© 2017 Nature America, Inc., part of Springer Nature. All rights reserved.

nature
genetICS

LETTERS

Effect of sequence variants on variance in glucose levels
predicts type 2 diabetes risk and accounts for heritability

Erna V Ivarsdottirl:2, Valgerdur Steinthorsdottir!, Maryam S Daneshpour3, Gudmar Thorleifsson!,

Patrick Sulem!®, Hilma Holm!, Snaevar Sigurdsson!, Astradur B Hreidarsson?, Gunnar Sigurdsson?,

Ragnar Bjarnason>®, Arni V Thorsson’, Rafn Benediktsson*%, Gudmundur Eyjolfsson’, Olof Sigurdardottir$,
Isleifur Olafsson?, Sirous Zeinali'?, Fereidoun Azizi'l, Unnur Thorsteinsdottir:%, Daniel F Gudbjartsson2® &

Kari Stefansson!-®

Sequence variants that affect mean fasting glucose levels

do not necessarily affect risk for type 2 diabetes (T2D).

We assessed the effects of 36 reported glucose-associated
sequence variants' on between- and within-subject variance
in fasting glucose levels in 69,142 Icelanders. The variant in
TCF7L2 that increases fasting glucose levels increases between-
subject variance (5.7% per allele, P = 4.2 x 10-19), whereas
variants in GCK and G6PC2 that increase fasting glucose levels
decrease between-subject variance (7.5% per allele, P = 4.9

x 10-"" and 7.3% per allele, P = 7.5 x 10-18, respectively).
Variants that increase mean and between-subject variance in
fasting glucose levels tend to increase T2D risk, whereas those
that increase the mean but reduce variance do not (r> = 0.61).
The variants that increase between-subject variance increase
fasting glucose heritability estimates. Intuitively, our results
show that increasing the mean and variance of glucose levels
is more likely to cause pathologically high glucose levels than
increase in the mean offset by a decrease in variance.

Despite recent advances in the genetics of T2D, understanding of the
pathophysiology of the disease is still limited. Genome-wide associa-
tion studies have yielded over 80 variants that associate with T2D,
fasting glucose levels and other glycemic traits>~°. Although there is
overlap between loci that affect fasting glucose and those that affect
T2D, the effects of variants on mean fasting glucose do not predict
their effects on T2D!. Further, none of the eight variants that associ-
ate with hemoglobin Alc (HbAlc), but not fasting glucose, associate
with T2D, although HbA 1c values above 6.5% are used as a diagnostic
criterion for T2D!.

Most reports on analysis of loci associated with quantitative traits
have been confined to the effects of variants on the means of traits.

However, variants can also affect the variability of traits (variance
heterogeneity)”. Such loci have been reported for some human traits,
including the major histocompatibility complex (MHC) region for
rheumatoid arthritis®, FTO for body mass index (BMI)?, SLC2A9 for
serum urate!?, LEPR for C-reactive protein and ICAMI for soluble
ICAMI (ref. 11), as well as for traits in other species like rats!?, flies!?
and plants'4. Further, variants can also affect the variability in meas-
urements taken from the same individual. We refer to these two types
of variability as between-subject and within-subject variance. Here we
estimate the variance effects of variants that have been associated with
fasting glucose levels! and examine how their effects on variance cor-
relate with their effects on T2D risk. We also estimate how the effects
of these variants on variance affect heritability estimates.

We chip genotyped 117,548 Icelanders with glucose measurements
performed at three laboratories (Fig. 1, Table 1, Supplementary Fig.
1 and Supplementary Tables 1-4). Of the subjects, 8,797 (7.5%) had
T2D or were on diabetes medication!®. Furthermore, 366 individuals
had type 1 diabetes (T1D). The primary glucose variance association
analysis was performed on individuals with fasting glucose levels (set
I). Additionally, we generated three data sets for secondary analysis;
one comprising individuals with fasting and/or non-fasting glucose
levels (set IT) and the previously listed data sets I and II after excluding
T2D and T1D cases and individuals on diabetes medication.

Of the 36 known variants associated with glucose levels!, 3 associ-
ated with between-subject variance consistently in all four analyses
(P < 0.05/36 = 0.0014) (Fig. 1a and Supplementary Tables 3-5).
One variant, rs7903146 in TCF7L2, is the strongest common T2D-
associated variant>1®. The allele at this SNP associating with higher
glucose levels and increased T2D risk was associated with greater
between-subject glucose variance. In contrast, the alleles of rs560887
in G6PC2 and rs2908289 in GCK that are associated with increased
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Table 1 Summary of the data
n measurements T2D T1D Age YOB
n Mean Ql Median Q3 Mean Range n % n % Mean s.d. Mean s.d.

Fasting glucose levels (set I)

Male 28,981 5.8 50 5.5 6.2 3.0 1-55 3,296 11.4 76 0.3 616 15.2 1947.4 16.1

Female 40,161 5.4 4.8 5.2 5.7 3.0 1-94 3,059 7.6 78 0.2 59.0 17.1 1950.5 18.1
All glucose levels (set 1)

Male 51,911 6 5 5.6 6.5 8.2 1-234 4,676 9.0 185 0.4 62.9 16.2 1943.9 16.7

Female 65,637 5.6 48 5.3 6.0 7.8 1-280 4,121 7.3 181 0.3 603 18.2 1946.6 18.7
HbA1lc (first measurement)

Male 18,107 5.8 52 55 5.9 - - 3,041 16.8 56 0.3 60.1 15.1 1948.9 15.8

Female 22,945 5.6 5.2 5.5 5.8 - - 2,676 11.7 47 0.2 56.9 17.2 1952.1 17.7

T2D, type 2 diabetes; T1D, type 1 diabetes; YOB, year of birth; Q1, first quartile; Q3, third quartile.

glucose! associated with less between-subject variance. The variant in
G6PC2 does not associate significantly with T2D whereas the variant
in GCK slightly increases T2D risk in the DIAGRAM Consortium
(odds ratio (OR) = 1.04, P = 0.018; Supplementary Table 2).

We also estimated the effects of the 36 variants on the within-sub-
ject variance in glucose levels (Fig. 1b). The glucose-increasing alle-
les of three variants—rs560887 in G6PC2, rs6943153 in GRB10 and
rs2908289 in GCK—associated consistently with less within-subject
variance in all four analyses (Supplementary Tables 3-5).

On the basis of a T2D meta-analysis (12,171 cases and 56,862 controls
of European ancestry)?2, 22 of the 36 variants with an effect on mean
fasting glucose levels also associate with T2D. However, their effects

on fasting glucose levels and T2D risk were weakly correlated (12 = 0.02
between the effect on the mean (f3) and log(OR), P = 0.21; an F test
was performed in all regression analysis) (Fig. 2a). Interestingly,
the effect of a variant on between-subject variance in fasting glu-
cose combined with its effect on mean fasting glucose predicted the
effect of this variant on T2D much better than the effect on the mean
alone (r? = 0.61, P value for adding effect on between-subject vari-
ance = 5.7 x 1078). Even on its own, the effect on between-subject

b

variance predicted the T2D effect reasonably well (r> = 0.38,
P =3.3 x 107°) (Fig. 2b). Therefore, variants that increase both the
mean and between-subject variance of glucose levels increase the
risk of T2D more than variants that increase the mean but reduce the
between-subject variance.

The effect on within-subject glucose variance was a worse predic-
tor of T2D risk than the effect on between-subject variance (1> = 0.24)
(Supplementary Table 6), and it did not improve prediction of T2D
beyond the mean and between-subject effects (P = 0.091).

Interaction between sequence variants and environmental fac-
tors such as nutrition is a possible source of between-subject vari-
ance!l. It has previously been reported that heterogeneity in T2D
associations is introduced by BMI!7-18. We estimated the interac-
tion effects between the 36 glucose-associated variants and BMI
on fasting glucose (n = 39,986). The interaction effects were

correlated with the between-subject variance effects (r?2 = 0.12,
P =0.020) (Supplementary Fig. 2 and Supplementary Table 7).
These results show that the effects of variants are affected by envi-
ronment, although only a small fraction of the effects on between-
subject variance are mitigated through interaction with BMI.
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Figure 1 Effects of 36 published fasting-glucose-associated variants on between-subject and within-subject variance in fasting glucose levels and
between-subject variance in HbAlc levels. Effects on variance are given for the allele that increases fasting glucose levels (Supplementary Table 3).
Variants are colored blue if they significantly decrease the variance and red if they significantly increase it (likelihood-ratio test, P < 0.05/36 = 0.0014).
(a) Effects on between-subject variance in fasting glucose (log(ogs)) and 95% confidence intervals for the estimated effects. (b) Effects on within-
subject variance in fasting glucose levels (log(ows)) and 95% confidence intervals for the estimated effects. (c) Effects on between-subject variance in

HbAlc (log(ogs)) and 95% confidence intervals for the estimated effects.
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Figure 2 Effects of 36 published fasting-glucose-associated variants

on fasting glucose and HbAlc, and between-subject variance in fasting
glucose and HbA1lc versus their effects on type 2 diabetes risk. Effects on
fasting glucose were estimated in the Icelandic data, while effects on T2D
risk were obtained from a T2D meta-analysis2 (T2D-GENES Consortium,
GoT2D Consortium, DIAGRAM Consortium; see URLs) (Supplementary
Tables 2, 3 and 11). Effects are given for the allele that increases fasting
glucose levels. Variants are colored blue if they significantly decrease
variance and red if they significantly increase it (P < 0.05/36 = 0.0014).
(a) Fasting glucose mean effect () against log(T2D OR). (b) Fasting
glucose between-subject variance effect (log(ogs)) against log(T2D OR).
(c) HbAlc mean effect (B) against log(T2D OR). (d) HbAlc between-
subject variance effect (log(ags)) against log(T2D OR).

An undetected secondary variant can create a variance effect for
the primary variant. However, secondary signals at the loci associ-
ated with between-subject variance had no impact on variance effects
(Supplementary Table 8). Another possible source of effects on
between-subject variance is interaction between loci. For the three
variants associated with between-subject variance, we found no inter-
action (Supplementary Table 9).

To validate these variance effects, we analyzed a sample of 10,437
Iranians with 44,470 fasting glucose measurements from the prospec-
tive Tehran Lipid and Glucose Study!®. We replicated the association
of the variants in TCF7L2, GCK and G6PC2 with between-subject
variance and the association of the G6PC2 and GCK variants with
within-subject variance (Supplementary Tables 5 and 10).

HbAlc reflects the average plasma glucose concentration over 3
months, and an HbAlc value above 6.5% is used as a diagnostic cri-
terion for T2D15. HbAlc measurements were available for 41,052
Icelanders with genotype information (Table 1 and Supplementary
Table 1). The number of measurements per subject was correlated
with HbAlc. Therefore, we only used the first measurement for each
subject in our analysis.

The pattern of effect for the 36 markers on between-subject
HbA1c variability is consistent with the results for fasting glucose
(Fig. 1, Supplementary Fig. 3 and Supplementary Table 11). Of
the 36 variants, the variants in TCF7L2 and G6PC2 were associ-
ated with between-subject variance (4.5% increase per allele, P =
4.5 x 107> and 6.9% decrease per allele, P = 4.0 x 10719, respectively;
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a likelihood-ratio test was performed in all genome-wide associa-
tions). As for fasting glucose, the effect on between-subject variance
in HbAlc increased the prediction accuracy of the effect on T2D
(r2 = 0.54 for the mean only, r2 = 0.77 for the mean and between-
subject variance effect, P value for adding the between-subject vari-
ance effect = 1.4 x 107%) (Fig. 2¢,d and Supplementary Table 6e).

Eight variants have been reported to affect HbAlc without affect-
ing fasting glucose, none of which have an effect on T2D"20. These
variants associate with red blood cell homeostasis and iron metabo-
lism (Supplementary Table 12). Interestingly, the HbAlc-increasing
allele for all eight markers lowered between-subject variance
(Supplementary Figs. 4 and 5, and Supplementary Table 13), of
which two were significantly associated with lower between-subject
variance (P < 0.05/8 = 0.0063): rs10159477[G] in HK1 was associated
with 5.1% lower variance per allele (P = 0.0024) and rs6474359[T] in
ANK]1 was associated with 8.0% lower variance per allele (P = 0.0044).
The increase in the mean was offset by lower variance for carriers of
these variants, and these individuals are therefore less likely to have
high HbA1lc measures. This may explain why carriers of these HbAlc-
increasing variants are not likely to be misclassified as diabetic?’.

We constructed genetic risk scores (GRSs), based on the 36 variants,
for both mean and between-subject variance of fasting glucose levels.
Both GRSs were associated with T2D (P < 3.1 x 1073% Fig. 3 and
Supplementary Table 14). Adding the GRS for between-subject vari-
ance to the GRS for the mean increased residual Nagelkerke’s pseudo-
r? from 0.4% to 1.0% (P = 5.4 x 1077; Supplementary Table 14).
Similarly, GRSs based on the 36 variants for glucose levels and the
8 variants for HbA1lc measures were associated with T2D (P < 3.4
x 10728; Fig. 3 and Supplementary Table 14). This shows that the
effects of variants on between-subject variance have an impact on
genetic T2D risk prediction that is comparable to that from their
effects on the mean.

The heritability of a trait is the fraction of variance attributable to
genetics. Classical estimates of heritability ignore the impact of vari-
ants on phenotypic variance. Most heritability estimates are based on
relating the correlation between relative pairs to the genetic sharing
between relatives?!. Correlation between relatives corresponds to the
ratio of their covariance and the geometric mean of their phenotypic
variances. Variants that affect variance will have a substantial impact
on the denominator. However, their effect on covariance is unpredict-
able. In our data, we had fasting glucose measures and genotypic infor-
mation for 35,965 sibling pairs and 38,527 parent-offspring pairs. To
investigate the effect of variants on the covariance between relatives,
we calculated the covariance for genotype-concordant relative pairs
and estimated the relationship between genotype and covariance. For
the 36 variants associated with glucose levels, the mean covariance
trend in siblings and parent-offspring pairs correlated positively with
the between-subject variance effect (12 =0.22, P=2.1 x 1073) (Fig. 4a
and Supplementary Table 15). If the increase in covariance per allele
was higher than the variance effect, the correlation was also increased
and the variants therefore also increased the estimated narrow-sense
heritability. The variant in TCF7L2 had the strongest trend of 17.6%
increased covariance (P = 4.1 x 107%) (Fig. 4b). The between-subject
variance effect of TCF7L2 was 5.7% per allele, and the correlation was
therefore increased by 11.3% per allele.

We have shown that variants in TCF7L2, GCK, G6PC2 and GRB10
that affect mean fasting glucose levels also associate with variance
in glucose. The variance effects remain after the removal of diabetic
cases and individuals on diabetes medication. The two variants that
lower between-subject variance do not associate with T2D risk, and
their variance effect is thus not driven by a diabetes medication.

NATURE GENETICS ADVANCE ONLINE PUBLICATION



© 2017 Nature America, Inc., part of Springer Nature. All rights reserved.

LETTERS

9 .@- HoA1c mean GRS
@ HbA1c variance GRS o
-.@- HbA1c mean + variance GRS .

9 -|-@- FG mean GRS
- FG variance GRS »
8 +-@- FG mean + variance GRS

T2D cases (%) in each quantile T~

T2D cases (%) in each quantile Q9

T T T T T
0-20 20-40 40-60 60-80 80-100
GRS percentile

T T T T T
0-20 20-40 40-60 60-80 80-100
GRS percentile

Figure 3 The percentage of type 2 diabetes cases in each quantile of

the genetic risk scores. Combination of the GRSs for the mean and
between-subject variance was weighted with the coefficients from logistic
regression between T2D and the GRSs (Supplementary Table 15).

(a) Fasting glucose (FG) GRS based on the 36 fasting-glucose-associated
variants. (b) HbAlc GRS based on the 36 fasting-glucose-associated
variants and 8 HbAlc-associated variants.

Conversely, removal of diabetic cases could create a variance effect in
the presence of an effect on the mean, although we do not observe this
phenomenon in our data. It is, however, likely that variants’ effects on
variance are at least partly due to their interaction with other variants
and/or with environmental factors. This hypothesis is supported by
the correlation between the variants’ between-subject variance effects
and their interaction with BMI.

We have also shown that variants that increase both mean fasting
glucose levels and between-subject glucose variance increase T2D
risk more than variants that increase fasting glucose but reduce the
between-subject variance. These results largely account for the appar-
ent discrepancy between the effects of variants on fasting glucose and
their effects on T2D risk. This result is intuitively appealing, as T2D is
primarily a disease of too high glucose; variants that increase both the
mean and variance for glucose are more likely to be associated with
pathologically high glucose levels than variants that only increase the
mean or even have an increase in the mean offset by lower variance.

The variants in GCK, G6PC2 and TCF7L2 all affect fasting glu-
cose levels, but their effects on T2D risk are not proportionate to
their effects on glucose?2. This may reflect different roles in glucose
regulation. GCK and G6PC2 encode enzymes that regulate glucose
homeostasis, effectively establishing the glucose set point. Variants
that increase mean glucose through these proteins will be countered
by pressure to keep the glucose level within the physiological range,
leading to reduced variance associated with these variants both within
and between subjects. Similarly, variants that associate with increased
HbA1c but not fasting glucose or T2D all associate with erythro-
cyte physiology and iron homeostasis and, where significant, lower
HbA1lc variance. Overall, this indicates low tolerance for variability
in homeostatic regulation. In contrast, the variant associated with
the highest variance in glucose levels is located in TCF7L2, which
encodes a transcription factor that is thought to affect glucose levels
through complex regulation of beta cell mass and function??. This
variant affects beta cell response to glucose, leading to greater sen-
sitivity to the environment and, thus, greater variability in glucose
levels among carriers.

Only 2% of the heritability of fasting glucose levels is attributable
to the effect of the 36 glucose-associated variants on mean levels.
We have shown that variants that increase between-subject variance
create positive covariance between individuals beyond their effects
on the mean, increasing heritability estimates based on correlation
between relative pairs. The effect of these markers on heritability is
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Figure 4 Covariance between genotype-concordant relative pairs.

(a) Effects of 36 published fasting-glucose-associated variants on
between-subject variance in fasting glucose levels and their glucose level
covariance trends in pairs of relatives (Supplementary Table 15). Effects
are given for the allele that increases fasting glucose levels. Variants are
colored blue if they significantly decrease the variance and red if they
significantly increase it (P < 0.05/36 = 0.0014). (b) Estimated covariance
and correlation of fasting glucose measurements among pairs of relatives
with the same genotype at TCF7L2 and the 95% confidence intervals for
the covariance and correlation estimates.

substantial and so is their contribution to the missing heritability of
fasting glucose levels. Further, the effects of variants on the variability
between individuals in glucose and HbA ¢ levels are as important for
genetic risk prediction as the effects of variants on the mean.

URLs. T2D-GENES Consortium, GoT2D Consortium, DIAGRAM
Consortium (2016-09-12), http://www.type2diabetesgenetics.org/.

METHODS

Methods, including statements of data availability and any associated
accession codes and references, are available in the online version of
the paper.

Note: Any Supplementary Information and Source Data files are available in the
online version of the paper.

ACKNOWLEDGMENTS

The authors thank the subjects of the Icelandic deCODE study and the Iranian
study for their participation. We also thank the staff at deCODE Genetics core
facilities and all our colleagues for their contributions to this work. This research
project has been supported by grant no. 121 NRCI Research Project and with the
support of the National Research Council of the Islamic Republic of Iran.

AUTHOR CONTRIBUTIONS

E.VIL, VS, PS,HH., UT, D.EG. and K.S. designed the study and interpreted

the results. E.V.I. and D.EG. performed statistical analysis. M.S.D., G.T,, S.S.,
A.B.H., G.S., R. Bjarnason, A.V.T., R. Benediktsson, G.E., O.S., 1.O., S.Z. and FA.
performed recruitment and phenotyping. The manuscript was drafted by E.V.L.,
V.S., D.EG. and K.S. All authors contributed to the final version of the manuscript.

COMPETING FINANCIAL INTERESTS
The authors declare competing financial interests: details are available in the online
version of the paper.

Reprints and permissions information is available online at http://www.nature.com/
reprints/index.html. Publisher’s note: Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

1. Scott, R.A. et al. Large-scale association analyses identify new loci influencing
glycemic traits and provide insight into the underlying biological pathways. Nat.
Genet. 44, 991-1005 (2012).

2. Morris, A.P. et al. Large-scale association analysis provides insights into the genetic
architecture and pathophysiology of type 2 diabetes. Nat. Genet. 44, 981-990 (2012).

3. Mahajan, A. et al. Genome-wide trans-ancestry meta-analysis provides insight into
the genetic architecture of type 2 diabetes susceptibility. Nat. Genet. 46, 234-244
(2014).

4. Manning, A.K. et al. A genome-wide approach accounting for body mass index
identifies genetic variants influencing fasting glycemic traits and insulin resistance.
Nat. Genet. 44, 659-669 (2012).

ADVANCE ONLINE PUBLICATION NATURE GENETICS


http://www.type2diabetesgenetics.org/
http://dx.doi.org/10.1038/ng.3928
http://dx.doi.org/10.1038/ng.3928
http://dx.doi.org/10.1038/ng.3928
http://dx.doi.org/10.1038/ng.3928
http://dx.doi.org/10.1038/ng.3928
http://www.nature.com/reprints/index.html
http://www.nature.com/reprints/index.html

© 2017 Nature America, Inc., part of Springer Nature. All rights reserved.

1

o

11.

12.

13.

14.

Voight, B.F. et al. Twelve type 2 diabetes susceptibility loci identified through large-
scale association analysis. Nat. Genet. 42, 579-589 (2010).

Gaulton, K.J. et al. Genetic fine mapping and genomic annotation defines causal
mechanisms at type 2 diabetes susceptibility loci. Nat. Genet. 47, 1415-1425 (2015).
Rénnegard, L. & Valdar, W. Recent developments in statistical methods for detecting
genetic loci affecting phenotypic variability. BMC Genet. 13, 63 (2012).

Wei, W.-H. et al. Major histocompatibility complex harbors widespread genotypic
variability of non-additive risk of rheumatoid arthritis including epistasis. Sci. Rep.
6, 25014 (2016).

Yang, J. et al. FTO genotype is associated with phenotypic variability of body mass
index. Nature 490, 267-272 (2012).

. Topless, R.K. et al. Association of SLC2A9 genotype with phenotypic variability of

serum urate in pre-menopausal women. Front. Genet. 6, 313 (2015).

Paré, G., Cook, N.R., Ridker, P.M. & Chasman, D.I. On the use of variance per
genotype as a tool to identify quantitative trait interaction effects: a report from
the Women’s Genome Health Study. PLoS Genet. 6, e1000981 (2010).

Perry, G.M.L. et al. Sex modifies genetic effects on residual variance in urinary
calcium excretion in rat (Rattus norvegicus). Genetics 191, 1003-1013 (2012).
Mackay, T.F. & Lyman, R.F. Drosophila bristles and the nature of quantitative genetic
variation. Phil. Trans. R. Soc. Lond. B 360, 1513-1527 (2005).

Shen, X., Pettersson, M., Ronnegard, L. & Carlborg, O. Inheritance beyond plain
heritability: variance-controlling genes in Arabidopsisthaliana. PLoS Genet. 8,
1002839 (2012).

15.

16.

17.

18.

19.

N
—

22.

23.

LETTERS

Steinthorsdottir, V. et al. Identification of low-frequency and rare sequence variants
associated with elevated or reduced risk of type 2 diabetes. Nat. Genet. 46,
294-298 (2014).

Grant, S.F. et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk
of type 2 diabetes. Nat. Genet. 38, 320-323 (2006).

Perry, J.R. et al. Stratifying type 2 diabetes cases by BMI identifies genetic risk
variants in LAMAI and enrichment for risk variants in lean compared to obese
cases. PLoS Genet. 8, e1002741 (2012).

Cauchi, S. et al. The genetic susceptibility to type 2 diabetes may be modulated
by obesity status: implications for association studies. BMC Med. Genet. 9, 45
(2008).

Azizi, F. et al. Prevention of non-communicable disease in a population in nutrition
transition: Tehran Lipid and Glucose Study phase II. Trials 10, 5 (2009).

. Soranzo, N. et al. Common variants at 10 genomic loci influence hemoglobin Ai¢

levels via glycemic and nonglycemic pathways. Diabetes 59, 3229-3239

(2010).

. Falconer, D.S. & Mackay, T.F.C. in Introduction to Quantitative Genetics 4th edn,

Ch. 10 (Pearson, 1996).

Dupuis, J. et al. New genetic loci implicated in fasting glucose homeostasis and
their impact on type 2 diabetes risk. Nat. Genet. 42, 105-116 (2010).

Mitchell, R.K. et al. Selective disruption of Tcf7/2 in the pancreatic B cell impairs
secretory function and lowers B cell mass. Hum. Mol. Genet. 24, 1390-1399
(2015).

NATURE GENETICS ADVANCE ONLINE PUBLICATION



© 2017 Nature America, Inc., part of Springer Nature. All rights reserved.

ONLINE METHODS

Study subjects. Iceland. Measurements of glucose levels were available
for a total of 117,548 Icelanders genotyped using Illumina chips. All study
participants provided informed consent, and the study was approved by
the Data Protection Commission of Iceland and the Icelandic National
Bioethics Committee.

Iran. The Iranian subjects are part of the ongoing Tehran Lipid and Glucose
Study'?, including 10,437 Iranians with 44,470 fasting glucose measurements
genotyped using Illumina chips. All study participants provided informed
consent. The study has been approved by the National Research Council of the
Islamic Republic of Iran (no. 121) and has been performed with the approval
of the Human Research Review Committee of the Endocrine Research Center,
Shahid Beheshti University (M.C.).

SNP selection. The 36 fasting-glucose-associated variants were identified
in a genome-wide association meta-analysis of up to 133,010 individuals of
European ancestry without diabetes, including individuals genotyped using
the Metabochip!.

Whole-genome sequencing. The process used for whole-genome sequencing
of the 8,453 Icelanders and the subsequent imputation have been described
in a recent publication?.

Association testing. Mean effect. Both fasting and non-fasting glucose
measurements were transformed to a standard normal distribution using a
rank-based inverse-normal transformation within each sex and each source
separately and adjusted for age at measurement using a generalized additive
model?>. For each SNP, a classical linear regression, using the genotype as an
additive covariate and mean glucose levels per subject as a response, was fit
to test for association.

Between-subject variance effect. For each SNP, we fit a normal model where
the mean glucose level per subject was regressed against the genotype and
the between-subject variance was assumed to change multiplicatively with
the genotype so that for non-carriers, heterozygotes and homozygotes the
between-subject variance was assumed to be 6%, 0s0? and A0, respectively
(Supplementary Note).

Within-subject variance effect. For each SNP, we fit a normal model
where glucose level measurements were regressed against the genotype and
the within-subject variance was assumed to change multiplicatively with
the genotype so that for non-carriers, heterozygotes and homozygotes the
within-subject variance was assumed to be 62, oqys0> and tstcz, respectively
(Supplementary Note).

Subjects in the data sets were related, causing the y? test statistic to have
mean >1 and median >0.675. We used a subset of 640,250 common SNPs to
estimate the inflation factor 2 and computed all P values by dividing the corre-
sponding y? values by A to adjust for both relatedness and potential population
stratification?. For the fasting glucose data set (I), A= 1.14, and A= 1.21 when
estimating between-subject and within-subject variance effects, respectively.

BMI interaction effect. For each SNP, we fit an interaction regression model,
using the genotype, BMI and the interaction term between the genotype and
BMI as covariates and mean fasting glucose levels as the response. Both glu-
cose levels and BMI measurements were transformed to a standard normal
distribution using a rank-based inverse-normal transformation within each
sex and each source separately and adjusted for age at measurement using a
generalized additive model?>.

Thresholds for significance. In the set of 36 variants, significance thresholds for
between-subject and within-subject variance effect were set to control the false dis-
covery rate at 5% using standard Bonferroni correction (P < 0.05/36 = 0.0014).

Trend analysis. We assessed the relationship between the effects of sequence
variants on mean and variance effects on glucose levels and their effect on T2D
(log(OR)) using the following models:

A. T2D effect versus glucose mean effect: log(OR) =y, + &

B. T2D effect versus glucose between-subject variance effect: log(OR) =
yolog(ogs) + &

C. T2D effect versus glucose mean and between-subject variance effect:
log(OR) =y B + y,log(as) + &

D. T2D effect versus glucose mean effect, between-subject variance effect
and the interaction between glucose mean and between-subject variance
effect: log(OR) = y18 + yylog(oms) + y3(B x log(ogs)) + &

E. T2D effect versus glucose within-subject variance effect: log(OR) =
yalog(onys) + &

E. T2D effect versus glucose mean and within-subject variance effect:
log(OR) = y1 B + y4log(ans) + &

G. T2D effect versus glucose mean, between-subject variance and within-
subject variance effect: log(OR) = y1 8 + y,log(ogs) + ygog(onys) + €

where f3 is the glucose mean effect, oipg is the between-subject variance
effect and oty is the within-subject variance effect. All models were fitted
with a simple weighted linear regression where each variant was weighted
by f(1 - f), where fis the minor allele frequency of the variant, such that
rare variants have less weight in the computation than common variants.
The estimates and measures of goodness of fit are given in Supplementary
Table 6.

Genetic risk scores. GRSs were constructed for both fasting glucose and
HbAIc levels by combining the effect allele counts for the selected variants
weighted by either the estimated mean effect or the between-subject variance
effect of each allele on the trait.

Heritability. The correlation between close relative pairs is usually used to
estimate heritability?!. To assess how much variants effecting between-subject
variance can contribute to heritability estimates, for each SNP, we estimated
the covariance between siblings having the same genotype. Then, we per-
formed a weighted linear regression between the estimated covariance and
the genotype to assess the covariance trend. We weighted by the number of
siblings having the genotype divided by the squared phenotypic variance given
the genotype (Supplementary Note). This was repeated for parent-offspring
pairs. The correlation between relatives is the ratio of their covariances and
the geometric mean of their phenotypic variances. The correlation trend was
therefore computed as the ratio of the covariance trend and variance trend
(Supplementary Note).
A Life Sciences Reporting Summary for this paper is available.

Code availability. The code used to detect between-subject and within-subject
variance effects is available as Supplementary Code.

Data availability. The authors declare that the data supporting the findings
of this study are available within the article, its supplementary information
files and upon request.
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Life Sciences Reporting Summary

Nature Research wishes to improve the reproducibility of the work we publish. This form is published with all life science papers and is intended to
promote consistency and transparency in reporting. All life sciences submissions use this form; while some list items might not apply to an individual
manuscript, all fields must be completed for clarity.

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research policies,
including our data availability policy, see Authors & Referees and the Editorial Policy Checklist.

» Experimental design

1. Sample size

Describe how sample size was determined. The sample size was determined by how many glucose measurements was
available to us from the three laboratories in Iceland.

2. Data exclusions
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Describe any data exclusions. Data was excluded for subjects under 18 years old.
3. Replication

Describe whether the experimental findings were reliably reproduced. We replicated our findings in an Iranian dataset.
4. Randomization

Describe how samples/organisms/participants were allocated into NA
experimental groups.

5. Blinding

Describe whether the investigators were blinded to group allocation NA
during data collection and/or analysis.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6. Statistical parameters
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or the Methods
section if additional space is needed).

n/a | Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample
was measured repeatedly.

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons
The test results (e.g. p values) given as exact values whenever possible and with confidence intervals noted

A summary of the descriptive statistics, including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)
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XX XX X [ O

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

» Software

Policy information about availability of computer code
7. Software

Describe the software used to analyze the data in this study. We used R to analyze the data and produce figures along with custom
code.
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For all studies, we encourage code deposition in a community repository (e.g. GitHub). Authors must make computer code available to editors and reviewers upon
request. The Nature Methods guidance for providing algorithms and software for publication may be useful for any submission.

» Materials and reagents

Policy information about availability of materials
8. Materials availability

Indicate whether there are restrictions on availability of unique No unique materials were used.
materials or if these materials are only available for distribution by a
for-profit company.

9. Antibodies

Describe the antibodies used and how they were validated for use in  No antibodies were used.
the system under study (i.e. assay and species).

10. Eukaryotic cell lines

a. State the source of each eukaryotic cell line used. No eukaryotic cell line was used.
b. Describe the method of cell line authentication used. No eukaryotic cell line was used.
c. Report whether the cell lines were tested for mycoplasma No eukaryotic cell line was used.

contamination.
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d. If any of the cell lines used in the paper are listed in the database No commonly misidentified cell lines were used.
of commonly misidentified cell lines maintained by ICLAC,
provide a scientific rationale for their use.

» Animals and human research participants

Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals

Provide details on animals and/or animal-derived materials used in ~ No animals were used.
the study.
Policy information about studies involving human research participants

12. Description of human research participants

Describe the covariate-relevant population characteristics of the See Study subjects chapter in Methods
human research participants.
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