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ABSTRACT Genetic association studies in admixed populations are under-represented in the genomics literature, with a
key concern for researchers being the adequate control of spurious associations due to population structure. Linear mixed
models (LMMs) are well suited for genome-wide association studies (GWAS) because they account for both population
stratification and cryptic relatedness and achieve increased statistical power by jointly modelling all genotyped markers.
Additionally, Bayesian LMMs allow for more flexible assumptions about the underlying distribution of genetic effects,
and can concurrently estimate the proportion of phenotypic variance explained by genetic markers. Using three recently
published Bayesian LMMs Bayes R, BSLMM, and BOLT-LMM, we investigate an existing data set on eye (n = 625) and
skin (n = 684) colour from Cape Verde: an island nation off West Africa home to individuals with a broad range of
phenotypic values for eye and skin colour due to the mix of West African and European ancestry. We use simulations to
demonstrate the utility of Bayesian LMMs for mapping loci and studying the genetic architecture of quantitative traits in
admixed populations. The Bayesian LMMs provide evidence for two new pigmentation loci: one for eye colour (AHRR)
and one for skin colour (DDB1).
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Introduction

Variation in eye and skin colour may be particularly apparent in admixed populations, especially1

those formed from ancestral populations with large differences in these phenotypes. Pigmentation2

is a diverse phenotype in humans, with most of the variation attributable to differences in the3

amount, type, and distribution of melanin: a broad term for a set of biopolymers synthesised by4

melanocytes (Jablonski and Chaplin 2000; Parra 2007). The genetic basis for human pigmentation5

diversity is yet to be fully understood, but evidence suggests that natural selection shaped the6

modern distribution of human pigmentation to be a balance between favouring dark skin near the7

equator to protect from folate deficiency and sunburn, and lighter skin at higher latitudes to allow8

for optimal vitamin D synthesis (Parra 2007). Genome-wide association studies (GWAS) provide an9

avenue to further understand the genetic mechanisms underlying this variation. However, GWAS10

have been predominantly performed in European populations, with other ancestral groups and11

admixed populations under-represented (Need and Goldstein 2009; Bustamante et al. 2011). Aside12

from data availability, one key concern for GWAS in admixed populations is the control of spurious13

associations due to population structure. The large GWAS data sets currently being generated by the14

genomics community are likely to span multiple ancestral groups, and thus methods that can control15

for spurious associations in such data sets are of great interest.16

There are many methods for correcting for population structure when performing GWAS, with17

genomic control (Devlin and Roeder 1999), regression control (Wang et al. 2005; Setakis et al. 2006),18

and principal component (PC) adjustment (Zhang et al. 2003; Price et al. 2006) being the most common19

approaches. These methods perform well for populations with simple population structure but may20

perform poorly when the the relatedness structure is more complex or in the presence of cryptic21

relatedness (Zhao et al. 2007). Linear mixed models (LMMs) have been shown to be effective at22

controlling for population structure and cryptic relatedness in GWAS; however, they often only23

consider individual SNPs in isolation (Gianola et al. 2009; Vilhjálmsson and Nordborg 2013; Yang24

et al. 2014; Loh et al. 2015b). LMMs that jointly model marker effects may further increase power in25

structured populations by capturing the effect of the causal variant using multiple markers. Segura26

et al. (2012) proposed a multi-locus LMM approach that uses a stepwise selection algorithm to27
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jointly capture weak effects, while Rakitsch et al. (2013) combined the Lasso (Tibshirani 1996) with28

the LMM to provide an efficient multi-locus method. Both methods observed higher power and29

a lower false discovery rate (FDR) than single-locus approaches for mapping. Extensions of the30

standard LMM, which assumes a single normal distribution on genetic effects, have been made31

from a Bayesian perspective to include alternative distributions on the genetic effects, and have32

been applied extensively in the plant and animal breeding literature (Meuwissen et al. 2001; Habier33

et al. 2011; Erbe et al. 2012; Zhou et al. 2013). Bayesian LMMs (BLMMs) are capable of modelling all34

markers jointly and have been shown to perform better in prediction than the standard LMM when35

the genetic architecture of a trait deviates from the infinitesimal model (Goddard et al. 2010; Moser36

et al. 2015). Recent implementations of BLMMs are capable of performing genome-wide analyses on37

a large number of individuals (Zhou et al. 2013; Moser et al. 2015).38

We demonstrate the utility of BLMMs for gene discovery by applying them to eye and skin colour39

phenotypes for individuals from Cape Verde: an island nation off West Africa home to individuals40

with large variation in eye and skin colour due to the mix of West African and European ancestry.41

Beleza et al. (2013) performed GWAS on the Cape Verde data set, using principal component adjust-42

ment to correct for population structure (using the first 3 PCs). In addition, Beleza et al. (2013) carried43

out conditional analyses for the most significantly associated single nucleotide polymorphisms44

(SNPs), linear regression adjusting for African ancestry and island of birth, and a mixed effect model45

implemented in the EMMAX software (Kang et al. 2010). All three methods used in Beleza et al. (2013)46

pointed to the same set of genetic loci found in the original PC adjusted association analysis.47

In this work, we apply three recently published BLMM methods: Bayes R (Erbe et al. 2012; Moser48

et al. 2015), Bayesian sparse LMM (BSLMM) (Zhou et al. 2013) and BOLT-LMM (Loh et al. 2015b) to49

the unique Cape Verde data set. All three methods can perform gene discovery, variance component50

estimation, and prediction simultaneously, and assume different priors on the marker effects. This51

allows for a variation of the assumptions of the infinitesimal model, which is unlikely to hold for52

the eye and skin colour phenotypes present. We explore the potential of BLMM approaches to yield53

improved power to detect associations in GWAS, particularly in cases where there is substantial54

confounding due to population structure or cryptic relatedness. Using real genotypes from the Cape55
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Verde data set, we simulate both moderate and highly heritable phenotypes with genetic architectures56

that contain both small and large effects to demonstrate how BLMM methods can be adapted to57

identifying new quantitative trait loci (QTL) from GWAS. We apply these methods to the Cape Verde58

data set and identify two additional loci that likely contribute to variation in eye and skin colour.59

Materials and Methods60

Methods overview61

The BLMM methods used is this study posses different implementations of a similar underlying62

model i.e., the LMM with a finite mixture of normal distributions used to model the underlying63

distribution of marker effects. Bayes R (Erbe et al. 2012; Moser et al. 2015) and BSLMM (Zhou et al.64

2013) estimate the effects of all markers jointly as random effects, and use Markov chain Monte Carlo65

(MCMC) to obtain approximate samples from their posterior distribution given the observed data.66

Methods that use multiple markers to jointly capture the causal QTL effect often lead to higher power67

and a lower false discovery rate than single-marker approaches (Segura et al. 2012; Rakitsch et al.68

2013; Moser et al. 2015). Alternatively, BOLT-LMM (Loh et al. 2015b) uses a mixture of two Gaussian69

distributions to model the marker effects and uses a fast variational approximation to compute70

approximate phenotypic residuals, with each single marker then evaluated for association with71

the residuals via a retrospective score statistic. This method is more powerful than standard single72

marker regression (as are other similar LMM methods) and provides a bridge between Bayesian73

modelling and the frequentist association testing framework (Loh et al. 2015b). It is thus a good74

candidate for comparison with the fully Bayesian methods. Furthermore, BOLT-LMM differs from75

Bayes R and BSLMM in that associated evidence is assessed for each marker using a p-value, whereas76

Bayes R and BSLMM summarise the evidence of association via the posterior inclusion probability,77

which is the probability that the marker is associated with the trait given the data. For multiple-78

regression models (Bayes R and BSLMM), markers at a locus jointly capture the QTL effect and thus79

the association signal is best evaluated on genomic windows (1 Mb for example) (Fan et al. 2011;80

Fernando 2014). We utitlise a window based method for discovering QTL that rests on the idea that81

the true associations are those that contribute the most to the total genetic variation irrespective of82
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whether some proportion of this genetic variation is potentially due to confounding. We validate83

these methodological concepts through simulation and via application to the Cape Verde data set.84

Cape Verde data set85

The Cape Verde data set (Beleza et al. 2013) consists of 625 individuals with high-quality digital eye86

photographs and 684 individuals with skin reflectance measurements and genotypes. For eye colour,87

Beleza et al. (2013) developed a new measure based on automated analysis of digital photographs88

that captures the full range of African-European eye colour variation. For skin colour, reflectance89

spectroscopy was used on the upper inner arm to calculate a modified melanin index. Genotype90

quality control was performed as per Beleza et al. (2013), but with a minor allele frequency (MAF)91

threshold of 0.02 resulting in 858,510 autosomal SNPs. Phenotypes were centred and scaled (by their92

standard deviation) before regressing the phenotypes on sex and taking the residuals as the new93

phenotype. The distribution of the eye and skin phenotypes (standardised to mean 0 and variance 1)94

showed deviation from normality (Figure S1). Thus, the continuous phenotypes for eye and skin95

colour were transformed using a rank based inverse normal transformation (Blom 1958).96

To explore the level of admixture in the Cape Verde data set, we visualised the first two pro-97

jected principal components ((implemented in the software of Chen et al. (2016))) relative to the98

HapMap 3 (Consortium et al. 2010) European and African ancestry cohorts (Figure S2). Furthermore,99

to investigate the relatedness of individuals in these data we summarised the diagonals and off100

diagonals of the genetic relationship matrix, which was estimated using genome-wide marker data101

in the GCTA software (Yang et al. 2011). For comparison, we also estimated the genetic relationship102

matrix of a random subset of 685 individuals from a homogeneous European population from the103

Atherosclerosis Risk in Communities (ARIC) Study (dbGaP accession number phs000090.v1.p1). A104

summary of the diagonals and off diagonals of the genetic relationship matrix for both populations105

shows much greater variance in the Cape Verde population than the European population (Figure S3106

and Table S1). The maximum value of the genetic relationship matrix off diagonals of the Cape Verde107

population is approximately 0.25 suggesting that the population is not made up of solely unrelated108

individuals (Figure S3).109
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Model statement110

For each of the methods, the following linear model is used to relate phenotypes y to genotypes X111

y = 1nµ + Xβ + ε, (1)

where y is a vector of phenotype values from n individuals, X is an n × m matrix of genotypes112

measured for each individual, β is a vector of m genetic effects to be estimated, 1n is a vector of size113

n of ones, µ represents the common phenotypic mean, and ε is a vector of size n from distribution114

MVN(0, σ2
e I), where I is the identity matrix. The elements of X are 0, 1, 2 encoded genotypes and115

represent the counts of the reference allele at each of m markers. Whether the columns of X are centred116

and/or standardised depends on the method used, with Bayes R mean standardised and scaled to117

have variance 1, BSLMM mean centred only, and BOLT-LMM mean centred and standardised to118

have common variance (Loh et al. 2015b). Standardising the columns of X corresponds to making119

an assumption that rarer variants have larger effects than common variants (Zhou et al. 2013). To120

provide a baseline for comparison with the results generated by the BLMMs, associations between121

each SNP and the phenotypes (adjusted for sex) were assessed using the marginal regression model122

(i.e., standard GWAS). Similar to Beleza et al. (2013), the first 10 PCs were fitted as covariates to adjust123

for population stratification with the analyses performed using the PLINK 2 software (Chang et al.124

2015).125

Bayesian linear mixed models126

Bayes R Erbe et al. (2012) were the first to present the Bayes R method, which uses a Bayesian127

hierarchical linear random regression model and poses the following four component mixture prior128

for each SNP effect in model (1)129

β j ∼ π1N(0, 0× σ2
g) + π2N(0, 10−4 × σ2

g) + π3N(0, 10−3 × σ2
g) + π4N(0, 10−2 × σ2

g), (2)

where j ∈ (1, . . . , m) is an index over the SNPs, σ2
g is the additive genetic variance explained by130

SNPs and π1 is the proportion of SNPs that have no effect. In practice, the true distribution of131
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genetic effects is not known and thus one of the strengths of this prior is its flexibility to approximate132

various underlying distributions. Depending on prior knowledge or cross-validation, the model can133

accommodate fewer or more than four components and larger variance classes (i.e., changing the134

multiplier of σ2
g for any of the mixture components 10−2 → 10−1 for instance). The model fits all135

SNPs simultaneously, which accounts for linkage disequilibrium (LD) between SNPs, and increases136

power to detect associations (as do other methods) (Erbe et al. 2012; Moser et al. 2015). The model137

also induces sparsity via the first component of the mixture, thus fitting with the hypothesis that not138

all markers are in LD with a causal variant. Moser et al. (2015) incorporated a hyper-parameter for139

the variance explained by genome wide SNPs, σ2
g , which allows for the proportion of phenotypic140

variance explained by genotyped SNPs (PVE) to be estimated from the data, rather than fixing it141

prior to analysis as in Erbe et al. (2012).142

BSLMM BSLMM (Zhou et al. 2013) summarises the two ends of the spectrum with respect to the143

assumption of the distribution of genetic effects, where the LMM assumes every variant has an144

effect, and the sparse BLMM assumes that a very small proportion of variants have an effect. Zhou145

et al. (2013) highlight that the relative performance of BLMMs would vary depending on the true146

underlying genetic architecture of the phenotype. BSLMM is a hybrid approach that includes the147

LMM and sparse regression model as special cases and is capable of learning the genetic architecture148

from the data. Additionally, BSLMM makes estimation of this type tractable for reasonably large149

data sets using linear algebra tricks for LMMs. Bayes R and BSLMM report the posterior probability150

that a polymorphic site affects the trait conditional on the data, which is a very natural statistic to151

interpret in the context of QTL identification. For these methods, the posterior inclusion probability152

(PIP) summarises the number of times a locus was present in the model.153

Zhou et al. (2013) assume that β j from equation (1) comes from a mixture of two normal distribu-

tions

β j ∼ πN(0, (σ2
a + σ2

b )/(mτ)) + (1− π)N(0, σ2
b /(mτ));

where setting π = 0 yields the LMM, and setting σb = 0 yields the sparse regression model in154

which a subset of SNPs is assumed to have no effect (non-infinitesimal model), m is the number155

of genetic markers, and τ is the reciprocal of the residual variance. This model can be interpreted156

Inference on the genetic basis of eye and skin colour 7



as all variants have at least a small effect, which are normally distributed with variance σ2
b /(mτ),157

and some proportion π of variants that have an additional effect that is normally distributed with158

variance σ2
a /(mτ).159

BOLT-LMM BOLT-LMM (Loh et al. 2015b) relaxes the assumptions of the infinitesimal model by using160

a mixture of two Gaussian distributions as the prior on β j in equation (1), giving the model greater161

flexibility to accommodate SNPs of large effect while maintaining effective modelling of genome-162

wide effects (for example, ancestry). The non-infinitesimal component amounts to a generalisation of163

the standard mixed model, which places a spike-and-slab mixture of two Gaussians prior on SNP164

effect sizes i.e.,165

β j ∼ πN(0, σ2
1 ) + (1− π)N(0, σ2

2 ),

where π is the mixing proportion and σ2
1 and σ2

2 the variances of the two Gaussians. This assumption166

gives the model greater flexibility to accommodate SNPs of large effect while modelling genome167

wide effects. Loh et al. (2015b) note that it is important that the spike component have non-zero168

variance so as to capture genome-wide ancestry or relatedness effects. When testing SNPs for169

association, effects attributed to the random component, for all other chromosomes except that of170

the SNP being tested (also referred to as a leave one chromosome out (Yang et al. 2014) (LOCO)171

approach), are conditioned out from the phenotype and the final association is performed on the172

residuals of this conditioning step, which protects against confounding (Loh et al. 2015b). BOLT-173

LMM uses a variational approximation to fit Bayesian linear regressions for the Gaussian mixture174

priors rather than MCMC as in Bayes R and BSLMM. BOLT-LMM uses cross-validation to estimate175

hyperparameters for the variational algorithm, rather than relying on variational approximate log-176

likelihoods, because it was found to be more robust to slackness of the variational approximation177

caused by linkage disequilibrium (the variational approximation is a good approximation when178

the SNPs X are independent (Carbonetto and Stephens 2012)). BOLT-LMM could also be viewed179

as a hybrid methodology, that applies a retrospective hypothesis test for association of the left out180

SNPs with the residual phenotype. This is a key point of difference from Bayes R and BSLMM which181

report a PIP for each SNP, whereas BOLT-LMM retains the classical hypothesis test approach. Loh182

et al. (2015b) simulated phenotypes that included an ancestry effect and found that the BOLT-LMM183
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chi-squared statistics were well calibrated in terms of λGC and the mixed-model analysis achieved184

statistically significant gains in power over principal component analysis (PCA) across simulations.185

The genomic inflation factor λGC is defined as the ratio of the median of the empirically observed186

distribution of the association test statistic to the expected median (from the χ2
1 distribution) (Devlin187

and Roeder 1999).188

Implementation of BLMM methodology189

For Bayes R (implemented in the software provided in Moser et al. (2015)), we assumed the prior in190

Eq. (2) with a 5% largest class. Additional prior assumptions were made as per the default of the191

program provided in Moser et al. (2015). The 5% variance class was used because previous estimates192

of variance explained for large effect loci from eye and skin colour were of this order, as reported in193

Beleza et al. (2013). To monitor convergence of the MCMC chains, we ran two chains with 100,000194

iterations and 20,000 burn iterations and another for 200,000 iterations with 40,000 burn in iterations,195

which included permuting the SNP order to improve mixing, and a thinning rate of one in every ten196

iterations. We compared the results from the two chains, and investigated the agreement between197

the estimates of the PVE and the rank of the top regions for both eye and skin colour. For BSLMM,198

we similarly ran a short and long chain, one with 1 million iterations with 100,000 burn in (program199

default) and a longer chain of 2 million iterations with 100,000 burn in. When implementing the200

BOLT-LMM software, an LD score table is required. The LD score table was generated for the Cape201

Verde data set using the available software (Bulik-Sullivan et al. 2015). This table was subsequently202

used when running the BOLT-LMM program.203

Association inference from BLMMs204

To make inference about associated loci from Bayes R we follow the work of Fernando and Garrick205

(2013) and Fernando (2014), where the strength of association is tested for every non-overlapping 1206

Mb window. Fernando and Garrick (2013) outline that because BLMMs fit all markers simultaneously,207

markers that are in high LD are likely to jointly capture the association signal rather than attribute208

the signal to any one SNP within a locus. Therefore, inference from these methods is best made on209

genomic windows rather than on individual markers. To construct a posterior distribution for the210

proportion of genetic variance explained by markers in a genomic region we divide the genome211

Inference on the genetic basis of eye and skin colour 9



into 1 Mb non-overlapping regions. For each iteration t of the MCMC chain we calculate for each212

window w ∈ (1, . . . , W) the genetic variance σ
2(t)
g(w)

= Var(Xwβt
w), where Xw in the matrix of SNPs in213

the window and βt
w the estimated effects for the SNPs in the window. Additionally, for each iteration214

we calculate the total genetic variance as σ
2(t)
g = Var(Xβt). The ratio between the window variance215

and total genetic variance for each iteration t216

rt
w =

σ
2(t)
g(w)

σ
2(t)
g

defines the proportion of the total genetic variance explained by the window. We form the posterior217

distribution for rt
w by calculating this value for each of t iterations in the MCMC chain. We compute218

the posterior probability that a window w explains more than 1% (for example) of the total genetic219

variation by calculating the ratio of the number of iterations that rt
w > 0.01 divided by the total220

number of MCMC iterations T, which is define to be the window posterior probability of association221

(WPPA) Fernando and Garrick (2013). It can be shown, that using a threshold of WPPA = α to222

conclude that a locus is associated with the phenotype will result in controlling the proportion of223

false positives (PFP) to be less than 1− α (Zeng 2015; Fernando and Garrick 2013). The posterior224

probabilities contributing to these calculations require that the priors placed on the unknown variables225

in the model are identical to those used to generate these variables (Fernando and Garrick 2013).226

Unfortunately this is unlikely to be the case, but as data size increases the posterior distributions will227

become increasingly independent of the priors used. Controlling the PFP has the added benefits of228

it being independent of the number of tests performed and does not require independence of tests229

(Fernando et al. 2004). Bayes R allows for the non-zero SNP effects for each iteration to be saved to230

file, which facilitates these calculations post analysis.231

BSLMM does not report the genetic effect from each MCMC iteration and thus we cannot imple-232

ment a similar method of inference to that of Bayes R. However, Guan and Stephens (2011) suggest233

calculating the posterior expected number of SNPs in a window by summing the estimated PIPs for234

all genetic variants in that region (denoted WPIP). We use this measure to summarise the results235

from BSLMM at the levels of regions and compare with the inference from the WPPA.236
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Loci associated with ancestry237

To examine the degree of allelic differentiation across the ancestral gradient of SNPs in the Cape238

Verde data set, we used the method presented in Galinsky et al. (2016), which generalises a previous239

method for detecting allele frequency differences between subpopulations to populations with240

fractional ancestry. The method uses the SNP weights from PCA to calculate a statistic that measures241

the differentiation of each SNP along the ancestral gradient. Galinsky et al. (2016) outline that the242

statistic is calculated as the dot product Dj = yjvk, where vk is the kth eigenvector of the normalised243

genotype matrix and yj is the jth normalised SNP. As per Galinsky et al. (2016), the set of D2 statistics244

for all of p SNPs has a χ2
1 distribution after appropriate rescaling, which allows for hypothesis testing245

for each SNP to be performed. Inference can then be made about which loci are highly differentiated246

along the ancestral gradient. It is proposed that if the top associations for eye and skin colour do not247

lie in the set of lowest p-values after multiple testing correction, then this is further evidence that248

the set of loci detected is less likely to be spurious due to structure. Additionally, we use the set of249

statistics to rank the set of genotype SNPs for use in simulating phenotypes that are correlated with250

ancestry. For highly associated SNPs (eye and skin colour) we only report D2 statistic p-values for251

PC one as it captures most of the ancestral differences (Figure S2). Estimation of the first 10 PCs of252

the genotype matrix was performed using the flashpca software (Abraham and Inouye 2014).253

Simulation study254

The Cape Verde data provide an opportunity to understand the performance of the BLMM methods255

relative to standard methods in an admixed sample. Specifically, we wanted to assess how BLMMs256

perform in terms of gene discovery and PVE estimation, under simulated genetic architectures that257

are similar to those hypothesised for eye and skin colour. We used the simulations to infer the258

posterior inclusion probability that allows for confidence in making statements about whether a 1259

Mb window around the causal variant is associated with the trait conditional on the data. Each of the260

simulation scenarios used the real genotype data (n = 685) from Cape Verde.261

Simulation One We developed four simulation scenarios: (1) 90% PVE with effects attributed to262

SNPs at random; (2) 90% PVE with effects assigned to SNPs that are associated with ancestry; (3)263

50% PVE with effects attributed to SNPs at random; and (4) 50% PVE with effects assigned to SNPs264
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that are associated with ancestry. A list of approximately 18,000 independent loci was generated for265

sampling using the PLINK 2 software and the independent pairwise option with an LD threshold of266

0.1. In Scenario One, fifty genetic effects were sampled from two normal distributions with five of267

the variants sampled such that they explained a total of 40% of the phenotypic variance. Another 45268

variants were sampled to explain 50% of the phenotypic variance and thus each phenotype had a269

PVE of 0.9. The high PVE was chosen to reflect the eye and skin phenotypes in the Cape Verde data270

set. These simulated phenotypes were designed to be similar (in expectation) to that of eye and skin271

colour in that there are a few large genetic effects along with many smaller effects. Fifty phenotypes272

were simulated with Bayes R, BSLMM, and BOLT-LMM run for each realisation. Bayes R was run273

with a 5% largest variance class to model the simulated loci of large effect. Additionally, a single274

SNP association analysis (analysed in PLINK 2) corrected for 10 principal components was run for275

gene discovery comparison and a PVE estimation benchmark was carried out using the widely used276

GREML approach (Yang et al. 2010) in the GCTA software (Yang et al. 2011).277

Scenario Two retained the same proportions of phenotypic variance for the randomly sampled five278

and 45 causal loci (and PVE of 0.9) but placed genetic effects on loci that were differentiated across the279

admixture gradient (as outlined in the "Loci associated with ancestry" section). It was hypothesised280

(and supported by results in Beleza et al. (2013)) that eye and skin colour are correlated with ancestry,281

therefore, in order to simulate these traits more realistically we generated 50 phenotypes by randomly282

selecting 50 loci that were associated with the first PC (implicitly assuming that PC one is a good283

proxy for ancestry as demonstrated in Figure S2). To generate the list of SNPs, we took the list of D2
284

statistics and subsetted it to those loci that had p-values less than 1× 10−2 but greater than 1× 10−3
285

(≈11,000 SNPs). This list includes SNPS that were differentiated across the ancestral gradient but286

were not the ‘most’ differentiated. This decision was made by investigating the D2 statistic p-values287

for the top loci found in Beleza et al. (2013), which showed that most of the top loci were differentiated288

but with p-values > 10−3. This list was further filtered by LD to independent loci using the PLINK289

clumping procedure. The final list of SNPs consisted of approximately 3,500 PC one associated SNPs.290

Again Bayes R (5% largest variance class), BSLMM, and BOLT-LMM were run for each realisation291

with a single SNP association analysis (run in PLINK) corrected for 10 principal components and292
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PVE estimation in the GCTA software completed for comparison. Simulation Scenarios Three and293

Four were a repeat of the first two but with the 45 small effect loci explaining 30% of the phenotypic294

variance, the five large effect loci 20%, and a PVE value of 0.5. For both of these simulations Bayes R295

was run with a 1% largest variance class as the causal loci explained less variance.296

Methods were assessed across simulation scenarios for their ability to identify genomic regions297

containing simulated causal SNPs. Two performance measures were used to summarise the results298

namely: the true positive rate (TPR) for detecting a 1 Mb window containing a simulated causal299

variant and the false discovery rate (FDR) for detecting a 1 Mb window containing a simulated causal300

variant. For the BOLT-LMM and PLINK association analyses, a 1 Mb window was deemed to be301

a true positive if it contained a SNP that passed genome-wide significance and was a member of302

the simulated windows that contained a causal SNP. For Bayes R and BSLMM, a 1 Mb window was303

deemed to be a true positive if it had a WPPA (of explaining greater than 1% of the genetic variance)304

or WPIP greater than a threshold α and was one of the simulated windows that contained a causal305

SNP. For each method, the TPR was calculated as the number of true positive regions / number of306

simulated regions containing a causal SNP. The false discovery rate was calculated as the (number307

of regions that passed the threshold - number of true positives) / number of regions that passed308

the threshold. These measures were summarised for each scenario for all methods with different α309

thresholds on WPPA and WPIP for Bayes R and BSLMM explored.310

Furthermore, we investigated the control of the proportion of false positives for varying thresholds311

on the Bayes R WPPA. To achieve this, for each α threshold on the WPPA in the set312

(0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95) we calculated the observed proportion of false positives313

across the 50 replicates for each simulation scenario. A region was declared a false positive if it314

passed the α WPPA threshold but did not contain a simulated causal variant.315

Simulation Two In the second simulation we focused on investigating the PVE for large effect loci316

and again summarised the ability of each method to estimate total PVE with an altered genetic317

architecture. This simulation investigated the hypothesis that confounding contributes less to loci318

that explain a substantial amount of the genetic variance. The sum of the contribution of only highly319

associated regions is but a portion of the total genetic variance because it ignores the contribution from320
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loci that may explain genetic variance but do not show strong evidence for association. Therefore, it is321

hypothesised that the sum of the estimated PVE for highly associated regions should be a reasonable322

lower bound to the total PVE for a trait and should be relatively free of confounding. We test this323

hypothesis with simulation in order to guide the conclusions made about the contribution to PVE for324

the top loci detected for eye and skin colour in the Cape Verde population.325

The four scenarios in Simulation Two, were a repeat of Simulation One in terms of PVE values326

and effect assignment to loci. However, for each of the four scenarios we place 1005 causal variants327

throughout the genome. For Scenario One, five variants were chosen at random from independent328

SNPs and were fixed such that they each explained 10% of the phenotypic variance (total of 50%).329

This was done to limit variability as random sampling could lead to a few loci explaining much less330

or much more than 50%. The other 1000 variant effects were sampled from a normal distribution, and331

on average explained a further 40% of the phenotypic variance. This number of small effect variants332

was chosen to alter the genetic architecture from Simulation One, and again avoid variability in the333

total PVE explained by these 1000 loci. Scenario Two was similar to one, except loci were sampled at334

random from the set of PC one associated SNPs. Scenarios Three and Four had the same structure335

as one and two except a total PVE of 0.5 was simulated with the top five loci having a PVE of 0.3.336

Estimates of the PVE attributed to large effect loci were calculated by summing the 2pqβ2/Var(y)337

where p is the MAF of the causal locus, β the regression coefficient and y the phenotype vector. For338

Bayes R and BSLMM the estimate of PVE was calculated by summing the effects in a 1 Mb region339

around the simulated causal locus as these methods often spread effects or attribute the whole effect340

to a SNP in very high LD with the causal variant.341

Data availability342

Tables S7 to S12 contain detailed results on detected loci for eye and skin colour for the Bayes R,343

BSLMM and BOLT-LMM methods and can be found in Supplemental File S2. All programs used in344

this analysis are freely available at the author’s websites. R code to process results is available on345

request from the corresponding author.346
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Results347

Simulation study348

Simulation One Bayes R and BSLMM performed substantially better (higher TPRs) than BOLT-LMM349

and single SNP analysis for more highly heritable traits and in the absence of confounding due to350

stratification (Scenarios One and Three, Figures 1 and S4), but persisted even in the presence of351

confounding (Scenario Two and Four, Figures 1 and S4). Thresholding on the WPPA controlled the352

proportion of false positives to be less than (1− α) but appeared to be too stringent with a WPPA353

threshold of 0.5 leading to a PFP between 0.05 and 0.1 across simulation scenarios (Figure S5). For354

each of the simulation scenarios an α threshold of 0.95 resulted in an approximate proportion of false355

positives of 1% and at 0.9 approximately 2%. These results suggest that a WPPA and WPIP threshold356

of 0.5 is reasonable for concluding that a region has evidence that it is associated with the eye and357

skin colour traits in these data. This conclusion rests on the assumption that pigmentation traits are358

moderately heritable and are driven by loci that are in part differentiated along the ancestral gradient359

in the Cape Verde population.360

For estimates of PVE (Figure S6), two general trends emerged. In the absence of confounding due361

to stratification (Scenarios One and Three), all four methods exhibited upward bias with regard to362

PVE estimation (more apparent in Scenario Three). However, in the presence of confounding due to363

stratification (Scenarios Two and Four), all four methods overestimated PVE, consistent with what364

was originally described for BOLT-LMM (Loh et al. 2015a). Second, PVE estimates from BOLT-LMM365

and GCTA showed much more variance than that of Bayes R or BSLMM. Taken together, the results366

of Simulation One suggest that applications of BLMM approaches in the Cape Verde population are367

most useful for gene discovery and identification of causal variants, as we describe below.368

Simulation Two Simulation Two again suggests that PVE estimation from BLMM/LMMs exhibit369

an upward bias (when simulated with genotypes from Cape Verde) with regard to PVE estimation370

especially in the presence of confounding due to stratification (Figure S7). Potential reasons for the371

upward bias from the BLMMs across simulations are the inclusion of many small effects, as there372

exists a non-zero probability that any one SNP can be included in the model, and thus given the373

small sample size the Bayesian methods include many small effects that cannot be set to 0 with374
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certainty. This is likely to reflect over-fitting given the large number of parameters relative to the375

sample size. This upward bias is hypothesised to be exacerbated when the effects are aligned with376

ancestry, as observed, due to markers capturing the population stratification. However, for these377

scenarios no individual non-causal SNP had a high inclusion probability or large effect across all378

iterations (i.e., posterior mean), and thus in each iteration there is a different set of null-effects that379

sum to a non-zero heritability. These conclusions also apply to results from Simulation One. For the380

five causal loci of large effect, the BLMMs have a small downward bias in the PVE when compared to381

estimates from PLINK (Figure S8). However, the simulation shows that summing the proportion of382

phenotypic variance for regions surrounding the causal variant achieves a reasonable lower bound383

for the true PVE for large effect loci and thus for the total PVE.384

Loci associated with eye and skin colour385

For Bayes R, the rank of the top loci and WPPA, distributions of the genetic variance for the top386

regions, the posterior means of the PVE and the number of loci in the largest variance class all387

remained stable for both eye and skin colour when the results from the longer chain were compared388

with the shorter chain (Figures S9, S10, S11, and S12 and Tables S2 and S3). For BSLMM, we saw a389

similar stability in the rank and WPIP of the top loci for eye and skin colour and the posterior mean of390

the PVE between the long and short chains (Figures S13 and S14 and Tables S4 and S5). We therefore391

treat the results from the longer chains as a representative sample from the target distribution for392

each of the parameters of interest. Results from the Bayes R model are based on the longer chain393

run (200,000 iterations with 40,000 burn in), which includes 16,000 iterations after thinning (1 in 10).394

Similarly for BSLMM, posterior estimates were generated from the longer chain of 2 M iterations395

with 200,000 elements from the longer chain after thinning.396

Eye colour In the original analysis of the Cape Verde dataset with a linear model and principal397

component correction, two loci for eye colour were identified, both on chromosome 15 and linked398

to the candidate genes SLC24A5, and HERC2/OCA2 with top SNPs rs2470102 and rs12913832399

respectively. The three BLMM methods identified both of these loci and, in addition, revealed400

evidence for a new gene dense locus on chromosome five (Figures 2 and S15 (A) and Table 1). Bayes401

R and BSLMM showed very strong evidence for association for the SLC24A5, and HERC2/OCA2402
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gene regions with a WPPA=1.0 and WPIP=1.0 for both loci. The chromosome five region showed403

a WPPA of 0.61 and WPIP of 0.55 suggesting moderate evidence for association, with BOLT-LMM404

reporting the rs7736 SNP within this region as being genome-wide significant (p-value=1.1× 10−8).405

Within the top regions, Bayes R and BSLMM reported large PIP values for the rs12913832 and406

rs1426654 SNPs (HERC2 and SLC24A5) (Table 1). The rs1426654 SNP has an LD R2 of 0.99 with407

the rs2470102 SNP reported as the top association in Beleza et al. (2013). Within the chromosome408

five locus, the rs7736 SNP showed smaller PIPs of 0.06 and 0.05 for the top SNP (Table 1). The409

results from Bayes R and BSLMM show that their are many variants contributing to the regional410

association signal on chromosome five with smaller PIPs spread across many SNPs (Figure S15 (A)411

and Table S7). Additionally, Bayes R and BSLMM show high PIPs for the SNP rs1635166 (0.67 and412

0.90 respectively) suggesting that for the HERC2 locus that there may be more than one causal SNP413

generating associations (Figure S15 (B)). The LD R2 of the rs1635166 SNP with rs12913832 is relatively414

small 0.25 further supporting this hypothesis (Table S6). BOLT-LMM reported λGC statistics of 0.99415

for the infinitesimal statistics and 0.99 for the non-infinitesimal statistics (Figure S16). The standard416

linear model analysis corrected for 10 PCs reported similar top loci to Beleza et al. (2013) (Figure 2 (D)).417

The standard linear model analysis reported rs7736 (5.7× 10−7) as the top SNP at the chromosome418

five locus.419

The degree of allelic differentiation across the ancestral gradient, summarised by the D2 statistics,420

for the most highly associated SNPs showed p-values that did not pass genome-wide significance421

suggesting that these SNPs are not markedly differentiated across the first principal component422

(Table 1). However, no SNP passed genome-wide significance for the allelic differentiation across the423

ancestral gradient analysis with the top SNP having an association p-value of 3.6× 10−6. This shows424

that the associated SNPs for eye colour are not the most differentiated across the ancestral gradient.425

Each of the three BLMM methods showed moderate evidence for an association on chromosome426

five not reported in Beleza et al. (2013). The locus zoom plots showed a strong LD pattern that extends427

across a several hundred kb region that includes six genes of which one, AHRR (arylhydrocarbon428

receptor repressor), is a plausible candidate (Figure S15 (A)). Originally recognised as a homolog429

of the arylhydrocarbon receptor (AhR) gene, AHRR encodes a bHLH-PAS protein that binds to the430
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same response element as AhR but represses AhR signalling. AHRR is widely expressed and, in431

zebrafish embryos, morpholinos against an AHRR paralog AHRRa elicits changes in gene expression432

thought to reflect a role in eye development and function (Aluru et al. 2014).433

Skin colour In the original GWAS, Beleza et al. (2013) reported four loci for skin colour on chromo-434

somes five, 11, and 15 with candidate genes SLC45A2, GRM5/TYR, APBA2 and SLC24A5. Bayes435

R, BSLMM and BOLT-LMM all reported these regions as showing evidence for association and, in436

addition, revealed evidence for a new region on chromosome 11. Bayes R and BSLMM reported437

WPPA and WPIP values greater than 0.92 for the four loci identified in Beleza et al. (2013) with438

BOLT-LMM reporting SNPs passing the genome-wide significance for each of the regions (Table 1439

and Figure 3). Among the genes present in the additional region on chromosome 11 recognised by440

the BLMM methods, the DDB1 gene is a plausible candidate for regulating variation in skin colour441

(Figure S15 (C)). DDB1 is involved in nucleotide excision repair following UV-induced DNA damage,442

and therefore could play a role in the tanning response and/or photosensitivity (Bekker-Jensen et al.443

2010; Liu et al. 2000). Bayes R and BSLMM reported strong evidence for this locus with a WPPA=0.91444

and a WPIP=0.86 that this region is associated with skin colour. The SNP with the smallest p-value445

from BOLT-LMM (rs2513329) did not reach genome-wide significance (p-value=5.2× 10−7). The446

Bayes R and BSLMM PIPs for the rs2513329 SNP (Table 1) in the DDB1 region were smaller than those447

for a second SNP located in the same region (rs10792312 PIP=0.46 and 0.76), which has an LD R2 of448

1.0 with rs2513329 (Table S6). Similar to the chromosome five locus for eye colour the GRM5/TYR449

locus showed many variants contributing to the regional association with no one variant showing a450

PIP greater than 0.3 (Tables S10 and S11).451

BOLT-LMM only reported the infinitesimal model statistics for skin colour with a λGC value of 1.04452

(Figure S16). The linear association analysis corrected for 10 PCs reported similar top loci to Beleza453

et al. (2013) (Figure 3 (D)). The degree of allelic differentiation across the ancestral gradient analysis,454

summarised by the D2 statistics, for the most highly associated SNPs showed allelic differentiation455

p-values that did not pass genome-wide, suggesting that these SNPs are not markedly differentiated456

across the first principal component (Table 1).457
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Proportion of phenotypic variance explained by highly associated regions Given the evidence458

from the three models, three regions for eye colour showed the most evidence for association.459

These were the AHRR gene region on chromosome five, the HERC2/OCA2, and SLC24A5 gene on460

chromosome 15. The distribution of the genetic variance was generated as a by-product of the WPPA461

calculation and thus from these analyses we calculated the posterior means for the PVE by dividing462

the estimated genetic variance for each region for each iteration t by the estimated phenotypic463

variance σ2
g + σ2

e for each iteration. The three regions for eye colour (AHRR, HERC2/OCA2, SLC24A5)464

explained 2.0 (0.0, 5.0), 30 (23, 38), and 7.0 (4.0, 11) percent of the phenotypic variance for eye colour465

respectively (intervals in parentheses indicate the 95% credible interval for these estimates calculated466

using quantiles). These three regions explained 39% (32, 46) of the phenotypic variance for eye colour467

(Table 1).468

For skin colour, the five regions with the most evidence for association were SLC45A2, GRM5/TYR,469

APBA2 and SLC24A5, and the additional region of DDB1. These regions explained 5.0 (3.0, 8.0), 3.0470

(1.0, 6.0), 5.0 (2.0, 8.0) , 16 (11, 20), and 3.0 (0.0, 6.0) percent of the phenotypic variance respectively471

(Table 1). The total proportion of genetic variation explained by the top five regions with evidence472

for association was 32% (26, 38).473

Discussion474

The use of BLMMs in the heavily admixed Cape Verde population has led to evidence for additional475

associations for eye and skin colour when compared to those reported by Beleza et al. (2013). The476

results from the BLMMs are consistent with the top regions presented in Beleza et al. (2013), and477

avoid the choice of the number of PCs required to control for spurious associations (as do frequentist478

versions of the LMM) due to ancestral differences. The use of concordant evidence across the three479

BLMM methods, coupled with biological annotation, indicates a potential involvement of the AHRR480

gene region for eye colour, and the DDB1 gene region for skin colour. The moderate WPPA and481

WPIP values for the AHRR gene locus were reinforced by a genome-wide significant result for the482

rs7736 SNP from BOLT-LMM. Given the high WPPA and WPIP for the locus in the DDB1 gene, and483

the central role in DNA repair post UV damage that the protein product of this gene encodes, we484
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argue that this is statistically the most suggestive locus for an effect on skin colour not detected by485

the PC-corrected linear model approach.486

The results for eye and skin colour are further supported by the simulations where for highly487

heritable traits, Bayes R and BSLMM retained higher TPRs for the same FDRs than the BOLT-LMM488

and standard GWAS methods (at a genome-wide significance threshold), which is likely derived489

from their ability to jointly capture the effect of a causal variant using multiple SNPs simultaneously490

(Guan and Stephens 2011; Segura et al. 2012; Moser et al. 2015). This loss in power was seen in the491

results for the chromosome five locus for eye colour, where PC adjustment resulted in associations492

not being genome-wide significant relative to the BOLT-LMM results. This suggests that for discovery493

of new associations that BLMMs may be a potential improvement over currently implemented LMM494

methodology in structured populations. The results from Simulation 1, Scenarios 1 and 2 show495

that Bayes R has a higher median TPR and a lower median FDR than BSLMM for a given WPPA496

and WPIP threshold. This may be driven by the ability of Bayes R to better model the large genetic497

effects for these simulated traits, which are driven by the high PVE in these scenarios. This is further498

reinforced by the convergence of the median TPR and FDR for Bayes R and BSLMM in Scenarios 3499

and 4, which have a simulated PVE = 0.5. This suggests that for more polygenic traits that Bayes500

R and BSLMM are expected to perform equally well at mapping loci, a result observed in (Moser501

et al. 2015). As BSLMM does not allow for the calculation of the WPPA statistics, the comparisons502

made between the median TPR and FDR across simulation scenarios are not optimal. It is difficult503

to evaluate how much of this difference is driven from practical rather than fundamental (such as504

the prior distribution on the genetic effects) reasons. We also demonstrated that for each of the505

simulation scenarios that the PFP was controlled to be between 5% and 10% when a WPPA threshold506

of 0.5 was applied. This lends further evidence to the association results in the AHRR and DDB1507

gene, which had a WPPA of 0.6 and WPIP of 0.55 for BSLMM for the DDB1 locus which had a WPPA508

of 0.91 and WPIP of 0.86 for BSLMM for the skin locus.509

Previous estimates of PVE indicate that eye and skin colour are highly heritable with estimates for510

both traits ranging between 0.7 - 0.9 (Bräuer and Chopra 1978; Byard 1981). One consequence of the511

definition of heritability is that it is a population specific parameter, because both the variation in512
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additive genetic factors (and non-additive), as well as the environmental variance, are population513

specific (Visscher et al. 2008). For traits simulated using the Cape Verde genotypes the median514

estimates of PVE from BSLMM/LMMs were upwardly biased and showed large variation, with515

medians hitting the boundary at unity in some scenarios. These results suggest that PVE estimation516

using BLMM/LMMs is unreliable for the Cape Verde data set. The LD score regression method (Bulik-517

Sullivan et al. 2015) is a recent development for distinguishing between inflated test statistics due to518

confounding bias and polygenicity. This method suggests one avenue for removing confounding519

from population structure from the heritability estimate but is yet to be extended to admixed520

populations (Bulik-Sullivan et al. 2015). Bayesian LMMs coupled with PC correction, or a generalised521

LD score regression, may be avenues for unbiased PVE estimation, which would required extensive522

simulations in a much larger dataset with empirical data to validate. However, estimates of PVE from523

regions surrounding purported highly associated loci should provide a reasonable lower bound for524

the narrow-sense heritability as seen in Simulation Two. The results from the PVE for top associated525

loci are very similar to that reported for skin colour in Beleza et al. (2013), which concluded that the526

four major loci contribute a total of 35% to skin colour variation. Our results suggest that the PVE527

for the top five loci was 32% (26, 38) with the SLC24A5 locus contributing approximately 16% and528

the DDB1 locus explaining an additional 3%. This highlights that although BLMMs and marginal529

linear regression both provide comparable estimates of PVE for an individual locus of large effect,530

the BLMMs allow for additional loci to be detected.531

The posterior probability that a polymorphic site affects the trait conditional on the data is a532

very natural statistic to interpret in the context of QTL identification (Viallefont et al. 2001; Stephens533

and Balding 2009). For the Bayer R and BSLMM methods there may be a decrease in the posterior534

probability for individual markers at a locus due to the sharing of the effect across markers in LD. This535

leads to a decrease in power for any one of the SNPs as the PIP will be lower for each of the them (0.5536

for example for a set of two markers in perfectly LD and sharing a PIP of 1). Furthermore, the PIP for537

any one marker is dependent on the choice of prior, especially for small data sets, where the number538

of effects to be learned is much greater than the number of individuals contributing information.539

However, Guan and Stephens (2011) showed that when the genetic variance and the proportion of540
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null effects, which have a large influence on the PIP, were fixed to a value substantially different to541

the true simulated value that the PIPs showed limited deviation from the truth. A further conclusion542

was that the rank and power were particularly insensitive to the choice of prior assumptions on the543

proportion of null effects and the genetic variance (Guan and Stephens 2011). Evidence for this is544

observed in this study, where the rank of the top regions for Bayes R and BSLMM, along with the545

WPPA and WPIP, are very similar given the large differences in modelling assumptions. Both the546

sharing of effects and the sensitivity to prior assumptions are mitigated by using a regional measure547

of association such as the WPPA, where uncertainty is averaged across the region. Alternatively, Wen548

(2015) derived Bayes factors for results generated from the LMM methodology, which could also be549

used as a primary statistical device for model comparison. It is important to contrast that p-values550

convey a strength of evidence that depends on factors that affect power, which is not a concern for551

the posterior probability of association statistics provided by the Bayesian methods (Stephens and552

Balding 2009). We believe that the results of this paper suggest that Bayesian LMM-based methods553

coupled with a theoretically justified method for controlling the false-positive rate could be a very554

effective tool for mapping new genetic loci. However, more rigorous frameworks for prior choice555

and assessment of significance and uncertainty in genetic effects from Bayesian LMMs are needed,556

which is an interesting open question.557
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Figure 1 Comparison of the performance of Bayes R, BSLMM, BOLT-LMM, and single SNP PC corrected association analysis (performed in
PLINK) at identifying 1 Mb regions containing causal variants for Simulation One, Scenarios One and Two, which had a simulated PVE equal
to 0.9. Panels include method on the x-axis and rate on the y-axis with the true positive rate (TPR) for detecting a 1 Mb region containing a
causal variant (green), and the false discovery rate (red) for each of the methods. For all panels BOLT-LMM and PLINK p-values are thresh-
olded at the genome-wide significance level (5× 10−8) and thus their rates remain fixed across panels. Scenario One (random allocated loci)
shows results for Bayes R and BSLMM that have been thresholded on a WPPA or WPIP greater than 0.1 and 0.2. Scenario Two (loci associated
with ancestry) shows results for Bayes R and BSLMM that been thresholded on a WPPA and WPIP greater than 0.2 and 0.5. For each scenario,
the threshold on WPPA/WPIP was decreased from the initial value (left panel for each scenario) until the median FDR of at least one of either
Bayes R of BSLMM was equal to that of BOLT-LMM and single SNP regression. An alternative threshold is also displayed so that the rate of
decrease of the median FDR for the other method can be observed.
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Figure 2 Manhattan plots from eye association analyses using Bayes R (A), BSLMM (B), BOLT-
LMM (C), and a single SNP analysis with 10 PCs (D). Red lines in panels (C) and (D) indicate the
genome-wide significance level.
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Figure 3 Manhattan plots from skin association analyses using Bayes R (A), BSLMM (B), BOLT-
LMM (C), and linear model with 10 PCs (D). Red lines in panels (C) and (D) indicate the genome-
wide significance level.
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Table 1 Summary of the top loci from Bayes R, BSLMM, and BOLT-LMM. The WPPA and WPIP are reported for the stated 1
Mb regions with hg18 base pair coordinates. For each region the best SNP refers to the SNP in the region with the smallest p-
value from BOLT-LMM. For the eye colour HERC2 locus the PIP for Bayes R is with reference to the SNP rs1129038, which has
an LD R2 of 0.98 with the rs12913832 SNP. For Bayes R the PIP for each SNP is that of being in the model i.e., the sum of the
PIP of being in any of the non-zero variance classes and for BSLMM the PIP corresponds to the SNP having an effect above the
polygenic background. Rows containing bold gene names are potentially novel relative to those found by Beleza et al. (2013). The
D2 statistic p-values are those generated from the allelic differentiation along the ancestral gradient method and are for principal
component one. The reported PVE is the posterior mean of the genetic variance for the 1 Mb region calculated from Bayes R in
the WPPA procedure with the 95% credible interval in parentheses.

Best BOLT-LMM Bayes R BSLMM D2 statistic

Locus 1 Mb region WPPA WPIP SNP p-value PIP PIP p-value PVE

Eye

AHRR chr5:68778:999418 0.61 0.55 rs7736 1.1× 10−8 0.06 0.05 2.5× 10−2 0.02 (0.00, 0.05)

HERC2 chr15:26001220:26998850 1.0 1.0 rs12913832 4.2× 10−35 1.0 0.81 7.8× 10−3 0.30 (0.23, 0.38)

SLC24A5 chr15:46004188-46999899 1.0 1.0 rs1426654 8.3× 10−12 0.62 0.37 4.2× 10−3 0.07 (0.04, 0.11)

Skin

SLC45A2 chr5:33000379-33999967 1.0 0.92 rs35395 1.3× 10−10 0.72 0.44 1.1× 10−2 0.05 (0.03, 0.08)

DDB1 chr11:60002783-60976798 0.91 0.86 rs2513329 5.2× 10−7 0.32 0.13 3.7× 10−4 0.03 (0.00, 0.06)

GRM5/TYR chr11:88001883-88994234 0.96 1.0 rs10831496 1.8× 10−10 0.08 0.06 2.8× 10−2 0.03 (0.01, 0.06)

APBA2 chr15:27000239-27999050 1.0 0.98 rs4424881 5.6× 10−10 0.17 0.03 5.7× 10−4 0.05 (0.02, 0.08)

SLC24A5 chr15:46004188-46999899 1.0 1.0 rs1426654 2.7× 10−25 1.0 0.56 3.4× 10−3 0.16 (0.11, 0.20)
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