than 10 percent of the variance in any particular trait. 

We retained reasonably good power (.12) for loci accounting for as little as 5 percent of the 

variance. The fact that we measured so many phenotypes implies that we would have ob­

tained several hits if a large proportion of the phenotypes were indeed affected by such loci. 

Because we only obtained at most two new hits, however, loci with effects of this magni­

tude on the non-pigmentation traits in Table 5 must be quite uncommon. In agreement with 

Davis et al. (2010) and de Moor et al. (2011), we conclude that cognitive ability, person­

ality dimensions, social attitudes, and most other traits of interest to behavioral scientists 

are affected by numerous loci of small effect. In this respect the behavioral traits in Table 5 

resemble height and BMI rather than pigmentation. 

There are at least two possible objections to the generalization that the genetic archi­

tecture of a typical quantitative trait consists of many loci of small effect. The first derives 

from studies of inbred strains of mice and C. elegans finding a number of closely linked loci 

with large phenotypic effects (Yazbek et al., 2010; Eric Evans, personal communication). 

However, the generalizability of these studies to outbreeding populations is highly uncertain. 

Given the small effective population sizes at which inbred strains are maintained over several 

generations, these strains might harbor genetic variants whose contributions to the variability 

of natural populations would be kept negligible by selection. It should be kept in mind that 

we probably all harbor very rare or unique variants with potentially large effects on some 

phenotype given the right genomic background, and geneticists studying an inbred line de­

rived from forced brother-sister matings among the descendants of a few founders may well 

21 



detect a number of such variants. Thus, although analyses of inbred laboratory animals may 

be highly informative with respect to biological pathways, it is unclear whether they have 

much bearing on the genetic architecture of a typical quantitative trait in the human species. 

The second possible objection is that many of the association signals picked up so far by 

GWAS are actually synthetic associations tagging one or more rare variants of large effect 

(Dickson et al., 2010; Wang et al., 2010; Goldstein, 201 lb). If this objection is valid, then 

a relatively small number of genomic regions harboring multiple rare but very powerful 

variants may constitute a typical genetic architecture. This argument, however, has been 

thoroughly critiqued by Anderson et al. (2011) and Wray et al. (2011). The main points are 

summarized as follows: 

1. If an association signal is explained by (possibly multiple) rare variants of large ef­

fect, then by far most association signals should arise from the rarer variants on SNP 

chips. This is because rare variants are tagged better by another rare variant than by a 

common variant. But what we observe in GWAS data is that although there are more 

signals from rare variants, there are still too many signals from common variants for a 

"rare-only" model. 

2. For a very common variant to be significantly associated with a trait when the causal 

variant is actually rare, that rare variant must have an enormous effect that would have 

been detected in linkage studies. GWAS results do not align well with putative linkage 

signals, however, and so it seems that the GWAS signals at common tag variants are in 

fact mostly attributable to common causal variants. 

3. If most association signals are due to rare variants of large effect—to be concrete, if 
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the phenotype is height, about 2.5 inches per minor allele with frequency .005—then it 

is possible for about a hundred loci, located in a rather small fraction of the genome, to 

account for all of the trait variance. But in the case of height there have been 180 loci 

identified so far and strong reason to believe that the number will continue to climb 

(Lango Allen et al., 2010; Turchin, 2011). Also, it has been shown that height loci 

are scattered throughout the genome at roughly constant density (the density being 

somewhat higher in genie regions) (Visscher et al., 2007; Yang et al., 2011). 

4. The sign of a marker-trait association signal is often replicated in different racial 

groups. This strongly implies that the causal variant is old, its origin by mutation pre­

ceding the worldwide dispersal of Homo sapiens. Older variants must tend be com­

mon. 

For these reasons and others, I am convinced that most GWAS association signals are not 

synthetic and thus see no reason to modify my expectation that a typical behavioral trait will 

be affected by thousands of variants both common and rare. 

The contrast between pigmentation and the other phenotypes examined in this study is 

quite striking (Tables 1-3). A question that naturally arises is whether any theoretical princi­

ples might explain why a diffuse polygenic architecture should be typical for a quantitative 

trait and also what accounts for the known exceptions to this trend. Perhaps the simplest pos­

sible explanation invokes the length of the causal chain from genetic to phenotypic variation. 

For example, variation in pigmentation arises from the number of melanosomes produced, 

the type of melanin synthesized, and the size and shape of the melanosomes (Sturm, 2009). 

It is plausible that these biochemical differences follow directly from changes in the compo-
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sition or regulation of gene products. In contrast, changes at the molecular and cellular level 

may be somewhat remote from any ultimate changes in even a physical phenotype such as 

BMI. Consider that BMI may depend on what a person likes to eat, how often he eats, how 

much he exercises, and a host of other complex behaviors. Similarly, given the abstractness 

of psychological attributes such as cognitive ability, conscientiousness, religiosity, and the 

like, we might expect any single genetic variant affecting such an attribute to contribute little 

variability relative to the total causal background. 

Another possible explanation is the differential action of natural selection. The essential 

features of Fisher's (1999) well-known geometric model of adaptation are captured in the 

two-dimensional phenomic space of Figure 1. A represents the current mean phenotype of 

the species, while O represents the optimum favored by natural selection. We imagine that A 

and O no longer coincide because of an abrupt environmental change demanding a different 

value of trait 1. The effect of fixing a new mutation in this model corresponds to adding 

a vector of random direction to the population's current position at A. This feature of the 

model captures two key observations: (1) mutations have no inherent tendency to increase 

the fitness of their bearers, and (2) any single mutation may affect several distinct traits. 

The interior of the circle contains all new phenotypes that would result in an increased 

level of adaptation. It is immediately clear that selection forbids the fixation of any mutation 

whose magnitude exceeds the diameter of the circle. In general, mutations become more 

likely to be beneficial as their magnitudes decrease. For this reason Fisher argued that muta­

tions of large effect are relatively unimportant in evolution. 

The conformity of these statistical requirements with common experience will 
be perceived by comparison with the mechanical adaptation of an instrument, 
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trait 2 

trait 1 

Figure 1: Fisher's geometric model of adaptation. A is the current mean phenotype of the 
population, A' is the mean phenotype that would result if the mutation denoted by the arrow 
were to be instantly fixed, and O is the new optimum favored by natural selection. 
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such as a microscope, when adjusted for distinct vision. If we imagine a de­
rangement of the system by moving a little of the lenses, either longitudinally 
or transversely, or by twisting through an angle, by altering the refractive index 
and transparency of the different components, or the curvature, or the polish of 
the interfaces, it is sufficiently obvious that any large derangement will have a 
very small probability of improving the adjustment, while in the case of alter­
ations much less than the smallest of those intentionally effected by the maker or 
the operator, the chance of improvement should be almost exactly half. (Fisher, 
1999, pp. 40-41) 

We now expand Fisher's argument to address the puzzle raised by the contrast between pig­

mentation and the other traits in Table 5. 

If the distance between A and O in Figure 1 is very large, then it is possible that a mu­

tation with a sizable projection on trait 1 will be favored by selection. Suppose that trait 1 

was previously under strong stabilizing selection and thus has negligible genetic variation at 

the time of the environmental shift (corresponding to a tight clustering of phenotypes around 

A). Since the rate of the approach to the optimum by standing genetic variation is bounded 

above by trait 1 's heritability (Lande, 1979), a population with no variability in trait 1 would 

be fortunate to fix a mutation taking it to A'. 

But now suppose that stabilizing selection on trait 1 was much weaker, permitting the 

buildup of substantial genetic variation (a wide scatter of points around A). In this case it 

becomes much less probable that a mutation of large effect will become common as a result 

of positive selection. Standing genetic variation (as well as environmental variation) swamps 

the fitness effect of a new mutation in essentially random noise and thus retards its progress 

away from frequency zero. At the same time, standing genetic variation enables the popula­

tion to advance toward O while the mutation is struggling to escape from the boundary. If O 

lies within the current range of genetic variation (as is the case for the more dispersed popu-
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lation in Figure 1) and selection is even moderately strong, then the population mean shifts 

from A to O in just a few generations. En route the diameter of the circle bounding all points 

of higher adaptation continuously shrinks. Once the magnitude of the mutation that would 

have taken the population to A' exceeds the diameter of the circle, the mutation is disfavored 

and very likely absorbed back at frequency zero. 

What kinds of genetic variants contribute to standing variation? Even under weak stabi­

lizing selection, variants of large effect are more easily "seen" by selection and consequently 

kept at a low minor allele frequency (MAF) (Wright, 1938; Hastings, 1990; Eyre-Walker, 

2010). This implies that any common variants contributing to standing genetic variation will 

typically be small in effect. Thus, we might expect many loci of small effect to be the typical 

genetic architecture underlying a quantitative trait. 

In retrospect, these evolutionary considerations may account for the pattern evident in 

Tables 1-3. After the loss of body hair in our lineage, pigmentation came under strong sta­

bilizing selection in our ancestors, who were in great need of protection from the African 

sun. More recently, the out-of-Africa migrants ancestral to Europeans and East Asians ex­

perienced a sudden and drastic shift in the optimal level of pigmentation—perhaps because 

of the need to sustain cutaneous synthesis of vitamin D in northern climates (Jablonski & 

Chaplin, 2010), although others have implicated sexual selection or as-yet unidentified evo­

lutionary pressures (Cavalli-Sforza et al., 1994; Frost, 2006; Cochran & Harpending, 2009). 

In any event the result was that several depigmenting mutations of large effect increased very 

rapidly in frequency (Rogers et al., 2004; Williamson et al., 2007; Pickrell et al., 2009). Ta­

ble 1 lists those mutations that have not yet reached fixation and are thus still polymorphic 

in Europeans. On the other hand, phenotypes such as height, BMI, and the behavioral traits 
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in Table 5 have probably always been quite variable in human populations. Indeed, evolu­

tionary game theory has established theoretical rationales for the persistence of multiple 

behavioral phenotypes (e.g., hawks and doves) in the same population (Maynard Smith & 

Price, 1973; Penke et al., 2007). Even if selection has acted on these traits since the disper­

sal of our species from Africa, the new optimums could have been quickly reached by small 

shifts in allele frequency at many minor loci, leaving any major mutants at the low MAF 

determined by the interaction of mutation, drift, and stabilizing selection (Kimura, 1983). 

The result of these dynamics would be the observed absence of common variants with large 

effects. 

Note that our explanation appealing to the length of the causal chain between genotype 

and phenotype can easily be rephrased to say that different traits have different distributions 

of mutational effects. This would be the kind of "nonadaptive" explanation for an observed 

genetic phenomenon advocated by Lynch (2007), whereas our hypothesis regarding the in­

fluence of natural selection would be an "adaptive" explanation. We feel that our adaptive 

and nonadaptive hypotheses are not in conflict, and probably both contribute to the differ­

ences in genetic architectures across quantitative traits. 

Our two proposals for explaining the pattern in Tables 1-3 lead to the following sugges­

tions for future GWAS of behavioral traits. First, in order to understand the various steps in 

the causal chain between genetic and phenotypic variation, attempts should be made to nar­

row the chasm from both sides. This requires the validation of endophenotypes lying closer 

on the causal chain to genetic variation than the phenotypes of primary interest. Second, 

researchers seeking variants of large effect should study populations where directional se­

lection may have recently produced a phenotypic change that is large relative to the initial 
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standing variation. Recent studies of altitude adaptation in Tibetans exemplify both of these 

suggestions (Simonson et al., 2010; Yi et al., 2010; Beall et al., 2010). The genes associated 

with red blood cell count and hemoglobin concentration in these studies would have been 

more difficult to identify if the phenotype had been characterized at a level as abstract as "al­

titude tolerance." Moreover, the recent and rapid divergence of Han Chinese and Tibetans 

in altitude tolerance after the latter began to occupy a highland environment was plausibly 

driven by a selection differential large enough to pull variants of large effect away from the 

boundary of frequency zero. 

As for traits experiencing more typical evolutionary histories, one promising approach 

to collecting the required large samples has been the burgeoning field of personal genomics, 

in which a large base of volunteers or consumers provide genotype and phenotype infor­

mation (Dolgin, 2010; Lunshof et al., 2010; Eriksson et al., 2010). In such studies it will be 

important to check for selection bias to the extent possible. Although a trait such as aspara­

gus anosmia plausibly has little influence on appearing in a research study, other phenotypes 

of interest in personal genomics are likely to be causes of participation in personal genomics 

itself. For example, an individual with a liability to a particular disease may be strongly mo­

tivated to participate in a personal genomics study for reasons of self-interest or altruism. We 

suspect that our findings of elevated cognitive ability and intellectual openness among re­

search volunteers will generalize to future studies, and therefore it may be prudent to collect 

highly reliable measurements of these traits in all participant-driven GWAS. If the sample 

distributions of these traits appear unusual, then it may be useful to annotate reported as­

sociations to indicate that they may have arisen in a conditional background. Traditional 

epidemiological studies that attempt to minimize the impact of personal characteristics on 
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study participation will remain an important complement to volunteer- and consumer-driven 

approaches. 

In summary, we find very few loci of large effect associated with non-pigmentation 

traits, including many traits of great theoretical interest to behavioral scientists. Two sub­

stantial points emerge from our analysis: 

1. The evolutionary history of a trait is intimately intertwined with its present genetic 

architecture. This implies a bidirectional impact: just as the discovery of gene-trait 

associations can illuminate the evolution of our species, the realized evolutionary pro­

cess affects what associations we can most readily discover. In particular, stabilizing 

selection of middling strength, which permits a substantial background of weak or 

rare variants, supplies the fuel for polygenic adaptation and may obviate the need for 

mutants of large effect upon a sudden environmental change. 

2. Psychological traits of interest to researchers are themselves very likely to be causes of 

participation in scientific research, which raises the potential of spurious associations 

arising from self-selection. 

These points will remain of relevance as gene-trait association studies of behavioral traits 

proceed under various approaches. 

1.4 Materials and Methods 

1.4.1 Ethics Statement 

This study was conducted according to the principles expressed in the Declaration of 

Helsinki. The participants in this study all provided written informed consent. All proce-

30 



dures and the consent form were approved by the Harvard Committee on the Use of Human 

Subjects in Research. 

1.4.2 Participants 

Participants were recruited and phenotyped at two sites: Cambridge, MA, and Schenec­

tady, NY. Participants were recruited through paper flyers posted at various sites, adver­

tisements placed on Craigslist, and the Department of Psychology Study Pool at Harvard 

University. 

Participants were directed to a SurveyMonkey questionnaire that included items regard­

ing age, medical history, and grandparental ethnicity. Any participants who reported an age 

outside the range 18 to 45 or a history of bipolar disorder, schizophrenia, or severe head 

trauma were excluded from followup. To control for ancestral confounding of genotypes and 

trait levels (Campbell et al., 2005), we selected a sample of predominantly Western Euro­

pean ancestry. 

We phenotyped 451 participants. During the phenotyping some participants reported 

discrepant or more detailed self-reports regarding the eligibility criteria that disqualified 

them. These participants were phenotyped but not genotyped, leaving 419 participants with 

complete genetic and phenotypic data. 

Measures 
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Table 5: Phenotypes measured in the study 

phenotype 

3-back accuracy 

3-back RT 

acne severity as adolescent 

acne severity as adult 

acne severity overall 

alcohol consumption frequency (last 12 months) 

alcohol drinks per drinking occasion 

alcohol total drinks in last year 

allergic to animals 

allergic to drugs 

allergic to food 

allergies (any) 

anticipated remaining life expectancy 

asthma as adult 

asthma as child 

athleticism 

attitude toward abortion on demand 

attitude toward alcohol 

attitude toward attention-drawing clothes 

Figure 5 continued 

mode 

computer 

computer 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

on next page 

scale 

quantitative (N) 

quantitative (N) 

polytomous 

polytomous 

polytomous 

polytomous 

quantitative 

quantitative (N) 

dichotomous 

dichotomous 

dichotomous 

dichotomous 

quantitative (N) 

dichotomous 

dichotomous 

polytomous 

polytomous 

polytomous 

polytomous 
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phenotype mode scale 

attitude toward being the center of attention 

attitude toward being the leader of groups 

attitude toward big parties 

attitude toward capitalism 

attitude toward castration as sex crime punishment 

attitude toward death penalty for murder 

attitude toward doing athletic activities 

attitude toward dressing well at all times 

attitude toward education 

attitude toward exercising 

attitude toward getting along well with others 

attitude toward illegal drugs 

attitude toward legalized gambling 

attitude toward loud music 

attitude toward making racial discrimination illegal 

attitude toward open-door immigration 

attitude toward organized religion 

attitude toward playing chess 

attitude toward playing organized sports 

attitude toward public speaking 

attitude toward reading books 

Figure 5 continued ( 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

m next page 

polytomous 

polytomous 

polytomous 

polytomous 

polytomous 

polytomous 

polytomous 

polytomous 

polytomous 

polytomous 

polytomous 

polytomous 

polytomous 

polytomous 

polytomous 

polytomous 

polytomous 

polytomous 

polytomous 

polytomous 

polytomous 
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phenotype mode scale 

attitude toward rollercoaster rides 

attitude toward smoking 

attitude toward voluntary euthanasia 

back pain 

BIS inattention 

BIS general 

BIS motor 

BIS nonplanning 

body mass index 

body type (scrawny to obese) 

caffeine mg per day 

CFMT 

cigarette packs per day 

cleft chin 

coffee cups per day 

corrective lenses needed currently 

corrective lenses needed at any time 

curl tongue 

Democrat vs. Republican 

dental braces worn (ever) 

dental braces worn or needed (ever) 

Figure 5 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

measured 

self-report 

self-report 

computer 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 
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polytomous 

polytomous 

polytomous 

dichotomous 

quantitative (N) 

quantitative (N) 

quantitative (N) 

quantitative (N) 

quantitative (N) 

polytomous 

quantitative 

quantitative (N) 

polytomous 

dichotomous 

polytomous 

dichotomous 

dichotomous 

dichotomous 

polytomous 

dichotomous 

dichotomous 
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phenotype 

dictator game 

dimples 

discounting 

drink alcohol (ever) 

earlobes free (vs. hanging) 

evening person 

exercise amount per week 

exercise intensity 

exercise regularly 

eye color 

facial hair color 

facial hair color (red vs. not red) 

farsighted 

first toe longer than second toe 

floss teeth regularly 

freckles on face 

gambling frequency 

general cognitive ability 

hair color 

hair color (red vs. not red) 

hair curliness 

Figure 

mode 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

self-report 

scale 

dichotomus 

dichotomous 

quantitative (N) 

dichotomous 

dichotomous 

dichotomous 

polytomous 

polytomous 

dichotomous 

polytomous 

polytomous 

dichotomous 

dichotomous 

dichotomous 

dichotomous 

polytomous 

polytomous 

quantitative (N) 

polytomous 

dichotomous 

polytomous 

continued on next page 

35 



phenotype mode scale 

hair on middle segment of any 

happiness sumscore 

hay fever 

heterosexual 

hitchhiker's thumb 

hours of sleep average 

hours of sleep last night 

illegal drug use 

inattentional blindness 

finger 

in-person contact with family or very close friends 

last doctor's appointment for checkup 
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loss aversion 

MAB Arithmetic 
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migraines at any time 

migraine frequency 

migraine within last 12 months 

morning person 
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phenotype mode scale 

multivitamin supplement 

nearsighted 

NEO Agreeableness 

NEO Conscientiousness 

NEO Extraversion 

NEO Neuroticism 

NEO Openness 

paired-associate recognition 

percenproxye of income saved over last 3 years 

physical attractiveness 

quality of sleep 

RAPM 

religiosity 

right-handed 

risk aversion 

seat belt use 

shape span accuracy 

shape span response time 

sitting height 

skin color and sun exposure response 

SMMR accuracy 
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phenotype mode scale 

SMMR response time 

smoked cigarette (ever) 

soda cups per day 

spatial span accuracy 

spatial span response time 

SRTT accuracy 

SRTT overall RT 

SRTT improvement in RT 

standing height 

strength 

stress level within last 12 months 

sunscreen or protective clothing use 

tea cups per day 

time woke up this morning 

tobacco use frequency (current) 

tobacco user (current) 

tobacco user (ever) 

unprotected sex 
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phenotype mode scale 

VVIQ self-report quantitative (N) 

weight measured quantitative (N) 

weight (maximum) self-report quantitative (N) 

widow's peak self-report dichotomous 

Table 5 lists all measured phenotypes. 

Any phenotype measured in paper mode was administered as a traditional paper-and-

pencil test. Self-report refers to questionnaire data recorded either on paper forms or a Sur-

veyMonkey questionnaire. Phenotypes measured in computer mode were implemented as 

PsyScope tasks requiring participants to provide keyboard input. A measured phenotype was 

directly measured by an experimenter using either a measuring tape or a bathroom scale. 

Audio refers to sound-recorded data that was later transcribed and coded. 

Any variable assuming more than ten values was regarded as quantitative rather than 

polytomous (ordered categorical). A parenthetical N in Table 5 indicates that we were able 

to remove sex differences in mean and variance from a quantitative variable and then use a 

quantile transformation to render the resulting scores normally distributed. These transfor­

mations should increase statistical power to detect genetic associations for traits showing sex 

differences and also the accuracy of p-values. 

We now describe some behavioral phenotypes whose labels in Table 5 are relatively 

uninformative. 

• 3-back. Participants viewed a succession of words, each new word appearing every 

2.36 s. Participants were instructed to indicate as quickly and accurately as possible 
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whether each word matched the word seen three items previously. This task has often 

been employed as an indicator of working memory capacity (Gray et al., 2003). 

• Barratt Impulsiveness Scale (BIS). This self-report has been found to measure three 

distinct factors (inattention, motor impulsiveness, lack of planning) (Patton et al., 

1995). We used the sum of these three factor scores as a measure of this self-report's 

general factor. 

• Cambridge Face Memory Test (CFMT). Participants were shown six target human 

faces and then tested with a forced-choice item consisting of three faces, one of which 

was a target. This test has been shown to be a sensitive measure of prosopagnosia 

(specific deficit in recognizing other people by their facial features) and also normal 

variability in the ability to recognize faces (Duchaine & Nakayama, 2006; Wilmer 

et al., 2010). 

• Dictator game. Each participant was asked to imagine being randomly and anony­

mously paired with another participant. The participant was then asked to allocate 

ten dollars between the members of the pair. How much of the ten dollars each par­

ticipant is willing to give away to the other person in this task has been taken as a 

measure of the participant's heritable altruistic tendencies (Knafo et al., 2008; Ce-

sarini et al., 2009). Because the distribution of allocation was almost bimodal, nearly 

all participants giving away either zero or five dollars, we treated this phenotype as 

dichotomous; all participants who gave anything at all were given the higher score. 

• Discounting. Participants were presented a set of choices between smaller prompt 
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rewards and larger delayed rewards. Discount rates inferred in this way have been 

found to be associated with substance abuse and other outcomes (Chabris et al., 2008). 

• General cognitive ability. We combined the following indicators into a standardized 

cognitive ability composite: (1) the short form of Raven's Advanced Progressive Ma­

trices proposed by Bors and Stokes (1998); (2) the Arithmetic, Similarities, and Vo­

cabulary subtests of the Multidimensional Aptitude Battery (MAB); and (3) accuracy 

on a forced-choice version of the Shepard-Metzler Mental Rotations (SMMR). 

• Inattentional blindness. Participants watched a video of two teams of three players, 

one team wearing white shirts and the other wearing black shirts, who moved around 

erratically in an open area. The passes were either bounce passes or aerial passes; 

players would also dribble the ball, wave their arms, and make other movements. After 

about 45s, a research assistant wearing a gorilla costume that fully covered her body 

walked through the action. A surprising proportion of participants report not seeing 

the gorilla at all (Simons & Chabris, 1999). The causes of the individual differences in 

this task are unknown. We treated any participant who reported having seen or heard 

of this task previously as a missing data point. 

• Loss aversion. Participants were presented with a set of choices between (1) receiving 

nothing or (2) a 50% chance of gaining an amount x and a 50% chance of losing an 

amount y. 

• NEO Five-Factor Inventory. A 60-item self-report with 12 items measuring each of 

the following personality factors: Neuroticism, Extraversion, Openness to Experience, 

Agreeableness, and Conscientiousness. 

41 



• Paired-associate recognition. After studying a series of arbitrary paired words, partici­

pants were given a multiple-choice test of cue recognition. 

• Religiosity. We administered the religiousness scale employed by Koenig et al. (2005). 

• Risk aversion. Participants were presented with a set of choices between (1) a 100% 

chance of receiving an amount x or (2) a 50% chance of receiving an amount y > x and 

a 50% chance of receiving nothing. 

• Shape span. In the study phase, participants were presented a series of irregular shapes 

one at a time. In the test phase, participants had to press one of two keys in response 

to further presentations of irregular shapes, depending on whether each shape was a 

member of the set presented in the study phase. 

• Social attitudes. Items asking for attitudes toward abortion on demand, alcohol, and 

so forth were taken from (Olson et al., 2001). Because the factor model postulated by 

these authors did not fit our data well, we analyzed each item separately. 

• Spatial span. In the study phase, participants viewed a circular array of gray dots. 

Several of the dots briefly turned black, one at a time. In the test phase, participants 

continued to view dots turning black and had to indicate by pressing one of two keys 

whether a dot had also turned black during the study phase. 

• Serial Reaction Time Task (SRTT). Participants viewed a linear array of four squares. 

During each trial a black diamond briefly appeared in one of the squares, and in re­

sponse participants had to press one of four corresponding keys, using the pinky, ring, 

middle, and index fingers of the preferred hand. Unbeknownst to the participants, a 
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fixed subsequence of the stimuli appeared repeatedly throughout the task, alternating 

with runs of stimuli chosen at random. Reaction time (RT) tends to decrease with each 

successive presentation of the repeating subsequence, although most participants do 

not consciously notice the repetition. The mean difference in RT between the repeat­

ing stimuli and the random stimuli was taken as a measure of implicit motor learning. 

• Utilitarianism. Participants were presented with a set of moral dilemmas in which par­

ticipants rated on a l-to-5 scale the appropriateness of a "utilitarian" response (Greene 

et al., 2001). A typical item stem: "You are at the wheel of a runaway trolley quickly 

approaching a fork in the tracks. On the tracks extending to the left is a group of five 

railway workmen. On the tracks extending to the right is a single railway workman. If 

you do nothing the trolley will proceed to the left, causing the deaths of the five work­

men. The only way to avoid the deaths of these workmen is to hit a switch on your 

dashboard that will cause the trolley to proceed to the right, causing the death of the 

single workman. Is it appropriate for you to hit the switch in order to avoid the deaths 

of the five workmen ?'' 

• Verbal fluency. Participants were given one minute to utter as many distinct words as 

possible beginning with a certain letter. Person names, places, and numbers were not 

counted. The letters F, A, and S were used. The counts of the uttered words beginning 

with these letters appeared to be tau-equivalent indicators of a common factor after 

standardization. 

• Vividness of Visual Imagery Questionnaire (VVIQ). Participants were told to visualize 

certain scenes or persons and rate the vividness of distinct aspects of the mental image 
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(Marks, 1973). 

1.4.3 Procedure 

Participants found to be eligible for the study after prescreening were invited to one of 

our two labs for a phenotyping session lasting typically from three to four hours. Participants 

gave informed consent after the nature of the procedure had been fully explained to them. At 

the end of the session, each participant rolled a six-sided die. If the participant rolled a six, 

then a randomly chosen response to an item in one of the behavioral-economic tasks (dis­

counting, dictator game, loss aversion, risk aversion) was fulfilled for that participant. For 

example, suppose that the chosen item was a discounting item. If the participant expressed 

a preference for x dollars 30 days from now over v dollars 60 days from now, then the par­

ticipant was written a check for x dollars dated 30 days from the date of the phenotyping 

session. Any losses suffered in the loss aversion task came out of five dollars given to each 

participant at the beginning of the session. This five dollars was given in addition to the ad­

vertised 50-dollar compensation. Participants were informed at the outset of the phenotyping 

session that their choices in the behavioral-economic tasks might actually be fulfilled. 

At two points during the phenotyping session, participants provided samples by washing 

their mouths with 10 ml of Scope mouthwash. Samples were stored either in a freezer at 

—20°C or in packed dry ice until DNA extraction. Genomic DNA was extracted using a 

QIAamp DNA Blood Mini Kit according to the manufacturer's recommended protocol. 

Genomic DNA samples normalized to 50 ng/jul were genotyped at either Stanford 

Genome Technology Center (SGTC) or Expression Analysis (EA) in Durham, North Car­

olina using the Affymetrix Genome-Wide Human SNP Array 6.0 in four batches. SNP geno-
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types were called using the Birdseed v2 algorithm applied to each batch individually. The 

median call rate before application of quality-control (QC) criteria was 99.64%. Between-

batch reproducibility was assessed by genotyping both samples provided by each of two 

participants. Average genotype concordance between replicates was 99.7%. 

We used the program PLINK for data cleaning and analyses (Purcell et al., 2007). Our 

QC criteria excluded all participants missing more than 7% of their genotypic data, all SNPs 

with minor allele frequency (MAF) less than .05, all SNPs deviating from Hardy-Weinberg 

equilibrium at a significance threshold of 5 x 10~8, and all SNPs missing more than 5% 

of their calls. We then computed the principal components (PCs) of the resulting genotype 

matrix with the program EIGENSTRAT (Price et al., 2006). All participants more than six 

standard units from the origin on any of the top 10 PCs were iteratively excluded. After 

application of all QCs, the final cleaned dataset included 401 individuals and 661,107 SNPs. 

Nine statistically significant PCs at a significance threshold of .05 were found. The PCs 

corresponding to the fourth and fifth largest eigenvalues weakly distinguished the two geno­

typing laboratories, despite the application of our earlier QCs. The first, second, third, and 

sixth PCs were significantly correlated with the geographical distance of grandparental ori­

gin from England. The seventh PC tended to spread out individuals reporting non-British 

grandparents, whereas the eighth PC tended to separate those reporting two or more British 

grandparents from those reporting one or none. The ninth PC tended to spread out individu­

als reporting British grandparents, perhaps reflecting structure within Britain. We included 

all nine significant PCs as covariates in the tests for SNP-trait association. 

The MAB subtests were scored according to the instructions in the manual (Jackson, 

1998). Factor analyses of the BIS, the NEO, religiosity, utilitarianism, verbal fluency, and 
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the VVIQ resulted in solutions with nonzero uniquenesses. For these phenotypes we esti­

mated factor scores by Bartlett's method, which is maximum likelihood (ML) if the unique­

nesses are normally distributed. A few participants were missing some data as a result of 

omits, photocopying errors, computer failures, and the like. Participants were given fac­

tor scores if they responded to more than half of a scale's indicators. We used the OpenMx 

package in R to perform all factor analyses (R Development Core Team, 2010). 

Parameters describing the responses of each participant during the behavioral-economic 

tasks were estimated by ML. For example, an "interest rate" for discounting utility flows 

over time was estimated for each person and used as the measurement for the discounting 

task. 

Linear regression was performed to test for purely additive association between SNPs 

and all polytomous and continuous traits. Logistic regression was performed for dichoto-

mous traits. We chose a significance threshold of 5 x 10~8 for declaring a SNP-trait associa­

tion to reflect a causal effect of the marker or a linked variant (McCarthy et al., 2008). Under 

a frequentist approach aiming to minimize the chance that even a single declared "hit" is a 

false positive, the large number of examined traits requires an even more stringent threshold. 

However, we favor the quasi-Bayesian justification for the strict GWAS significance thresh­

old given by the Wellcome Trust Case Control Consortium (2007). This approach recognizes 

that a given significance threshold maintains a constant ratio of true to false positives as the 

number of markers and traits increases—so long as statistical power and prior probabilities 

do not change. Thus, if a given threshold has already been shown to produce an acceptable 

ratio of true to false positives, then it is reasonable to expect that most declared hits will be 

true positives as a study tests more hypotheses—even if it becomes virtually certain that 
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some of the declared hits are false positives. The appeal of this reasoning is that it does not 

mandate prohibitive significance thresholds as association studies begin to exploit whole-

genome sequencing and the measurement of multiple phenotypes. 

For any SNP showing an association with a trait at the significance threshold 5 x 10 - 8 , 

we reran PLINK with our cognitive ability composite and NEO Openness, Neuroticism, 

and Agreeableness factor scores as additional covariates in an effort to control for selection 

bias (Pearl, 2009). To illustrate what we mean by selection bias, suppose that whether our 

driveway is wet is affected by whether it rained last night and whether our sprinkler was ac­

tivated (Figure 2a). Suppose also that the two causal variables are independent; that is, when 

it rains is not associated with when the sprinkler turns on. If we only examine the pavement 

on mornings when it is wet, however, then the two causal variables become negatively corre­

lated. For instance, if we see that the pavement is wet and know that it did not rain last night, 

then we can be fairly confident that the sprinkler was in fact activated. The basic principle 

emerging from this example is that conditioning on the common effect of multiple causes 

can introduce an association among the causes where none exists marginally. 

This same principle applies in GWAS. Suppose that higher levels of both traits 1 and 

2 are causes of participation in our study (Figure 2b). Then we will find any gene affecting 

trait 2 to be associated with trait 1, even if trait 1 is not at all affected by genetic variation. 

Controlling for the other traits affecting participation is not fully satisfactory, even if we 

know what these traits are. The trait of interest may itself be connected to the other traits in 

a complex causal graph, and therefore conditioning on the other traits may introduce further 

bias. In all likelihood, however, conditioning on traits that may affect study participation is a 

conservative procedure. 
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Figure 2: Examples of directed acyclic graphs containing a collider (the common effect 
of two or more causes). Conditioning on a collider alters the covariation among the causes; 
for example, two marginally independent causes can become negatively correlated. 
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Table 6: Characteristics of the sample. 
trait 
age 
sex 
MAB Arithmetic 
MAB Similarities 
MAB Vocabulary 
NEO Neuroticism (college, female) 
NEO Neuroticism (adult, female) 
NEO Neuroticism (college, male) 
NEO Neuroticism (adult, male) 
NEO Extraversion (college, female) 
NEO Extraversion (adult, female) 
NEO Extraversion (college, male) 
NEO Extraversion (adult, male) 
NEO Openness (college, female) 
NEO Openness (adult, female) 
NEO Openness (college, male) 
NEO Openness (adult, male) 
NEO Agreeableness (college, female) 
NEO Agreeableness (adult, female) 
NEO Agreeableness (college, male) 
NEO Agreeableness (adult, male) 
NEO Conscientiousness (college, female) 
NEO Conscientiousness (adult, female) 
NEO Conscientiousness (college, male) 
NEO Conscientiousness (adult, male) 

mean 
25.2 

SD 
6.44 

67.6% female 
.797 (0) 
1.054(0) 
1.386(0) 
21.90(25.83) 
18.71 (20.54) 
18.53 (22.49) 
18.84 (17.60) 
30.10(31.27) 
29.19(28.16) 
29.08 (29.22) 
29.70 (27.22) 
34.02 (27.94) 
34.42 (26.98) 
31.79(27.62) 
31.36(27.09) 
33.80(31.00) 
34.42 (33.76) 
31.46(28.76) 
32.00(31.93) 
33.64(31.02) 
32.29 (35.04) 
30.17(30.21) 
33.33 (34.10) 

.836(1) 

.601 (1) 

.891 (1) 
8.38 (7.59) 
9.13(7.61) 
10.04 (7.92) 
10.46 (8.61) 
6.89 (5.64) 
7.55 (5.82) 
6.10(5.97) 
8.64 (5.85) 
6.57 (5.72) 
5.57 (5.87) 
6.57 (6.08) 
7.04 (5.82) 
5.51 (5.33) 
4.71 (4.74) 
6.05 (5.24) 
5.70 (5.03) 
7.40 (6.53) 
7.15(5.78) 
6.54(7.19) 
8.04 (5.95) 

The summary statistics reported in the respective manuals are given in parentheses next to 
the corresponding sample statistics. The MAB scores were scaled as standard normal using 
the tables in Jackson (1998). The NEO summary statistics were calculated for participants 
between the ages of 18 and 22 for purposes of comparison with the college norms in Costa 
and McCrae (1992) and for participants age 30 and over for comparison with the adult 
norms. 
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Table 6 gives the sample statistics for the MAB and NEO, two instruments with detailed 

population norms. Our participants show much higher MAB means and smaller standard 

deviations than the norming samples, suggesting that cognitively able individuals were more 

likely to participate in the study. The relationship between the NEO personality traits and 

study participation appears to be rather complex. Our study participants show conspicuously 

higher levels of Openness than the norming samples. The trait of Openness is defined by a 

willingness to examine new ideas and try new activities, and thus it is quite plausible that 

higher levels of this trait may be a cause of participation in scientific research. Our study 

participants also show consistently lower levels of Neuroticism and higher levels of Agree-

ableness. Interestingly, our study participants show a pronounced tendency to be more vari­

able than the norming samples, although this trend may be due partly to the fact that individ­

uals with higher measured values of cognitive ability are more variable in their responses to 

personality questionnaires (Aitken Harris et al., 2005). 

A reasonable attempt to control for selection bias thus appears to be using general cogni­

tive ability, Openness, Neuroticism, and Agreeableness as additional covariates whenever a 

novel SNP-trait association shows an otherwise significant p-value. 
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Abstract 

Higher levels of general mental ability (g) are associated with faster reaction times in el­

ementary cognitive tasks. Here we pinpoint the locus of this association within a partition of 

reaction time into distinct processing stages. We adopted a number-comparison task permit­

ting both experimental manipulation of multiple stages and the near-simultaneous presenta­

tion of two stimuli. Among the three stages distinguished by our experimental paradigms— 

perception, decision-making, and motor execution—it is only the central decision-making 

stage where higher-g individuals enjoy an advantage. First, the only manipulation statisti­

cally interacting with g is already known to affect a central stage. Second, the advantage of 

the higher-g individuals in responding to the second stimulus within the dual task doubled 

when the stimuli were presented very close together in time, which indicates that the ad­

vantage inheres in a stage that can perform a computation for only one stimulus at a time. 
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This seriality ("refractoriness") of the central decisional stage is a well-established finding 

of dual-task studies. Finally, a decomposition of reaction time into a diffusion of evidentiary 

strength between decision boundaries and a low-variability residual stage revealed that the 

g-speed association is attributable to diffusion rate. This g-diffusion association converges 

with our replication of the finding that the diffusion process is encompassed by the central 

stage identified by interaction and dual-task analyses. Thus, our results unify three strands of 

research: the psychological refractory period, diffusion modeling, and individual differences 

in high-level mental abilities. An agenda for future investigations is to determine whether 

the association between g and the duration of the central bottleneck implies a causal role 

of this elementary architectural feature in language comprehension, quantitative reasoning, 

spatial-visualization, and other complex g-loaded abilities. 

Author Summary 

Parsing a mental operation into stages, identifying the parallel or serial nature of each 

stage, and characterizing stage-specific processing mechanisms are important goals of the 

brain and behavioral sciences. Two distinct theoretical approaches have produced partitions 

of reaction time in elementary cognitive tasks. One has divided the total response into par­

allel perceptual and motor stages surrounding a serial decision-making stage. Another has 

divided the response into the "hitting time" of a stochastic evidence accumulation and a 

low-variability residual. These two partitions have recently been unified by showing that the 

serial bottleneck giving rise to the psychological refractory period encompasses the stochas­

tic portion of the diffusion model. It has also been shown that general cognitive ability (g) is 
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associated only with diffusion rate and not residual time. Combining these findings, we can 

deduce that the faster reaction times of higher-g individuals reflect an advantage only in the 

serial bottleneck of central processing and not in the parallel peripheral stages. In this study 

we verify this theoretical deduction through multiple lines of converging evidence. 

2.1 Introduction 

Psychologists who study individual differences have been reasonably successful in 

quantifying variation in mental abilities with the use of standardized instruments that go 

under various names, including "IQ" or "scholastic aptitude" tests. Such a test is an aggre­

gate of items eliciting responses that can be unambiguously scored as right or wrong. It is a 

remarkable fact that the responses to almost all such items, regardless of the specific skills 

or knowledge required, are positively correlated (Guttman & Levy, 1991). As a consequence 

a sample of items provides information about how the examinees would have performed on 

the much greater number of items that were not administered to them. This is one reason 

why an overall IQ score can be claimed to represent a valid measure of a person's intelli­

gence: under certain mathematical conditions that are reasonably well satisfied by actual 

mental tests, an examinee's observed score on a test of increasing length approaches the 

score that he would have obtained on an infinitely long test covering all subdomains of log­

ical, factual, and semantic knowledge (Mulaik & McDonald, 1978). In order to generalize 

beyond the score obtained on a particular test to mastery of this idealized wider domain, dif­

ferential psychologists refer to the random variable mapping into the latter as "the g factor" 

(Spearman, 1927; Humphreys, 1994; Jensen, 1998). 

g is correlated with a number of neural variables, including overall brain volume, con-
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nectivity of white matter, and concentrations of N-acetyl aspartate (Chabris, 2007; Jung & 

Haier, 2007; Deary et al., 2010). However, before we can attempt to understand the causal 

structures underlying these correlations, it may be necessary to validate intermediate bridg­

ing laws expressed in terms of mental architecture and elementary cognitive operations 

(Sternberg, 1977; Hunt, 1978; Deary, 2001; Hunt, 2005; Conway et al., 2007). One strand 

of research has looked to the correlation between g and reaction time (RT) in simple labo­

ratory tasks for clues to bridging laws of this kind (Jensen, 2006). It is now well established 

that higher levels of g are associated with faster mean times and lower variability across tri­

als (Hunt et al., 1975; Vernon, 1983; Jensen, 1987a,b; Miller & Vernon, 1992; Deary et al., 

2001). But until recently there have been relatively few attempts to locate the locus of this 

association within models partitioning the flow of information between perception and ac­

tion into distinct processing stages (Luce, 1986; Sanders, 1998; Pashler, 1998). Because 

the distinctive properties of different stages are potentially revealing with respect to deeper 

mechanisms, the integration of the g-KT correlation into stage models is a promising avenue 

for the tracing of individual differences to lower-level causes. 

There are two distinguishable types of RT partitions to which one might turn. The first 

turns on the distinction between parallel and serial processing raised by studies of so-called 

dual tasks, in which participants must respond to two stimuli presented close together in 

time. At very short delays, the RT to the second stimulus becomes longer (Telford, 1931; 

Welford, 1980; Pashler & Johnston, 1998; Lien et al., 2006). A parsimonious account of 

this psychological refractory period (PRP) invokes three successive stages of processing: 

a perceptual stage (P), a central stage (C), and a motor stage (M). The P stage consists of 

a translation of raw sensory input to a more abstract format that can be broadcast to down-
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stream processors unconcerned with retinal locus, stimulus-background contrast, character 

font, and other such low-level features. The C stage consists of a mapping from percept to 

response, and PRP theory posits that this stage alone gives rise to the delay observed for the 

second RT in a dual task (Figure 3). The final M stage consists of implementing the mo­

tor response selected by the C stage. The corollary of the C stage being the only bottleneck 

is that, up to a certain limit, perceptual and motor processing for a given stimulus can take 

place concurrently with processing of any kind for another stimulus. 

A second line of research has attempted to explain the characteristic dispersion and 

skewness of RT distributions. The most successful models of two-choice tasks posit a parti­

tion of RT into a stochastic process deciding between the two responses and a low-variability 

residual time (Ratcliff, 2002; Ratcliff & Smith, 2004; Ratcliff & McKoon, 2008). During 

the stochastic process, an internal variable undertakes a diffusion (continuous random walk) 

between two boundaries, each of which corresponds to a response alternative (Figure 3). The 

diffusion can thus be interpreted as the noisy accumulation of evidence in favor of one re­

sponse. The accumulation terminates when it reaches one of the decision boundaries, which 

are set sufficiently far apart to ensure that absorption at the correct response occurs with 

high probability. Variants of this diffusion model have attracted much attention in recent 

years, not only because of their excellent fit to human behavioral data, but also because each 

parameter appears to have a distinct neural basis (Gold & Shadlen, 2007; Heekeren et al., 

2008; Sajda et al., 2011). For example, studies of trained monkeys have recorded from neu­

rons whose firing rates over the course of a RT trial trace a stochastic process predicting 

the monkey's motor response (Hanes & Schall, 1996; Gold & Shadlen, 2000; Ratcliff et al., 

2007). 
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After decades during which these three research programs (individual differences, PRP, 

stochastic modeling) proceeded in parallel streams with scarcely any cross-currents, a series 

of seminal investigations have begun unifying them into a coherent whole. First, it has been 

shown that the stochastic evidence-accumulation stage of the diffusion model is encom­

passed wholly within the serial C stage of the PRP model (Sigman & Dehaene, 2005, 2006). 

Second, it has been shown that the g-RT correlation reflects a correlation of g with the rate 

of the diffusion process and not with residual time (Schmiedek et al., 2007; Ratcliff et al., 

2008; Wagenmakers, 2009; Ratcliff et al., 2010; van Ravenzwaaij et al., 2011). 

These results harmonize with many related proposals dividing human mental architec­

ture into two broad components: (1) a number of parallel (modular) processors of sensory 

data and motor commands, operating inflexibly but with great precision; and (2) a central 

workspace that can establish arbitrary links between processors through a slow, variable, 

and serial chain of computations (Fodor, 1983; Shallice, 1988; Dennett, 1991; Baars, 1997; 

O'Reilly, 2006; Baddeley, 2007; Dehaene, 2008). Further consideration of the resulting uni­

fied model leads to a clear deduction regarding the properties of the g-RT correlation that has 

so far been untested: the serial bottleneck posed by C is the only stage in the PRP partition 

that contributes to the correlation. In fact, this is the deduction to be tested in the present 

work. While the hypothesis that g is correlated only with C and not with P or M is simple 

to state, it generates a number of stringent predictions for our experiments manipulating the 

demands on specific stages and varying the time between stimulus onsets within a dual task. 

We adopted a particular RT task used in many previous studies of numerical cognition or 

dual-task performance (Moyer & Landauer, 1967; Dehaene, 1996; Logan & Gordon, 2001; 

Sigman & Dehaene, 2005, 2006, 2008; Corallo et al., 2008; Song & Nakayama, 2009; Hes-
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SOA 
psychological 

refractory period 

Figure 3: A unified model of the psychological refractory period (PRP) and diffusion of 
evidentiary strength in two-choice RT tasks. The second stimulus follows the first after a 
brief stimulus onset asynchrony (SOA). The perceptual (P) and motor (M) stages vary little 
in duration from trial to trial and can be carried out in parallel with stages of another task. 
The central (Q stage contains a noisy accumulation of evidence (diffusion) until a decision 
threshold is reached. C2 cannot start until C\ is finished, which results in the bottleneck ("re­
fractoriness") referred to as the PRP. Increasing the distance between the decision thresholds 
(a) results in greater accuracy but a longer processing duration. Although the depicted dif­
fusions were simulated with the same rate, the diffusion in C2 took nearly twice as long to 
reach absorption. This shows the intrinsic variability of central processing. If g is positively 
correlated with diffusion rate, it follows that g is also associated with more rapid and reliable 
progress through the serial bottleneck. 
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selmann et al., 2011). The task requires deciding, quickly and accurately, whether a number 

presented on a computer screen is smaller or larger than a reference number. There now ex­

ists a broad body of mathematical theory and neuroscientific evidence regarding the mental 

representation and processing of number (Gallistel & Gelman, 2005; Dehaene, 2007), which 

makes this task a promising tool for advancing a mechanistic account of individual differ­

ences. We administered different versions of the number-comparison task to volunteers who 

qualified for the study by reporting either a score of 1560 or higher on the combined ver­

bal and mathematics sections of the SAT (formerly Scholastic Aptitude Test) or a score of 

1280 or lower. Although lacking a component testing spatial ability, the SAT is otherwise 

an excellent measure of g (Frey & Detterman, 2004). We refer to the participants reporting a 

score of 1560 or higher as the "high-g" group and to the other participants as the "moderate-

g" group. The cut score of 1280 corresponds to approximately the 89th percentile of SAT 

scores, and the difference between the high and moderate cut scores is about 1.3 standard 

deviations with reference to the total population of examinees taking the SAT. 

2.2 Results 

In some cases we were not able to verify a participant's self-reported SAT score with 

the university registrar or a College Board report. Therefore we validated the self-reports 

with administrations of brief IQ tests during the study session. Although these in-laboratory 

tests contain fewer items than the SAT and hence are less reliable, they still almost perfectly 

separated the moderate- and high-g groups (Figure 4). 

We organize the remainder of the Results as follows. We first analyze the means and 

variances of number-comparison RT under various experimental manipulations. By examin-
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Figure 4: Validation of self-reported SAT scores as a measure of g. Raven's Advanced 
Progressive Matrices and the Multidimensional Aptitude Battery II are both IQ tests in 
widespread use. Plotted are the jittered number of items answered correctly. 
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ing the pattern of statistical interactions, we can discover the number of stages distinguished 

by the manipulations and which of these accounts for the g-RT correlation. A diffusion de­

composition of RT supplies an independent check of the interaction analysis. If the pattern 

of statistical interactions points to a particular stage as responsible for the g-RT correlation, 

then g should be associated with only the diffusion parameters governing the duration of this 

stage. Next, by determining the nature of the interference between two stimuli within a dual 

version of the number-comparison task, we verify the temporal ordering of the major stages 

and whether each stage can be executed in parallel with the processing of the other stimu­

lus. Depending on whether the g-associated stage is serial or parallel, we arrive at different 

point predictions of the difference between the moderate- and high-g groups as a function 

of the elapsed time between stimulus onsets. A comparison of these predictions with our 

data shows that the g difference resides in the same central decisional stage identified by the 

interaction and diffusion analysis. 

For reference we provide definitions of all symbols and terminology in Table 7. 

2.2.1 Analysis of Single-Task RT Means and Variances 

Suppose that the overall RT in the number-comparison task is indeed the sum of three 

serially arranged stages with constant outputs (Figure 5A). By "constant" we mean that it is 

possible, loosely speaking, to label stage 1 's outputs in such a way that the processing within 

stage 2 only depends on the label and not on the particulars of the path taken through stage 

1. For example, in the context of the number-comparison task, we say that the output of P is 

constant if C is affected only by the numerical magnitude of the stimulus identified by P and 

not by other stimulus features such as color or font. A critical property of serially arranged 
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Table 7: Symbols and terminology. 
8 

SAT 

RT1,RT2 

SOA 

PRP 

P,C,M 

additive factors 

diffusion 

T,a,v 

"General intelligence" or "general mental ability." A person's level of g is 
the score, expressed on a convenient metric, that he would have obtained 
on an infinite number of items testing language comprehension, quantita­
tive reasoning, reasoning with abstract patterns, spatial visualization, and 
so on. 
Formerly, the Scholastic Aptitude Test. A test of verbal and mathematical 
ability used in the US to screen college applicants. A good measure of g. 
The respective reaction times to the first and second stimuli within a dual 
task. Each RT is measured from the onset of its own stimulus. 
Stimulus onset asynchrony. The experimentally controlled temporal inter­
val between the onsets of the two stimuli in a dual task. 
Psychological refractory period. The prolonging of RT2 observed when 
the SOA is very short. 
Respectively the perceptual, central, and motor stages of the RT to a given 
stimulus. Subscripts are used if necessary to distinguish between the first 
and second stimuli in a dual task. 
A methodology used to infer the existence of separate processing stages 
underlying RT. If the response process is composed of serially arranged 
stages with constant outputs, two manipulations affecting different stages 
should be additive in their effects. If two manipulations affect the same 
stage, they should show a statistical interaction. 
The movement over time of some variable that is subject to many small 
perturbations; the limit of a random walk as the steps in both space and 
time become extremely small. In the present context, the noisy accumula­
tion of evidence in favor of one response alternative over the other. 
The parameters of RT diffusion modeling. T is the duration of the low-
variability residual stage (according to the unified model in Figure 3, the 
summed durations of P, M, and the non-diffusion portions of C). a is the 
separation between the decision boundaries, v is the rate at which the pro­
cess would travel from the starting point (a/2) to the appropriate boundary 
in the absence of stochastic perturbations. 
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stages with constant outputs is that we can regard the stages as wholly distinct variables, 

each of which can be shortened or prolonged independently of the others (Sternberg, 1969; 

Sanders, 1990; Roberts & Sternberg, 1993). Therefore experimental manipulations of dis­

tinct stages cannot show any deviations from additivity. On the other hand, manipulations 

affecting the same stage will in general show a non-additive interaction. We should also ob­

serve an interaction with measurements of naturally occurring variation if a manipulation 

affects a stage associated with this variation. 

We used this logic of additive factors to ascribe naturally occurring variation in g to a 

distinct processing stage. In our first experiment, participants mapped the numbers presented 

on a computer screen that were less than 45 in magnitude to a key press with their left hands 

and the numbers larger than 45 to a key press with their right hands. Within blocks the num­

bers were either black or light gray, thus contrasting either sharply or hardly at all with the 

white background. We expected this manipulation of stimulus-background contrast to affect 

the P stage. The numbers ranged in magnitude from 21 to 69, excluding 45, and we expected 

this manipulation of numerical distance to affect the C stage. At the beginning of each block, 

participants were instructed to respond with either their index fingers only or their ring fin­

gers only, and we expected this manipulation to affect the M stage. An additional postulate 

is that individual differences in brain structure or function affecting the C stage of this artifi­

cial task also affect central processing in natural settings, leading to the high-level individual 

differences summarized as g. Combining these hypotheses as in Figure 5A, we arrive at the 

following prediction for the outcome of the experiment: the only non-additive interaction 

among g, contrast, distance, and finger should be that between g and distance. 

The results of the experiment are summarized in Table 8 and Figure 5B. Contrary to our 
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Figure 5: The use of additive factors to assign the g-RT correlation to a stage affected 
by a particular manipulation. (A) A directed acyclic graph representing the causal rela­
tions among the observed and hypothesized variables in the additive-factors experiment. (B) 
Cell means across the experimental manipulations and levels of g. For clarity the manipula­
tion of the response finger has been omitted. The height of the gold bar corresponds to the 
estimated effect of the contrast manipulation (27 ms). For this plot numerical distance was 
dichotomized into "far" (| stimulus - 451 > 12) and "close" (| stimulus - 451 < 12). The bars 
encompass ± 1 standard error. (C) Mean RT as a function of numerical magnitude. 
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Table 8: Coefficients of g and manipulations in linear mixed models of RT means and 
variances. 
predictor 
low contrast (F) 
numerical distance (C) 
ring finger (M) 
highg 
PxC 
PxM 
CxM 
Pxg 
Cxg 
M x g 
PxCxM 
PxCxg 
PxM xg 
CxMxg 
PxC xM xg 

mean (ms) 
27.05 ±4.38 
-3.49 ±0.21 
-5.48 ±5.08 

-40.75 ±18.5 
-0.14±0.30 
-2.09 ±6.22 
-0.11 ±0.30 

7.22 ±5.75 
0.88 ±0.28 
8.85 ±6.68 
0.51 ±0.43 

-0.05 ±0.40 
-2.44 ±8.16 
-0.34 ±0.40 
-0.14±0.56 

variance (ms2) 
1355 ±1349 

-6734 ±1349 
-153 ±1349 

-4997 ±2183 
-1277 ±1908 

149 ±1908 
560 ±1908 

-573 ±1784 
3727 ±1784 

851 ±1784 
104 ±2698 

- 4 8 ±2523 
-1119±2523 
-1412±2523 

1118 ±3569 

For brevity each manipulation is symbolized by the stage that it putatively affects (Figure 
5A). The model for the means was fit to the individual trial data. To fit the model to the cell 
variances, we dichotomized numerical distance. Each estimated coefficient is given with 
plus/minus its standard error. 

expectations from a pilot study, the finger manipulation proved quite heterogeneous. Analyz­

ing each individual separately, we found statistically significant effects of this manipulation 

in opposite directions. We thus treated both the intercept and the deviation from the mean 

effect of finger use as random effects in a linear mixed model. Because the small-sample 

distribution of the fixed effects is not known, we cannot give exact model-based p-values. 

Heuristically we regard any coefficient exceeding twice its standard error in absolute value 

as statistically significant. 

The findings regarding mean RT conform to our predictions. (1) Contrast and numer-
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ical distance had significant main effects. Reducing the stimulus-background contrast and 

decreasing the absolute stimulus-reference numerical distance both slowed RT. Treating nu­

merical distance as a dichotomous variable, we see that these two manipulations showed 

comparable effect sizes (Figure 5B). (2) All pairwise and higher-order interactions among 

manipulations were nonsignificant. Furthermore, we could not reject a model setting all non­

significant interactions to zero in favor of a model with all interactions free (%j0 = 13.6, 

p > .18; both AIC and BIC smaller for the more parsimonious model). The data are thus 

compatible with our postulate that the number-comparison task is composed of three or­

dered and separately manipulable stages. (3) As expected, the high-g participants responded 

more rapidly. They also made fewer errors (accuracy .943 vs. .929), indicating that speed-

accuracy tradeoff alone is unlikely to account for their advantage. (4) The only significant 

interaction involving g was the pairwise interaction between g and numerical distance. Fig­

ure 5C reveals the nature of this interaction. As the numerical magnitude of the stimulus 

approached the reference, all participants tended to slow down. This trend was more pro­

nounced in the moderate-g participants, however, leading to a greater advantage of the high-

g group for stimuli close to the reference. This selectivity of g's behavior with respect to the 

experimental manipulations is consistent with our hypothesis that the g difference in RT is a 

difference in the C stage alone. 

If the stage durations are stochastically independent, then the logic of additive factors 

applies to the variances as well as the means. Table 8 shows that the variances also conform 

to our model: the only manipulation interacting with g was numerical distance. We could 

not reject a model setting all nonsignificant interactions to zero in favor of a model with all 

interactions free (Xj0 = 3.09, p > .97; both AIC and BIC smaller for the more parsimonious 
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model). The nature of the g-distance interaction mirrors that for the means; all participants 

became more variable as the stimulus approached the reference, but this trend was stronger 

in the moderate-g participants. Neither contrast nor finger significantly affected RT variance. 

Altogether these results suggest that whereas changes in perceptual features and the response 

effector alter intrinsically low-variability stages, both g and changes in semantic content are 

associated with a stochastic process where the variance increases along with the mean (Hunt 

et al., 1975). 

2.2.2 Diffusion Decomposition of Single-Task RT 

The form of the significant g-distance interactions with respect to both mean and vari­

ance are entirely explicable if we assume that the underlying determinant of C's duration is 

the rate of a stochastic process. The average time taken by the process is proportional to the 

reciprocal of the rate, and therefore variables additively associated with rate cannot be addi-

tively associated with time. Rather each successive decrement prolongs time and increases 

its variability by more than the previous decrement. 

We directly tested a diffusion account of our single-task RT data by using the EZ2-

diffusion moment-based method to estimate T (fixed residual time), a (boundary separation), 

and v (diffusion rate) for each participant, allowing these parameters to depend on g and the 

experimental manipulations (Wagenmakers et al., 2007; Grasman et al., 2009). Since con­

trast and numerical distance were varied within blocks, we posited that these manipulations 

had no effect on a. In contrast, a was freed across levels of the finger manipulation, which 

only varied across blocks and thus allowed participants to make strategic adjustments. 

The results are summarized in Table 9. (1) Reducing the contrast showed a significant 
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Table 9: Associations of g and manipulations with diffusion parameters. 
predictor 
contrast 

distance 

finger 

8 

T 
27.5 ms 
p < 2 X 10"9 

95% CI = (22.9,33.2) 
5.5 ms 
p < .005 
95% CI = (1.6, 9.5) 
-4 .3 ms 
p>A6 
95% CI = (-9.7, 2.0) 
10 ms 
p> .35 
95% CI = (-11.2,31.1) 

a 

~o 
P> .93 
95% CI = (-
-.012 
P> .13 
95% CI = (-

-.004, 

-.030, 

.004) 

.003) 

V 

p>.29 
95% CI = (-.044, .011) 
.193 s 1 

p < 5 X 10"8 

95% CI = (.159, .250) 
-.037 s'1 

p<m 
95% CI = (-.104,-.010) 
.115 s-1 

p < .001 
95% CI = (.038, .286) 

Numerical distance was trichotomized into "close" (| stimulus — 451 < 8), "intermediate" 
(8 < | stimulus - 45 | < 16), and "far" (| stimulus — 451 > 16) in order to meet the 
recommended 125 trials per cell (Grasman et al., 2009). An effect of distance should thus be 
interpreted as the average increment per ordered level. We used high contrast, far distance, 
index finger, and low g as the respective baselines for assessing differences. Since the 
average effect of ring-finger use on a was virtually zero, we used the average a over blocks 
to examine whether the g groups differed in speed-accuracy tradeoff, g did not significantly 
interact with any manipulations. 
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effect only on T. Moreover, the estimated average effect over participants of 27.5 ms is re­

markably close to the estimated effect on total RT in the additive-factors analysis. (2) The 

average effect of finger on T is similar to the estimated effect on total RT in the additive-

factors analysis. Also consistent with our analysis of mean RT is the heterogeneity of this 

effect across individuals; the estimates range from —31 to 30 ms with a suggestion of bi-

modality. (3) Both numerical distance and g showed statistically and quantitatively signifi­

cant associations with v. (4) Any difference in T between the moderate- and high-g groups 

made no detectable contribution to the overall g-RT association. 

Overall, these results suggest that g and numerical distance are associated with a deci­

sional stage depending on a noisy accumulation of evidence, whereas contrast and finger 

affect low-variability stages whose summed durations are less than or equal to T. This diffu­

sion decomposition parses RT in exactly the same way as the additive-factors analysis, thus 

confirming and extending our earlier results. 

We now discuss two anomalies in Table 9. First, response finger showed a small but 

significant effect on v. We address this deviation from our model in the Discussion. Second, 

numerical distance showed a significant effect on T. Examination of Figure 5C suggests 

the reason for this effect: both moderate- and high-g groups showed discontinuities in mean 

RT when the stimulus crossed the edges of the decade including the reference. To confirm 

that the effect of distance on T reflects a perceptual cost of distinguishing the stimulus from 

the reference when both begin with the same tens digit (Dehaene, 2007), we estimated the 

diffusion parameters for each participant after rebinning the stimuli into five ordered levels 

coinciding with decade borders and midway points. In this analysis we collapsed the data 

across levels of the contrast and finger manipulations. The results are plotted in Figure 6. 
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Figure 6: Estimates of mean diffusion parameters as a function of binned numerical 
distance. (A) Mean values of T (fixed residual time). The spike when the stimulus crosses 
the edges of the decade including the reference suggests an added perceptual cost of the tens 
digits being identical in appearance. This cost was virtually the same in the moderate- and 
high-g groups. (B) Mean values of v (diffusion rate). Throughout the full range of numerical 
distance, the rates followed smooth curves displaced from each other by a constant in favor 
of the high-g group. 
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Whereas the mean values of T showed no trend outside of the 40s (Instance = — .3 ± 1 

ms/bin), there were clear discontinuous steps at the edges of this decade [16 ms; p < 7 x 

10~4; 95% CI = (9.5, 23.7)]. In contrast, there were no discernible discontinuities in the 

mean values of v. The regression lines in Figure 6B include quadratic terms; we will later 

discuss the implications of this curvature. For now it suffices to note that a linear increase 

in v with distance continued beyond the edges of the 40s and throughout the 30s and 50s. 

This difference between T and v in notational sensitivity attests to the strict modularity of 

perceptual and central processing. Unaffected by the knowledge that the ones digit of the 

stimulus is irrelevant if the tens digit is not 4, the P stage always delivers to the C stage a full 

representation of numerical magnitude. The additional analysis devoted by P to recovering 

this magnitude if stimulus and reference share the same tens digit does not benefit the C 

stage, which processes number without regard for the historical contingencies that have 

left some pairs of number symbols much more perceptually similar than others. In short, P 

cannot "know" whereas C cannot "see." 

It is evident that g does not interact with the tens digit. Thus, instead of contradicting 

our hypothesis that the g-RT correlation resides in one of many separable processing stages, 

the effect of distance on T turns out to provide unexpected support for it. 

2.2.3 Analysis of Dual-Task Means, Variances, and Correlations 

Without relying on prior findings, our results so far would support the following: (1) our 

experimental manipulations affect three or four distinct processing stages, (2) the difference 

between the g groups in RT is a difference in the one stage affected by notation-invariant 

numerical distance, and (3) this latter stage consists of a stochastic process where the vari-
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ance increases along with the mean. We would not be able to infer, however, whether the 

g-associated stage can proceed in parallel with the processing of another stimulus presented 

closely in time. Even our supposition regarding temporal order is based as much on logical 

considerations as on empirical ones. 

To ascertain the temporal and time-sharing properties of the g-associated stage, we per­

formed a second experiment, presenting the number-comparison task as a dual task to an 

independent sample of participants. The numbers ranged in magnitude from 1 to 9, exclud­

ing 5, and participants had to judge whether the presented number was smaller or larger than 

5. One number appeared just to the left of the fixation cross, and participants had to map 

smaller to a key press with the left middle finger and larger to a key press with the left in­

dex finger. After an SOA of 60 to 960 ms following the onset of the first number, a second 

number appeared just to the right of the fixation cross. With respect to this second number, 

participants had to map smaller to a key press with the right index finger and larger to a key 

press with the right middle finger. Thus, each hand corresponded to the numbers appearing 

on its side of the fixation cross, and within each hand smaller mapped to the leftmost fin­

ger and larger to the rightmost. Participants were instructed to respond to each number as 

quickly as possible while still being highly accurate. 

Before presenting the primary results of this dual-task experiment, we give its asymp­

totic EZ2 estimates to verify our diffusion analysis of single-task RT (Table 10). The dual-

task data replicated the additive-factors data in two key respects: (1) g was scarcely asso­

ciated with T, and (2) g positively covaried with v. As required by the latter finding, with 

respect to total RT there was a significant interaction of g and numerical distance, despite 

the restricted range of variation in the latter variable ((3g = —81 ± 23 ms; Pdistance = —22 ± 
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Table 10: Diffusion parameters of asymptotic RT2 (SOA > 900 ms). 
parameter individual estimates _ _ _ _ _ 

high g 268 283 293 313 321 324 326 328 330 332 334 334 350 365 
low g 240 289 294 309 311 314 332 342 346 349 350 354 369 377 

- 5 , p > .67, 95% CI = (-26, 19) 
a 

high g .065 .067 .075 .077 .079 .080 .088 .088 .090 .093 .093 .098 .108 .119 
lowg .076 .079 .080 .081 .086 .088 .096 .102 .113 .121 .126 .134 .137 .203 

-.022, p < .004, 95% CI = (-.046, -.006) 

high g .29 .31 .34 .34 .36 .36 .36 .37 .40 .40 .45 .45 .50 .54 
low g .23 .26 .30 .31 .31 .33 .36 .37 .37 .39 .39 .39 .41 .43 

.045, p < .04, 95% CI = (.003, .095) 

The difference in means between the moderate- and high-g groups, along with its /?-value 
and 95% confidence interval, are given below the estimates of each parameter. We grouped 
together all trials at SOA > 900, collapsing over numerical magnitude, to meet the 
recommended 125 trials. 

2 ms; (3gxSOA = 9.3 _ 3.0 ms). Another noteworthy finding is that our high-g participants 

in the dual-task experiment were more reckless, showing a significantly smaller mean value 

of a. Different studies have now found g-a associations of opposite sign (Schmiedek et al., 

2007; Wagenmakers, 2009; Ratcliff et al., 2010), suggesting that this relationship depends on 

the instructions given in a particular experiment. 

If all processing stages are parallel, then RTl and RT2 should have identical distribu­

tions. In contrast, if all processing stages for the second stimulus must await the response to 

the first stimulus, then simultaneous presentation should lead to RT2 being twice as long as 

RTl. As a matter of fact, dual-task experiments almost always find that a very short stimulus 

onset asynchrony (SOA) leads to RT2 being longer than RTl but by less than a factor of two. 
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This observation implies that both parallel and serial stages make a contribution to overall 

RT. 

Figure 7 shows how the precise nature of dual-task interference reveals the relative po­

sition of each stage and whether it can be parallelized (Schweickert & Townsend, 1989; 

Pashler, 1994). The insets are theoretically predicted graphs of RTl and RT2 as a function 

of SOA, at both "fast" and "slow" levels of the relevant variable. Given the assumption of 

a single serial bottleneck, a parallel stage must either precede the bottleneck or follow it. 

Panels A and C show that any elongation of a stage up to and including the bottleneck will 

increase both RTl and RT2 at a short SOA. Once the SOA is long enough for the two serial 

portions to be well clear of each other, this effect of manipulating the first stimulus on RT2 

vanishes. A key point is that changes in RTl and RT2 upon a manipulation of the first stimu­

lus cannot reveal whether the manipulation affects a serial stage or a parallel stage preceding 

it. The propagation into RT2 occurs because its serial portion can begin no sooner than the 

termination of RTl's serial portion, which can be pushed forward by a elongation of either a 

preceding stage or the serial portion itself. 

Manipulating the second stimulus leads to dramatically different RT2 profiles, however, 

depending on whether the manipulation prolongs a pre-bottleneck stage or the bottleneck 

itself. As might be expected, prolonging the serial portion of RT2 has no effect on RTl and 

increases RT2, regardless of SOA (Figure 7D). In contrast, at a sufficiently short SOA, pro­

longing a pre-bottleneck stage of RT2 is predicted to have no effect on overall RT2 whatso­

ever (Figure 7B). This is because a postponement of RT2's serial portion leaves a "slack" 

into which the duration of a pre-bottleneck stage can be expanded without pushing forward 

any subsequent stages. 
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For brevity we have not depicted the predictions that follow from a manipulation of a 

post-bottleneck stage. But it is easy to verify that such a manipulation affects only the RT 

to the manipulated stimulus regardless of SOA. Thus, by performing dual-task experiments 

manipulating the demands imposed by both the first and second tasks, the resulting profiles 

of RTl and RT2 as a function of SOA constitute a distinctive signature of the affected stage's 

position in the information flow. That is, the PRP model assigns each possible pattern of 

interference to a temporal position preceding, within, or following the serial contribution to 

RT. 

PRP studies have typically manipulated stages of only one task at a time. Individual 

differences associated with a given RT stage, however, are analogous to a simultaneous ma­

nipulation of both tasks. Panels E and F show that this situation also leads to distinctive 

predictions. For simplicity we treat the case of the two tasks being the same. If individuals 

differ in the duration of a pre-bottleneck stage, then the difference is propagated only once 

into RT2 as a result of expansion into slack (Figure 7E). Therefore the difference between 

individuals in RT2 will not depend on SOA. One can easily see that the same invariance 

holds for a difference in a post-bottleneck stage or indeed for a combination of differences in 

any parallel stages surrounding the bottleneck. 

If individuals differ in the duration of a serial stage, then at a short SOA this difference 

is propagated twice into RT2. In this temporal regime, the two serial computations are ar­

ranged end-to-end, and therefore the slower individual's RT2 suffers a double cost. This 

leads to a clear prediction: any difference between individuals in a serial stage will result in 

an exact doubling of their RT2 difference as the SOA diminishes to small values (Figure 7F). 

If individuals differ in both parallel and serial stages, it is possible to observe other fac-
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tors besides unity or two by which their difference in RT2 increases as the SOA diminishes. 

In these cases it is difficult to formulate sharp point predictions. However, given the now re­

peatedly replicated finding that g is associated with diffusion rate and not T, a division of the 

g difference across stages with different time-sharing properties is rather implausible. Such a 

division would amount to the diffusion of evidentiary strength between decision boundaries 

switching from seriality to parallelism while still in progress. A restriction of the g differ­

ence to the diffusion process is reinforced by the failure to detect associations between g 

and the components of P and M affected by our experimental manipulations. Thus, we have 

set up a confrontation between the point predictions of unity and two, and evidence in fa­

vor of the latter would support our deduction that g is associated with the rapidity of a serial 

processor. 

Previous studies have shown that stimulus-background contrast affects a pre-bottleneck 

stage (Pashler, 1984; Pashler & Johnston, 1989; De Jong, 1993), numerical distance affects 

a serial stage (Sigman & Dehaene, 2005, 2006; Corallo et al., 2008), and motor demands 

affect post-bottleneck stages (Pashler, 1998; Ferreira & Pashler, 2002; Sigman & Dehaene, 

2005). These findings justify the labeling of the ordered stages in Figure 7 as P, C, and M. 

One issue that arises in our own study is whether the two stimuli can be perceptually pro­

cessed in parallel despite being in the same modality (vision). Most recent PRP studies have 

used tasks impinging on different modalities (vision and audition). The theory of visual at­

tention does suggest, however, that two spatially proximate alphanumeric targets on a blank 

computer screen should be fully processed in parallel (Pashler, 1998; Thornton & Gilden, 

2007). To verify the parallelism of visual identification in our experiment, we administered a 

version of the number-comparison dual task varying the contrasts of both stimuli. Reducing 
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Table 11: Effects of manipulations on dual-task RT. 
RT1 (ms) RT2 (ms) 

short SOA long SOA short SOA long SOA 
manipulating stimulus 1 

contrast 42.4 ±15.2 36.6 ±12.0 39.3 ±16.3 11.3 ±9.0 
distance 58.7 ±7.5 45.6 ±6.9 62.2 ±8.3 4.6 ±3.6 

manipulating stimulus 2 
contrast -9 .8±13.9 9.4±12.2 -7 .6±15.4 45.5±8.7 
distance 7.1 ±6.5 -2 .5 ±5.9 38.2 ±8.0 42.2 ±4.8 

manipulating both stimuli 
contrast 32.9 ±13.9 45.9 ±13.1 44.4 ±16.5 53.1 ±9.4 
distance 641 ± 8 1 670 ±6.9 88.0 ±9.5 43.0 ±6.9 

Short and long SOA refer to < 120 ms and > 900 ms respectively. When assessing the effect 
of manipulating only one stimulus within a trial, the other stimulus was set at the "fast" 
level. Each estimate is given with plus/minus its standard error. Compare with the theoretical 
predictions in Figure 7. 

the contrast of stimulus 1 delayed RT1 and also RT2 at short SOAs, which points to the P 

stage preceding or contributing to the serial bottleneck (Figure 8A). Reducing the contrast of 

stimulus 2 showed no effect on RT2 at short SOAs, however, confirming that P is indeed an 

early parallel stage (Figure 8B). Furthermore, in the version of the dual-task experiment pre­

senting all stimuli at high contrast, we found that the same manipulation selectively affecting 

diffusion rate (numerical distance) also behaved as a determinant of a serial stage (Figures 

8C and 8D). This is an important replication of the key finding that unifies the diffusion and 

PRP models (Sigman & Dehaene, 2005, 2006). Table 11 provides these results in numerical 

form. 

An unexpected observation is that the distance manipulation exerted a consistently 

smaller effect when applied to the second stimulus. No prior results on stimulus crosstalk 
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seem to predict this particular interaction of distance and task order (Hommel, 1998; Logan 

& Gordon, 2001; Hesselmann et al., 2011), and we merely point out this anomaly without 

attempting to explain it. 

Because our experiments contained trials with both stimuli set at the same difficulty 

level, we were able to mimic individual differences in the stages affected by our two manip­

ulations. Whereas the effect on RT2 of a simultaneous reduction in contrast did not depend 

on SOA, the effect of a simultaneous reduction in numerical distance became much larger 

as the SOA diminished (Figures 8E and 8F; Table 11). These results are consistent with the 

parallelism of P and the seriality of C. They also presage our primary finding regarding the 

nature of the g-KT correlation. 

Consider our main results to this point: (1) the dependence of the distance effect on g, 

(2) the association of both distance and g with diffusion rate, (3) the absence of an associ­

ation between g and other processing stages, and (4) the seriality of the stage affected by 

distance. From these considerations it now follows that the difference between the moderate-

and high-g groups resides in a serial stage and therefore must show up as a doubling of their 

difference in RT2 as the SOA becomes small. Figure 9 shows that in our sample the differ­

ence in RT2 associated with g, from SOA > 900 to < 120 ms, increased by a factor of 2.40 

[99% CI = (1.60, 5.64)]. The interpretation of this factor, however, depends on the evident 

slowing of RT1 relative to asymptotic RT2 (Figures 8 and 9). 

The commonly observed slowing of RT1 relative to single-task RT or asymptotic RT2 

has been attributed to an executive task-scheduling stage (E) between Pi and C\ that decides 

the order in which to perform the central processing for the two stimuli (Meyer & Kieras, 

1997; Jiang et al., 2004; Sigman & Dehaene, 2005, 2006; Kamienkowski et al., 2011). This 
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the PRP. The difference in RT2 associated with g doubles as the SOA diminishes to 60 ms. 
This indicates that the g-associated stage cannot be executed concurrently for two stimuli 
presented close together in time. The height of the gold bar corresponds to the asymptotic 
difference in RT2 between the moderate- and high-g groups (57 ms). Compare with Figures 
7F and 8F. 
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executive stage also contains low-variability and stochastic components, which gives it a 

fractal resemblance to the entire multistage computation in which it is embedded. This stage 

can be prolonged by shortening the SOA in conditions without specific instructions regard­

ing which stimulus should be responded to first. Although our own instructions called for 

a strict prioritization of the first stimulus, we still found a slight dependence of the RT1 de­

lay on SOA (Figures 8 and 9). It is possible that our use of the same task twice may have 

exacerbated the scheduling conflict at short SOAs. 

Both the moderate- and high-g groups showed a slight increase in RT1 as the SOA in­

creased past 720 ms. This delay at long SOAs bears the signature of prolonging the M stage: 

a rigid shift in the entire distribution of RT1 that is not propagated into RT2. We speculate 

that the SOA affected muscle tension in the left hand (Sanders, 1990, 1998), although it is 

unclear why our experimental design would produce such an effect. Looking at SOAs be­

tween 360 and 720 ms, we found that the RT1 delay was virtually identical in the two g 

groups (71 ms). However, as the SOA decreased below 360 ms, the increase in RT1 was 

steeper in the moderate-g participants (PSOA = —-23 ± .02; PgxsOA = -078 ± .03). This in­

teraction between g and SOA resulted in an RT1 difference at the shortest SOA of 87 ms, 

which is about 30 ms more than the difference in RT1 (and RT2) observed asymptotically. 

Additionally, whereas the variance of RT1 was roughly constant across the entire range 

of SOA in the high-g participants (PSOA = —2.8 ± 1.9 ms), the variance of RT1 increased 

sharply in the moderate-g participants as the SOA diminished below 360 ms (PSOA = —64 ± 

16 ms; pgxSOA = 57 ± 23 ms). 

These observations are most simply explained by broadening our motivating hypothe­

sis: the executive and central operations preceding a dual-task response constitute a serially 
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traversed decision tree, each node branching to one of a few discrete alternatives, and g is as­

sociated with the rate of the diffusion implementing the computation at each node. Asymp­

totically the scheduling conflict poses little burden to the central system, and thus the RTl 

delay in this temporal regime mainly reflects the low-variability contribution to the E stage. 

Since g is not associated with this contribution, the RTl delay does not interact with g in the 

asymptotic regime. As the scheduling conflict worsens with decreasing SOA, however, the 

decline in the "baseline" rate of the diffusion within E allows any additional decrement asso­

ciated with lower g to show up as noticeable increases in the duration and variability of the 

time spent deciding which stimulus should be prioritized for central processing. 

The calculation of the factor by which the g difference in RT2 increases with diminish­

ing SOA must adjust for the concomitant g difference in E, which is propagated into RT2 

in this temporal regime. After this adjustment we found that reducing the SOA into the in­

terference regime increased the difference in RT2 between the moderate- and high-g groups 

by the factor 1.99 [99% CI = (1.21, 4.02)]. We clearly cannot reject the hypothesis that the 

factor is precisely equal to two. In contrast, we reject the hypothesis that the factor is equal 

to unity (p < .005). Our data thus support the hypothesis that g is associated with higher 

accumulation rates within each of several serially arranged decisional stages. 

Our repetition of the same task to constitute our dual task allowed us to decompose to­

tal RT into estimated durations of P + M and C (Materials and Methods), quantities that are 

not separately available in most PRP studies. Because these estimates do not rely on any in­

formation beyond what we used in calculating the factor by which the g difference in RT2 

increases, they provide additional validation of our hypothesis regarding the nature of the 

g-RT association only to the extent that they are consistent with the results of other investi-
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gators. We found that the moderate- and high-g groups differed on average from each other 

in P + M by less than 1 ms; the mean of the entire sample was 229 ms. Previous studies, 

using diverse species, tasks, and methodologies, have estimated the visual processing of an 

easily detectable stimulus to last typically about 200 ms (Dehaene, 1996; Reynolds et al., 

1999; Gold & Shadlen, 2000; Lee et al., 2002; Roelfsema et al., 2002; Sigman & Dehaene, 

2005; Li et al., 2008). Given the assumption that the average M is relatively brief, lasting 

about 30 ms, our partition of RT is in good agreement with those obtained using other ap­

proaches. Incidentally we estimated the mean duration of C to be 268 ms in the moderate-g 

group and 212 ms in the high-g group. 

Another item of evidence regarding the source of the g-RT association is the correlation 

across trials of RT1 and RT2. Figure 10 shows that this correlation was initially of simi­

lar magnitude (~ .80) in both the moderate- and high-g groups. At an SOA of 240 ms, the 

correlation began to decline in both groups, but more precipitously in the high-g group. 

Our simulations showed that such a pattern is compatible with a difference between the g 

groups only in the serial diffusion process and not in the other stages (Materials and Meth­

ods). When the SOA is 180 ms or less, P2 almost always finishes while the processing of the 

first stimulus is still somewhere within Pi, E, or C\. Therefore, in this temporal regime, the 

initiation of C2 is time-locked to the termination of Q , producing the strong RT1-RT2 cor­

relation. Starting at an SOA of 240 ms, however, C\ is sometimes finished before the termi­

nation of Pi- This is because the stochasticity of the processing within executive and central 

stages can result in individual hitting times that are shorter than the mean times. When Ci 

is free to start immediately, RT1 and RT2 are no longer locked together. The serial portion 

of RT1 is shorter, less variable, and less right-skewed in the high-g participants, freeing the 
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Figure 10: The zero-lag correlation between RTl and RT2 as a function of SOA. For 
clarity the data points for the moderate- and high-g groups are horizontally displaced by 
a small quantity. The moderate-g correlation is always slightly to the right of the high-g 
correlation corresponding to the same SOA. Each point is the average correlation of the 
participants in the g group. The bars encompass ± 1 standard error. 
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initiation of C2 on an increasingly greater proportion of their trials, and thus their RT1-RT2 

correlation declines more steeply with SOA. 

2.3 Discussion 

We now summarize the contribution of our study and how it meshes with the previous 

work leading to the unified model depicted in Figure 3. 

We can imagine the three phenomena treated in this study—(i) the serial C stage of the 

PRP, (ii) the stochastic evidence-accumulation stage of the diffusion model, and (iii) the trait 

of general intelligence—as corresponding to the three vertices of a triangle. By showing 

that the stochastic evidence-accumulation stage of the diffusion model is contained within 

the C stage of the PRP model, Sigman and Dehaene (2005) have connected (i) and (ii). By 

showing that g is correlated only the evidence-accumulation stage of the diffusion model 

and not with the residual time, Schmiedek et al. (2007), Wagenmakers (2009), and Ratcliff 

et al. (2010) have connected (ii) and (iii). There is a missing side of the triangle, namely the 

connection between (i) and (iii), but the emerging unified theory demands the existence of 

this side. Our experiments have provided an array of results upholding this deduction. 

We first conducted an additive-factors RT experiment manipulating stimulus-background 

contrast, the numerical distance of the stimulus from the reference, and response finger. 

The only statistically significant interaction among g and the three manipulations was that 

between g and numerical distance, supporting the following two inferences: (1) each ma­

nipulation affects a distinct stage, and (2) g is associated only with the stage affected by nu­

merical distance. A diffusion decomposition of the data from this same experiment showed 

that whereas g and numerical distance were both associated with diffusion rate, contrast 
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and response finger were associated with residual time. The additive-factors and diffusion 

approaches thus converged in singling out the one stage affected by numerical distance as 

having a privileged relationship with g. We then performed a classical PRP experiment to 

determine how a g-associated difference in RT changes with increasing interference be­

tween stimuli. If this difference resides entirely in a single stage and that stage is serial (i.e., 

corresponding stages for different stimuli cannot proceed simultaneously), then the differ­

ence must double as the SOA becomes very small. This is because the stage processing the 

second stimulus must await the completion of the stage processing the first stimulus. If the 

difference between two individuals in single-task or asymptotic RT is attributable entirely to 

this stage, then the slower individual is penalized twice in a dual task with a short SOA. We 

did in fact observe the predicted doubling of the g-associated RT difference as the SOA di­

minished, confirming our deduction that g is associated with the speed of a serial processor. 

The more precipitous decline of the RT1-RT2 correlation with SOA in the high-g group was 

also consistent with this deduction 

To summarize, we have shown that the g advantage in RT does indeed reside in the se­

rial stage that has been shown to encompass the stochastic contribution to RT. The mapping 

of retinal input to an abstract quantity representation, which can be executed with little trial-

to-trial variability and in parallel for at least two stimuli, is not associated with g. The im­

plementation of the selected motor response is also a low-variability, parallel stage with no 

detectable association with g. In contrast, the central stage contains a stochastic accumula­

tion of evidence regarding the stimulus-response mapping, and the positive correlation of the 

accumulation rate with g is what accounts for the overall g-RT association. In more complex 

tasks, there are several distinguishable decisional stages intervening between perception and 
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action, and it appears that g is positively correlated with the accumulation rate of each such 

stage. 

We now point out a caveat regarding the relationship of g with the M stage. Fine-grained 

tracking of limb movements in RT tasks requiring participants to reach for the response key 

have revealed that central manipulations have effects on the trajectory of the reach (Song & 

Nakayama, 2009). These observations refute the constant-output axiom with respect to C; 

the effect of numerical distance in the number-comparison task continues to "leak" into M 

while the latter stage is in progress. Thus, although our additive-factors experiment did not 

yield any statistically significant interactions among g, numerical distance, and response fin­

ger, a better-powered study may conceivably find these interactions to be weak but reliable. 

A dynamic interpenetration of the C and M stages may explain the correlation between g and 

movement time in some previous studies (Jensen, 1987a,b), the complex effects of handicap­

ping the response effector on diffusion parameters (Voss et al., 2004), and the effect of finger 

on diffusion rate (v) in our own data. Perhaps an apt analogy is the interleaving of screen-

writing and principal photography despite the conceptual distinction between these stages in 

the production of a motion picture. Despite this breakdown of a constant-output model, we 

nevertheless note previous successful attempts to decompose RT into distinct C and M stages 

(Sanders, 1990, 1998; Pashler, 1998; Sigman & Dehaene, 2005). For instance, in a word 

production task, the selection of a lemma (abstract mental representation of a word) occurs 

in C while the selection of phonemes occurs in M (Ferreira & Pashler, 2002). The positing of 

discrete C and M stages, with g being associated only with the former, may approximate the 

time course of processing reasonably well when the task requires a punctate motor response 

such as a key press. Furthermore, future studies may turn the breakdown of this model out-

87 



side its domain of applicability into an asset. That is, it may be possible to use the precise 

spatiotemporal trajectories of continuous movements in motorically demanding RT tasks to 

shed further light on the nature of central processing and g. 

In previous research it was found that the dependence of diffusion rate on numerical dis­

tance in the number-comparison task was linear over ranges of numbers similar to those used 

in our additive-factors experiment (Dehaene, 2007). In our own data, however, there was a 

shallower increase in diffusion rate with distance for numbers relatively far from the refer­

ence (Figure 6B). This result may be partly an artifact of our method for estimating diffusion 

rates, which suffers from a downward bias that increases with the rate itself (Wagenmakers 

et al., 2007; van Ravenzwaaij & Oberauer, 2009; Grasman et al., 2009). But as a logical mat­

ter we might expect a curvilinear relation between distance and diffusion rate because it is 

implausible that the rate should continue to increase linearly as the distance becomes very 

large. The curvilinear relation revealed by our data may be attributable to the unusually high 

average level of g in our sample, which must have resulted in a baseline diffusion rate closer 

to the asymptote. This suggests that individual differences can provide their own domain of 

applicability for quantitative laws intended to describe species-typical behavior. 

An interesting ancillary result is that the estimated duration of P + M was about 100 ms 

shorter than the estimated mean duration of T in Table 10. Since the known bias in the EZ-

diffusion methods probably cannot account for this discrepancy, it is likely that T and P + M 

are not coextensive. That is, there are substages within the serial C stage other than the diffu­

sion process. Although the neural and psychological properties of these substages remain to 

be elucidated, it is already apparent that these substages are not strongly associated with g. 

The importance of having isolated the g-RT association to a particular stage of course 
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depends on the causal nature of the association. It is conceivable that the g-C association 

arises entirely as a result of trivial confounding or reverse causation. For example, diffu­

sion rates do increase with practice (Dutilh et al., 2009; Kamienkowski et al., 2011), and it 

may be that higher-g individuals perform central processing in the number-comparison task 

more rapidly simply because they have been exposed more to numbers. There is already 

reason to think, however, that trivial confounding and reverse causation cannot fully explain 

the g-C link. The negative g-RT correlation has been found to hold within families (Jensen 

et al., 1989), which rules out many conceivable sources of confounding (Jensen & Sinha, 

1993; Beauchamp et al., 2011). Also, higher-g individuals tend to respond more rapidly even 

in very simple tasks such as detecting the onset of a single light (Jensen, 1987a), where it 

seems unlikely that g could be associated with greater practice or familiarity. An urgent pri­

ority for future research is to verify the presumed causal effect of central processing on g, 

perhaps drawing upon the powerful observational designs for causal inference that have been 

developed in recent years (Spirtes et al., 2001; Gillespie & Martin, 2005; Pearl, 2009). 

Because the unified PRP-diffusion model has interfaces with both algorithmic and neu­

ral levels of analysis (Marr, 1982), establishing the causal effect of central processing (dif­

fusion rate) on g would connect the study of individual differences to multiple lines of re-

ductionistic investigation. One such line would attempt to incorporate a hierarchy of serial, 

stochastic decisional stages in models of more complex and naturalistic thought processes 

(Carpenter et al., 1990; Hofstadter & the Fluid Analogies Research Group, 1995; Johnson-

Laird, 2006; Sackur & Dehaene, 2009). Indeed, one avowed aim of researchers developing 

the unified model is to elucidate how algorithmic processing can be enabled in neural ma­

chinery (Dehaene, 2008). 
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A research program beginning with the unified model in Figure 3 may aim not only up­

ward at algorithmic decompositions of thought, but also downward at low-level properties 

of the brain. Combining electroencephalography (EEG) and functional magnetic resonance 

imaging (fMRI), recent studies have spatially circumscribed the temporal signature of the 

serial C stage to a suite of frontoparietal regions (Dell'Acqua et al., 2005; Marois & Ivanoff, 

2005; Sigman & Dehaene, 2008; Hesselmann et al., 2011). Further improvements in res­

olution are necessary to fit the data from imaging studies of the PRP to detailed models of 

neuronal activity. Encouragingly the C regions, as now delimited, coincide in broad outline 

with those singled out by imaging studies of g (Jung & Haier, 2007). 

The stochastic nature of the evidence accumulation within the C stage constitutes an­

other distinctive signature. Data from both monkeys and humans indicate that the accumu­

lation is implemented by a transient recurrent network of sensory, parietal, prefrontal, and 

motor regions recruited specifically for the given task (Gold & Shadlen, 2007; Heekeren 

et al., 2008), and future work may bring about a convergence of C and diffusion correlates 

in a core frontoparietal region. Across various tasks this core may bind together the appro­

priate peripheral processors to constitute the "blackboard" or "global workspace" posited 

in theories of high-level cognition. The mechanism by which this core network might im­

plement a diffusion of evidentiary strength between decision boundaries is not yet known. 

One appealing model has treated the outputs of two reciprocally inhibiting pools of neurons 

as a dynamical system with a saddle point separating the basins of attraction corresponding 

to the response alternatives (Wong & Wang, 2006). In this model the timescale of the dif­

fusion follows from well-known properties of the NDMA glutamate receptor. It would be 

worthwhile to investigate whether the positive correlation between g and diffusion rate can 
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be reproduced by varying plausible graph-theoretic analogs of g's known neural correlates, 

including network order and connectivity, in a biophysically realistic non-reduced form of 

the model representing individual nodes within each pool. 

2.4 Materials and Methods 

2.4.1 Participants 

Recruitment at various universities in the Boston area began in January 2011 and contin­

ued until the end of May. One high-g participant who completed the additive-factors experi­

ment was removed from the dataset for being unable to see the gray stimuli from a distance 

greater than a few cm. This participant showed a main effect of the contrast manipulation ex­

ceeding 120 ms, four times the effect estimated from the other participants, and statistically 

significant interactions of contrast with other manipulations. Another high-g participant who 

completed the additive-factors experiment was removed for excessive limb and body move­

ment (swiveling in her chair, swaying from side to side, crossing her legs and shaking her 

foot). This participant showed an uninterpretable pattern of significant crossover interac­

tions. These participants were flagged for removal before their data were analyzed. 

Overall a total of 51 individuals participated and were not removed. Twenty-one individ­

uals (12 high g, 9 moderate g) participated in the additive-factors experiment; twenty-eight 

individuals (14 high g, 14 moderate g) participated in the dual-task experiment; two individ­

uals who were not screened for g participated in the dual-task experiment testing the paral­

lelism of the stage affected by stimulus-background contrast. The mean age of the high-g 

participants was 21.1 years with a standard deviation of 2.76; the mean age of the moderate-
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g participants was 20.8 years with a standard deviation of 1.64. Participants were all fully 

fluent English speakers and were paid a base of forty dollars for their time. 

2.4.2 Procedure 

Participants performed the number-comparison task and completed an IQ test in a ses­

sion lasting between 2 and 3.5 hours. Up to 3 participants were run under the supervision 

of an experimenter in a single session. Each participant was seated at a cubicle obstructing 

all other participants from view. All participants in a session were members of only one g 

group. Assignment to cubicles was randomized. 

The moderate-^ participants were told that they were participating in "Version A," while 

the high-g participants were told that they were participating in "Version B." After complet­

ing all tasks, each participant had to predict the outcome of a die roll. Within each version 

(A or B) of each experiment (additive factors or dual task), all participants who correctly 

predicted the roll were entered in a pool and randomly paired. Within each such pairing, the 

participant who performed better on the sum of mean RT on correct trials in the number-

comparison task and number correct on the IQ tests was mailed a check for an additional 40 

dollars. Each term in this sum was standardized within each version-experiment combina­

tion and appropriately signed. Sacrificing accuracy for speed was discouraged by penalizing 

accuracy below 90 percent with a multiplication of mean RT by (1+.20JC), where x is the 

participant's number of rounded percentage points below 90-percent accuracy. This incen-

tivization of good performance was explained, with a numerical example, to participants at 

the beginning of the session. 

The additive-factors experiment balanced and randomized the two levels of stimulus-
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background contrast, the 48 possible numbers, and the two levels of response finger; each 

combination occurred 8 times. These 1536 actual trials were broken up into 32 blocks of 

48 trials each. Contrast and numerical distance varied within blocks, whereas finger varied 

across blocks. Participants responded either by pressing the R and U keys with their index 

fingers or by pressing the W and O keys with their ring fingers. The interval between trials 

was 750 ms. Participants familiarized themselves with the task over a total of 154 practice 

trials before beginning the actual experiment. Because the precise effect of contrast depends 

on viewing angle, participants were instructed to adjust seat height and monitor angle during 

the practice trials in order to maximize the visibility of the gray stimuli. 

The dual-task experiment used each of the 64 possible combinations of numbers 16 

times, once for each SOA (60 to 960 ms inclusive, increments of 60 ms). After randomiza­

tion these 1024 real trials were broken up into 32 blocks of 32 trials each. Participants re­

sponded by pressing the Q and W keys with the middle and index fingers of their left hands 

and the O and P keys with the index and middle fingers of their right hands. The interval be­

tween trials was 1000 ms. Participants familiarized themselves with the task over a total of 

106 practice trials before beginning the actual experiment. One practice block consisted of 

32 trials, all with an SOA of 60 ms, in order to accustom participants to performing the task 

quickly and accurately without "grouping" responses (withholding the first response and 

then emitting both responses in a rapid burst). 

The version of the dual-task experiment varying contrast followed the same design as 

just described, except that there were only 4 SOAs (50 to 950 ms inclusive, increments of 

300 ms). All 256 possible combinations of numbers and contrast level were used 6 times to 

constitute the real trials. 
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In both experiments participants were told to keep their fingers in contact with the keys 

at all times during the blocks and to minimize all limb and body movement. After every 

fourth block, participants were given an indefinitely long break, during which they were 

allowed to use the restroom, have a cup of water, and so on. The next block was initiated 

when all participants indicated that they were ready. All other inter-block intervals were 20 s 

in duration. 

After completing the number-comparison task, participants were administered a short 

form of Raven's Advanced Progressive Matrices and the vocabulary subtest of the Multidi­

mensional Aptitude Battery II. No time limit was imposed. 

2.4.3 Stimuli 

Both the additive-factors and dual-task experiments were implemented in PsyScope X 

Build 57 and run on iMac desktops (Mac OSX Version 10.5.8, 2.66GHz Intel Core 2 Duo, 

4GB 1067 Mhz DDR3). The diagonal length of the monitor was 50.8 cm. 

The stimuli were displayed in the Monaco font with a point size of 36. The distance 

from the monitor to the eyes of a given participant was roughly 70 cm. In the additive-

factors experiment, we employed the PsyScope default for the black stimuli and the setting 

(-5000, -5000, -5000) for the gray. 

2.4.4 Data Analysis 

All trials resulting in RT (or RT1) less than 250 ms were discarded. All additive-factors 

trials resulting in RT more than 4 standard deviations from a participant's mean in a given 

cell (contrast, numerical distance in eight bins, response finger) were discarded iteratively. 
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All dual-task trials resulting in RT more than 4 standard deviations from a participant's mean 

in a given cell (task order, SOA, dichotomized numerical distance) were discarded itera-

tively. These criteria eliminated about 1 percent of all trials in both the moderate- and high-g 

groups. 

In none of the analyses below did using the continuous measurements of IQ produce 

substantively different results from dichotomized g level. The failure to obtain greater signal 

with the continuous measurements may be due to selection bias producing a negative corre­

lation between C speed (diffusion rate) and the other causes of g within each group (Pearl, 

2009). 

Linear mixed models were fit to the additive-factors data using R's lmer package. All 

confidence intervals and p-values for other analyses were BCa intervals calculated using the 

boot and simpleboot packages. In cases where the BCa interval agreed well with the normal-

theory interval and the /?-value was less than .001, normal theory was used to calculate the 

p-value. 

Let X denote the random hitting time of a Wiener diffusion process. The defective cu­

mulative probability of error hitting times is 

/•(error,* <x)= P(error) - - j -exp ( - ? ) £ /V^ftA 
i f c = l 

(1) 

where 
e x p ( - ^ ) - e x p ( - ^ ) 

P(error) = ^ - ^ / x (2) 
e x p ( - ^ ) - l 

is the probability of absorption at the wrong boundary. To obtain the equation that gives the 

95 



defective probability of a correct response before x, z and v should be replaced by — z and 

—v respectively in Equation 1. In these expressions T, a, and v are defined as in Table 7. s2 

is a scaling constant that is conventionally set to 0.1. z is the starting point of the process. 

Given the symmetry of our number-comparison task, we may set z — a/2. A derivation of 

these expressions is given by Feller (1968), who takes the limit of a discrete random walk 

with probability p (q) of heading upward (downward) at each epoch as p — q becomes small, 

the size of each step becomes small, and the number of epochs per time unit becomes large. 

This approach is useful because it immediately shows why the variance of the process in­

creases with the mean. Since the variance of a dichotomous random variable is maximized 

at p = 1 /2, a smaller value of p — q means greater variability as well as a shorter average 

distance traveled during a fixed number of epochs. 

Given the limited number of trials in any given cell and the high accuracy of our par­

ticipants, we were not able to fit Equations 1 and 2 to individual data (Vandekerckhove & 

Tuerlinckx, 2008). Attempting to fit the equations to averaged data did not produce satis­

factory results, possibly because the nonlinearity of the diffusion model precludes the pa­

rameters estimated from averaged data necessarily converging on the average values of the 

parameters in the sample. The thresholds used to recruit our samples may have exacerbated 

this problem. Remarkably there exist closed-form expressions for the means and variances 

of the distribution defined by Equations 1 and 2 that permit T, a, and v to be estimated by 

the method of moments (Wagenmakers et al., 2007; van Ravenzwaaij & Oberauer, 2009; 

Grasman et al., 2009). This approach relies on the assumption that T, v, and z do not vary 

across trials within a cell for a given participant. Although variability in these parameters 

is required to fit the distribution of error RT (Ratcliff & Smith, 2004; Ratcliff & McKoon, 
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2008), it has been found that an incorrect assumption of no variability still permits the recov­

ery of experimental effects and individual differences. One reason for the robustness of the 

reduced moment-based method is that the variance of the diffusion process is empirically an 

order of magnitude larger than the variance of T. 

Fitting the non-reduced diffusion model to the entire distribution of RT would impose 

strong constraints on not only the behavior of the RT2 central tendency as a function of 

SOA but also on several other RT2 quantiles. This would arguably provide an even more 

demanding test of the model in Figure 3. Such fitting was done successfully in a previous 

study (Sigman & Dehaene, 2005), but this analysis did not account for errors. A complete 

diffusion analysis of a PRP task, although requiring many more trials than we administered 

in our own experiment, would certainly be worthwhile. 

A complete version of the model in Figure 3, incorporating the executive task-scheduling 

stage, can be written as 

{P i + £ ( S O A ) + C i + C 2 + M 2 - S O A if SOA + P2 < P\ +E + Q, 
(3) 

P2 + C2+M2 ifSOA + P1>Pl+E + Cl. 

It is evident from this equation that a difference associated with C must double as the SOA 

becomes small. Simulations can be performed by assigning a probability distribution to 

each term (E and C each being the convolution of a low-variability substage and a diffu­

sion process approximated by a discrete random walk). Direct estimates of P + M and C 

are made possible by assuming that corresponding stages of tasks 1 and 2 have the same 

mean, which is plausible if tasks 1 and 2 are identical. Then we may simply take E[2 x 
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RTl (SOA) - RT2(SOA) - E(SOA) - SOA] for short SOAs, which by Equation 3 is equal to 

E(P + M). E[£(SOA)] may be estimated by E[RTl(SOA) - RT2(°o)]. We used this method, 

averaging the results from the 60- and 120-ms SOAs, to estimate E(P + M) separately for 

the moderate- and high-g groups. 
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3 Correlation and Causation in the Study of Personality 
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Abstract 

The aim of personality psychology is to explain the causes and consequences of variation 

in behavioral traits. Because of the observational nature of the pertinent data, however, this 

endeavor has attracted much controversy. In recent years the computer scientist Judea Pearl 

has used a graphical approach to extend the innovations in causal inference developed by the 

population geneticists Ronald Fisher and Sewall Wright. Besides shedding much light on 

the philosophical notion of causality itself, this graphical theory now contains many pow­

erful concepts of relevance to the controversies just mentioned. In this article some of these 

concepts are applied to areas of personality research where questions of causation arise, 

including the analysis of observational data and the genetic sources of individual differences. 

Keywords: personality; causality; directed acyclic graph; structural equation modeling; be­

havioral genetics 
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Until recently the notion of causality remained a merely qualitative concept, subject to 

the hostility of mathematicians such as Karl Pearson and Bertrand Russell. Under this limi­

tation it was impossible to find a formal notation to express even such simple notions as rain 

causes mud and not vice versa; in merely probabilistic terms, the most we could say was that 

rain and mud are correlated. Building on the foundations laid by the population geneticists 

Ronald Fisher and Sewall Wright, the computer scientist Judea Pearl and his colleagues have 

filled this lacuna in scientific discourse with a simple yet powerful formalization of causal­

ity that draws on the branch of mathematics known as graph theory. Pearl's axiomatization 

of causality stands to offer a particularly great benefit to the study of personality, where for 

various reasons (not all strictly scientific) the difficulties of pursuing causal claims without 

a respectable causal vocabulary have been particularly keen. Indeed, despite the difficulty 

in interpreting the proposed chain in Figure 11 as anything but a causal chain, the writings 

of Pearson, Russell, and other Edwardian scientists have sometimes persuaded personality 

theorists to deny that causality is what they are trying to demonstrate (Burt, 1940; Lubinski 

&Dawis, 1995). 

The thesis of this article is that Pearl's graphical theory provides a foundation for the 

properly causal ontological commitments of practicing personality researchers. In Part 1 
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Figure 11: Causal chain hypothesized by some personality psychologists. This chain hap­
pens to be a directed acyclic graph, although it does not represent any formal causal model. 
Only a subset of the possible nodes and edges is depicted. 
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I demonstrate the power of the theory in several examples representative of the problems 

arising in personality research. These examples shed light on the following general issues: 

• Correlation and causation. We often hear the mantra correlation does not equal cau­

sation. But what then is the relation between correlation and causation? According 

to the graphical theory, every non-coincidental correlation arises from some causal 

mechanism, perhaps involving variables other than the pair under consideration. The 

graphical theory thus provides a fundamental taxonomy for classifying correlations 

according to the causal structures that have generated them. 

• Covariate selection. We are often told to control for potential confounders in an ob­

servational study by including them as regression covariates. But what exactly is a 

confounder? That is, how do we decide which variables to control for? Is there ever a 

reason not to control for some measured variable? 

• Randomization. A frequent justification of randomized assignment to different levels 

of the putative causal variable invokes the tendency of randomization to create groups 

that are similar in background characteristics. While this argument is valid, it may 

become less obviously so after the discussion of Topic 2. If the graphical theory of 

causality is truly comprehensive, it should be able to supply its own justification for 

randomizing participants to different levels of the putative causal variable whenever 

this is feasible. 

In Part 2 I take a necessary digression to discuss the nature of psychometric common 

factors—the very objects of study in personality research. A frequent objection to the sci­

entific status of personality research is that g, the Big Five (or Six) personality traits, and 
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other factor-analytic "constructs" are arbitrary mathematical fictions (Gould, 1981; Glymour, 

1997). This objection is often part of a longer argument: since factor analysis is hopelessly 

inadequate as a tool of causal discovery, any scheme that supposes psychometric common 

factors to be meaningful causes or consequences of other variables must be similarly un­

sound. Part 2 gives a minimal argument countering this kind of nihilism. Although I also 

deny that a psychometric factor stands in a causal relation to its indicators, I do allow a fac­

tor to play the role of cause or effect in a larger network. 

The discussion in Part 1 will compel the conclusion that structural equation modeling 

(SEM) is inevitably employed whenever investigators advance a causal claim on the basis 

of observational data. Accordingly, in Part 3 I reanalyze a dataset bearing on the relation 

between intelligence and social liberalism in order to demonstrate how Pearl's graphical 

approach can sharpen the explicit use of SEM in personality research.1 In particular, the 

graphical approach provides a means of identifying the testable implications (if any) of 

causal hypotheses for observational data. We can then subject these implications to severe 

empirical tests, the survival of which can confer great credibility to (a class of) causal mod­

els even in the absence of randomization. Here the contrast with mainstream SEM could 

not be greater. Some psychometricians go so far as to say that the purpose of SEM is not to 

shed light on causation but rather to express conditional probability distributions in a differ­

ent form (Muthen, 1987; Holland, 1995; Schumaker & Lomax, 2004). In the authoritative 

reference on psychometrics in the Handbook of Statistics series, the entry on SEM contains 

excellent coverage of statistical issues but no discussion of causality at all (Yuan & Bentler, 

'Trent Kyono has written a beta version of the program Commentator, which automates many of the 
analyses demonstrated in Parts 1 and 3. Email him at tmkyono@gmail.com. 
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2007). An important aim of this paper is to restore Wright's (1968) view of SEM as an exer­

cise in applying the logic of cause and effect. 

In Part 4 I take up the intersection of graphical methods and an emerging research area 

of vital importance to the entire structure depicted in Figure 11: the search for DNA poly­

morphisms with causal effects on personality. The cost of sequencing the entire genome of 

a research participant will eventually be negligible, and at that point gene-trait association 

research may succeed brain imaging as the "land grab" of behavioral science. Such research 

on diseases and anthropometric traits has already yielded spectacular dividends; one recent 

study of over 180,000 participants uncovered 180 genomic regions containing a variant af­

fecting height (Lango Allen et al, 2010). 

Since the nature-nurture issue has been a flash point in the controversies that have 

dogged personality research, this article's commitment to the utility of genetic research 

may seem inauspicious. Here I give two related reasons for concluding my article in this 

way. First, population genetics now contains many theoretical results developed without the 

benefit of a general framework for causal reasoning, and the new explanations of these re­

sults inspire confidence in the unity and generality of the graphical approach. Second, many 

of the examples preceding Part 4 will show that causal inferences can depend on assump­

tions that are untestable given the data at hand. For instance, the discussion in Part 3 invokes 

temporal ordering to rule out alternative causal models, but this assumption is admittedly 

fraught. A latent developmental process may predetermine Y well before X, even if X is the 

first trait to be manifest in the lifespan. The upshot is that the soundness of any causal con­

clusion depends on both conforming data and the correctness of the requisite assumptions. 

Our substantial prior knowledge of genetics allows us to justify many powerful assumptions, 
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which leads to correspondingly powerful results. Gene-trait association research thus pro­

vides many enlightening applications of graphical reasoning: 

• The meaning of heritability. As documented by Sesardic (2005), immense confusion 

persists over the meaning of heritability and the nature of the evidence supporting her­

itability estimates for particular traits. Elucidating the notion of heritability from first 

principles, we will see that causality is built into the very concept. I provide new and 

simple proofs of Fisher's expressions for heritability and also the Fundamental Theo­

rem of Natural Selection (using, ironically, the path-tracing rules devised by Fisher's 

bitter rival Sewall Wright). Although these proofs employ less general hypotheses than 

strictly necessary, they clearly reveal the causal content of these expressions. 

• Linkage disequilibrium. Two genetic loci are in linkage disequilibrium (LD) if they are 

correlated—that is, if knowing a person's genotype at one locus gives some informa­

tion regarding the genotype at the other. This population-genetic terminology is rather 

unfortunate in that it applies even to loci not physically linked on the same chromo­

some, but here we abide by convention. Population geneticists have shown that various 

ancestral processes, including assortative mating and natural selection, will lead to LD 

(Fisher, 1918; Bulmer, 1971; Burger, 2000). The mathematical soundness of these re­

sults are not in doubt, but intuitive understanding may be elusive without a graphical 

interpretation. 

For instance, we readily see that spouses tend to resemble each other in some ways. 

Remarkably, it seems that many of us have absorbed this conspicuous fact of social 

life without realizing that our intuitive explanation for it (people preferring mates 
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with certain qualities) does not correspond to anything in the canonical taxonomy of 

reasons for why any two variables might be correlated. One mate's trait value does 

not affect the other mate's value, and the two trait values are not confounded in the 

usual sense. The classification of a so-called marital correlation must invoke a crucial 

addition that Pearl has made to the correlational taxonomy. 

• Gene-trait association and causation. Hundreds of genetic loci have now been shown 

to be associated with one or more traits in genome-wide association studies (Mano-

lio et al., 2009), and most knowledgeable geneticists are confident that the bulk of 

these associations reflect linkage with authentic causal variants. What justifies this 

confidence? At first glance the relevant methods (regression, within-family designs, 

principal components analysis) do not seem so so different from those used in other 

fields, where there have been few uncontroversial causal inferences made on the basis 

of purely observational data. Using concepts developed in the discussion of the pre­

vious topics, we will see how certain special features of gene-trait association studies 

enable the leap from association to causation. 

Some readers may be skeptical that a novel and unified framework can usefully touch 

on all of the topics just mentioned. A single framework can be so all-embracing, however, 

precisely because causality is a such a deep and essential concept. It is the burden of this 

article to demonstrate this depth and essentiality. 
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3.1 A Unifying Theory of Causality 

Over the last two decades, Pearl and his collaborators have developed a nonparametric 

form of SEM that includes the usual idealization of linear causal relations and normally 

distributed disturbances as a special case. Sprites, Glymour, and Scheines (2001) and their 

collaborators have also made seminal contributions, although their focus is much more on 

the automatic generation of causal models. As already emphasized, the importance of this 

work goes far beyond the extension of traditional SEM. 

3.1.1 The Interpretation of a Causal DAG 

We now review the features of the graphical theory needed in our account of personality 

and causation. Much of our review focuses on Figure 12, which depicts an example given 

by Pearl (2009, p. 15). The graph represents the causal relations among five variables: the 

season of the year (X\), whether it rained last night (X2), whether the sprinkler was on last 

night (X3), the wetness of the pavement (X4), and the slipperiness of the pavement (X5). 

Definitions and Elementary Properties The object in Figure 12 is a directed acyclic 

graph (DAG), consisting of discrete nodes or vertices, some pairs of which are connected 

by directed edges.2 A path is a consecutive sequence of edges with distinct nodes; the edges 

in a path need not all face the same direction. Readers already familiar with SEM will rec­

ognize Figure 12 as a path diagram with no representation of the disturbances. In Pearl's 

theory, however, much greater use is made of such a diagram's formal properties. 

2The graphical theory of causality can accommodate cycles representing mutual causation (X —> Y —> 
••• —> X —> 7 —> • • • )• This paper will not address cyclic models; the reader is directed to Dickens and Flynn 
(2001) for an example. 
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Figure 12: A DAG representing the causal relations among five variables (a) before the ma­
nipulation of X4, and (b) after the manipulation of X4. 

(a) 

(b) 

sprinkler 
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If there is a directed edge from Xi to Xj, then Xi is a. parent of Xj. We extend the analogy 

to kinship in a straightforward way to define children, ancestors, and descendants. Infor­

mally, an ancestor is a cause and a descendant is an effect. In our account we will not en­

counter a deep analysis of these notions in a single place, but rather allow their meanings to 

emerge over the course of the discussion. 

Now consider the reasons for why we might observe an association between two vari­

ables. Two reasons are well-known: (1) X is a cause of Y or vice versa, or (2) a third variable 

is a common cause of both X and Y (Fisher, 1970). If either X or Y is a cause of the other, 

they are connected by a directed path; each arrow in the path points in the same direction. 

If there are any intermediate nodes between ancestor and descendant along a directed path, 

they are called mediators. In Figure 12 both X4 —» Z5 and X\ —> X2 —> X4 are examples of 

directed paths. If a confounding common cause contributes to the association between X 

and Y, there is a path between them that first travels against the arrows to the confounder 

and then travels with the arrows to terminate at the other node. In Figure 12 the subgraph X3 

<— X\ —*• X2 supplies an example of a confounding path: rain and the sprinkler do not affect 

each other, but they are associated because the season affects both. 

Outcomes under manipulation lie close to the heart of what directed paths semantically 

represent. Suppose that we wrest control of the mechanisms determining X4 away from 

nature and set the level of this variable each morning ourselves. We will then find that Z5 

continues to depend on X4 but that X4 no longer depends on X2 or X3. That is, if we protect 

the pavement with tarp whenever we are not spraying it with a garden hose, we will find that 

hosing the pavement is correlated with neither the rain nor the sprinkler. The graphical rep­

resentation of "overriding nature" in this way is the deletion of all directed edges converging 
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on X4 (Figure 12b). The intuition here should be thatXi is "set free" or "disconnected" from 

its parents (and other ancestors) once we intervene to determine its value. We must then 

attribute any persisting associations with other nodes in the graph to these nodes being de­

scendants of X4; in other words, X4 is either a parent (direct cause) or more remote ancestor 

(indirect cause) of any variable with which it remains associated. 

Note that whether a variable is a direct or indirect cause of another is always relative 

to the epistemological situation. In Figure 12 the omission of either Xi and X3 would force 

us to insert a directed edge from X\ to X4. That is, if we were unaware of any mediating 

mechanism, we would regard the season as directly affecting the wetness of the pavement. 

Experimental and Statistical Control We have just seen that experimental control amounts 

to setting a node equal to a constant. Can statistical control be regarded in the same way? If 

the statistical control takes the form of conditioning on a node along a confounding path, 

then the distinct effects represented by the terminal nodes are indeed no longer associated. 

For instance, suppose that the sprinkler has been automated such that it turns on more fre­

quently in drier seasons. In a short time interval during which the sprinkler follows a fixed 

schedule, when it rains will no longer be associated with when the sprinkler turns on. Thus, 

if the only non-directed paths between X and Y are confounding paths, we simply condition 

on a set of variables that contains at least one node on each confounding path between X and 

Y. If any association remains between X and Y, there must be at least one directed path from 

X to Y representing a causal effect. 

Perhaps surprisingly, there are also variables on which we should not condition if we 

want to obtain an unbiased estimate of a causal effect. Earlier we named causation and con-
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founding as two reasons for an association between variables. But there is a third reason that 

seems hardly known at all: X and Y may be associated because both are causes of a third 

variable, Z, on which we have conditioned. Figure 12 shows how this might occur. Although 

rain and the sprinkler are independent if we condition on the season, they will become as­

sociated once again if we also condition on the wetness of the pavement. That is, if we only 

observe the pavement on mornings when it is wet, the two causes become negatively corre­

lated; knowing that it did not rain and that the pavement is wet implies that the sprinkler was 

indeed activated. 

In this situation the variable Z is a collider. We can think of conditioning on a collider as 

unblocking a path that was previously closed to causal flow. Thus, to obtain a clean estimate 

of a causal effect of one variable on another, the set of covariates (statistically controlled 

variables) must include a node on each open non-directed path between the two variables, 

including any such paths opened by conditioning on a collider or its descendants. Only then 

will the remaining open paths between the variables consist solely of causal effects. If we 

have not conditioned on any colliders, however, we can ignore the paths including them. 

The discussion above is encapsulated in Pearl's critical concept of d-separation: 

A path p is d-separated (or blocked) by a set of nodes § if and only if 

1. p is a directed path, confounding path, or unblocked colliding 
path with at least one intermediate non-collider (with respect to 
p) contained in §, or 

2. p is a colliding path such that no collider on the path or any of its 
descendant is contained in §. 

A path that is not d-separated is said to d-connect the extreme nodes X and Y. 

J-separation is also defined for pairs of variables. A set § is said to d-separate X from Y if 
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and only if § blocks every path from X to Y. Thus, except in very unusual circumstances, 

two variables that are d-connected must be correlated; conversely, any two J-separated 

variables must be independent. It will turn out that the broad concept of ^-separation (d-

connection) provides a unifying thread for the topics enumerated in the Introduction. 

Colliders demonstrate that conditioning on a variable is not always equivalent to setting 

it equal to a constant. If we experimentally control the wetness of the pavement, sealing off 

this variable from its natural determinants (including rain and the sprinkler), we are deleting 

the edges converging on this variable (Figure 12b). This mutilation is unproblematic because 

the removal of edges can never add a d-connecting path. Statistically controlling the vari­

able, however, merely amounts to examining a subpopulation where all members happen 

to share the same value. Different members of this subpopulation will have that value for 

different reasons, which alters the covariation among the variable's causes. 

The conceptual distinction between experimental and statistical control motivates Pearl's 

notational distinction between them. Pearl points out that when statisticians write P(Y \X = 

x) to signify the (conditional) probability distribution of Y given that the variable X assumes 

the value JC, they really mean the probability distribution of Y given that we see X equaling 

x. But what scientists want to know is the probability distribution of Y given that we do the 

action of setting X equal to x. The existence of both confounders and colliders shows that 

P(Y \x) = P{Y\see{x)) ^ P(Y\do(x)). 

We will now go through two examples showing that heedless conditioning might in fact 

produce misleading results. Consider the causal model of status attainment, possibly some­

what realistic, in Figure 13. We now incorporate the use of a bidirectional arc to represent 

a residual dependence between two variables attributable to unmeasured common causes. It 
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Figure 13: A DAG representing a causal model of personality and status attainment. 

offspring 
non-IQ 

trait [Y5) 

offspring 
SES (V6) 

is not a misnomer to call Figure 13a directed acyclic graph because a bidirectional arc X «-» 

Y is simply a shorthand for X +— C —> Y, where C denotes the unobserved confounders. For 

simplicity we assume that each variable is well defined and measured without error; in Part 2 

I will briefly comment on what these assumptions entail. 

The current consensus is that Figure 13 must include the directed edge Y4 —» Y^ (Mur­

ray, 2002; Nisbett, 2009). What remains under debate is the relative impact of IQ when 
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compared to other determinants of SES, including non-cognitive personality traits such as 

conscientiousness and agreeableness (Roberts et al., 2007). If the SES of the parents is a 

confounder, the zero-order IQ-SES correlation in their offspring may overestimate the causal 

effect of IQ. This possibility often motivates including parental SES as a covariate in regres­

sion models intended to disentangle the contributions to important life outcomes. Simply 

including parental SES as a covariate, however, will probably overcorrect the estimate of 

offspring IQ's causal effect. Let Qj denote the unmeasured confounders responsible for 

the bidirectional arc between nodes / and j . Conditioning on parental SES d-separates the 

confounding paths 

Y4 < - Y3 -* Y6, (4a) 

Y4<-Y3^Y5^Y6, (4b) 

Y4<-Y3<-Y2->Y5^Y6, (4c) 

Y4 <- Y3 < - Y2 < - C2,5 - r 5 - Y6, (4d) 

Y4<-C1A->Y1^Y3-*Y6, (4e) 

Y4<-Ci,4-+Y1^Y3-+Y5->Y6. (4f) 

Unfortunately, by unblocking the colliding paths containing Y\ —> Y3 <— Y2, it creates the 
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new J-connecting paths 

Y4^Yl-Y2->Y5->Y(>, (5a) 

Y4 <- Ci,4 - YX - Y 2 -> Y5 - F6, (5b) 

F4 <- Fj - F2 <- C2,5 -> F5 - F6, (5c) 

F4 ̂  Ci,4 - F! - F2 - C2,5 - F5 -> F6. (5d) 

The paths in (5) use an undirected edge between two variables to indicate that they are d-

connected only after conditioning on their common descendant. 

Path (5a) presents a simple case of unblocking a collider. Y\ is a parent of F4, and F2 is 

an ancestor of Y(,. Thus, once we conditionally confound Y\ and F2, the causal flow from 

these nodes creates an additional ^-connecting path between F4 and Y(,. Path (5d) is instruc­

tive; contrary to Wright's (1934; 1968) rules, tracing this path to induce a covariance be­

tween F4 and Y(, is legitimate despite having to go backward after already going forward. 

The justification of this is that after we condition on the common descendant of two causal 

lineages, each ancestor in one lineage will find itself J-connected with every ancestor in the 

other lineage. This must be true because the length of a directed path is a feature of human 

knowledge rather than external reality; therefore it must be possible to go from C\^ to C2>5 

regardless of whether any mediators along the way to the unblocked collider F3 are known. 

Thus, we can trace backward from F4 to the unobserved confounder C\^\ this confounder is 

connected to C2i5, from which we can proceed forward through F5 to arrive at Y(,. 

To summarize, the collision at F3 normally impedes any causal flow through the paths in 

(5). Conditioning on F3 unblocks the collision and allows the paths to J-connect F4 and Y(, 
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in the offspring. That is, among households observed to have the same SES, the covariation 

among the causes of SES is altered, probably becoming more negative. Thus, whenever we 

have two such causes of SES, each also affecting a different member of the pair {I4, Y(,}, 

they suppress the estimated magnitude of any Y4 —> Y(, causal effect. Conditioning on any 

member of {Yi, Y2,15}, in addition to F3, will restore these colliding paths to their original 

J-separated status. If we have not measured any of these variables, however, at best we can 

hope that the statistical control for parental SES removes more bias than it introduces. 

The next example shows that whether we should condition on a particular variable can 

depend on whether we want to test a sharp null hypothesis or to estimate the size of a causal 

effect. In recent years several studies have shown that personality traits are associated with 

longevity (Friedman et al., 1993; Gottfredson & Deary, 2004; Batty et al., 2009; Gallacher 

et al., 2009). Much as in Figure 14, these studies attempt to control for possible confounders 

and also to determine how much of any effect is attributable to mediators such as obesity, 

smoking, and attained SES. Figure 14 incorporates the SEM custom of using a bidirectional 

arc that begins and ends at the same node to represent the residual disturbing causes. Ex­

plicit representation of the disturbances can greatly assist our understanding of a model, 

reminding us that each variable has other causes not depicted as nodes. 

In this example we refrain from any parametric assumptions. What this means is that 

in the place of regression coefficients, we consider quantities of the form E[(Y \ do(x!)) — 

(YI see(x))] for selected values of {x'^x}. Nonparametric estimation of conditional proba­

bility density functions is of course not a simple matter. However, it is nevertheless useful 

to neglect practical considerations and concentrate on the theoretical points, in order to re­

alize that SEM is not intrinsically tied to linear causal relations. For the sake of argument, 
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ure 14: A DAG representing a causal model of intelligence and mortality. 
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we initially assume that Z2 —» Z4 is absent (Figure 14a). That is, intelligence only impacts 

mortality indirectly through obesity; perhaps smarter people are better informed about the 

dangers of being overweight. 

In his responses to skeptical readers of Causality's first edition, Pearl (2009, pp. 340-

341) addresses an epidemiologist who claims that tradition allows for conditioning on both 

Z\ and Z4 to evaluate the effect Z2 —> Z3. This is permissible and in fact desirable—if we 

simply wish to the test the null hypothesis that IQ has no effect on obesity. Conditioning on 

Z4 alone is actually a step backward from this goal because Z4 is a descendant of the collider 

Z3. Let us pause to consider why. 

In the subgraph representing the null hypothesis, there is no directed edge Z2 —> Z3, 

which means that the only node sending an edge to Z3 is Z\. What, then, makes Z3 a col­

lider? Recall that the disturbance of Z3—which we now call £3—represents unmeasured 

causes of obesity. These causes are now spuriously associated with Z\ because of the con­

ditioning on their common effect. As the unmeasured causes of obesity fluctuate, so does 

childhood SES, which in turn passes causal flow to IQ. Fortunately, conditioning on Z\ 

blocks the newly opened path Z2 *— Z\ — £3 —-> Z3 and also the original confounding paths. 

Thus, if there remains an association between IQ and obesity at some \z\ ,ZA\, we must re­

ject the null hypothesis that the subgraph lacking the edge Z2 —> Z3 is correctly drawn. The 

most natural reason for the rejection of the hypothesis would be that there is in fact such an 

edge. 

Once we accept the alternative hypothesis that Z2 —> Z3 is present, the set \Z\ ,Z<±\ is 

no longer an admissible set of covariates for estimating the Z2 —> Z3 effect. Mortality is 

now a descendant of IQ (Z2 —> Z3 —> Z4), which means that conditioning on mortality d-

118 



connects IQ and the unmeasured causes of obesity by opening the path Z2 — £3 —> Z3. This 

unblocked path cannot be ^-separated by any node in Figure 14. If we want to estimate the 

effect of IQ on obesity, we must condition only on SES. But Z4 is still a desirable covariate 

for testing the null hypothesis {IQ does not affect obesity) because the continued conditional 

independence of Z2 and Z3 after adding Z4 to the covariate set is an additional constraint on 

that hypothesis. 

Let us reintroduce the directed edge Z2 —> Z4 (Figure 14b). That is, IQ now affects mor­

tality through mechanisms other than obesity. Because mortality is now a descendant of IQ, 

it is no longer an admissible covariate for any evaluation of Z2 —* Z3. We can still estimate 

the effect of IQ on obesity by conditioning on SES. But can we also estimate the direct effect 

of IQ on mortality? {Z\, Z3 } may be a tempting set of covariates for this purpose. Again, 

however, IQ and the disturbance of obesity collide at obesity itself. Conditioning on obesity 

will thus J-connect IQ with the unmeasured causes of obesity, including whatever unmea­

sured common causes obesity shares with mortality. This unblocks the path Z2 — C?,^ —» Z4. 

It turns out that we cannot estimate the desired direct effect without imposing some para­

metric assumptions. Given only the graphical assumptions regarding the connectivity of the 

nodes, we can only estimate the total effect of IQ on mortality (by conditioning on Z\). 

The point of these exercises is not to argue for any particular model or claimed empirical 

finding. It is rather to dissuade readers from the belief that a conditioning technique such as 

multiple regression is a more innocuous method than full-fledged SEM. The very opposite is 

true. Since multiple regression is a linear model of what we would find given certain obser­

vations, it can only tell us what we would find given certain actions under special conditions. 

By implicitly making assumptions that a graphically rendered model always makes explicit, 
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multiple regression is actually by far the more equivocal method. The lesson is clear: when 

making inferences from observational data, we should always present a (graphical) struc­

tural equation model representing our causal theory so that its critical assumptions can be 

criticized and defended. In fact, one might hope that disagreements over the interpretation 

of observational data will often reduce to disagreements over how to connect each pair of 

nodes. Once the nature of the disagreement becomes this explicit, both sides should find 

it easier to decide whether the existing data rule out any contending hypothesis and also 

whether any additional data can be collected to narrow the divide between them. 

That said, in cases where the linearity approximation is reasonable, there is still an 

important role for regression in causal analysis. At the very least, we may continue to en­

counter the naive use of multiple regression in the literature, and criteria for whether a partial 

regression coefficient gives an unbiased estimate of the desired causal effect are useful in 

judging such analyses. Furthermore, if the causal model is not globally identified, we might 

be forced to use regression to estimate those causal effects that are locally identified. In fact, 

for many reasons, some of which are discussed in Part 3, the local identification of effects is 

far more informative than the bare fact of global identification. 

To identify any partial effect in a linear model, as defined by a selected set of 

direct or indirect paths from X to Y, we must find a set § of measured variables 

that contains no descendant of Y and d-separates all non-selected paths between 

X and Y. The partial effect will then equal the regression coefficient of X in the 

multiple regression of Y on X U § (Pearl, 1998; Spirtes et al., 1998). 

Whenever a report presents a partial regression coefficient as an estimate of a causal effect, 

it may be useful to construct plausible DAGs (structural equation models) and determine 
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which of these satisfy the conditions of the theorem. 

The approximation of linear causal relations will sometimes be untenable. This would 

possibly be the case in Figure 14 if mortality were measured dichotomously at one time 

point. In these situations methods are available for other functional forms, many of which 

have been developed by statisticians and econometricians (Lee, 2007; Wooldridge, 2010). A 

promising direction for sufficiently low-dimensional problems is to dispense with parametric 

assumptions and work directly with the sample estimate of the joint probability distribution, 

using an ingenious calculus devised by Pearl for his do operator. Of course, the absence 

of parametric assumptions weakens results on whether an unbiased estimate of an effect is 

identified. For example, the direct effect Z2 —> Z4 in Figure 14 is unidentified in general, 

but becomes identified in a linear model because the identified total effect of Z2 on Z4 is 

then merely the sum of products given by the path-tracing rules. We identify coefficients in 

other terms of this sum and then subtract the result from the total effect to obtain the edge 

coefficient of interest. Interested readers should carefully study Pearl's (2009) treatment of 

this matter. Nonparametric estimation needs extremely large samples, but many studies of 

personality and health appear to satisfy this requirement. 

3.1.2 The Value of Randomization 

Imagining the experiments implied by each directed edge can sharpen our justifications 

for including and omitting arcs. Of course, the best way to ensure the feasibility of some ex­

periment is to actually perform it. Moreover, the graphical theory of causality justifies ran­

domly assigning levels of the putative causal variable whenever this is feasible. Over much 

resistance by seasoned experimenters, Ronald Fisher advocated randomization for the pre-
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cise purpose of distinguishing causation from confounding (Box, 1978). This is one of the 

stark contrasts between Fisher and his nemesis Karl Pearson; Fisher did not regard causality 

as a meaningless concept. Although his argument from "the lady tasting tea" is character­

istically difficult, I believe that we can rephrase Fisher's (1966) defense of randomization 

in graphical terminology as follows. By assigning subjects to different levels of a putative 

cause according to a random mechanism, we are J-separating the variable from all of its 

ancestors in the causal graph containing it (Figure 12b). Since a coin flip is by design unas-

sociated with any macroscopic variable, it shields the putative cause from any confounders 

lurking among its ancestors or the experimenter's whims. If the actual implementation of the 

manipulation matches the ideal of surgical isolation represented by the do operator, we can 

assess the resulting association between putative cause and effect for significance against an 

exact sampling distribution. 

The deep insight in this rationale for randomization is characteristic of Fisher's writings 

on causality. We will return to these writings when we consider causality in the context of 

genetic research. For now I point out that the graphical theory neatly unites the innovations 

in causal inference developed by both Fisher and his great rival in population genetics, Se-

wall Wright. Path analysis, as practiced ingeniously by Wright (1921; 1931; 1969), is an 

obvious intellectual forerunner of the graphical theory. The characterization of Fisherian 

randomization as edge deletion shows the great conceptual generality of this theory. 

The rarity of such powerful natural experiments may seem to leave randomization as a 

peripheral concept to personality research. In the spirit of Pearl's call to "causation without 

manipulation," however, we should recognize that randomization, fixing the values of po­

tential confounders, and even conditioning on colliders are not the prerogatives of human 

122 



scientists. Nature herself engages in these activities; Part 4 will have much more to say about 

this. 

3.2 The Nature of Psychometric Common Factors 

Since two personality scales with no items in common can be functionally interchange­

able, whatever is measured by any single scale must be somehow generalizable beyond its 

specific items. In addition, two interchangeable scales will always show a correlation less 

than unity, so we must suppose that the scales measure a third quantity with some degree 

of error. Personality researchers have often looked to common factors as the generalizable 

quantities that any particular scale imperfectly measures. 

The mathematical conception of a common factor is perhaps clear enough. But any 

mathematical model must be understood as providing an analogy to some external reality, 

and thus the question arises: what exactly in the real world does a common factor repre­

sent? This issue has provoked intense and recurrent debate among psychometricians. Mulaik 

(2005) ably reviews certain aspects of the controversies; noteworthy recent contributions in­

clude Borsboom, Mellenbergh, and van Heerden (2003), Bartholomew (2004), and Ashton 

and Lee (2005). No writer seems to have convincingly settled the issue in the compass of a 

single article (or book), and I will not try to be the first. But the statement of some position, 

however brief and debatable, is called for here in order to move on with our attempts to em­

ploy psychometric common factors in causal explanations. In what follows I rely heavily on 

McDonald (1996; 2003). 

Factor-analytic models treat measured variables, such as the different items or subscales 

in a personality battery, as indicators of unmeasured quantitative variables called factors 
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(Thomson, 1951; McDonald, 1985; Mulaik, 2010). The term factor here has a narrower 

meaning than when used as a rough synonym for cause or variable. If the scores on a scale 

could be regressed on the unobserved factor scores, each regression coefficient would repre­

sent the quality of the scale as a measure of the corresponding factor. The regression coeffi­

cients in this model are called factor loadings. 

Figure 15, a graphical depiction of a schematic factor model, introduces another SEM 

diagramming convention: the depiction of nodes standing for common factors (sometimes 

called latent variables) as circles instead of rectangles. Despite the similarity of Figure 15 

to those examined in Part 1,1 maintain that the coefficients (factor loadings) attached to 

the directed edges here should not be interpreted as representing the magnitudes of causal 

effects. A factor model is not necessarily a causal model. 

Suppose that we use the dimensions and weights of various body parts as indicators of 

a common factor called body size. This is a common conceit in didactic accounts of factor 

analysis, most recently taken up by Bartholomew (2004). Now consider the proposal that 

body size is the unobserved common cause of height, weight, and so forth. To most of us, at 

least, the notion that size causes height will seem very close to circular. In one terminology 

the relation between the concepts of size and height seems much too "analytic" to permit 

construing it as a causal one. Indeed, causal inference is a problem precisely because causa­

tion is a "synthetic" relation. It turns out to be true that the bacterium Vibrio cholerae causes 

the disease it is named after, but logically it could have been otherwise and therefore this 

relation had to be empirically discovered. 

Body size is not the common cause of those variables that measure it, but rather is their 

common abstractive property. Furthermore, the large loading of a given indicator on size 
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Figure 15: Each set of items at the lowest level defines a factor. The first-order factors are in 
turn measures of a higher-order factor called g (general intelligence). 
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does not imply that there is some unobserved variable (but observable in principle), which, 

when severed from its ancestors and adjusted upward by one unit, will yield an increase in 

the value of the indicator equal to the loading. A large loading simply simply means that 

there is a high degree of conceptual overlap between the (unobservable in principle) abstrac­

tive property and the (observable) indicator. Height is not exactly the same as body size, but 

it is a good proxy for it. We might say that height makes for a passable "Size Quotient." 

I believe that the analogous assertion holds for psychometric common factors. Consider 

the relation between extraversion and whether the respondent likes to meet new people. An 

indubitable meaning of the statement A likes to meet new people because he is extroverted 

is that the respondent's behavior in this instance has an "intensity" that is typical of his be­

havior in a wide class of semantically related instances: whether he likes to attend parties, 

whether he goes out of his way to greet people, whether he feels comfortable speaking in 

front of groups, and so on. But if we construe the relation between extraversion and meeting 

new people as a causal one, we are essentially saying that an abstraction of the respondent's 

behavior across a class of instances causes his behavior in a particular instance: being ex-

traverted causes a behavior typical of an extravert. That is, unlike the relation between Vibrio 

cholerae and cholera, the relation between extraversion and meeting new people fails to offer 

a means of defining the putative cause and effect independently of one another. 

Someone determined to rescue the notion of a common factor as a common cause of its 

indicators might claim that general intelligence (g), extraversion, and other psychometric 

traits do not in fact correspond to the folk-psychological traits bearing these names. Ac­

cording to this argument, just as the physical construct of gravity bears only a metaphorical 

resemblance to the natural-language concept (weight or seriousness), the Big Five/Six trait 
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of extraversion bears a resemblance of a similar kind to the natural-language concept while 

in fact having a distinguishable intension (presumably some neural attribute). Perhaps the 

simplest objection to this argument is that it is out of harmony with the actual behavior of 

personality researchers and other applied psychometricians. When psychometricians want 

to increase the reliability of a scale, they add more indicators of the "same kind"—more 

items eliciting either right or wrong answers, more items inquiring about religious proclivi­

ties. This is rather telling evidence that users of factor analysis do not treat common factors 

as common causes. It would be a rather curious restriction on the effects of the same cause 

that they must all share some namable psychological-semantic property. Consider Newton's 

striking unification of celestial and terrestrial mechanics. What in our a priori semantics 

could possibly allow us to construe the fall of an apple, the oscillation of the tides, and the 

orbits of heavenly bodies as belonging to the "same kind?" 

Perhaps this is enough to convince the reader that interpreting the factor underlying a 

set of indicators as an abstraction of the set's semantic commonality is at least as convinc­

ing as a causal interpretation. But what of the factor's relations to external variables? Can 

these said to be causal? Although there can be no doubt that an abstraction such as body size 

might be a useful predictor, can body size really be said to cause anything? The answer to 

this question seems to be yes—if transforming someone's body so that he must be assigned 

a different size factor score is a conceptually permissible manipulation. The causal claim A 

won the fight because he is bigger than B then amounts to the following: if we could have 

fixed A's factor score to a sufficiently low value—perhaps by transplanting A's mind to a 

much smaller body—then A would not have prevailed over B. Models in which other vari­

ables appear as causes of a common factor may also prove to be very useful approximations; 
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McDonald (1996) provides the example of alcohol temporarily increasing extraversion. 

In fact, if one accepts that factor analysis by itself is not a tool for the discovery of 

causes, causality only enters the picture when we consider relations with external variables. 

If we could complete a causal chain like the one depicted in Figure 11, what traits would 

we most want to insert in the place of the node labeled trait variation! An evolutionarily 

oriented psychologist might choose those traits figuring in important theoretical accounts of 

human evolution. Ashton and Lee (2001) take this line in defending their HEXACO model 

of personality variation. They have chosen a basis where three of the six axes are defined by 

behaviors of critical importance in evolutionary theories of human cooperation: Emotional­

ity (responding to feelings of kinship and solidarity), Agreeableness (initiating exchanges, 

forgiving defectors), and Honesty (never defecting first, reciprocating favors). Psycholo­

gists studying other domains of individual differences might adopt this approach. Instead 

of attempting to find a periodic table of traits, we should try to ensure that our instruments 

measure traits whose causes and consequences are worth understanding. Supplying such 

rationales may seem to assume the presence of the links in Figure 11 that we are trying to 

establish, but surely this circularity is not a vicious one. 

To summarize, factor analysis is a tool for refining the measurement of abstractive traits 

that are hypothesized to exist in advance of any data analysis. Such a trait is not a common 

cause of the indicators used to measure it, but this does not mean that the trait is not real. 

Dismissing intelligence, extraversion, liberalism, religiosity, and the like as mathematical 

fictions would decimate our causal understanding of social reality. If these traits are at all 

fictional, they are fictions of folk psychology. The adoption of psychometric methodology 

implies a commitment to the view that the insertion of traits, moods, and other intervening 

128 



variables of folk psychology between brain and behavior has proven fruitful and will con­

tinue to be necessary (MacCorquodale & Meehl, 1948). 

We now have a perhaps complete taxonomy of reasons for an observed correlation be­

tween variables X and Y: 

1. X is a cause of Y (or vice versa). 

2. X and Y are both effects of a common cause. 

3. X and Y are both causes of a collider that has been conditioned on. 

4. X and Y are both measures of an abstractive property. 

These reasons may not be mutually exclusive for a given X and Y. The last reason can never 

hold in the absence of at least one other. 

In Part 3 we resume our applications of the graphical approach, realizing now that our 

aim is to verify the adequacy of the approximation entailed by employing common factors in 

causal explanations. 

3.3 The DAG As a Source of Severe Empirical Tests in Structural Equa­

tion Modeling 

In Part 1 we looked at SEM from a certain perspective. We took some of the nodes in 

Figure 13 to be unmeasured, ruling out any chance to estimate the parameters associated 

with them. Even if these nodes were measured, the bidirectional arcs would defeat the suf­

ficient condition for the global identifiability of a linear model (Brito & Pearl, 2002). Figure 

14b does not meet the well-known necessary condition for the global identifiability of a lin­

ear model, and in any case we considered Figure 14 in a nonparametric setting. We asked the 
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following question: taking the depicted system of causal relations more or less for granted, 

what is a necessary and sufficient set of covariates for locally identifying an unbiased esti­

mate of a causal effect? We decided that a proper answer to the question cannot neglect the 

causal DAGs (generally nonlinear structural equation models) containing the putative cause 

and effect. But before arriving at that conclusion, the fact that we were undertaking SEM 

may not have been readily apparent. 

Here we consider SEM from a perspective more closely aligned with the traditional one. 

For this reason the contrast between conventional SEM practice and Pearl's graphical ap­

proach should be evident throughout. Given a causal DAG where all depicted nodes have 

been measured and global identification obtains, we place the task of estimation somewhat 

in the background and ask the following question: what assurance do we have that the causal 

model, as drawn, reflects reality to an acceptable degree of approximation? The orthodox re­

sponse to this vital question emphasizes the simultaneous analysis of all measured variables 

and global goodness-of-fit. But because this approach by itself does not foreclose certain 

logical absurdities, it should at the very least be supplemented by the approach advocated in 

this article. 

Taken at face value, the orthodox view accepts the plausibility of the model 

Q, = {barometer readings cause rain} U 

{the average age in Los Angeles is higher than three}. 

When confronted with actual measurements, Q will fit the data extremely well and escape 

falsification. The problem is that a strong correlation between certain barometer readings 
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and rain, combined with the average age in Los Angeles being well over three, tells us noth­

ing about whether barometers cause rain. We must therefore insist that the tested component 

of £1 (the average age is higher than three) bear a logical relation to what £1 claims (the cor­

relation between certain barometer readings and rain means that barometers cause rain). 

Combining the factor and causal models in one graph and then estimating all parame­

ters in one global fit is a prime example of conjoining causal claims to components that are 

essentially independent of them. A common procedure among personality researchers is to 

fit a hybrid factor-causal model and apply a rule of thumb to a scalar index of model mis­

fit such as the root mean square error of approximation (RMSEA). But in cases where the 

factor model fits extremely well (which it typically will in well-motivated applications), the 

causal model can fit poorly without the misfit being reflected in the scalar index. This is not 

a fanciful objection. McDonald and Ho (2002) reexamined 14 studies basing their conclu­

sions only on global fit indices and found that in nine of these the causal model fit poorly by 

any reasonable standard. McDonald (2010) provides a detailed empirical case study of how 

a global fit can lead to wholly erroneous conclusions. 

It seems fruitful, then, to effect a clean divorce between measurement and causation 

through Anderson and Gerbing's (1988) two-step procedure: (1) estimate and test the ade­

quacy of only the factor model, freely estimating the covariances among the factors and any 

non-factor variables, and then, if this step succeeds, (2) fit the causal model to the resulting 

covariances. Even this procedure, however, suffers from potential blurring of misfit. If there 

is a substantial local deviation of the data from what the model allows, adjustments in fitting 

other parts of the model may compensate for the discrepancy, resulting in a scatter of small 

and innocent-seeming elements in the residual covariance matrix. 
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What we therefore require is a method that permits local tests of whatever predictions 

are entailed by a causal model. Here is where Pearl's principle of d-separation becomes ap­

plicable. Recall that two variables are conditionally independent given the covariates in their 

d-separating set. Conditional independence implies a vanishing partial covariance between 

the two variables. We can thus simply list the vanishing partial covariances implied by a 

causal model and examine each one for its numerical closeness to the point prediction of 

zero (Shipley, 2000). An additional and perhaps surprising advantage of this approach is that 

it is valid for arbitrary functional forms of the causal relations and arbitrary distributions of 

the disturbances. 

To illustrate this elegant procedure, I reanalyze a dataset presented by Deary, Batty, and 

Gale (2008). Based on a sample of 3,412 males and 3,658 females, the authors conclude that 

a higher level of g (measured at age 11) is both a direct and indirect cause of more liberal 

social attitudes (measured at age 30). Figure 16 depicts their preferred model.3 

We first note that any given DAG entails many vanishing partial covariances, not all 

of which are independent of the others. Fortunately, there exists a basis set of independent 

partial covariances; if all of the partial covariances in this basis set equal zero, every partial 

covariance predicted to equal zero will in fact do so (Pearl & Verma, 1987). In this class of 

models, the basis set consists of the partial covariances C7,j.{parents 0f j^ for all i preceding j 

3Deary and colleagues allow a directed edge to connect a causally prior observed variable with one of their 
subscales measuring liberalism. Allowing such edges is problematic because they may prevent the common 
factor of the subscales from satisfying a property that psychometricians call the principle of local independence 
(Lord & Novick, 1968; McDonald, 1981). Although I believe that the common factors of a behavior domain 
must (approximately) satisfy this principle, this is perhaps debatable. To avoid discussing the merits of this is­
sue, we will retain only one of the subscales used by Deary and colleagues. Arbitrarily, we choose the subscale 
called antiracism. In the factor model, we fix the standardized loading of the subscale on its common factor to 
the square root of its reliability. 
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Figure 16: A DAG representing a causal model of the variables studied by Deary et al. 
(2008). 
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Table 12: d-separation tests of the causal model in Figure 16 

^-separable nodes rhJ {parents of;} (95% CI) p-value 
Male Female Male Female 

TUT6 - .003 (-.036, .030) -.030 (-.062, .001) i87 W~ 
T5,T6 .058 (.025,.091) -.028 (-.059,.004) .0007 .10 

Note. rtJ {parents of;} stands for the correlation between i and j after partialing out 
the parents of j . The p-values in each column can be combined by Fisher's method 
to provide an overall test of the model for males (X4 = 14.9, p < .005) and females 
(Xl = 10.1, jp<.05). 

where the two variables are not connected by a directed edge. This characterization of the 

basis set is quite intuitive. If node i is not among the parents of node j , conditioning on these 

parents shields j from all d-connecting paths to i.4 

In our own example, we proceed by finding each pair {Tl:Tj} not connected by a di­

rected edge. There are three such pairs: {T\, T2}, {T\, T&}, and {75, Tf,}. Since the first of 

these pairs consists of definitionally orthogonal common factors, there are only two point 

predictions: given appropriate sets of covariates, the partial covariances of {T\, T(,} and 

{Ts,T(,} are equal to zero. The substantive import of these predictions is that neither parental 

SES nor attained SES at age 30 has a direct effect on racial tolerance. These are fairly re­

markable claims. One might have thought that moving up or down the occupational hierar­

chy might at least affect exposure to individuals of different races, leading in turn to changes 

in antiracism. 
4 An important caveat is that this approach exhausts the testable implications of a given DAG if the model 

is exogenous—that is, if the only variables connected by bidirectional arcs are those whose causes are not 
specified within the model. Endogenous models may imply point predictions that do not take the form of 
vanishing partial covariances. Critically, it is not known whether there is a general method for finding a basis 
set implying all of the point predictions entailed by an endogenous model Although McDonald (2002, 2004) 
provides methods for endogenous models, these do not seem straightforward to apply This is an area requinng 
further research In the meantime the program Commentator does supply all point predictions entailed by an 
endogenous model, regardless of whether they can be reduced to a basis set 
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Table 12 presents the results of the ^-separation tests. The confidence intervals are rather 

wide, which shows that 3,000 participants does not approach the point of diminishing returns 

in the graphical approach to SEM. Despite the ambiguities we try to interpret the results that 

we have. 

Since the overall model is rejected in both sexes, we are forced to a judgment of whether 

the numerical discrepancies are still small enough to earn the model "money in the bank." 

The Ts-T(, partial correlation in males is the most discrepant. The sign of this partial correla­

tion in females has the opposite sign, however, suggesting that the source of the discrepancy 

is small or unsystematic. The Ti-T(, partial correlations, particularly in males, do seem to be 

vanishing. 

The essential claim encoded in Figure 16 is that social status, at all parts of the lifes­

pan up till age 30, has no direct effect on antiracism. The J-separation tests provide much 

stronger support for this claim than most theory-testing methodologies in observational be­

havioral science. First, the conclusions do not depend on assumptions regarding the func­

tional forms of the causal relations or the distributions of the disturbances. Second, the sup­

port for the theoretical claims draws on the closeness of observations to risky point predic­

tions (Meehl, 1990). Third, the locality of the testing means that we can diagnose where 

the model has gone astray in cases where the data miss the predictions. Suppose that in 

our judgment the partial correlation between T5 and T(, in males is too large to support the 

model. We must then somehow ensure that these two nodes are d-connected even after con­

ditioning on {T2, T3, T4}. Note that insertion of the directed edge 7s —> T(, will also d-connect 

T\ and T&. If we are satisfied that these latter two nodes are truly J-separated by {T2, T3, T4}, 

then instead of T5 —> T(, we might prefer to insert the reversed edge T(, —> T$, the bidirec-
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Table 13: Parameter estimates of the causal model in Figure 16 

Parameter Unstandardized (SE) Standardized Deary et al. (2008) 
Male Female Male Female Male Female 

p4,l 
P4,2 

p4,3 

Ps,i 
p5,2 

P5,3 
P5,4 

P6,2 
p6,3 
P6.4 

Vl,l 
¥2,2 

¥3,3 

¥4,4 

¥5,5 

¥6,6 

¥l,2 

¥l,3 

.163 (.019) 

.518 (.018) 

.032 (.020) 

.136(.016) 

.239 (.017) 

.049 (.017) 

.260 (.014) 

.174 (.017) 

.076 (.017) 

.105 (.015) 
1.184 (.029) 
1.290 (.031) 
.960 (.023) 
1.268 (.031) 
.908 (.022) 
.997 (.024) 
.400 (.022) 
.126 (.017) 

.203 (.017) 

.504(.018) 

.128(.024) 

.075 (.015) 

.212 (.017) 

-.006 (.020) 
.253 (.014) 

.174(.015) 

.174(.018) 

.092 (.012) 

1.206 (.028) 
1.110 (.026) 

.565(.013) 
1.158(.027) 
.834 (.019) 
.674 0016) 
.396 (.020) 
.092 (.013) 

.14 

.45 

.02 

.13 

.24 

.04 

.30 

.19 

.07 

.13 
1 
1 
1 

.78 

.86 

.95 

.32 

.12 

.18 

.42 

.08 

.08 

.21 
-.00 
.31 
.21 
.15 
.13 
1 
1 
1 

.78 

.88 

.92 

.34 

.11 

.14 

.42 

.13 

.23 

.31 

.18 

.09 
1 
1 

.80 

.83 

.38 

.18 

.42 

.08 

.19 

.31 

.18 

.09 
1 
1 

.79 

.86 

.40 

Note, fitj stands for the direct causal effect of 7) on 7}. \|/,j stands for the residual 
covariance of variables 7} and 7). The estimates of the underlying factor model 
have been omitted for brevity. 

tional arc T5 <-»• T$, or both. That is, in males at least, if there is no confounding of T$ and T(„ 

then SES at age 30 does not directly affect antiracism but rather the other way around. Upon 

reflection this hypothesis is perhaps a natural one; nowadays being a frank racist may hurt 

one's career prospects. 

Although the absence of directed edges from social status to antiracism is no doubt an 

interesting finding, the primary issue in this study is the presence of a directed edge from g 

to antiracism. Table 13 gives the maximum-likelihood estimates of the causal parameters 
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in the linear model. The RMSEA in males is .030; in females, .016. Among the variables 

prior to antiracism, g is estimated to have the largest standardized direct effect (p£ 2 « .20). 

But now we face our key question: what has our graphical analysis revealed so far about 

the trustworthiness of this estimate? If the model survives the risk posed by its predicted 

vanishing partial covariances, how much should our ensuing confidence extend to parts of 

the model other than the J-separable nodes? Pearl (2004) provides a general discussion of 

the relationship between the robustness of important effect estimates and the validity of 

assumptions regarding absent edges. We can work out our own special case to bring out the 

main ideas. 

Readers familiar with the notion of covanance equivalence will know that for any given 

causal model there may exist several distinct models that produce exactly the same fit to the 

covariance matrix. A trivial example is the chain X —> Y —> Z, which is covariance equiva­

lent to the reversed chain Z —*• Y —> X and the common-cause model X +— Y —> Z. Each of 

these three models implies the same vanishing partial covariance: OXZY- In a certain class 

of models, it is generally true that two causal models are covariance equivalent if and only 

if they entail the same set of vanishing partial covariances.5 This graphical perspective is 

valuable because it provides an intuitive means of ascertaining whether a deprecated model 

may be covariance equivalent to the preferred one. If two nodes that are d-separable in the 

preferred model are no longer J-separable after some alteration, then the new model is not 

covariance equivalent to the preferred model. Pearl (2009) provides an ingenious elaboration 

of this insight. 

5 When the class of competitor models includes endogenous models, entailing the same vanishing partial 
covariances is only a necessary condition because endogenous models may impose constraints that do not take 
the form of vanishing partial covariances. 
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Temporal considerations weigh against most of the edge reversals otherwise permitted in 

Figure 16. The assumption that is most critical to the validity of p6,2 is thus the absence of a 

bidirectional arc between T2 and T(,. If interchanging T2 —> T(, and T2 <-> T& (or simply adding 

T2 <-> T(,) preserves all vanishing partial covariances, we can place no confidence in our ob­

tained p6,2; the relation between g and antiracism may instead be attributable in its entirety 

to confounding. The J-separability of {T\, T }̂ and {7s, T^}, however, forbids the presence 

of T2 <-> Tf,. If there is such a bidirectional arc, then conditioning on T2 opens the colliding 

path T\ <— C\t2 — C2,6 —* T(y, which cannot be blocked by any measured variable. In fact, if 

there were a confounder of T2 and T(, inducing a correlation of .20 between these two vari­

ables, conditioning on T2 would induce a correlation of roughly —.07 between T\ and T^. In 

summary, T2 —* T(, and T2 <-> T(, do not predict the same vanishing partial covariances, and 

thus the near-zero values of the partial covariances predicted to vanish specifically under the 

direct effect T2 —> 76 provide evidence against confounding of the form T2 <-» T^. 

A similar argument shows that our p6,2 is robust to bidirectional arcs strongly justified 

by prior knowledge but which have been omitted. In addition to directly affecting education 

and SES at age 30, parental SES is almost certainly confounded with these two offspring 

characteristics. At the very least there must be personality traits, independent of mental abil­

ities, that influence attainment and are themselves genetically influenced (Figure 13). This 

would imply that we cannot trust either P41 and p5 \; these data by themselves do not allow 

us to say what the result of swapping households might have been on the attainments of this 

cohort. However, because the insertion of T\ «-» T4 and T\ <-> T5 does not create any new 

J-connecting paths between g and antiracism, these local breakdowns of identification do 

not affect our estimate of the T2 —> T(, coefficient. After carrying out the J-separation tests 
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bearing on the assumption that there is no Tz <-> T(, arc, we can use regression to estimate the 

coefficient attached to the directed edge without bothering with the portions of the model 

that become unidentified when embedded in a more realistic supergraph. 

Our conclusion is as follows. If we can somehow implement a manipulation to increase 

a child's level of g by age 11, it appears likely that the child will grow up to become a more 

racially tolerant adult. This extensive example has illustrated the distinctive features of the 

graphical approach to SEM, in particular highlighting how the testable implications of a 

causal model bear on specific substantive conclusions. 

Some commentators have argued that any interesting high-level system will resist 

the analysis sketched above because of the corresponding DAG's completeness (Meehl & 

Waller, 2002; Freedman, 2004; Greenland, 2010); in such a graph, there are no d-separable 

pairs of nodes. This amounts roughly to the claim that, in any complex system, either every­

thing affects everything or there are confounders that will never be identified. The antiracism 

example, however, suggests that the assumption of ubiquitous completeness may in fact be 

overly pessimistic. Perhaps further research will uncover more outcomes that are largely 

immune from the allegedly all-powerful contagion of SES. 

Furthermore, in Part 4 I argue that there is at least one kind of causal system—the poly­

genic determination of a phenotype—where our prior knowledge is sufficient to dispel the 

intractability envisioned by skeptics of the graphical approach. Quantitative or biometrical 

genetics is the branch of population genetics concerned with the genetics of continuously 

varying traits (Lynch & Walsh, 1998; Burger, 2000). Quantitative genetics has long been an 

integral part of personality research. It turns out that population genetics as a whole may be 

the basal theory needed to initiate the virtuous circle of "causal knowledge in, causal knowl-

139 



edge out." We now turn to the relevant aspects of this theory. 

3.4 Concepts of Genetics 

A genome-wide association study has an extremely simple design: a regression of 

the effect on the putative cause and a number of identically treated covariates. As we will 

shortly see, however, a replicable gene-trait association is nevertheless very strong evidence 

for gene-trait causation. As this degree of certainty is difficult to obtain in observational 

studies of comparable simplicity, gene hunting should be an attractive enterprise to personal­

ity researchers seeking a secure foothold for the traversal of the explanatory chain in Figure 

11. 

We now explore the insights that graphical reasoning brings to the search for specific 

DNA polymorphisms affecting ability variation. 

3.4.1 Foundations of Heritability 

Many scientists believe that the evidence for the heritability of personality traits, pro­

vided by studies of twins and other kinships, is strong enough to justify studies aiming to 

find specific casual DNA variants (Bouchard & McGue, 2003). Here we elucidate the mean­

ing of heritability from first principles, relying heavily on concepts that reappear in the later 

discussion of practical issues arising in gene-trait association studies. 

3.4.2 Ancestral Confounding 

Suppose that we have a large number of loci in the genome associated with a trait of 

interest. Let /?,• be the frequency of the allele to be counted at the z'th such locus. Fisher 1999 
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expressed the additive genetic variance of the trait as 

Var(A) = J^2p,-(1 - p,-)fl,-a,-, (6) 

where a; and a, represent, respectively, the average excess and average effect of allelic sub­

stitution at the rth locus. The ratio of additive genetic variance to the total trait variance, 

h = Va7(7)' ( } 

is now known as the heritability in the narrow sense. 

Fisher's manner of developing the concept of heritability, in particular his introduc­

tion of the variables that he called the "average excess" and "average effect," has struck 

some commentators as peculiar (Price, 1972; Falconer, 1985). It is my own belief, however, 

that Fisher's decision in The Genetical Theory of Natural Selection to base his discussion 

of heritability in terms of these variables was motivated in part by his recognition of the 

potential for gene-trait confounding. That is, the fact that different genotypes often corre­

spond to different phenotypic values does not by itself show that the genotypic differences 

cause the phenotypic differences. It seems that this nicety was of great importance to Fisher. 

Therefore, in my recapitulation of the heritability concept, I emphasize how the distinction 

between confounding and causation enters into Fisher's two averages. 

Geneticists refer to the confounding of genes and traits as population structure or strat­

ification. A less formal term is the "chopstick gene syndrome": a gene showing an associa­

tion with chopstick skill in a racially mixed sample is almost certainly not a gene "for" chop-

stick skill but rather a gene for black hair or yellow skin—or perhaps a gene where one allele 
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has drifted by chance to high frequency in East Asians. The apocryphal story of the geneti­

cist misled by the chopstick gene illustrates how geographical subdivision can lead to gene-

trait confounding. At some point in our evolutionary past, some humans split off from the 

rest of the African diaspora and became the ancestors of East Asians. Subsequently, natural 

selection and random genetic drift resulted in the divergence of allele frequencies among 

the branches of the diaspora. More recently, chopsticks were invented in China and diffused 

throughout what later became the Confucian belt. Thus, the ancestors of East Asians passed 

on both their genes and culture to their descendants, resulting in the confounding of geno­

types and chopstick skill in mixed samples of East Asians and other peoples. Another con­

sequence of geographical subdivision is substantial LD in the global human population; if a 

study participant has one allele that is at least somewhat associated with being East Asian, 

then it becomes more likely that the participant carries other such alleles. 

Another mechanism of gene-trait confounding is assortative mating, the understanding 

of which is aided by a combination of genetic and graphical intuition. The following thought 

experiment closely follows a simulation study by Eaves (1979). Although the experiment 

does not accurately reflect how humans mate, it does reveal how a marital correlation arising 

from assortative mating falls under Pearl's addition to the correlational taxonomy. Suppose 

that upon reaching a given age, all members of a cohort form random opposite-sex pairings. 

If the man and woman within a random couple "hit it off," they go on to marry. Couples 

who are less fortunate break up, and the unmarried individuals may go through several more 

rounds of random pairing. Now suppose that after the first round we form a data matrix 

where each row corresponds to a randomly paired man and woman. The columns of this 

matrix record the trait values of each individual and also a binary variable indicating whether 
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the two married at the end of the round. By stipulation, when considering all rows of this 

matrix, the correlation in trait value between male and female partners is not significantly 

different from zero. However, if we only consider those rows where the marriage indicator 

assumes the value one, any traits affecting the probability of marriage become correlated. 

That is, marriage is a collider. 

This insight into the nature of assortative mating allows us to deduce that the trait-

affecting genotypes of mother and father are J-connected because of conditioning on their 

common effect (mating). That is, those gametes with a trait-enhancing allele at one locus are 

more likely to be paired with gametes containing the enhancing alleles at other loci. Since 

the paternal and maternal contributions to a recombinant gamete will both tend to contain al­

leles with effects on the trait of the same sign, the coupling of same-sign alleles holds within 

gametes as well as between them (Crow & Kimura, 1970). Another way to describe the sit­

uation is to say that mating patterns among the ancestors of the population confound the 

genotypes at different loci affecting the same trait. 

We now turn to the confounding property of natural selection. We can think of fitness 

(survival and reproduction) as a node with a multitude of directed edges converging on it 

from various phenotypes (Figure 17). Natural selection conditions on this node when de­

ciding the ancestry (in the literal sense) of the offspring generation, and therefore all nodes 

ancestral (in the graphical sense) to fitness become J-connected. This theoretical finding 

implies that all functional sites in the genome are potentially in LD. In particular, if two loci 

affect a trait of which higher values are favored by selection, the enhancing allele at one 

locus will be associated with the depressing allele at the other. 
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Figure 17: A DAG representing the causal chain from genes to fitness. When considering 
selection bias in gene-trait association studies, we can simply relabel the bottom node as 
appearance in the study. 
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Average Excess and Average Effect Can we isolate, either conceptually or experi­

mentally, the causal effects of genetic differences at a single locus from the kinds of con­

founding mechanisms just described? Fisher's concepts of "average excess" and "average 

effect" appear to answer precisely this question. In his own words, 

Let us now consider the manner in which any quantitative individual measure­

ment, such as human stature, may depend upon the individual genetic constitu­

tion. We may imagine, in respect of any pair of alternative [alleles], the popula­

tion divided into two portions, each comprising one homozygous type together 

with half of the heterozygotes, which must be divided equally between the two 

portions. The difference in average stature between these two groups may then 

be termed the average excess (in stature) associated with the gene substitution 

in question. This difference need not be wholly due to the single gene, by which 

the groups are distinguished, but possibly also to other genes statistically associ­

ated with it, and having similar or opposite effects. (Fisher, 1999, p. 30) 

Fisher provided two definitions of the average effect. We first consider the definition 

that, although leading to great subtleties if pursued further, is more suggestive of the average 

effect's causal meaning: 

[I]t is also necessary to give a statistical definition of a second quantity, which 

may be easily confused with that just defined, and may often have a nearly equal 

value, yet which must be distinguished from it in an accurate argument; namely 

the average effect produced in the population as genetically constituted, by the 

substitution of the one [allele] for the other. By whatever rules . . . the frequency 
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of different gene combinations, may be governed, the substitution of a small 

proportion of the [alleles] of one kind by the [alleles] of another will produce 

a definite proportional effect upon the average stature. The amount of the dif­

ference produced, on the average, in the total stature of the population, for each 

such gene substitution, may be termed the average effect of such substitution, in 

contra-distinction to the average excess as defined above. (Fisher, 1999, p. 31) 

The basic notion is that a zygote is chosen at random from all those inheriting one allele (say 

fA\) from one parent (say the father). A\ allele is then changed to %%, as if by mutation. The 

expected change in the phenotype Y at the time of measurement is then equal to the aver­

age effect. Thus, whereas all J-connecting paths between a genetic locus and the phenotype 

contribute to the average excess, a directed edge from gene to phenotype is necessary for 

a nonzero average effect at the focal locus. In Pearl's notation, then, the average excess is 

E[(Y\see(J%2,)) — (Y \see(J%i))] whereas the average effect is E[Y \do(J%2),see(J%i)]. Any 

chopstick gene will show a positive average excess in the combined mixture of subpopula-

tions but no average effect. All else being equal, under assortative mating the average excess 

will exceed the average effect; carriers of the two different alleles will tend to carry the al­

leles of like effect at other loci affecting the trait. Natural selection, on the other hand, will 

tend to reduce the average excess below the average effect. 

The second definition of the average effect considers a multiple regression of the trait 

on all loci in the genome. The average effect of allelic substitution at the focal locus is equal 

to the partial regression coefficient of how many alleles, of the type to be counted (say .%), 

are carried by the individual (Fisher, 1941). The two definitions of the average effect agree 

only in special circumstances (Falconer, 1985). Because Fisher does not even mention the 
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regression definition in the first edition of The Genetical Theory, it seems that he thought the 

causal definition to be more fundamental, and this is how we will treat it as well. The two 

definitions of the average effect coincide if gene action is purely additive. Both population-

genetic theory and the available data suggest that for many traits pure additivity should be an 

acceptable approximation (Hill et al., 2008; Crow, 2010), and therefore the two definitions 

of the average effect should agree fairly well whenever a trait is determined by many loci of 

small effect. 

Are the average excess and average effect ever equal? It can be shown that after many 

generations of random mating, in a broad sense that excludes not only assortative mating 

but natural selection and population structure, all LD and deviations from Hardy-Weinberg 

equilibrium will vanish (Crow & Kimura, 1970). Let us also assume that there are no con-

founders that affect the trait through environmental mediators. Then the focal locus is d-

separated from all other causes of the trait, leaving a directed edge from the focal locus to 

the phenotype as the only means by which these two nodes are connected. That is, since 

the two population "portions, each comprising one homozygous type together with half of 

the heterozygotes," do not differ in allele frequencies at any other loci, the difference in Y 

between them is attributable wholly to the average effect. The equivalence of the average 

excess and average effect under random mating is analogous to the equivalence of an ob­

served difference and a causal effect under the randomization of treatment assignment. One 

naturally wonders about the degree to which Fisher's thoughts on heritability and his work 

on experimental design stimulated each other. 
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In any event Equations (6) and (7) show that Fisher did indeed conceive of heritability 

as a causal concept.6 Any genetic locus showing a positive average excess in the absence of 

an average effect contributes nothing to the heritability of the trait. Incidentally, the causal 

interpretation of heritability provides an intriguing perspective on Fisher's Fundamental The­

orem of Natural Selection. It is of course the central dogma of evolutionary biology that her­

itable variation in fitness leads to an increase in adaptation. The genius of Fisher's theorem 

is that it captures this dogma in precise quantitative form: the increase in the mean fitness of 

the population ascribable to the effect of natural selection on allele frequencies is equal to 

the additive genetic variance in fitness Edwards (1994). Note how the distinction between 

association and causation affects the interpretation of Equation (6) as an expression for the 

change in the mean fitness. If a polymorphic locus is associated with fitness for any reason 

whatsoever—if its average excess is positive—one of its segregating alleles will increase in 

frequency. But this increase in allele frequency will only contribute to the adaptation of the 

species if substituting one allele for the other exerts a causal effect on fitness. 

The discovery of the Fundamental Theorem was yet another blow struck by Fisher 

against his archenemy Pearson, who believed it was possible both to discard the notion of 

causality from science and to study evolution mathematically. If causality appears in the for­

mulation of a phenomenon as fundamental as evolution by natural selection, then it surely 

cannot be a dispensable "fetish amidst the inscrutable arcana of modern science" (Pearson, 

1911, p. xii).7 

6The question arises as to why Fisher, a vigorous advocate of randomized experiments in agriculture and 
medicine, would commit himself to such strong causal claims regarding the heritability of height, fertility, 
economic productivity, and so forth on the basis of purely observational data. I myself do not believe that 
Fisher was being inconsistent here, but arguing this position is beyond the scope of this article. 

7 A caveat is in order. Under the regression definition of the average effect, the Fundamental Theorem 
of Natural Selection is a very general result that holds regardless of nonlinearities attributable to dominance, 
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3.4.3 Causal Inference in Gene-Trait Association Studies 

The correlations between the trait values of relatives are functions of the narrow-sense 

heritability and other variance components, thus enabling the estimation of these parameters. 

The substantial heritabilities estimated for personality traits seem to justify attempts to map 

the specific DNA variants affecting them. The identification of these variants should lead 

to fundamental advances in our understanding of proximate mechanisms and the ultimate 

evolutionary forces shaping human personality (Figure 11). But recall the litany of potential 

confounding mechanisms that may result in a divergence of the average excess (which we 

can directly measure) from the average effect (which we want to know). 

Given the number and complexity of potential confounding mechanisms, ruling out 

confounding at the level of individual genetic loci may seem to pose insurmountable dif­

ficulties. The litany of confounding mechanisms, however, is actually encouraging for the 

following reason. Since our knowledge of the mechanisms behind confounding is typically 

conjectural at best, in many cases we cannot say much about them. In contrast, the detail in 

which we can describe the population-genetic mechanisms behind confounding in gene-trait 

association studies reveals the depth of our knowledge in this domain. Exploiting our prior 

knowledge to characterize the relevant DAG, we can argue convincingly that all possible 

sources of confounding are controllable. 

epistasis, gene-environment interaction, and so on. But before embracing the causal interpretation of the Fun­
damental Theorem, one would like to know how well the regression definition of the average effect isolates the 
causal effect of allelic substitution in a nonlinear setting. Falconer 1985 showed that for a single locus Fisher's 
"average causal effect" is proportional to the regression-based average effect, the constant factor depending on 
the extent of nonrandom mating, but I do not know whether such a simple and pleasing result holds in more 
complicated situations where nonlinearity and nonrandom mating cannot be described with just a few parame­
ters. I suspect, however, that such a result does indeed hold. Finding such a result would be important because 
the Fundamental Theorem is intended to be an exact law of nature rather than a useful empirical approxima­
tion. 
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We can always rule out confounding as a source of gene-trait association in a within-

family design (Laird & Lange, 2006). There exists a positive within-family correlation be­

tween variables X and Y if, across sibling pairs reared together, the sibling with the higher 

value of X also tends to have a higher value of F. Personality researchers have long recog­

nized that a within-family correlation presents stronger evidence for some causal relation 

than a correlation persisting after conditioning on familial background factors (Jensen & 

Sinha, 1993; Reiss et al., 1994; Turkheimer & Waldron, 2000; Beauchamp et al., 2011). 

We can now see that Pearl's distinction between seeing and doing provides a rationale for 

this methodological principle. Whereas two unrelated individuals coincidentally sharing 

the same value of some familial variable may have come to that value for different reasons, 

siblings reared in the same home must have the same value for the same reasons. That is, 

within a family all background factors subsumed under "common" or "shared" environment 

have been fixed to some values, not merely observed to take on those values. It follows that 

any significant within-family correlation between X and Y cannot be the result of marginal 

or conditional confounding by factors that vary across families but not within them. In gene-

trait association studies, a stronger claim is justified. When the putative causal variable is 

whether a sibling inherits !A\ or .% from a heterozygous parent, Mendel's laws tell us that 

treatment assignment is literally at random. Since it is nature that performs this randomized 

experiment, we do not face the typical problem of deciding whether a human implemen­

tation of do{x) is really do(x,y,z)- Given a reliable association between the within-family 

inheritance of a DNA marker and the phenotype, linkage between the marker and an authen­

tic causal variant is the only viable explanation. The recruitment of informative pedigrees 

can be quite difficult, however, and it is therefore desirable to seek other methods. 
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The fixing of genotype at fertilization does greatly restrict the class of alternative expla­

nations for a gene-trait association. Obviously, we can rule out reverse causation; a manipu­

lation of a person's phenotype will not induce mutation. More generally we can rule out any 

variable that follows fertilization in time. Given the complexity of the situation, however, 

this temporal restriction may initially fail to impress us. It is typically the absence of certain 

edges that enables effect identification, and in this case we have thousands of genetic loci 

that are each a sink for a dense network of evolutionary and historical forces. Oddly enough, 

it turns out that this case is also conducive to effect identification. Recall that Fisher's sec­

ond definition of the average effect is the partial regression coefficient of allele count in the 

multiple regression of the trait on all loci in the genome. Recall also the theorem stated in 

Part 1: a partial regression coefficient gives an unbiased estimate of a causal effect in a linear 

system if the covariates d-separate all non-directed paths between putative cause and effect 

while including no descendant of the effect. Implicit in Fisher's definition, then, is a claim 

regarding the graphical properties of gene-trait confounders. 

If the ancestral confounding consists of assortative mating or natural selection, then the 

average excess is contaminated by confounding because of LD between the focal locus and 

other loci. By including all other loci in the regression, we are intercepting each and every 

non-directed path to the phenotype through these non-focal loci, thereby justifying the sta­

tistically defined average effect as a causal effect. However, if the ancestral confounding 

arises from geographical subdivision or some other form of population structure, there may 

be non-directed paths mediated by environmental variables that have not been measured. A 

rather special feature of population structure allows us to overcome this difficulty: the en­

tire genome is subject to the selective and stochastic divergence of allele frequencies among 
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subpopulations after the splintering of their ancestral population. Thus, as the number of loci 

entering the regression becomes very large, they become a perfect proxy for the subpopu-

lation (or location in continuous ancestral space) to which a study participant belongs. By 

partialing out all loci in the genome, then, we are in effect partialing out the ancestral events 

confounding the gene and the trait. 

From our discussion of population structure, assortative mating, and natural selection, 

we generalize as follows: Every possible confounder of gene and trait has the property of 

being mediated by another genetic locus or sending directed paths to thousands of genetic 

loci. This property allows us to control gene-trait confounding by conditioning on all other 

loci in the genome. These statements are not at all rigorous, and examples could be contrived 

to defeat them. Nevertheless the examples of gene-trait confounding that we have examined 

suggest that the principle is quite robust. When combined judiciously with within-family 

designs, studies of nominally unrelated individuals controlling for genome-wide background 

should be a reliable tool for pinpointing the causal effects of genetic differences. 

Since the number of independently segregating regions of the genome will usually ex­

ceed the sample size, some kind of proxy for the entire genome is typically employed. Suc­

cessful tools for this purpose have so far included the principal components of the geno­

type matrix (Price et al., 2006; McVean, 2009) and computational simplifications of treating 

all genotyped markers as a random effect (Kang et al., 2010). As sample sizes continue to 

increase and the transition to whole-genome sequencing accelerates, the ideal of actually 

conditioning on all loci in the genome will be ever more closely approached. 

It is remarkable that observational research employing so simple a design—regression 

of the effect on the putative cause and a number of undifferentiated covariates—can produce 
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such trustworthy causal inferences in principle. The addendum is necessary because of the 

problems introduced by selection bias, which occurs whenever a trait being studied is itself a 

cause of appearance in the study. Since an individual genetic variant is likely to have a very 

small effect, extremely large samples are required to detect it (Manolio et al., 2009). Gene 

hunters may have to sacrifice methodological perfectionism to attain the necessary scale. 

"Personal genomics" studies, drawing upon large all-volunteer samples, have reported as­

sociations of genetic variants with hair morphology, freckling, asparagus anosmia, photic 

sneeze reflex, and Parkinson's disease (Eriksson et al., 2010; Do et al., 2011). This approach 

will soon be extended to encompass whole-genome sequencing of all-volunteer samples ex­

ceeding 100,000 in size (Lunshof et al., 2010), and the not-too-distant future may bring even 

greater orders of magnitude. We can see from Figure 17, however, that the effect of selec­

tion bias on the divergence between the average excess and average effect is qualitatively 

the same as that of natural selection.8 If we imagine that all individuals not volunteering 

for a given study subsequently perish or fail to reproduce, then the analogy to natural selec­

tion is exact. The quantitative effect of selection bias on LD will typically be much stronger 

than that of natural selection for several reasons: (1) personality traits such as intelligence, 

openness, and religiosity will have much stronger effects on study participation than on fit­

ness itself; (2) recombination has no opportunity to reduce this source of LD; and (3) any 

environmental effect on the trait will be negatively correlated with the number of enhanc-

8This device of treating appearance in a study as a node with edges connecting it to the variables being 
studied can be greatly generalized to address all problems of missing data (Meredith, 1993; Schafer & Graham, 
2002; Little & Rubin, 2002). Some researchers may find the judgment of whether one variable causes another 
to be more natural than consideration of the conditional probabilities arising in the potential-outcome frame­
work; in any case the two approaches are mathematically equivalent. See Daniel, Kenward, Cousens, and De 
Stavola (2011) and Barenboim and Pearl (2011) for discussion. 
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ing alleles at a trait-affecting locus. Consequently, there is reduced power to detect loci with 

true effects, an underestimation of the average effect at any detected locus, and a surfeit of 

false-positive loci affecting other traits that are causes of study participation. 

Because of the J-connections between trait-affecting loci and environmental distur­

bances, all other loci in the genome do not constitute an adequate J-separating set in the 

presence of selection bias. It might seem from Figure 17 that we can control selection bias 

by including all relevant traits as covariates. Unlike the genes, however, the traits may be 

causally ordered. If there are colliders and mediators among the traits in the covariate set, 

then conditioning on these traits invites the problems detailed at length in Part 1. In fact, 

the lack of a causal order among different loci in the genome is what makes the genomic 

background such an effective shield against confounding, and we might fairly say that it is 

this graphical property that gives gene-trait association studies of unrelated individuals their 

special character with respect to the warrant of causal inferences. 

Nevertheless the measurement of those traits likely to affect appearance in a gene-trait 

association study appears to be a desirable methodological safeguard. Since selection bias 

may distort the factorial structure of personality measurements (Meredith, 1993), extra care 

must be taken to ensure their reliability. If a DNA marker shows an association with these 

traits, investigators will at least be alerted to the possibility that an additional association 

with some focal trait may be the result of an unblocked collision at study participation. As 

mentioned, personality traits are certain to be among the most important causes of volun­

teering. If the association with the focal trait is the only one remaining after conditioning on 

the traits likely to affect study appearance, the investigators may tentatively hypothesize that 

the association reflects a genuine causal effect on the focal trait. Any firmer conclusion must 
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await replication, at perhaps a less stringent significance threshold, in a study where personal 

characteristics have a negligible impact on participation. 

3.5 Conclusion 

It is a testament to Fisher's intuition that he was able to do so much with the concepts 

of association and causation at a time when the distinction between was poorly understood 

and in fact scorned by the leading intellects of the day. Indeed, his Fundamental Theorem of 

Natural Selection was the first (and, so far, the only known) law of nature explicitly depend­

ing on a distinction between association and causation. Wright's diagrammatic approach to 

cause and effect serves as a convenient conceptual bridge toward Pearl's graphical formal­

ization of causality, which has greatly extended the innovations in causal reasoning devel­

oped by both of the population-genetic pioneers. 

The fruitfulness of Pearl's graphical theory when applied to the problems discussed in 

this article bear out its utility to personality psychology. Perhaps the most surprising instance 

of the theory's fruitfulness concerns the role of colliders. Although obscure before Pearl's 

seminal work, this role turns out to be obvious in retrospect and a great aid to the under­

standing of many seemingly unrelated problems. This article has surely only scratched the 

surface of the ramifications following from our recognition of colliders. 

The absence of a formal vehicle for causal notions, however, cannot be a full explana­

tion for why the debates over the causes of personality have been so fractious. We have em­

ployed the trait of general intelligence (g) in many of our examples, and as a result we have 

seen that there must be few important aspect of human affairs falling outside its surmised 

influence. Status attainment, health, mortality, mating preferences, even beliefs regarding 
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how society should be organized—all plausibly affected by g (and perhaps other personality 

traits as well). It is little wonder then that the questions regarding the causes of individual 

differences have attracted so much controversy. Some have supposed that if these causes can 

be traced to environmental sources, we should easily be able to manipulate human person­

ality through appropriate educational or social interventions. In contrast, "hereditarianism" 

has been condemned as "damaging .. . and .. . malicious ... for it shatters hope that science 

can improve the human condition" (Glymour, 1997, p. 278). Such thinking, however, may be 

premature. Given continuing advances in reproductive technology, it is not at all clear that a 

strong genetic influence on intelligence is incompatible with its manipulability. The implica­

tion for researchers is that we should formulate and test causal theories without prejudging 

their consequences for how we might distribute the gift of rationality more equitably than 

chance and nature have seen fit to do. 

To the extent that manipulating the genetic causes of personality is discussed at all, the 

possibility is typically seen as being ethically problematic (Goldstein, 201 la). This reveals 

a rather curious asymmetry, since manipulating environmental causes of personality rarely 

provokes any concern. By pointing out this one-sidedness, I do not mean to imply that the 

deliberate molding of personality raises no ethical issues. But recognizing a democracy of 

causes must unavoidably change the entire tone of the coming discussion. 

These extra-scientific concerns remind us that we value causal knowledge for its lever­

age in manipulating the world to suit our own purposes. Thus, with respect to manipulabil­

ity, whether "hereditarianism" is true is in fact a secondary issue. More important is whether 

causality is true. And this is the present article's central message: causality is true. 
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General Conclusion 

I now briefly discuss what has been learned in the three papers regarding the issues 

raised in the General Introduction and the next steps in the overall research program. 

The first paper described a genome-wide association studies of over 100 physical and 

behavioral phenotypes failing to find any loci associated with the major personality traits. 

This result is consistent with the genetic architecture of a typical personality trait consisting 

of many loci of small effect—a conclusion also supported by several reports that have been 

recently published or are still in press (Davis et al., 2010; de Moor et al., 2011; Davies et al., 

2011). I offer the hypothesis that since stabilizing selection tends to eliminate variants of 

large effect, we will tend to observe such variants contributing substantially to the variability 

of a quantitative trait only in unusual circumstances (e.g., a selection pressure that is large 

relative to the initial genetic variation). I state this hypothesis rather informally, and it may 

be worthwhile to flesh it out in explicit mathematical form in order to clarify the meanings 

of terms like "large." 

My argument that the typical genetic architecture of a quantitative trait consists of many 

"infinitesimal" loci commits to one side of an ongoing debate regarding the sources of the 

"missing heritability" that genome-wide association studies have not yet accounted for. The 

other side, inspired by laboratory studies of model organisms and theoretical arguments 

regarding "synthetic" associations, emphasizes the possibility that a given trait may be af­

fected by relatively few loci of large effect. In the Discussion of the first paper, I summarize 

the reasons why the available empirical evidence is more consistent with the infinitesimal 

hypothesis than with the "large effect" hypotheses. However, a position in this debate has 
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consequences for how to best advance this field only in the short term. With respect to the 

long term, I agree with the closing sentence of Goldstein's (201 lb) reply to the critiques of 

his arguments for synthetic associations: "Sequencing is and should be the future of discov­

ery genetics" (p. 3). A combination of sequencing, cross-ethnic comparisons, and functional 

studies should do much to resolve the current uncertainties regarding the genetic architec­

tures of quantitative traits. 

Fully exploiting the available and developing technology for resolving the genetic archi­

tecture of a given personality trait will require sample sizes much larger than those typically 

employed in behavioral research. I am currently involved in a number of discussions and 

active collaborations toward this end and expect that research in this area will only continue 

to grow. 

The second paper presented evidence supporting the partition of RT into several process­

ing stages, only one of which is correlated with IQ. This central "response selection" stage 

processes its inputs in serial fashion and contains a stochastic accumulation of evidence to­

ward one of a few discrete alternatives. One potential criticism of our RT studies is that the 

unreplicated findings in our small and unrepresentative sample do not adequately support 

our strong claims regarding our detailed mechanistic model (Tversky & Kahneman, 1971; 

Ioannidis, 2005). This is a just criticism, and thus I emphasize the need to replicate the key 

findings in larger and more representative samples. Furthermore, we should examine the 

effects of prolonged practice and attempt to rule out reverse causation and trivial confound­

ing as alternative explanations, employing the Pearlian logic described in the third paper to 

inform specific study designs. After replication of the basic findings and causal validation, 

we can then begin tying the mechanisms posited in the unified RT model to both underly-
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ing neural properties and overlying complex cognitive processes. By having identified very 

distinctive features of the IQ-associated processing stage (namely its stochasticity, seriality, 

and central temporal position), we have greatly enabled these integrative efforts. These fea­

tures place strong constraints on higher-level theories and give clear indications of what to 

look for when delving into the brain. Also, one way to alleviate the burden of sample size 

in genome-wide association studies of personality traits is to measure endophenotypes ly­

ing causally closer to the genes, and the validation of central processing in RT as a causal 

mediating variable may do much to advance this goal for genetic studies of intelligence. 

The aspects of Pearl's graphical theory of causality presented in the third paper provide 

an essential foundation for the entire endeavor of attempting to discover the causes and con­

sequences of personality. In this summary of what was learned in the paper, I will keep my 

description at a relatively abstract level. Pearl's theory accomplishes what many Edwardian 

scientists, including Bertrand Russell and Karl Pearson, thought was impossible: it captures 

human intuitions about causality in the form of mathematical axioms. These axioms allow 

us to state in a formal language that breaking the glass of water will make the floor wet—but 

that making the floor wet will not break the glass of water. Remarkably there was no way to 

express this distinction in the traditional language of probability theory. Now it is clear that 

we do not need a formal language to know that wet floors do not break glasses! But once we 

are equipped with a formal language that can express this notion, we can use it in more com­

plicated situations to derive highly nontrivial conclusions that are beyond the reach of the 

unaided intellect. Such derivations were demonstrated in the examples and data reanalysis 

presented in the third paper. 

It should be understood that the graphical theory does not magically turn a matrix of cor-
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relations (or, more generally, a joint probability distribution) into a list of quantitative causal 

effects. Causal inferences always take a conditional form: if we know or assume certain 

things to be true, then certain casual conclusions inevitably follow. The relevant background 

assumptions can include parsimony, temporal order, a real-world experimental manipulation 

conforming to a mathematically idealized manipulation, and so on. One reason why I dis­

cuss genome-wide association studies at some length in the third paper is that our substantial 

prior knowledge of genetics allows us to justify some very powerful assumptions; it is these 

assumptions that counter Turkheimer's (2008) attempt to analogize genome-wide association 

studies to various failures of observational methodology in the social sciences. For exam­

ple, when discussing within-family designs, Turkheimer does not point out that according to 

Mendel's Law of Segregation, the allele that a heterozygous parent passes on to an offspring 

is determined randomly. Thus, within-family designs in genome-wide association studies 

do not merely fix (a subset of) potential confounders; the level of the putative causal vari­

able is literally randomized, warranting a very high grade of confidence in causal inferences. 

Although this benefit of natural randomization is not available in genome-wide association 

studies of unrelated individuals, I go on to discuss reasons why observed associations in 

such studies are still likely to reflect genuine causal effects. 

Overall, then, what lessons emerge from the three papers collected in this dissertation? 

Although much work lies ahead, I believe that the papers demonstrate, by both theoretical 

arguments and empirical proof of principle, the feasibility of a research program intent on 

substantial advances in the mechanistic understanding of personality variation. Thanks to 

technological advances in measurement resolution, closer contact with cognate branches 

of psychology, and a formal vehicle for causal ideas, I believe that seeking the causes of 
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individual differences in genetics, neural properties, and information-processing mechanisms 

has become a matter of ordinary scientific ingenuity rather than an endeavor suffering from 

inevitable epistemological defects. 
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