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common disease not explained by GWS loci is due to rare variants of large 
effect not tagged by the current generation of SNP arrays or undetected 
common variants of small effect2,11. It is therefore important to quantify 
the proportion of variance attributable to all common SNPs (defined here 
as those with minor allele frequency, MAF ≥ 0.01) used in GWAS. If com-
mon SNPs are the major contributor to heritability, then the concern about 
missing heritability is premature because the extent to which heritability is 
missing depends on the experimental sample size of GWAS12.

Estimation of the SNP-based heritability—the GREML approach
SNP-based heritability (or 2

SNPh ) was initially defined as the proportion 
of phenotypic variance explained by all SNPs on a genotyping array13 
and is therefore dependent of the number of SNPs on a SNP array. The 
concept has now been expanded to refer to the variance explained by any 
set of SNPs, for example, all genetic variants from in-depth whole-genome 
sequencing (WGS) or imputed from a reference14. Yang et al.13 used a 
mixed linear model (MLM) approach to estimate 2

SNPh  in a GWAS data 
set of unrelated individuals and demonstrated that common SNPs on a 
genotyping array explain a large proportion (45%) of variance in height. 
Here ‘unrelated individuals’ means distantly related individuals rather than 
individuals with no genetic relatedness, as even random pairs of individu-
als drawn from a general population would share distant ancestors. Given 
the small 2

GWSĥ  (5%) and relatively large 2
SNPĥ  (45%), it was concluded that, 

for complex traits like height, there are likely a large number of common 
variants with effect sizes too small to pass the stringent GWS threshold 
(P < 5 × 10-8) in GWAS, even with sample sizes that were considered 
large at that time (n = 1,000 to 10,000 samples before 2010), consistent 
with a model of polygenic inheritance. It was subsequently predicted that 
more associated genetic variants could be discovered with larger sample 
sizes while keeping the same experimental design of GWAS. This predic-
tion has been realized by recent studies with n > 100,000 for height, body 
mass index (BMI), schizophrenia, and many other traits and diseases15–20. 
Under a polygenic model, the amount of heritability unexplained by GWS 
loci depends on sample size12. The aforementioned comparison of 5% 
versus 80% for height in 2009 (ref. 4) became 16% versus 80% only five 
years later15. Given the nearly linear relationship between the number of 
GWS loci and the logarithm of sample size (log(n)) observed in published 
GWAS12 and the highly polygenic nature of most complex traits21,22, we 
predict that the shrinking of the gap between 2

GWSĥ  and 2
SNPĥ  will be less 

than linear with log(n) because the variance explained by SNPs discovered 
in studies with larger sample sizes tends to be smaller. 

The approach of Yang et al.13 was subsequently termed genomic relat-
edness matrix (GRM) restricted maximum likelihood (GREML)23 and 
implemented in the GCTA software tool24 (Box 1). GREML shares fea-

Narrow-sense heritability (h2) is an important genetic 
parameter that quantifies the proportion of phenotypic 
variance in a trait attributable to the additive genetic variation 
generated by all causal variants. Estimation of h2 previously 
relied on closely related individuals, but recent developments 
allow estimation of the variance explained by all SNPs used in 
a genome-wide association study (GWAS) in conventionally 
unrelated individuals, that is, the SNP-based heritability ( 2

SNPh ).  
In this Perspective, we discuss recently developed methods 
to estimate 2

SNPh  for a complex trait (and genetic correlation 
between traits) using individual-level or summary GWAS data. 
We discuss issues that could influence the accuracy of 2ˆ

SNPh , 
definitions, assumptions and interpretations of the models, and 
pitfalls of misusing the methods and misinterpreting the models 
and results.

Estimation of the variance explained by all SNPs used in a population-
based GWAS was initially motivated by the ‘missing heritability’ problem1. 
The problem was that the estimated variance explained by genome-wide 
significant (GWS) SNPs discovered in GWAS (denoted 2

GWSĥ ) was only 
a fraction of the estimated heritability ( 2ĥ ) from family or twin studies2, 
where 2

GWSĥ  was estimated in a multi-SNP model to account for link-
age disequilibrium (LD) among SNPs and in an independent sample to 
avoid overestimation due to winner’s curse3. Taking human height as an 
example, 2

GWSĥ  was 5% before 2010 (ref. 4), which is much smaller than a 
frequently quoted 2ĥ  of 80% from family or twin studies5–7. This raised 
concerns about the cost-effectiveness of GWAS as an experimental design 
for the discovery of associated genes8. Several explanations of the missing 
heritability were proposed, including the presence of a large number of 
common variants of small effect yet to be discovered, rare variants of large 
effect not tagged by common SNPs on genotyping arrays, and inflation 
in pedigree-based 2ĥ  due to shared environmental effects, non-additive 
genetic variation and/or epigenetic factors2,9. The missing heritability 
question also reignited the debate about the ‘common disease, common 
variant’ hypothesis10, that is, whether the proportion of heritability for 
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‘SNP-based heritability’ and the notation 2
SNPh . Unlike h2, which is a 

population-level parameter irrespective of experimental design, 2
SNPh  

is a parameter given a set of SNPs. We likewise believe that it is also 
necessary to use a specific notation, 2

pedĥ , to represent h2 estimated from 
pedigrees (including twins) because of the potential biases in pedigree-
based 2ĥ  due to confounding factors such as common environmental 
effects. We have shown above that 2

SNPh  is by definition smaller than h2 
because not all causal variants, in particular those with low frequency, 
can be perfectly tagged by SNPs used in GWAS (Fig. 3a and part 1 of 
the Supplementary Note). Here, by ‘causal variant’, we mean a genetic 
mutation that causes a different cascade of events in biological pathways 
and consequent phenotypic change rather than an associated variant 
identified from GWAS. In the particular case where 2

SNPh  is defined as 
the variance explained by all such causal variants, 2 2

SNPh h= . In reality, 
however, causal variants are unknown. An unbiased estimate of h2 might 
be achieved by estimating 2

SNPh  from in-depth WGS data assuming that 
all causal variants have been sequenced and that there is no difference 
in LD between causal variants and other sequence variants14 (see below 
for more discussion).

Both GWAS and estimation of 2
SNPh  by GREML use LD

GWAS relies, by design, on genotyped common SNPs tagging unknown 
causal variants in the same chromosomal region. Estimating how much 
trait variation is tagged when fitting all SNPs simultaneously also makes 
use of the LD between SNPs and unobserved causal variants. A sparse 

tures with a pedigree-based analysis (part 1 of the Supplementary Note) 
but is usually applied to a sample of unrelated individuals (note that 
this is also the usual experimental design for GWAS), and hence 2

SNPĥ  is 
unlikely to be confounded by common environmental effects (Fig. 1).  
For pairs of distantly related individuals, the amount of the genome 
shared is small and highly variable, and it is unlikely that pairs who 
share slightly more of the genome than average will also have greater 
sharing of environment in a relatively homogenous population. The 
use of unrelated individuals also means that 2

SNPĥ  is unlikely to be con-
taminated with contributions from non-additive genetic effects, as the 
correlation between the additive and non-additive genetic relationships 
is tiny, whereas such contamination could be a problem in 2ĥ  estimated 
from families depending on the study design. In addition, GREML can 
be applied to family data, but the resulting estimates should be inter-
preted with caution (part 3 of the Supplementary Note).

The GREML estimate directly quantifies the proportion of phenotypic 
variance explained by all SNPs used in GWAS and therefore provides 
the upper limit of 2

GWSĥ  given the same experimental design. The infor-
mation to estimate 2

SNPh  comes from very small coefficients of genetic 
relationship for pairs of individuals, but small standard error (SE) for 

2
SNPĥ  (part 4 of the Supplementary Note) can be achieved because of 

the large number of pairwise relationships (for example, 50 million for 
a study using 10,000 individuals), although these pairs are not indepen-
dent. Subsequent work has extended the method to estimate 2

SNPh  in dis-
ease data25 (part 5 of the Supplementary Note) and genetic correlation  
( gr ) between traits26,27 (part 6 of the Supplementary Note). There are 
several caveats to estimating 2

SNPh  using data from case–control studies 
(part 5 of the Supplementary Note) and interpreting the estimates on 
different scales (Fig. 2).

Multiple terms and notations that have been used to describe the 
parameter estimated by GREML. We recommend using the term 

Figure 1  Interpretation of estimated genetic variance depends on 
ascertainment of the sample. Shown in red are the pedigree-based 
heritability estimate ( 2

pedĥ ) for height from 2,824 pairs of full siblings in the 
UK Biobank data61 (“5k related”; sibling correlation = 0.520), 2

SNPĥ  from 
a GREML analysis of 35,000 unrelated UK Biobank individuals using all 
the imputed SNPs in common with HapMap 3 (“35k unrelated”) and the 
estimates in between from GREML analyses in a mixed sample of unrelated 
individuals and close relatives (part 2 of the Supplementary Note). The 
difference between 2

ped ĥ  and 2
SNPĥ  demonstrates the genetic variation (due 

to rare variants in particular) not tagged by common HapMap 3 SNPs and/or 
confounding in 2

pedĥ  from common environmental effects and non-additive 
genetic variation. Shown in blue are the results from the same analyses for 
a simulated phenotype based on a common environment model without 
genetic effect (part 2 of the Supplementary Note). Each bar is a single 
estimate, and each error bar indicates the SE of the estimate.
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Figure 2  Relationship between SNP-based heritability on the liability scale 
(h2

SNP(l)) and SNP-based heritability estimated from case–control samples. 
(a–d) The plots show that the same estimate of h2

SNP(l) of 0.1 (a), 0.2 (b), 
0.4 (c) or 0.6 (d) on the liability scale can correspond to a wide range of 
SNP-based heritability estimates from case–control samples on the observed 
0–1 scale (part 5 of the Supplementary Note), depending on the proportion 
of cases in the sample (P) and the assumed lifetime risk of disease (K) used 
to transform the estimates to the liability scale. For each plotted line, the 
minimum value assumes a population sample with P = K. In real application, 
we advise investigating the sensitivity of estimates of h2

SNP(l) to choice of K, 
but we find that the impact is small when K < 0.05. As shown in c and d,  
for a rare disease with high h2

SNP(l), h2
SNP(O) is expected to be larger than 

1 because of the nonlinear relationship between genetic variance and 
phenotypic variance on the observed 0–1 scale.
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SNP array that does not cover common variation in the genome well is 
less likely to lead to the discovery of trait-associated variants (even with a 
large sample size), and fitting those SNPs together in a GREML analysis 
will result in a smaller proportion of phenotypic variance explained than 
with a denser SNP array (Fig. 3a). Because the maximum possible LD 
correlation between two genetic variants declines as their difference 
in MAF increases28, genetic variation at rare variants (MAF < 0.01) is 
unlikely to be well tagged by common SNPs on genotyping arrays (Fig. 
3a). If causal variants are located in genomic regions with a different LD 
property from the rest of the genome, this can lead to bias in 2

SNPĥ  (refs. 
14,29,30; see below for more discussion).

Interpretation and misinterpretation of the GREML model
There are several circumstances where the principle of GREML is 
misinterpreted and the method is misapplied, and this could poten-
tially lead to misleading or confusing inference. GREML is based on 
a random-effect model (Box 1). If the number of SNPs (m) is smaller 
than the sample size (n), this model is similar to a linear regression 
analysis (fixed-effect model) in terms of estimating 2

SNPh  (note that 
the adjusted R2 from multiple regression is an unbiased estimate of 
variance explained in a fixed-effect model). Such a hypothetical experi-
ment would not rely on selecting SNPs to be individually GWS, nor 
would it rely on assumptions about the genetic architecture. In either 
a linear regression or random-effect model, the effect sizes of SNPs 
are fitted jointly (therefore accounting for LD among SNPs), mean-
ing that the effect of any SNP is interpreted as the effect size of this 
SNP conditioning on the joint effects of all other SNPs. In GWAS, m 
is normally larger than n, in which case there is no unique solution to 
the fixed-effect model, a well-known overfitting problem in statistics. 
In a random-effect model, there is an additional assumption that the 
joint SNP effects  u = {u1, u2, …,um} follow a normal distribution 
with mean 0 and variance 2

u   (see Box 1 for notations) so that the 
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Figure 3  Estimation of genetic variance depends on ascertainment of SNPs 
and genetic architecture. (a) Estimates of 

2
SNPh  using SNPs on six different 

SNP panels for a simulated trait under two scenarios: (i) causal variants are 
random, with both common and rare variants (red), and (ii) causal variants are 
rare (blue) (see part 7 of the Supplementary Note for details of the simulation). 
The six SNP panels are the Affymetrix 6.0 array (Affy6), Affymetrix Axiom array 
(AffyAxiom), HapMap 3 Project (HM3), Illumina OmniExpress array (Illu1M), 
Illumina Omni2.5 array (Illu2M) and Illumina CoreExome array (IlluCoreE). 
(b) Effect of LD pruning on 2

SNPĥ  and the likelihood-ratio test (LRT) statistic. 
LD pruning was performed on the basis of HapMap 3 SNPs in PLINK (–indep-
pairwise 50 5 r2) with the LD r2 threshold shown on the x axis. The last column 
with an r2 threshold of 1 represents the result without LD pruning (with all 
HapMap 3 SNPs). GREML analyses were performed using common SNPs on 
the HapMap 3 panel. (c) Distribution of MAFs of HapMap 3 variants after LD 
pruning with different r2 thresholds (no pruning for the r2 threshold of 1.0). 
In the box plots shown in a and b, the band inside the box is the median; the 
bottom and top of the box are the first and third quartiles, respectively (Q1 
and Q3); the lower and upper whiskers are Q1 – 1.5 IQR and Q3 + 1.5 IQR, 
respectively, where IQR = Q3 – Q1; and the dots are the data not included 
between the whiskers.

Box 1  Statistical model used in the GREML 
approach to estimate 2

SNPh  
The statistical model used by GREML can be described in its 
simplest form as

y = Wu + e
where y is an n x 1 vector of standardized phenotypes with n 
equal to the sample size, W = {wij} is an n x m standardized SNP 
genotype matrix where m is the number of SNPs, u = {ui} is an 
m x 1 vector of the additive effects of all variants when fitted 
jointly in the model, u ~ N(0,Iσ2) with I being an identity matrix, 
and e is a vector of residuals, e ~ N(0,Iσ2). An equivalent  
model is

y = g + e
where g ~ N(0,Aσ2

(SNP)) with σ2
(SNP) being the additive genetic 

variance captured by SNPs, σ2
(SNP) = mσ2, A = WW´/m and  

h2   = σ2
(SNP) / [σ2

(SNP) + σ
2]. The parameters to be estimated 

are σ2
(SNP) (or σ2) and σ2. The matrix A describes the variance–

covariance structure of the random effects g and is assumed to 
be known in the estimation process. In practice, A is called the 
SNP-derived genetic (or genomic) relationship matrix (GRM) 
and is estimated from the SNP data. The estimate of σ2

(SNP) 
from GREML can be described as the estimated variance 
explained by all the SNPs (mσ2) or equivalently as the estimated 
genetic variance by contrasting the phenotypic similarity 
between unrelated individuals to their SNP-derived genetic 
similarity13,58,59.
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difference in MAF spectrum between causal and non-causal variants 
will lead to a difference in LD (MAF-mediated LD bias), resulting in a 
bias in 2

SNPĥ . One solution is to stratify SNPs by MAF (MAF-stratified 
GREML, GREML-MS)14,34,35, which reduces bias in the estimate due 
to MAF-mediated LD bias. However, a more general approach is to not 
rely on a specific model of the interplay between allele frequency, effect 
size and LD, but instead stratify SNPs by MAF and LD jointly and esti-
mate genetic variance with MAF–LD subsets. This approach, termed 
GREML-LDMS, appears to provide unbiased estimates of h2 as well 
as the contributions of common and rare variants to h2 in simulations 
based on WGS data, regardless of the underlying genetic architecture 
and distribution of causal variants with respect to MAF and LD14,36. 
We recommend the use of GREML-LDMS to estimate 2

SNPh  in imputed 
data (part 9 of the Supplementary Note). The applications of GREML-
LDMS to WGS data sets with rich phenotypes in the future will be able 
to provide nearly unbiased estimates of h2 in unrelated individuals and 
quantify the variance explained by all rare variants for a range of com-
plex traits. However, large sample sizes are required to estimate 2

SNPh  
with useful precision because var( 2

SNPĥ ) depends on sample size and 
variant density37 (part 4 of the Supplementary Note); for example, a 
sample size of ~33,000 is needed to obtain an SE of 0.02 for WGS data.

Speed et al.29 proposed a method called LDAK to correct for the LD 
bias. The basic idea is to weight each SNP by a factor inversely propor-
tional to its LD with SNPs nearby. This weighting strategy can intro-
duce MAF bias because it gives more weight to SNPs with lower MAF 
(Supplementary Fig. 2 of Yang et al.14), as LD is a function of MAF28. The 
LDAK model implicitly assumed that the variance explained by a rare 
variant (for example, 0.001 < MAF < 0.01) is more than ten times larger 
than that explained by a common variant (for example, 0.1 < MAF < 
0.5) (based on the LDAK weights calculated from a sequenced reference 
set14). This is an unrealistic model because it predicts that the power 
to detect rare variants would be orders of magnitude higher than that 
to detect common variants, a prediction not consistent with empirical 
results in the cases of human height15,38, schizophrenia17,39 and type 2 
diabetes40. The LDAK-induced MAF bias can be substantial, especially 
when there is a large number of rare variants (as in a WGS data set), 
leading to an inflated estimate of h2

SNP (ref. 14).
The LDAK model has recently been changed substantially41. Two 

new parameters have been added: one is a weighting according to 
MAF and the other is a weighting according to imputation accuracy. 
Although it is not the justification for these two new parameters, 
both give more weight to common variants than the original LDAK 
model41. The revised LDAK model is now more similar to GREML-
LDMS14, but not identical, as Speed et al.41 estimate a higher SNP-
based heritability from their empirical analyses on a range of traits. 
In simulation studies to compare the methods, the results depend on 
the model used to simulate the data. Unfortunately, we cannot be sure 
which is the closer-fitting model for any given trait. GREML-LDMS 
makes fewer assumptions about the relationship between causal vari-
ants, LD and MAF and thereby appears to be more robust than the 
revised LDAK method36, although at the expense of estimating more 
parameters. On balance, we conclude that this topic merits further 
investigation36, as the relationship between local LD, locus heterozy-
gosity and additive genetic variance for complex traits has not yet been 
resolved, and indeed may differ across the genome and between traits.

Assumptions about the relationship between effect sizes and 
allele frequencies
Under an evolutionarily neutral model, the proportion of variance in 
a polygenic trait explained by all variants in a MAF bin is linearly pro-
portional to the width of the MAF bin14 (the variance explained by a 

model parameters are estimable even when m is larger than n, where 
2
u   is interpreted as per-SNP genetic variance when all SNPs are fitted 

jointly, hence accounting for LD31. Therefore, 2
u   is not consistent 

across models having different numbers of SNPs. There is a misun-
derstanding that GREML does not account for LD because it does 
not have a covariance matrix for u (ref. 32). This is incorrect. In fact, 
the LD correlations among SNPs have been modeled by fitting the 
SNP genotype matrix W, similar to that in linear regression analysis31. 
Because 2

u   is the variance of a SNP effect conditioning on the joint 
effects of all other SNPs and wij is the standardized SNP genotype, the 
additive genetic variance captured by all SNPs is ( )

2 2
ug SNP m=    (Box 1).

In part 8 of the Supplementary Note, we list five scenarios where 
GREML (or the GCTA tool) is misused, resulting in potentially mis-
leading results. In addition, there is often a question about whether 
the SNPs included in GREML analysis need to be pruned for LD. As 
discussed above, GREML accounts for LD so that LD pruning is not 
necessary (but see the later discussion on bias due to the nonran-
dom distribution of causal variants with respect to LD). LD pruning 
using a high r2 threshold might increase the estimate, but the likeli-
hood of the model is not improved as compared to that without LD 
pruning (Fig. 3b). Caution is needed in interpreting the GREML 
estimate from pruned SNPs because of the change in the MAF spec-
trum of SNPs resulting from LD pruning (Fig. 3c). Changing the set 
of SNPs means that the underlying parameter being estimated ( 2

SNPh  
for a set of LD-pruned SNPs) is different from the original parameter  
( 2

SNPh  for all SNPs).

Bias due to the nonrandom distribution of causal variants with 
respect to LD
We have mentioned above that 2

SNPĥ  from WGS data could be a biased 
estimate of h2 if the LD property of causal variants is different from 
that of the other variants14,29,30,33. The unbiasedness of GREML in 
estimating h2 using WGS data depends on the ratio of 2

MQr  (mean LD r2 
between causal and non-causal variants) to 2

MMr  (mean LD r2 between 
non-causal variants)14. Note that, because r2 is a function of MAF, a 

Figure 4  Multiple-component GREML or HE regression for sets of SNPs 
stratified by MAF. Results are shown as 2

SNPĥ  with SE (error bar) in each MAF 
group averaged over 200 simulation replicates using ~11,500 unrelated 
individuals (SNP-based relatedness < 0.05) and ~550,000 genotyped 
SNPs after standard quality controls. In each simulation replicate, 1,000 
SNPs were selected at random as causal variants with their effects sampled 
from a standard normal distribution with mean 0 and variance 1. The true 
heritability was 0.5 (roughly 0.1 per MAF bin). The SE of the estimate 
from HE regression was calculated using the jackknife approach where one 
individual was left out at a time.
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method can be further extended to estimate genetic variance attributable 
to epistasis48 on the basis of the classical quantitative genetics model49, 

A D AA AD DDy g g g g g e= + + + + + , where Ag  and Dg  are the additive 
and dominance genetic values of an individual and 

AAg , 
ADg  and 

DDg  
are additive-by-additive, additive-by-dominance and dominance-by-
dominance epistatic genetic values, respectively. However, the sample 
size will need to be very large to get a precise estimate of epistatic vari-
ance because the variance in the epistatic genetic relationship between 
unrelated individuals is very small. For instance, the genetic relationship 
for 

AAg  is 2
ijA , which has a variance of 2[var(Aij)]2 (ref. 49). For HapMap 

3 SNPs, var(Aij) ≈ 2.0 × 10-5 so that the variance in genetic relationship 
for 

AAg  is ~1.0 × 10-9, meaning that over 1 million unrelated individu-
als will be needed to estimate the variance explained by 

AAg  with SE 
<0.05 (>4 million unrelated individuals to get SE <0.01). The variance 
in the dominance genetic relationship is smaller than for the additive 
genetic relationship. Therefore, it will be even more difficult to estimate 
variance for 

ADg  or 
DDg .

Estimating 2
SNPh  and rg from GWAS summary data

We have discussed above the MLM-based approaches to estimate 
2
SNPh  using individual-level GWAS data. There are other methods that 

are able to estimate 2
SNPh  from GWAS summary data (estimated SNP 

effects and their SE for all SNPs analyzed in a study)50. For example, 
the AVENGEME method uses maximum likelihood to estimate the 
genetic variance of a trait, the proportion of genetic variants affecting 
the trait and the genetic covariance (and therefore genetic correlation) 
between traits from the test statistic for association between phenotype 
and polygenic risk score (PRS)51,52. We can also estimate 2

SNPh  directly 
from summary data using the deviation of the observed χ2 test statistic 
for a SNP from its expected value under the null hypothesis of no asso-
ciation53 (part 13 of the Supplementary Note). This is the basic prin-
ciple of the recently developed LD score regression approach (LDSC)54. 
This approach requires only summary data from GWAS because LD 
scores can be estimated from a reference sample (for example, the 1000 
Genomes Project). LDSC has been extended to estimate rg between 
traits using summary data55, which allows the traits to be measured 
on different samples regardless of whether there is an overlap between 
samples, and to partition 2

SNPĥ  by functional annotation56. This method 
provides great flexibility for researchers to estimate rg between any two 
GWAS data sets. Both GREML and LDSC aim to estimate the vari-
ance explained by all SNPs used in GWAS. However, there are distinct 
differences between the two methods. LDSC is orders of magnitude 
faster than GREML, and the computing time for LDSC does not scale 
up with sample size. LDSC only requires summary data, which allows 
the reanalysis of summary data available from published meta-analyses. 
There are also limitations for LDSC. LDSC is not applicable in estimat-
ing the variance explained by rare variants (for example, MAF < 0.01) 
using either imputed or WGS data36 nor the variance explained by SNPs 
in small genomic regions (although the latter has been overcome by 
the HESS method developed recently53), and it is more sensitive to the 
genetic architecture of a trait (Supplementary Table 3). A previous study 
showed that 2

SNPĥ  estimates from LDSC are consistently smaller than 
those from GREML in the same data set57, which is likely owing to errors 
in LD scores estimated from the reference (by default, LDSC uses LD 
scores from HapMap 3 SNPs in the 1000 Genomes Project). We there-
fore advise using LD scores from the data used to generate the GWAS 
summary statistics. Although this may not be possible for published 
summary statistics, it should be possible for large cohorts such as the 
UK Biobank. It is noteworthy that LDSC will suffer bias in a similar way 
as GREML if causal variants are not randomly distributed with respect 
to LD. The estimate of gr  from bivariate LDSC is consistent with that 

rare variant, on average, is tiny, but there are a large number of them). 
Therefore, a significant deviation of the observed variance explained 
in a MAF bin from the expected value is evidence that the trait has 
been under natural selection14,42. In GCTA-GREML, we standardize 
the SNP genotypes and assume that the effect size per standardized 
genotype (ui) follows a normal distribution. This implicitly assumes a 
larger per-allele effect (bi) for a SNP with lower MAF, consistent with 
a model of purifying selection where variants with larger effect sizes 
tend to be under higher selection and therefore are more likely to be 
at lower frequencies (for example, MAF < 0.1). There is an option in 
GCTA to run GREML assuming that effect size is independent of MAF 
(neutral model). However, the difference between the two models is 
trivial in GREML-MS analysis14. Moreover, GREML-MS allows the data 
to reveal the relationship between variance explained and MAF. One of 
the important extensions of GREML in the future is to estimate directly 
from the data a parameter to quantify the relationship between bi and 
allele frequency while fitting a mixture distribution to the joint effects 
of SNPs43 (part 10 of the Supplementary Note).

Comparison with HE regression
As described in Box 1, the GREML analysis is based on an MLM that 
is equivalent to fitting the additive genetic values of all individuals, 
that is,  y = g + e with ( ) ( )

2 2
eg SNPvar = +A Iy  . The variance compo-

nents in this model are usually estimated using the REML approach. 
However, the REML algorithm is computationally intensive (part 11 of 
the Supplementary Note). Alternatively, ( )

2
g SNP    can be estimated from 

Haseman–Elston (HE) regression37,44, that is, 0 1i j ij ijy y b b A e= + + ,  
where ( )

2
1 g SNPb = . The performance of GREML has been compared using 

extensive simulations in Golan et al.45 in ascertained case–control stud-
ies where GREML estimates can be biased, especially when /m n  is 
small and disease prevalence is low. We also performed simulation to 
compare the two methods with an emphasis on the SE under a polygenic 
model (part 12 of the Supplementary Note). HE regression is compu-
tationally much more efficient but slightly less powerful than REML, 
as the SE of 2

SNPĥ  from HE regression is larger than that from REML 
(Supplementary Table 1 and part 12 of the Supplementary Note). The 
small difference in SE between the methods might not be important 
when the sample size becomes very large. For example, given 2

SNPĥ  > 0.1, 
whether the SE is 0.01 (REML) or 0.015 (HE regression) does not make 
any difference in statistical inference of whether 2

SNP 0h = . HE regression 
can also be used to estimate multiple genetic components, for example, 
multiple sets of SNPs stratified by MAF or chromosome (Fig. 4), or to 
estimate genetic correlations between traits (Supplementary Table 2). 
These analyses have been implemented in the latest version of GCTA 
(see URLs). In addition, phenotype correlation–genotype correlation 
(PCGC) regression is an implementation of HE regression designed for 
disease data to attenuate the biases in ascertained case–control stud-
ies22,45 (see URLs).

Non-additive genetic variation
The GREML approach has been extended to estimate dominance genetic 
variance tagged by SNPs in unrelated individuals on the basis of a clas-
sical quantitative genetics model46. Similar to the additive GREML 
method, the dominance GREML model fits the additive and dominance 
effects of all SNPs as two sets of random effects in an MLM. This is 
an orthogonal model because the additive and dominance genotype 
variables and, thereby, the additive and dominance GRMs are indepen-
dent. On average, across 79 quantitative traits, additive genetic varia-
tion explained ~15% of the phenotypic variance and dominance genetic 
variation explained ~3% of the variance46. The ratio of additive to domi-
nance variance is consistent with what is expected from theory47. The 

©
 2

01
7 

N
at

u
re

 A
m

er
ic

a,
 In

c.
, p

ar
t 

o
f 

S
p

ri
n

g
er

 N
at

u
re

. A
ll 

ri
g

h
ts

 r
es

er
ve

d
.



PERSPECT IVE

NATURE GENETICS | VOLUME 49 | NUMBER 9 | SEPTEMBER 2017	 1309

1.	 Maher, B. Personal genomes: the case of the missing heritability. Nature 456, 18–21 
(2008).

2.	 Manolio, T.A. et al. Finding the missing heritability of complex diseases. Nature 461, 
747–753 (2009).

3.	 Xiao, R. & Boehnke, M. Quantifying and correcting for the winner’s curse in genetic 
association studies. Genet. Epidemiol. 33, 453–462 (2009).

4.	 Visscher, P.M. Sizing up human height variation. Nat. Genet. 40, 489–490 (2008).
5.	 Fisher, R.A. The correlation between relatives on the supposition of Mendelian inheri-

tance. Trans. R. Soc. Edinb. 52, 399–433 (1918).
6.	 Silventoinen, K. et al. Heritability of adult body height: a comparative study of twin 

cohorts in eight countries. Twin Res. 6, 399–408 (2003).
7.	 Macgregor, S., Cornes, B.K., Martin, N.G. & Visscher, P.M. Bias, precision and herita-

bility of self-reported and clinically measured height in Australian twins. Hum. Genet. 
120, 571–580 (2006).

8.	 Goldstein, D.B. Common genetic variation and human traits. N. Engl. J. Med. 360, 
1696–1698 (2009).

9.	 Eichler, E.E. et al. Missing heritability and strategies for finding the underlying causes 
of complex disease. Nat. Rev. Genet. 11, 446–450 (2010).

10.	Schork, N.J., Murray, S.S., Frazer, K.A. & Topol, E.J. Common vs. rare allele hypotheses 
for complex diseases. Curr. Opin. Genet. Dev. 19, 212–219 (2009).

11.	Gibson, G. Rare and common variants: twenty arguments. Nat. Rev. Genet. 13, 135–
145 (2012).

12.	Visscher, P.M., Brown, M.A., McCarthy, M.I. & Yang, J. Five years of GWAS discovery. 
Am. J. Hum. Genet. 90, 7–24 (2012).

13.	Yang, J. et al. Common SNPs explain a large proportion of the heritability for human 
height. Nat. Genet. 42, 565–569 (2010).

14.	Yang, J. et al. Genetic variance estimation with imputed variants finds negligible missing 
heritability for human height and body mass index. Nat. Genet. 47, 1114–1120 (2015).

15.	Wood, A.R. et al. Defining the role of common variation in the genomic and biological 
architecture of adult human height. Nat. Genet. 46, 1173–1186 (2014).

16.	Locke, A.E. et al. Genetic studies of body mass index yield new insights for obesity 
biology. Nature 518, 197–206 (2015).

17.	Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights 
from 108 schizophrenia-associated genetic loci. Nature 511, 421–427 (2014).

18.	Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug dis-
covery. Nature 506, 376–381 (2014).

19.	Liu, J.Z. et al. Association analyses identify 38 susceptibility loci for inflammatory 
bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 
979–986 (2015).

20.	Liu, C. et al. Meta-analysis identifies common and rare variants influencing blood pres-
sure and overlapping with metabolic trait loci. Nat. Genet. 48, 1162–1170 (2016).

21.	Yang, J. et al. Ubiquitous polygenicity of human complex traits: genome-wide analysis 
of 49 traits in Koreans. PLoS Genet. 9, e1003355 (2013).

22.	Loh, P.R. et al. Contrasting genetic architectures of schizophrenia and other complex 
diseases using fast variance-components analysis. Nat. Genet. 47, 1385–1392 (2015).

23.	Benjamin, D.J. et al. The genetic architecture of economic and political preferences. 
Proc. Natl. Acad. Sci. USA 109, 8026–8031 (2012).

24.	Yang, J., Lee, S.H., Goddard, M.E. & Visscher, P.M. GCTA: a tool for genome-wide 
complex trait analysis. Am. J. Hum. Genet. 88, 76–82 (2011).

25.	Lee, S.H., Wray, N.R., Goddard, M.E. & Visscher, P.M. Estimating missing heritability 
for disease from genome-wide association studies. Am. J. Hum. Genet. 88, 294–305 
(2011).

26.	Lee, S.H., Yang, J., Goddard, M.E., Visscher, P.M. & Wray, N.R. Estimation of pleiotropy 
between complex diseases using single-nucleotide polymorphism–derived genomic rela-
tionships and restricted maximum likelihood. Bioinformatics 28, 2540–2542 (2012).

27.	Lee, S.H. et al. Genetic relationship between five psychiatric disorders estimated from 
genome-wide SNPs. Nat. Genet. 45, 984–994 (2013).

28.	Wray, N.R. Allele frequencies and the r2 measure of linkage disequilibrium: impact 
on design and interpretation of association studies. Twin Res. Hum. Genet. 8, 87–94 
(2005).

29.	Speed, D., Hemani, G., Johnson, M.R. & Balding, D.J. Improved heritability estimation 
from genome-wide SNPs. Am. J. Hum. Genet. 91, 1011–1021 (2012).

30.	Gusev, A. et al. Quantifying missing heritability at known GWAS loci. PLoS Genet. 9, 
e1003993 (2013).

31.	Yang, J., Lee, S.H., Wray, N.R., Goddard, M.E. & Visscher, P.M. GCTA-GREML accounts 
for linkage disequilibrium when estimating genetic variance from genome-wide SNPs. 
Proc. Natl. Acad. Sci. USA 113, E4579–E4580 (2016).

32.	Krishna Kumar, S., Feldman, M.W., Rehkopf, D.H. & Tuljapurkar, S. Limitations of 
GCTA as a solution to the missing heritability problem. Proc. Natl. Acad. Sci. USA 113, 
E61–E70 (2016).

33.	Gusev, A. et al. Partitioning heritability of regulatory and cell-type-specific variants 
across 11 common diseases. Am. J. Hum. Genet. 95, 535–552 (2014).

34.	Lee, S.H. et al. Estimation of SNP heritability from dense genotype data. Am. J. Hum. 
Genet. 93, 1151–1155 (2013).

35.	Lee, S.H. et al. Estimating the proportion of variation in susceptibility to schizophrenia 
captured by common SNPs. Nat. Genet. 44, 247–250 (2012).

36.	Evans, L. et al. Comparison of methods that use whole genome data to estimate 
the heritability and genetic architecture of complex traits. bioRxiv https://dx.doi.
org/10.1101/115527 (2017). 

37.	Visscher, P.M. et al. Statistical power to detect genetic (co)variance of complex traits 
using SNP data in unrelated samples. PLoS Genet. 10, e1004269 (2014).

38.	Marouli, E. et al. Rare and low-frequency coding variants alter human adult height. 
Nature 542, 186–190 (2017).

from bivariate GREML, but the jackknife SE of ĝr  from LDSC is larger 
than that expected from the approximation theory37,55,57.

Summary
We have provided a perspective of the methods for estimating SNP-based 
heritability in unrelated individuals using GWAS data. We emphasized 
that the GREML approach accounts for LD when estimating 2

SNPh  and 
actually uses LD to tag causal variants if they are not observed. We dis-
cussed the concepts and assumptions of the methods and scenarios under 
which the estimates could be biased, the methods could be misused and 
the results could be misinterpreted. We further discussed the extensions 
and applications of the methods in large data sets in the future (Box 
2). These future directions could expand understanding of the genetic 
architecture for human complex traits and inform the design of future 
experiments to fully dissect genetic variation and genetic correlations.

URLs. GCTA, http://cnsgenomics.com/software/gcta/; PCGC, https://
www.hsph.harvard.edu/alkes-price/software/; LDSC, https://github.
com/bulik/ldsc.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Box 2  Future applications of SNP-based 
heritability to large data sets
The methods for estimating h2    can be extended and applied to 
large data sets in the future. These future directions include:

1. Applications of GREML-LDMS or similar approaches (that 
account for bias in h2    due to LD bias) to in-depth WGS data 
to obtain nearly unbiased estimates of h2 for a range of complex 
traits and quantify the variance attributable to all rare variants;
2. Methods that provide an unbiased estimate of h2 from 
identity-by-descent information inferred from SNP array data60;
3. Methods to estimate h2    from pedigree data accounting for 
common environmental effects and assortative mating;
4. Fast Bayesian MLM approaches based on flexible models that 
are applicable to WGS data to estimate the distribution of effect 
sizes of all variants;
5. Methods to estimate h2    free of assumptions about the 
relationship between per-allele effect and allele frequency43.
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EDITORIAL SUMMARY
Jian Yang and colleagues explore the uses and abuses of heritability estimates derived from pedigrees and from GWAS SNPs and make recom-

mendations for best practice in future applications of SNP-based heritability.
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