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Over a quarter of drugs that enter clinical development fail 
because they are ineffective. Growing insight into genes that 
influence human disease may affect how drug targets and 
indications are selected. However, there is little guidance about 
how much weight should be given to genetic evidence in making 
these key decisions. To answer this question, we investigated 
how well the current archive of genetic evidence predicts drug 
mechanisms. We found that, among well-studied indications, 
the proportion of drug mechanisms with direct genetic support 
increases significantly across the drug development pipeline, 
from 2.0% at the preclinical stage to 8.2% among mechanisms 
for approved drugs, and varies dramatically among disease 
areas. We estimate that selecting genetically supported 
targets could double the success rate in clinical development. 
Therefore, using the growing wealth of human genetic data to 
select the best targets and indications should have a measurable 
impact on the successful development of new drugs.

Attrition is a major challenge in drug discovery and development, with 

more than half of clinical studies failing because of lack of efficacy1–4. 

The widespread failure of preclinical model systems to adequately 

predict efficacy in humans has led drug developers to look for other 

sources of evidence to inform decisions about which targets to pursue 

and for which indications (disease or reason for treatment for which a 

drug is approved). Since the completion of the Human Genome Project  

and the rise of genome-wide association studies (GWAS) and whole-

genome and whole-exome sequencing studies, there has been rapid 

progress in identifying the genes that influence human health and 

disease5. These genetic insights can potentially transform the process 

of selecting the best drug targets and indications6, the key decisions in 

drug discovery. There are several examples of genes associated with 

disease traits that have been proven to be effective drug targets. One 

canonical example is the target for statins, HMGCR, which has been 

associated with serum cholesterol levels7. Several other examples were 

recently highlighted for rheumatoid arthritis8. Such examples and the 

rapidly growing body of human genetic data led us to ask how much 

weight should be given to genetic associations when choosing which 

drug targets to pursue for a desired indication.

RESULTS
In this study, we go beyond previous work on drug repositioning9 to 

investigate how well clinically successful drug mechanisms (the pro-

tein product modulated to elicit a clinical response) are predicted by 

known genetic associations and how that prediction may change across 

the drug development pipeline, from preclinical and clinical phases 

to launched drugs (Drug Approval Process; see URLs). An overview 

of the data sources, filtering and processing applied is provided in  

Figure 1a. To broadly capture statistically significant (P ≤ 1 × 10−8) 

common variant genetic associations, we used GWASdb10, which 

combines data from multiple sources, including the National Human 

Genome Research Institute (NHGRI) GWAS Catalog, the tables and 

supplementary materials of manuscripts archived in the NHGRI 

GWAS Catalog, and the database of Genotypes and Phenotypes 

(dbGaP), among others. To allow comparisons among all data sources, 

we manually mapped all traits to the most specific Medical Subject 

Heading (MeSH) terms applicable. Genetic variants were mapped 

to potential causal genes using a combination of linkage disequilib-

rium (LD), position, expression quantitative trait locus (eQTL) and  

epigenetic data (for example, see Fig. 1b). When we observed multiple 

possible variant-to-gene mappings, these were ranked on the overall  

strength of evidence. In the final data set, we had 18,566 genetic asso-

ciations to 434 MeSH traits that mapped to 6,120 genes outside of 

the extended major histocompatibility complex (xMHC), with a total 

of 13,855 gene-trait combinations. Genes involved in rare, mende-

lian traits were derived from Online Mendelian Inheritance in Man 

(OMIM), providing a data set with 1,898 genes annotated to affect 2,145 

traits with MeSH terms, for a total of 2,627 gene-trait combinations.  

The GWASdb and OMIM gene-MeSH pairs were largely non- 

overlapping, yielding a combined set of 16,459 gene-trait combinations 

(Supplementary Fig. 1 and Supplementary Table 1).
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Information about drugs across the various 

stages of development was drawn from the 

commercial Informa Pharmaprojects data-

base. Of a total of 61,104 drugs (including  

combination therapies; Supplementary Note), 

there were 22,270 drugs known to modulate 

1,824 human non-xMHC drug targets for  

705 indications, giving a total of 19,085 target-

indication pairs (Supplementary Fig. 2 and 

Supplementary Tables 2–4). Aggregation of 

the drug information at the target and indica-

tion levels eliminated redundancies in drug 

mechanisms within the database, such as multiple formulations of 

the same drug or multiple drugs within the same drug class used to 

treat the same indications.

We found that the target genes for drugs approved in the United 

States or the European Union, our definition of ‘successful drug  

mechanisms’, were significantly enriched among genes associated with 

variation in human traits (Fig. 2). The greatest enrichment was for 

genes identified using OMIM (odds ratio (OR) = 7.2, P = 8.9 × 10−74), 

where 206 of 389 (53%) target genes for approved drugs were also 

associated with a mendelian trait, a proportion comparable to that in a 

previous report11. Genes associated with traits through genome-wide 

associations were also significantly enriched (OR = 2.0, P = 2.9 × 10−10),  

particularly when genes were limited to the top-ranked gene for each 

associated variant (OR = 2.7, P = 1.3 × 10−14), with 98 (25%) genes 

in common. However, we also observed that genes considered to be 

classically druggable, having binding domains for small molecule 

drugs12 (n = 2,639), were also highly enriched among OMIM and 

GWASdb genes (OR = 1.9 and 1.7, respectively). To account for this 

relationship, we also assessed the enrichment of genetic associations 

within the druggable subset of the genome. In this analysis, there was 

decreased but still highly significant (P < 1 × 10−3) enrichment of the 

OMIM and top GWASdb genes (OR = 4.5 and 1.6, respectively). There 

was little added enrichment when considering the combined effects 

of OMIM and GWASdb. One potential explanation for the correla-

tion between successful drug targets and evidence of genetic effects 

is that genes that result in notable phenotypic changes when altered 

are also the most responsive to drug-induced alterations. The greater 

enrichment among successful targets of genes that give rise to men-

delian disorders in comparison to those involved in complex traits 

supports this explanation. Residual variance intolerance score (RVIS) 

was recently developed to assess the tolerance of a gene to mutational 

perturbation13. We observed a statistically significant association 

between genes falling within the lower quartile of the RVIS distribu-

tion (most intolerant to change) and approved drug status (OR = 2.1, 

P = 7.7 × 10−10). However, conditioning on RVIS had little impact on 

the effect of OMIM and GWASdb association status and hence is an 

independent predictor of target success and not an explanation for 

the effect of genetic associations (Supplementary Note).

The analysis above did not take into account alignment between  

the drug indications and the associated traits. Therefore, we next 
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Figure 1 Summary of data resources and 

mappings between them. (a) Summary of 

each data resource and the key filtering and 

processing steps applied to create the final 

set of gene-trait and drug target–indication 

combinations investigated in this study. 

GWASdb sources correspond to unique PubMed 

IDs or other unique data sources given for 

each association. GAD, Genetic Association 

Database. (b) An example of the approach to 

map genetically associated variants to genes, 

illustrated with the bone mineral density GWAS 

association with rs9533090 (depicted in red). 

Of five SNPs in strong LD with rs9533090  

(r2 ≥ 0.8), one falls within a DNase I–

hypersensitive site (DHS) that was found to have 

a sensitivity signal correlated with the DHS of 

the TNFSF11 gene transcription start site (TSS).
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Figure 2 Enrichment of target genes for drugs approved in the United States 

or the European Union. Associations are shown for all 22,012 coding genes 

(top half) and for 2,555 classically druggable genes (bottom half). Target 

enrichment is estimated for genes in OMIM, genes with any connection with 

a GWASdb association, only the top gene for each GWASdb association, 

genes in OMIM or the top GWASdb gene, and genes in the lower quartile 

of the RVIS distribution. Odds ratios with exact 95% confidence intervals 

were estimated from 2 × 2 tables of the status of each gene as a drug target 

versus status in the above categories (Online Methods).
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investigated the percentage of approved target–indication pairs  

with a corresponding genetic association tied to the same gene for a 

similar trait. Using the structure of the MeSH hierarchy to estimate 

indication-trait similarity14 (Supplementary Fig. 3), we found that 

239 of 395 (61%) approved drug indications had at least 1 genetic 

association (OMIM or GWASdb) with a similar trait (relative simi-

larity ≥ 0.7) and that 158 (40%) approved indications had at least  

5 associations reported. The approved drug indications having fewer 

than five genetic associations—such as anxiety, depression, headache, 

coronary restenosis and kidney stones—included both diseases where 

many studies have been done with little success and understudied 

areas of medical interest currently lacking substantial genetic inves-

tigation (Supplementary Table 5).

To assess the support that a genetic association provides to drug 

mechanisms, we focused on the subset of 158 approved drug indica-

tions with at least 5 genetic associations for a similar trait, taking this to 

signify that the indication has been reasonably well studied by genetic 

approaches (that is, focusing on instances where an opportunity exists for 

genetic data to support the target indication; Supplementary Table 5).  

Of 820 target-indication pairs, 67 (8.2%) were supported by one or 

more genetic associations when considering the combined evidence 

of both OMIM and GWASdb (Fig. 3a and Supplementary Table 6). 

Further, we found that there was significant variability among indica-

tion categories (P = 1.1 × 10−16; Fig. 3a), with the highest degree of 

genetic support for indications related to musculoskeletal, metabolic 

and blood categories (percent overlap of greater than 30%) and little or 

no genetic support for oncology, skin, eye and digestive categories. We 

observed that there was slightly greater support with GWASdb than 

with OMIM (4.5% versus 4.1%, respectively; Fig. 3b, Supplementary 

Figs. 4–6 and Supplementary Table 7), although the overlap with 

OMIM represented a much larger fraction of the total number of 

OMIM gene-trait associations in comparison to GWASdb (1.2% versus  

0.27%, respectively). These results were somewhat sensitive to restrict-

ing the indications to those that had varying levels of genetic support, 

although a cutoff of at least five associations per indication yielded 

the best tradeoff between the number of indications considered and 

overall genetic support (Supplementary Fig. 7).

If genetic association data are predictive of successful mechanisms 

of action, then we would expect the percent of target-indication pairs 

with genetic evidence to increase the further the corresponding drug 

has progressed in the drug development pipeline, with approval 

representing a mechanism that has passed the highest evidentiary 

standards. This is just the pattern that we observed when consider-

ing OMIM and GWASdb together or separately (Fig. 3b), where in 

each instance the enrichment of genetic support for target-indication 

pairs was the lowest in phase I and increased in subsequent phases 

through drug approval. The genetic support increased from 2.0% 

for target-indication pairs that had only progressed as far as phase 

I clinical trials to 8.2% for approved drugs, over a fourfold increase, 

suggesting that the odds of successful drug mechanisms with genetic 

support are many times greater than without. For new mechanisms 

in early development, we cannot rule out the influence that relatively 

recent GWAS may have had on the choice of targets and indications; 

however, accounting for such an influence would lead to an upward 

bias in the estimated overlap at that early stage and a downward bias 

in the increase in enrichment with progression. It is also possible that 

the reporting of successful drug mechanisms has influenced some 

gene-trait annotations that have been added to OMIM, although an 

informal review of several entries did not find this to be a likely con-

tributor. The enrichment of genetic support we observe here is con-

sistent with a recent AstraZeneca portfolio review3. Among 38 phase 

II programs, an OR of 3.5 (95% confidence interval (CI) = 0.73–20.6, 

P = 0.10) was observed in comparing the genetic support for projects 

that progressed to that for projects that did not.

DISCUSSION
On one hand, there are limitations to the ability to identify the genes 

that are causally related to a genetic association, which, given our inclu-

sive strategy to map all possible causal genes, could inflate our estimate 

of the proportion of successful drug mechanisms with genetic support. 

On the other hand, the information available about the functional 

genomic landscape is incomplete, and there will be many causal rela-

tionships left undetected or ascribed to the wrong gene, resulting in a 

bias of the enrichment estimates toward the null. However, the growing  
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body of functional genomic information will continue to improve the 

ability to correctly ascribe a molecular pathway by which genetically 

associated variants influence traits. Such data can also help identify 

the causal mechanism underlying the association and inform what 

treatments could lead to a positive outcome in patients. In addition, 

catalogs of genetic variants that influence human traits are far from 

complete, which would lead to an underestimation of the proportion 

of drugs with genetic support. We have identified a number of thera-

peutic areas where there are large gaps in knowledge about the genetic 

factors involved, divided evenly across the pipeline (Supplementary 

Fig. 8). We advocate continued support for research on the genetics 

of these areas to aid in the development of more effective treatments. 

The availability of a precompetitive genetic resource similar to that 

produced for the purposes of this analysis that integrates all known 

genetic associations with measures of statistical confidence, using a 

common trait ontology, and integrates the most recent sources of func-

tional genomic information to list and rank potential causal pathways 

would be an invaluable tool for the drug discovery process.

Another potential source of bias is that genetic associations could 

already be driving decisions on which drugs make it into clinical 

development and for which indications. Although this would have 

affected a small subset of the historical drug data, given that drug 

discovery and development timelines generally extend back well over 

10 years, the impact of this bias would be to increase the proportion 

of drugs with genetic evidence earlier in the pipeline, leading to an 

underestimation of the relative benefit of genetic support. There may 

also be instances where known mechanisms for drugs could lead to 

targeted genetic research that finds supporting information, which 

would disproportionately affect the overlap with approved drugs. 

We would not expect these biases to measurably affect the GWAS-

based results. However, there is greater potential for the manually 

curated results in OMIM to influence target selection or for drug 

targets to influence genetic research. We reviewed the 39 OMIM 

genes and traits that overlapped approved drug targets and indica-

tions (Supplementary Table 6) and found several potential instances 

where genetic information led to the development of therapeutics, 

including use of the gene product as a therapeutic, as in the case of 

von Willebrand disease where von Willebrand complex is used in 

treatment. This finding partially explains the greater overall enrich-

ment of targets associated with traits in OMIM.

Ultimately, we want to know the probability that a therapeutic agent 

that properly engages the target protein at safe and efficacious doses 

in the relevant tissues will have the intended effects to prevent or treat  

disease in patients3,4. Several pieces of information required for a thor-

ough analysis are missing from the public domain; most notably, there are 

relatively few data available on drugs that failed in clinical development 

and the reasons for these failures (Supplementary Note). However, with 

the historical information available on drug and, hence, target-indication  

progression through the clinical pipeline, we can derive estimates of the 

value the support of genetic information brings. Given the observations 

in our data, we estimated the ratio of the probability of progressing in 

the drug development pipeline given that the drug mechanism has the 

support of genetic information to the probability of the drug progress-

ing without genetic support (Table 1 and Supplementary Note), where 

we considered support from GWASdb and OMIM in combination as 

well as separately. OMIM support yielded a slightly higher probability 

of success than GWASdb support. We estimated that genetic support 

had the largest impact on the probability of progressing from phase II 

to phase III (ratio = 1.5, combined), with the next largest impact for  

progression from phase I to phase II (ratio = 1.2, combined); the smallest 

apparent contribution was for progression from phase III to approved 

status (ratio = 1.1, combined). We also estimated the converse ratio of 

the probability of failure to progress in the absence of genetic support 

versus with support (Supplementary Note). As expected, we found 

that, overall, target-indication pairs that entered clinical development 

that lacked genetic support were significantly less likely to reach drug 

approval (ratio = 1.3, 95% confidence interval = 1.2–1.5, combined), 

and the lack of genetic support in progression had the greatest impact 

earlier in the drug development process.

The relatively low impact of genetic support on success in phase III 

is surprising, given that attrition rate estimates attribute most phase 

III failures to lack of efficacy2. It may be that failures in phase III are 

different in nature from those in earlier stages, for example, because 

they may reflect a failure to improve over standard of care rather than 

failure of the targeted biological mechanism to be causal for disease  

at all. Or it may be that, in phase III, study endpoints are more  

complex and less closely related to specific biological mechanisms, 

including the use of broad endpoints such as all major coronary events in 

cardiovascular outcome studies. In addition, we note the limitations of 

the available data. We rely on the latest stage to which a target-indication  

pair was reported to have progressed as a proxy for success and failure, 

although such data may be incomplete or even inaccurate in some 

cases. Furthermore, the interpretation of risk ratios is dependent on 

the absolute risk, which varies substantially by phase.

Overall, we estimate that drug mechanisms with genetic support 

would succeed twice as often as those without it (from phase I to 

approval). Therefore, increasing the proportion of discovery and 

development activities focused on targets with genetic support and 

allowing genetic data to guide selection of the most appropriate indi-

cations should lead to lower rates of failure due to lack of efficacy in 

clinical development.

URLs. Drug Development Process, http://www.fda.gov/downloads/

Drugs/ResourcesForYou/Consumers/UCM284393.pdf; GWASdb, 

http://jjwanglab.org/gwasdb; Online Mendelian Inheritance in Man  

(OMIM), http://www.omim.org/; MeSH browser, https://www.nlm.nih.

gov/mesh/MBrowser.html; UMLS::Similarity, http://www.d.umn.edu/

~tpederse/umls-similarity.html; PharmGKB, https://www.pharmgkb. 

org/; Genetic Association Database, http://geneticassociationdb.nih.

gov/; Informa Pharmaprojects database, http://www.citeline.com/;  

MeSH thesaurus, http://www.nlm.nih.gov/mesh.

METHODS
Methods and any associated references are available in the online 

version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.

Table 1 The relative value of genetic support for the probability 

that a target-indication pair progresses along the drug development 

pipeline, based on historical drug trial information

p (progress | genetic support)/(progress | no genetic support)

Progression GWASdb and OMIM GWASdb OMIM

Phase I to phase II 1.2 (1.1–1.3) 1.2 (1.1–1.3) 1.2 (1.1–1.3)

Phase II to phase III 1.5 (1.3–1.7) 1.4 (1.2–1.7) 1.6 (1.3–1.9)

Phase III to approval 1.1 (1.0–1.2) 1.0 (0.8–1.2) 1.1 (0.9–1.3)

Phase I to phase III 1.8 (1.5–2.1) 1.8 (1.4–2.1) 1.9 (1.5–2.3)

Phase I to approval 2.0 (1.6–2.4) 1.8 (1.3–2.3) 2.2 (1.6–2.8)

Values give the ratio of the probability of a target-indication pair progressing  

given genetic support to the probability of progressing without genetic support;  

95% confidence intervals are given in parentheses.
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ONLINE METHODS
Genetic data. Genetic association data were drawn from the data available 

in GWASdb10 (version dated 21 May 2013), a manually curated database 

that brings together information from eight sources. We excluded all data 

from PharmGKB and the Genetic Association Database. Genetic associations 

reported from these two sources contained no supporting statistical associa-

tion evidence (with most P values equal to zero) to accompany the entries, 

and the new associations included were largely drawn from candidate gene 

association studies that lacked rigorous criteria for reporting a statistical asso-

ciation. In particular, we found that there were a large number of candidate 

gene associations in PharmGKB for drug target genes, which would result in 

an upward bias in the number of drug targets with supposed genetic asso-

ciations. We also excluded a few large metabolomic studies with numerous 

traits screened that had very large numbers of associations reported. Finally, 

we identified one study15 where a supplementary table was misinterpreted, 

leading to many falsely identified associations that were also excluded. For the 

variants, traits and P values reported, we removed any duplicate entries found 

across the various GWASdb data sources. For the purposes of this study, we 

set a P-value threshold of 1 × 10−8 to limit associations to those with relatively 

strong evidence. The OMIM database (accessed 3 October 2013) was used  

to provide additional information on the effects of genetic variants and  

mutations on human traits. Only entries with valid MeSH terms were included 

in the analyses reported here.

Genetic variant-to-gene mapping. Variants with phenotypic associations were 

mapped to the genes that they could be causally affecting through a combina-

tion of approaches. First, all variants in LD having r2 ≥ 0.5 with each associated 

variant were identified on the basis of the 1000 Genomes Project pilot sequence 

genotypes for the European-ancestry (CEU) population16. No effort was made 

to conduct LD pruning to represent independent associations as the purpose 

of our study was to identify all possible genes that could be responsible for the 

observed effect. For each variant in LD, the plausible mapping of a variant to 

a particular gene was performed using a combination of physical proximity 

to the gene, evidence for association of the variant with the expression of the 

gene and determination of whether the variant fell within a regulatory element 

predicted to affect the expression of the gene. The variant was mapped to the 

physical location of the gene plus or minus 5 kb on the basis of the longest 

gene transcript to define the gene boundaries plus 1.5 kb in UCSC-distributed 

RefSeq (v37.1) annotation. Gene eQTLs were drawn from eqtl.chicago.edu 

(accessed 21 May 2013), which includes eQTLs from several studies of several 

cell lines and primary tissues as well as the results from primary liver tissue17 

at false discovery rate (FDR) ≤ 0.1, computed by Kruskal-Wallis test. To map 

variants to genes on the basis of regulatory evidence, we identified all variants 

that fell within a predicted transcription factor binding site located within 

a DHS peak using RegulomeDB18 (accessed 7 February 2013). For variants 

with a RegulomeDB score ≤4, we determined whether the genomic location 

overlapped a DHS peak that was either located with a gene TSS or a distal 

DHS peak that was correlated with a TSS DHS across cell lines, as described19 

(data courtesy of J. Stamatoyannopoulos, University of Washington). Variants 

that affected the amino acid sequence of any gene transcripts were identified 

via the Ensembl Variant Effect Predictor from the European Bioinformatics 

Institute (EBI; accessed 27 February 2014). We restricted our analyses to genes 

reported in GENCODE (v17) or RefSeq (v37.1).

In many instances, a variant with a phenotypic association could be 

mapped to more than one gene using this combination of approaches.  

We devised an ad hoc scoring scheme to assess the relative weight of evidence  

for a causal relationship between the variant reported to be associated and 

each gene to which it was mapped (Supplementary Fig. 9), including the  

source of the association, the LD between the associated variant and  

the variant mapped to the gene, the nature of the mapping information  

and the number of times that the variant in LD had been associated  

with the trait. This scheme yielded a potential gene score between 0 and 

11, with 11 reflecting the strongest evidence. The factors included in the 

gene scoring scheme were also used to rank the variant-to-gene mappings, 

such that the top-ranked gene for a particular variant presumably had the 

strongest evidence (Fig. 2). When two gene mappings had equal support,  

the ranking was arbitrarily decided.

Drug data. Information about drugs, their gene targets, the indications for 

which they have been investigated and the latest stage of development to which 

they have progressed was derived from the commercial Informa Pharmaprojects 

database. Drugs were retained for analysis if (i) they were annotated to have 

human gene targets (on the basis of GENCODE v16), (ii) the gene did not map 

to the xMHC and (iii) the indication could be mapped to a MeSH term. Most 

analyses using Pharmaprojects were conducted using a transformation of the 

data into a single entry per gene target and indication with the latest phase in 

development to which that unique combination progressed for any drug. A 

target was defined as successful in treating an indication if a drug targeting 

that gene product was approved for the corresponding indication in the United 

States or the European Union, as annotated in Pharmaprojects.

Medical Subject Heading term mapping and use. We used the MeSH  

thesaurus to provide a common vocabulary among traits from GWASdb and 

OMIM and indications from Pharmaprojects. MeSH term mappings to OMIM 

traits was derived from Comparative Toxicogenomics Database mapping20. 

Mappings for GWASdb and Pharmaprojects were performed manually using 

the MeSH Browser by searching with each of the unique original terms listed 

in the respective database and identifying the overall best match. Some traits 

did not yield a satisfactory MeSH term. Any data entries missing MeSH terms 

were excluded from the primary analyses described in this study.

When comparing the overlap between traits with respect to evidence for 

genetic association and drug indications, we recognized that there could be 

many instances where the genetic evidence was for a trait very closely related 

to the indication but not an exact match. To allow for such near misses, we used 

similarity measures based on the MeSH ontology, implemented in the UMLS::

Similarity Perl module14. Several measures of similarity and relationships are 

implemented in this package. We evaluated all of these measures on a subset 

of 50 randomly selected MeSH entries from our combined data set to assess 

how well the subsequent trait clustering reflected expert interpretation. On the 

basis of this evaluation, we selected two similarity measures that incorporated 

both path distance and information content, Resnik21 and Lin22. The measures 

were standardized to a measure of relative similarity between zero and one and 

averaged together to yield a final relative similarity measure for subsequent 

analysis. We noted that in some instances, because of the structure of the MeSH 

ontology, very closely related traits resulted in very low measures of similar-

ity. Two examples are systolic or diastolic blood pressure with hypertension 

and bone mineral density with osteoporosis. To address this, we reviewed the 

laboratory-based MeSH terms and manually assigned relative similarity scores 

of 0.5, 0.7 and 0.9 on the basis of the known relationships between traits. The 

two examples above were assigned a relative similarity of 0.9. The manually  

assigned relative similarities are given in Supplementary Table 8. The relative  

similarity matrix used for the analyses is available in Supplementary  

Data Set 1. Each MeSH term was subsequently manually mapped to 1 of 20 

disease categories (Supplementary Table 9).

Genetic association enrichment. We assessed enrichment of genetic associa-

tions both without and with respect to the trait underlying the association. 

We assessed enrichment without respect to trait or indication as presented in 

Figure 2 by constructing a 2 × 2 table of genes in GENCODE (v17) or RefSeq 

(v37.1) and counts corresponding to the presence or absence of the gene as a 

target for a drug approved in the United States or the European Union versus 

the presence or absence of evidence for genetic association for each gene.  

Evidence of genetic association was further stratified by OMIM, any possible 

gene for each GWASdb association and the top gene (top ranked, as described 

above) for each GWASdb association. Enrichment for RVIS was based on 

published scores13, with stratification for the lowest quartile. The druggable  

genome was based on the description of Hopkins and Groom12. Odds  

ratios and 95% confidence intervals were estimated using the exact method 

implemented in fisher.exact in R.

The overlap between genetic evidence and drug targets presented in Figure 3,  

taking traits and indications into account, was based on the direct overlap 

of gene and target names with a relative trait-indication similarity of at least 

0.7. The confidence intervals presented were computed using the Pearson-

Klopper exact method implemented in the binom package in R. A permutation 

test (Supplementary Fig. 10) was performed to assess the significance of the 
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observed overlap given the high degree of correlation among genes and traits 

in the data. In the permutation test, the null distribution was simulated by 

breaking the relationships between traits and genes in the genetic association 

data. This was done in a manner to maintain the relationships among genes 

associated with the same trait by permuting the traits and replacing all asso-

ciations for the observed trait with the same permuted trait (for example, by 

replacing all genes originally associated with alopecia with those associated 

with type 2 diabetes in permutation 1, with those associated with Kawasaki 

disease in permutation 2, etc.). We conducted 10,000 replicates.

All statistical analyses were conducted using R version 3.1.0 (ref. 23). Most 

figures were created using the R package ggplot2 (ref. 24).

Code availability. The R scripts and Sweave files used to process the data 

and conduct the analyses described herein are available from the authors  

by request. All key analyses can be reproduced from Supplementary Data 

Sets 1–4 and the supplementary tables included.
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