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The human face is a multipartite trait composed of distinct 
features (eyes, nose, chin and mouth), whose size, shape and 
composition are clearly heritable. However, knowledge of 

which genetic variants are responsible for human facial variation is 
still lacking1. Several genome-wide association studies (GWAS) have 
each identified a handful of loci associated with a small number of 
facial traits, with few of these loci having been replicated2–7. While 
a GWAS benefits from being an unbiased approach to gene map-
ping, the phenotypic descriptions in such studies are typically pre-
selected and used to classify individuals in a ‘phenotype-first’ way 
of thinking. This approach may be appropriate in certain instances 
(for example, affected and unaffected disease status) but is less so for 
complex, multipartite traits like the human face. The result is that 
facial shape has been reduced to a limited series of measurements 
(for example, linear distances) that are analyzed individually, result-
ing in a loss of information.

In this study, we present a data-driven approach to facial pheno-
typing that exploits both the partable and integrated information 
contained in 3D facial images, allowing for the identification of 
genetic effects on facial shape at multiple levels of organization—
from global to local. This approach generates a nested series of 
multivariate GWAS, with a low computational burden and, more 
importantly, controlled multiple-testing burden. We applied this 
new approach to a European-derived discovery cohort and then 
tested significantly associated variants for replication in an indepen-
dent European-derived cohort. In an effort to provide additional 
validation, we integrated our work with previously published human 

facial GWAS. We show a number of newly associated genetic loci 
supported by strong statistical evidence, identifying unreported pat-
terns in global-to-local genetic effects on facial shape. Furthermore, 
these loci are preferentially marked by active chromatin signatures 
in human cranial neural crest cells (CNCCs), an embryonic cell type 
that gives rise to most of the craniofacial structures. This suggests 
a developmental origin of much of the facial variation uncovered 
by our study. These results offer new insights on the genetic basis 
of human facial shape with potentially far-reaching implications. 
More generally, the results present an alternative to the prevailing 
phenotype-first mindset and our approach is widely applicable to 
any GWAS on complex, quantitative and multipartite traits, espe-
cially those captured thoroughly using images.

Results
Study samples. A study sample of 2,329 unrelated participants of 
European ancestry made up the discovery cohort for our analysis 
(the Pittsburgh sample, PITT). These participants had a median age 
of 23 years and were recruited from several US sites. An additional, 
independently collected and genotyped sample of 1,719 adult par-
ticipants of European ancestry made up our replication cohort (the 
Penn State sample, PSU). These participants had a median age of 
22 years and were recruited at several sites in the United States and 
Europe. For both cohorts, imputation of unobserved genetic vari-
ants and sporadic missing genotype calls for assayed SNPs was per-
formed using the 1000 Genomes Project8 Phase 3 reference panel. 
Basic demographic descriptors and general physical characteristics 
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(for example, sex, age, height and weight) were available from par-
ticipants in both cohorts.

Global-to-local facial segmentations. We used digital stereopho-
togrammetry to obtain 3D facial images from all participants. After 
trimming and cleaning, 3D facial images were aligned in dense cor-
respondence9, ensuring that homology was established among the 
roughly 10,000 3D points (considered quasi-landmarks10) making 
up an individual’s facial shape. Facial shape, in both cohorts sepa-
rately, was adjusted for potential confounding variables (age, sex, 
height, weight, facial size and cohort-specific population structure) 
and then partitioned in an unsupervised manner into a series of 
global-to-local facial segments. To accomplish this, we applied hier-
archical spectral clustering11 to the facial quasi-landmark configu-
rations of the PITT sample. First, the quasi-landmarks were listed 
in a squared (~10,000 ×​ ~10,000) similarity matrix using pairwise 
3D correlations. Second, a Laplacian transformation was applied to 
enhance similarities before an Eigen decomposition of the squared 
matrix. Finally, within the Eigen spectral map, k-means+​+​ cluster-
ing was used to group highly correlated quasi-landmarks, which, 
when mapped back to the facial surface, result in a segmentation of 
the face. This was done in a bifurcating hierarchical manner using 
five levels, such that facial segments with closer relationships were 
located nearby one another and each facial segment was split in two 
toward the next level, resulting in a total of 63 segments, as depicted 
in Fig. 1 using a polar dendrogram layout. The hierarchical design 
gradually focused on more local shape aspects that were otherwise 
overlooked, without ignoring the integration of facial parts more 
globally at higher levels. The same pipeline was applied to the PSU 
cohort (Supplementary Fig.  1), and the resulting segmentation 
was compared to the PITT segmentation using the normalized 

mutual information (0 <​ NMI <​ 1; 0, no overlap; 1, perfect overlap) 
at each of the five levels (NMIL0 =​ 1, NMIL1 =​ 0.90, NMIL2 =​ 0.80, 
NMIL3 =​ 0.72, NMIL4 =​ 0.75, NMIL5 =​ 0.78). These high NMI values 
indicate substantial overlap and, therefore, good reproducibility of 
the global-to-local facial segmentations across similar but indepen-
dent samples. The hierarchical spectral clustering (Fig. 1; using the 
PITT cohort as the reference for the remainder of the study) sub-
divided facial shape into meaningful and recognizable segments. 
Globally, the midface was first separated from the rest of the face and 
was further partitioned into the region of the mouth (quadrant 1,  
starting at segment 4) and nose (quadrant 2, starting at segment 5). 
The remainder of the face was further partitioned into the lower 
facial area (quadrant 3, starting at segment 6) and the upper facial 
area (quadrant 4, starting at segment 7). Each quadrant was repeat-
edly partitioned, increasingly focusing on smaller facial parts. This 
provided an efficient and objective means for subdividing facial 
shape into global-to-local parts with internally well-correlated 
shape variations.

To generate variables that captured biological shape, we applied 
generalized Procrustes analysis (GPA) separately to the quasi-land-
marks making up each facial segment. As such, a shape space for 
each facial segment was constructed that was independent from the 
other segments and its relative positioning in lower-level (larger) 
segments. Following GPA, we applied principal-component analy-
sis (PCA) to extract the major factors of shape variation character-
izing each facial segment. We used parallel analysis12 to determine 
the number of principal components (PCs) needed to adequately 
summarize shape variation for the given segment. The number of 
PCs retained for each facial segment after parallel analysis and the 
percentage of total variation they explained in the PITT cohort are 
depicted in Supplementary Fig. 2. As expected, we found that lower-
level facial segments required more PCs and that the retained PCs 
for all facial segments explained most of the total shape variance 
(median of 95%, min =​ 89%, max =​ 97%) present within the respec-
tive segments. The result was nearly complete coverage of all facial 
shape variation at five different levels of detail.

Genetic mapping of global-to-local shape. We performed a series 
of GWAS to test the genetic association of a total of 9,478,608 SNPs 
with the shape information contained in each of the 63 facial seg-
ments using the PITT discovery cohort. As each of the facial seg-
ments was represented by multiple dimensions of variation (PCs), 
we used a multivariate canonical correlation analysis (CCA)13. In 
brief, CCA extracts the linear combination of PCs from a facial 
segment that has maximal correlation with the SNP being tested, 
under the additive genetic model, after correcting for confounding 
variables. Therefore, CCA avoids the preselection of individual PCs 
and reveals the associated facial effect as a linear direction in a mul-
tidimensional shape space.

We found a total of 1,932 SNPs among 38 separate loci that 
reached nominal genome-wide significance (P ≤​ 5 ×​ 10−8). Quantile–
quantile, regional association and detailed supplementary illustra-
tions of all 38 loci are provided online (see URLs). To accommodate 
the multiple-testing burden present in performing separate genome 
scans for 63 facial segments, we determined the false discovery 
rate for any test dependency structure14 (FDRd) P-value thresh-
old at 2.82 ×​ 10−8 and a more conservative study-wide Bonferroni-
corrected significance threshold at 1.28 ×​ 10−9. Following imputation 
in the PSU cohort, 1,931 of these 1,932 SNPs were available for 
replication testing. Because it is possible for a SNP to affect differ-
ent aspects of variation in the same facial segment across different 
datasets, replicating an observed genetic association necessitated 
both replicating a significant effect on a given facial segment and 
a determination that the same aspects of variation were affected. 
Therefore, we first used the discovery cohort as a phenotyping ref-
erence for the replication cohort (see the Methods for additional 
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Fig. 1 | Hierarchical spectral clustering of facial shape. Global-to-local 
facial segmentation of the PITT cohort (n =​ 2,329) obtained using 
hierarchical spectral clustering. Segments are colored in green. Segment 
1, representing the entire face and shown in the center, is partitioned 
into segments 2 and 3, shown in the innermost concentric circle. Moving 
outward across the five concentric circles, corresponding to the five 
hierarchical levels, each facial segment is further partitioned into two more 
localized segments.
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details). Then, the multidimensional PC scores of the PSU cohort 
were projected onto the CCA loadings of the discovered effect. 
In doing so, the associated facial trait, once identified using CCA 
in the PITT cohort, was kept fixed and thus consistent between 
the PITT discovery cohort and the PSU replication cohort. This 
resulted in a univariate facial measure that was modeled using lin-
ear regression, to test for replication. This was done separately for 
each SNP and facial segment combination that achieved genome-
wide significance in the discovery phase. From all replication efforts 
combined, we computed the FDRd adjusted significance threshold 
at 4.20 ×​ 10−3 and a Bonferroni-corrected significance threshold 
at 3.28 ×​ 10−4. A total of 1,821 SNPs across 15 loci replicated with  
P values well below the FDRd threshold (Table 1).

We focused on the 15 replicated loci to investigate patterns of 
genome to facial shape associations. These 15 loci involved a variety 
of facial segments, and several loci affected segments in more than 
one facial region, as illustrated in Figs. 2 and 3. Several interesting 
patterns were observed. First, the majority of affected segments 
were located in the nose and the lower facial quadrant, primarily 
the chin. Second, some associations were involved in high-level 
segments, often at the outer layer(s) of the polar dendrogram, sug-
gesting a localized phenotypic effect (for example, 1p32.1). In con-
trast, we observed other associations involving numerous linked 
facial segments from the edge of the dendrogram (level5) to the 
center (level0). Interestingly, the evidence of association (obtained 
by tracking the –log10 P values in Fig.  3) in these instances may 
increase from center to edge (global to local; for example, 7q21.3) or 
from edge to center (local to global; for example, 1p12), reflecting 
a localized versus global phenotypic effect, respectively. Still others, 
for example, 1q31.3, reached a maximum association partway up 
the dendrogram, reflecting an effect on an intermediate global-to-
local level. Interestingly, both of the loci on chromosome 17 had 
the same pattern of association across nose segments, but 17q24.3 
(rs11655006[T>​C]) showed the stronger association at the more 
global levels and 17q24.3 (rs5821892[C>​CG]) showed strongest 
association at the most local level. Third, most associations were 
limited to linked segments within one facial quadrant of the polar 
dendrogram, but in a few cases genetic associations involved two 
distinct quadrants, for example, 2q31.1 and 3q21.3. Finally, in the 
online illustrations, we observed that facial effects propagated con-
sistently in linked facial segments across different levels in the hier-
archical design.

For completeness, we present an overview of all 38 loci identi-
fied in the discovery cohort with their peak SNP statistical details 
and imputation quality scores in Supplementary Tables  1 and 2, 
respectively. For 14 of the non-replicating loci, association was rep-
resented by a single SNP, and for an additional 5 loci the peak SNP 
had a minor allele frequency (MAF) less than 2%. Another locus 
that did not replicate showed a significant discrepancy in peak SNP 
MAF between the discovery and replication cohorts. Of the remain-
ing 18 loci (also given in Table 1), 16 loci replicated at a nominal 
level of significance (P ≤​ 0.05), 15 of which replicated below the 
FDRd threshold and 12 of which replicated below the Bonferroni 
threshold. Two loci with robust associations in the discovery cohort 
failed to replicate. Additional illustrations on the discovery and rep-
lication results of all 38 loci are presented online (see URLs).

Association between 15 genomic regions and signatures of active 
regulatory elements in cranial neural crest cells. To explore 
biological processes and phenotypes associated with the identi-
fied GWAS loci, we performed Genomic Regions Enrichment of 
Annotations (GREAT) analysis15. Remarkably, even though only 
15 loci were used in this analysis, we detected significant associa-
tions with craniofacial development, including categories such as 
chondrocyte differentiation, first and second branchial arch mesen-
chyme, development of facial bones and cleft palate (Supplementary 

Fig. 3). Although craniofacial development is complex and involves 
interactions between multiple cell types, CNCCs, an embryonic cell 
group that arises at 3–6 weeks of gestation, have a central role in 
the formation of the facial plan and in determining its species-spe-
cific and individual variation16–18. During embryogenesis, CNCCs 
migrate away from the neural tube along stereotypical paths and 
form the majority of the cranial mesenchyme, which then differen-
tiates into the bone, cartilage and connective tissue of the face and 
head19,20. We reasoned that, if divergence of the facial shape within 
the human population captured by our GWAS indeed originates 
early during embryogenesis, then the 15 loci should be preferen-
tially active in CNCCs. To test this hypothesis, we took advantage of 
the epigenomic mapping datasets generated from human CNCCs, 
which were derived in vitro from human embryonic stem cells 
(ESCs) or induced pluripotent stem cells (iPSCs)21,22. Acetylation of 
histone H3 on lysine 27 (H3K27ac) has been associated with the 
promoters of transcriptionally active genes and with active distal 
enhancers, and thus is a useful mark to consider when exploring 
cell-type-specific activity of both coding and noncoding regions 
of the genome23,24. We quantified H3K27ac ChIP–seq signals in 
the vicinity (for example, within 10 kb) of the 15 peak SNPs in 
CNCCs of different genetic backgrounds and compared them to the 
H3K27ac signals over the same regions in over 30 other cell types, 
representing distinct adult, embryonic and in vitro–derived cell 
types. We observed higher H3K27ac signals in the vicinity of the 
peak SNPs in CNCCs than in any other cell type examined (Fig. 4). 
These observations are consistent with the preferential activity of 
the identified loci in CNCCs and with an embryonic origin of the 
human facial variation captured by our study.

A large majority of the genetic variants associated with human 
trait variation map to the noncoding parts of the genome. Many 
such variants are thought to reside within cis-regulatory elements25. 
However, cis-regulatory elements, especially distal enhancers, are 
often characterized by highly cell-type-specific activity patterns 
(reflected in their cell-type-specific chromatin marking patterns), 
underscoring the importance of analyzing relevant cell types for 
GWAS interpretation (reviewed in refs. 26,27). To explore the overlap 
between the 15 loci and regulatory regions active in CNCCs, we used 
our epigenomic datasets (which included p300, TFAP2A, NR2F1, 
H3K4me1, H3K4me3, H3K27me3 and H3K27ac ChIP–seq data and 
nucleosomal depletion analysis by ATAC–seq) to identify and clas-
sify cis-regulatory elements on the basis of the type of element and 
activity. Specifically, transcription factor binding and transposase 
hypersensitivity maps were used to identify the genomic positions 
of candidate regulatory regions, whereas relative enrichments of 
H3K4me1 to H3K4me3 were used to distinguish enhancers from 
promoters and H3K27ac versus H3K27me3 signals were used to 
infer active, premarked or poised/repressed activity states (depicted 
in different colors in Fig.  5a). We observed that the peak SNPs 
were more likely to be located within or in the immediate vicinity 
of (<​1 kb away from) a detectable regulatory chromatin feature in 
CNCCs (P =​ 1.58 ×​ 10−3). Furthermore, these SNPs were enriched 
in enhancer elements, especially strong active CNCC enhancers 
(P =​ 1.19 ×​ 10−2, odds ratio =​ 7.7, Fisher’s exact test). An example of 
this is shown in Fig. 5b: peak SNP rs6740960[A>​T] (affecting the 
lower facial quadrant) is located within an active CNCC enhancer 
marked by p300, H3K27ac and H3K4me1. Interestingly, the same 
variant has also recently been associated with an elevated risk of 
cleft lip and/or palate (CL/P) in a European cohort28. Furthermore, 
comparisons with our epigenomic datasets previously obtained 
in chimpanzee CNCCs21 showed that the overlapping enhancer is 
biased toward chimpanzees in activity (as evidenced by the elevated 
levels of H3K27ac in chimpanzee as compared to human CNCCs). 
This example and others of loci (for example, PAX3) that showed 
association with facial variation, disease and enrichment for regu-
latory elements divergent between humans and chimpanzees raise 
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an intriguing possibility that the genetic variation within an over-
lapping set of loci/regulatory elements may influence both species-
specific and individual facial shape variation in humans as well as 
determine predisposition to craniofacial malformations.

Candidate genes and integration with facial GWAS literature. 
A literature-based annotation of genes was performed, and their 
involvement in facial variation is reported in Supplementary Note 1. 
Additionally, in Supplementary Note 2, Supplementary Tables 3–6 
and Supplementary Figs. 4 and 5, we first report statistical replica-
tion for 10 of 16 SNPs from six previous facial GWAS based on 2D or 
3D images2–7 (Supplementary Table 3). Second, we consulted GWAS 
Central and Phenoscanner29 and report additional evidence of simi-
lar effects on factial shape for nine SNPs in Table 1 (Supplementary 
Table  4). Third, we cross-referenced ten of our loci with a recent 

study30 based on self-reported information on chin dimple and nose 
size (Supplementary Table 5). Table 1 indicates the involvement of 
each locus in any of these three integration efforts. In summary, for 
the 15 replicated loci in this work, 4 were completely new, 9 were 
previously discovered showing consistent facial effects and 2 were 
previously discovered with pleiotropic facial effects.

Discussion
A deeper understanding of the genetic basis of human facial traits 
may provide insights into the mechanisms of craniofacial morpho-
genesis, improve knowledge of the complex relationship between 
genotype and phenotype in craniofacial syndromes and birth 
defects, and eventually provide a basis for predicting facial features 
in numerous applications, ranging from early diagnosis to person-
alized medicine, treatment planning in craniofacial surgery and 
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orthodontics, and biometrics and forensics. In mice, whole-genome 
quantitative trait locus (QTL) studies have identified numerous 
genetic regions associated with craniofacial traits31–33. In humans, 
both candidate gene approaches10,34,35 and GWAS2–7 have implicated 
specific variants. While the highly complex nature of craniofacial 
morphogenesis suggests that many genes are likely to influence 
facial morphology, the number of associated loci uncovered so far 
using GWAS has been limited, with few independent replications.

Although traditional anthropometric facial measures remain 
a valuable resource for anthropologists and clinicians, because of 
their widespread use and simplicity, limited GWAS results have 
been obtained with such measurements so far. One reason for this 
is the difficulty inherent in defining proper facial types or relevant 
facial measurements a priori. As noted by Adhikari et al.4, quantita-
tive measures, on the basis of which all previous facial GWAS efforts 
from 2D or 3D images have been conducted, are expected to yield 
higher statistical power than categorical ones, but they have not yet 
resulted in many robust findings. Using well-defined categorical 
scale ratings instead, they discovered and replicated several asso-
ciated loci, which we also replicate here. Similarly, but using self-
reported categorizations on chin dimple and nose size, Pickrell et al.30  
identified a number of associated loci in an impressively sized 
sample (n >​ 70,000). However, the relatively simple categorical  

phenotypes used in these studies preclude a comprehensive and pre-
cise description of the effects of genetic variants on facial morphol-
ogy. We argue that these approaches are perfectly in line with the 
traditional phenotype-first thinking common to GWAS and remain 
a good paradigm for case–control designs and simple quantitative 
or qualitative traits, but perhaps are less suitable for multipartite 
quantitative traits like the human face.

The craniofacial complex is initially modulated by precisely 
timed embryonic gene expression and molecular and cellular pro-
cesses mediated through complex signaling pathways36. As humans 
grow, hormones, nutritional status and biomechanical factors affect 
the face37,38. A natural consequence of these forces and constraints 
during facial morphogenesis and growth is that the face exhibits 
a modular organization, with suites of facial features at different 
scales that show internal integration but remain relatively indepen-
dent from other features39. Therefore, we expect the human face to 
be influenced by many genes that exhibit a range of effects, with 
some influencing only localized parts of the face and others influ-
encing more global aspects of morphology. As a result, the proposed 
facial segmentation is related to the concept of modularity and inte-
gration in morphological studies40, with the main addition that the 
partitioning was done hierarchically, moving from globally inte-
grated to locally focused modules. This allows for an investigation  
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Fig. 3 | Facial shape effects. Outer layer, for each locus, the –log10 P value of the lead SNP is shown for all 63 facial segments plotted on a polar 
dendrogram (ranging from 0 to the maximum –log10 P value as reported in Table 1). Facial segments with a P value lower than the genome-wide threshold 
(P =​ 5 ×​ 10−8) are encircled. Inner layer, for each locus, its effect on a representative segment is illustrated using the normal displacement (displacement in 
the direction locally perpendicular to the facial surface). Blue and red indicate a local shape depression and protrusion, respectively, due to the minor allele 
at the SNP. Two loci (2q31.1 and 3q21.3) were associated with segments from separate quadrants of the polar dendrogram; hence, normal displacement is 
illustrated for representative segments in two areas of the face. Loci are ordered counterclockwise by chromosomal location.
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of facial shape effects propagating at different scales. On the basis 
of structural correlations between a vast number of individual 3D 
points on facial surfaces, we were able to hierarchically cluster the 
human face into segments. These were learned from the data and 
thus are unsupervised and data derived instead of candidate driven, 
and they could be duplicated across independent cohorts. This 
allowed for an efficient divide-and-conquer strategy enabling the 
screening of a huge set of facial variations without compromising 
statistical power.

Efficient use of phenotypic data from modest-sized cohorts is 
necessary for investigating 3D facial shape. In contrast to a recent 
GWAS on human body height41, which, owing to the widespread 
availability of data on the phenotype, was able to identify 423 loci in 
combined samples over two orders of magnitude larger than what 
was used here, the specialized phenotype data needed for investi-
gating 3D facial shape are limited to a few, smaller cohorts. Using 
the PITT cohort from Shaffer et al.6, we managed to substantially 
increase the number of associated loci identified.

The global and local facial patterns as depicted in Fig. 3 for 
the discovered loci may help elucidate their roles during cranio-
facial development. It is clear that many of the genes at these loci 
are expressed in relevant tissues during embryonic development. 
Connecting these patterns of early expression and function to 
eventual morphology is a major challenge. The kind of highly 
refined facial effects presented here can help provide a roadmap 
to clarify the connections between molecules and morphology. 
Consider, for instance, two loci associated with different aspects of 
nasal shape, which are depicted in Supplementary Fig. 6. 19q13.11 
(KCTD15) showed a highly focal effect limited to the nasal tip. In 
contrast, 6p21.1 (SUPT3H) affected primarily the nasal root and 
lateral parts of the nasal bridge, with its effects effectively sparing 
the nasal tip. A similar nasal phenotype was observed by Adhikari  
et al.4 at 6p21.1. These highly specific phenotypic effects might 
provide important insights about the role of these two genes dur-
ing human facial morphogenesis and growth. KCTD15 has been  
shown to regulate TFAP2A, which has a critical role in neural 
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crest formation42 and, when mutated, results in reduced snout 
length in mice, among other defects43. Perhaps KCTD15 affects 
nasal tip shape in humans by influencing chondrocyte prolifera-
tion in the nasal septum, whereas SUPT3H exerts its influence on 
nasal shape by affecting portions of the maxilla and nasal bones. 
The precision of the phenotypic effects identified here can form 
the basis of such testable hypotheses in the laboratory. As another 
example, previous research extensively described the role of SOX9 
in the development of a broad range of tissues44. For facial devel-
opment specifically, SOX9 is expressed in CNCCs populating the 
pharyngeal arches in the head region. Previous animal and devel-
opmental studies described that the first pharyngeal arch gives 
rise to the maxillary and mandibular prominences45. However, 
the results of our study show that the locus associated with SOX9 
(17q24.3) and the one located 1 Mb away (CASC17, which is 
known to functionally interact with SOX9 through transcription 
factors) both influence nasal shape, although the nose is known 
to be formed from the frontonasal prominence. This raises a fasci-
nating question about the involvement of SOX9 during the devel-
opment of the nose and is an interesting subject for functional 
follow-up studies.

In our search through web-based GWAS repositories, we did 
find associations (P <​ 1 ×​ 10−7) with non-facial traits for the loci 
in Table 1, including aspects of body size and composition (waist–
hip ratio and height, TBX15–WARS2 and SUPT3H, respectively), 
developmental traits like age at menarche (RAB7A) and brain 
DNA methylation levels (RPS12–EVA4), and risk of biliary atresia 
(PAX3). That genes and, more specifically, even relatively small gene 
regions, such as those identified in GWAS, have multiple functions 
in the body, or pleiotropy, has been appreciated for some time46. 
However, the extent to which pleiotropy has a role in trait variation 
and disease risk is perhaps much greater than what has previously 
been appreciated47.

In conclusion, we proposed a data-driven global-to-local facial 
phenotyping approach, well suited for a genome-wide association 
scan. Using this approach, we have substantially advanced the litera-
ture on facial genetics on several fronts. First, we identified and rep-
licated a number of new associated genetic loci using modest-sized 
cohorts. Second, we provided additional support for numerous pre-
viously identified loci and showed a strong integration of our results 
with the facial GWAS literature. Third, we demonstrated the preferen-
tial activity of the replicated loci in CNCCs, consistent with an embry-
onic origin of the human facial variation captured by our study. Lastly, 
we identified patterns of global-to-local genetic effects on facial shape, 
supporting the genetic organization of facial features at different scales.

URLs. National Institute for Dental and Craniofacial Research, 
http://www.nidcr.nih.gov/; National Human Genome Research 
Institute, https://www.genome.gov/; National Institute of Justice, 
https://www.nij.gov/funding/Pages/welcome.aspx; US Department 
of Defense, http://www.defense.gov/; MeshMonk  facial mapping 
software, https://github.com/TheWebMonks/meshmonk; GREAT 
analysis, http://great.stanford.edu/; database of Genotypes and 
Phenotypes (dbGaP), http://www.ncbi.nlm.nih.gov/gap; facial 
images for the PITT cohort, https://www.facebase.org/data/
record/#1/isa:dataset/RID=​14283; GWAS Central, http://www.
gwascentral.org/; Table Browser of the UCSC Genomes Browser, 
http://genome.ucsc.edu/cgi-bin/hgTables; OMIM database, https://
www.omim.org/. All relevant study and results data to run future 
replications and meta-analysis efforts are provided at https://www.
esat.kuleuven.be/psi/research/global-to-local-facial-phenotyping.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-018-0057-4.
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Methods
Sample and recruitment details. For the discovery cohort (the Pittsburgh (PITT) 
sample), data from 2,449 participants were obtained from the 3D Facial Norms 
repository48. The repository includes 3D facial surface images and self-reported 
demographic descriptors (for example, age and ancestry) as well as basic physical 
characteristics (for example, height and weight) from individuals recruited at four 
US sites: Pittsburgh, PA; Seattle, WA; Houston, TX; and Iowa City, IA. Recruitment 
was limited to individuals aged 3 to 40 years and of self-reported European 
ancestry. Individuals were excluded if they reported a personal or family history of 
any birth defect or syndrome affecting the head or face, a personal history of any 
significant facial trauma or facial surgery, or any medical condition that might alter 
the structure of the face. A total of 2,329 participants were retained for analysis, 
after removing 120 participants, with missing information on sex, age, height, 
weight or with 3D image mapping artifacts (n =​ 22).

For the replication cohort (the Penn State (PSU) sample), participants were 
recruited through several studies at the Pennsylvania State University and sampled 
in the following locations: State College, PA; New York, NY; Urbana-Champaign, 
IL; Twinsburg, OH; Dublin, Ireland; Rome, Italy; Warsaw, Poland; and Porto, 
Portugal. Participants self-reported information on age, ethnicity, ancestry and 
body characteristics, and data were gathered on height, weight and pigmentation 
of the hair and skin. Individuals were excluded from the analysis if they were 
below 18 years of age (range 18–88) and if they reported a personal history of 
significant facial trauma or facial surgery, or any medical condition that might 
alter the structure of the face. No restriction on ancestry or ethnicity was imposed 
during recruitment, but only individuals of European descent were used in this 
study (n =​ 2,059). Participants were removed because of missing sex, age, height 
or weight information (n =​ 81) or the presence of 3D image mapping artifacts 
(n =​ 33). A further reduction to n =​ 1,719 was done by excluding participants who 
were not included in the genotype imputation efforts.

Facial phenotyping, 3D imaging quality control and shape variables. 3D 
facial surface imaging. Digital facial stereophotogrammetry was used to capture 
3D facial surfaces in both samples. This well-established approach uses digital 
photography to generate a dense 3D point cloud representing the surface geometry 
of the face from multiple 2D images with overlapping fields of view. For the 
Pittsburgh sample, facial surfaces were acquired using 3dMDface camera systems. 
For the Penn State sample, 3D images were obtained with 3dMDface or Vectra 
H1 (Canfield Scientific) systems. Applying standard facial image acquisition 
protocols49, participants were asked to close their mouths and hold their faces with 
a neutral expression.

Spatially dense facial quasi-landmarking. 3D images in wavefront.obj file format 
were imported into an in-house 3D image-cleaning program for cropping and 
trimming, removing hair, ears and any dissociated polygons. Five crude positioning 
landmarks were placed on the face to establish a rough facial orientation. An 
anthropometric mask (AM)50 was non-rigidly mapped9 onto all 3D images and 
their reflections, which were constructed by changing the sign of the x coordinate51. 
The AM is essentially a surface template covering the facial area of interest, and 
the mapping thereof onto the facial images is a process equivalent to the indication 
of traditional landmarks. This establishes homologous spatially dense (~10,000) 
quasi-landmark (QL) configurations for all 3D images and their reflections. In 
other words, image data from different individuals became standardized, enabling 
a spatially dense analysis.

Facial size was obtained as the centroid size of the quasi-landmark 
configurations. Facial shape was symmetrized using GPA52 to eliminate differences 
in position, orientation and size of both original and reflected quasi-landmark 
configurations. The average of an original and its reflected quasi-landmark 
configuration constitutes the symmetric component, while the difference between 
the two configurations constitutes the asymmetric component. Although of 
interest, in this work we currently ignore variations in facial asymmetry. Therefore, 
unless otherwise mentioned, when discussing facial shape we always refer to the 
symmetric quasi-landmark configuration.

Facial quality control. Outlier faces, due to quasi-landmark mapping errors, 
were detected by measuring the Mahalanobis distance for each face to the 
overall average face in the symmetrized shape space spanned by an orthogonal 
basis of principal components that captures 98% of the total variation. From 
the distribution of Mahalanobis distances, a z score for each facial shape was 
established, and each face with a z score equal to or larger than 2 was manually 
inspected for quasi-landmark errors. Identified erroneous faces were removed, and 
the whole process starting from the generalized Procrustes superimposition of both 
original and reflected quasi-landmark configurations was repeated. The PSU and 
PITT datasets were processed separately with the same AM, resulting in error-free 
symmetric and compatible (homologous) quasi-landmark configurations across 
both datasets.

Phenotyping the discovery panel. The PITT cohort served as the discovery panel. 
First, the superimposed and symmetrized facial shapes were corrected using a 
partial least-squares regression (PLSR; function plsregress from Matlab 2016b) 

for the confounders of sex, age, age2, weight, height, facial size and the first 
four genetic PCA axes to correct for population stratification. Of note, while 
correcting for genetic background and other confounders is a required step in 
genetic mapping efforts, it additionally ensures that structural facial variations 
due to the confounders do not influence the global-to-local segmentation of 
faces. Second, a 3D correlation, using the RV coefficient53, between each pair of 
corrected quasi-landmarks was computed to construct the squared similarity 
matrix (~10,000 ×​ ~10,000). Subsequently, a hierarchical spectral clustering with 
five levels was performed, resulting in a total of 63 hierarchically linked facial 
segments with 1, 2, 4, 8, 16 and 32 non-overlapping modules at levels 0, 1, 2, 3, 4 
and 5 (Fig. 1). The hierarchical design provides a stepwise focused shape analysis 
at different scales, by gradually zooming in to more local shape variations without 
ignoring the integration of facial parts at previous levels. Furthermore, specific 
shape effects should propagate consistently in facial segments linked across 
different levels, lending additional support that the discovered signals are robust. 
At each level, for each segment, all quasi-landmarks in the segment are subjected 
to a new GPA. As such, a shape space for each facial module is constructed 
independently of the other modules and its relative positioning within the full 
face. This is particularly interesting for smaller shape variations (for example, 
nose tip) that when superimposed using the full facial surface are overlooked and 
become undetectable. Finally, after GPA, each modular shape space is spanned by 
an orthogonal basis using PCA combined with parallel analysis12 to determine the 
number of significant components contributing to facial shape.

This application of PCA had several advantages. First, PCs form an orthogonal 
basis, such that shape variations could be described as linear combinations of 
PCs. Second, by selecting significant PCs, it was possible to eliminate (via parallel 
analysis12) noisy or meaningless shape variations that result from various sources of 
error, such as 3D image acquisition and/or quasi-landmark mapping. Third, PCA 
is an excellent tool to reduce the dimensions of high-dimensional data when strong 
correlations between the individual data elements are present. The construction 
of facial modules, as performed here, resulted in the grouping of highly correlated 
quasi-landmarks, such that a substantial reduction of dimensions was obtained. 
This in turn enabled the use of multivariate association techniques, such as CCA, 
that are constrained in the number of variables tested as a function of the sample 
size. For almost all segments and especially for the larger segments containing up 
to ~10,000 quasi-landmarks, this constraint would otherwise have been violated. 
Furthermore, the multivariate association was more computationally tractable 
given the lower number of variables tested. Finally, an effect identified in PCA 
space could be transformed back into the quasi-landmark shape space.

Note that some prior studies2,3,5 also analyzed facial shape data using PCs, 
but they did so by analyzing them separately. Basically, in these studies, full facial 
multivariate sparse landmark configurations were projected onto each PC and thus 
the phenotypic data were preselected along the PCs individually and one by one. 
Any preselection of measurements, either distances or PCs that are subsequently 
analyzed individually results in a loss of information, as combinations of these 
measurements are not considered. In contrast, our work uses all PCs together in a 
single multivariate association effort based on CCA. Therefore, any possible linear 
combination of PCs is investigated simultaneously and information is not lost. In 
CCA, ‘canonical’ is the statistical term for analyzing latent variables (which are not 
directly observed) that represent multiple variables (which are directly observed). 
Such an optimization and construction of latent variables is absent in a linear 
regression on an individual PC.

Phenotyping the replication panel. The PSU cohort was used as the replication 
panel. First, independently of the PITT dataset, the superimposed and 
symmetrized facial shapes were corrected, using a PLSR, for the confounders of 
sex, age, age2, weight, height, facial size and the first three PCA axes of genetic 
background. The reason for this separate and independent correction was 
twofold: (i) both cohorts have independent axes of genetic background and (ii) 
this workflow shows how future replication efforts can be done without the need 
to merge, and therefore have access to, all the genetic and covariate data from the 
discovery cohort. The establishment of spatially dense quasi-landmarks  
(AM mapping) allowed for consistent phenotyping. After AM mapping, the PSU 
faces were segmented using the quasi-landmark clustering from the discovery 
PITT cohort. Finally, for each facial segment, all PSU shape instances were 
superimposed onto the segmental average shape and PCs of the discovery panel.  
In this way, the replication effort only required the discovery quasi-landmark 
cluster labels, average shapes and PCs for each of the facial segments.

Genotyping, quality checks, imputation, population structure and annotation. 
The Pittsburgh sample. Genotyping was performed at the Center for Inherited 
Disease Research (CIDR) at Johns Hopkins University. Participants, including 
70 duplicate samples and 72 HapMap control samples, were genotyped on the 
Illumina OminExpress +​ Exome v1.2 array plus 4,322 investigator-chosen SNPs 
included to capture variation in specific regions of interest based on previous 
studies of the genetics of facial variation. Standard data cleaning and quality 
assurance procedures54 were performed in collaboration with the University of 
Washington Genetics Coordinating Center. Specifically, samples were evaluated for 
concordance of genetic and reported sex, evidence of chromosomal aberrations, 
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biological relatedness across study participants, ancestry, genotype call rate and 
batch effects. SNPs were evaluated for call rate, discordant genotype calls between 
duplicate samples, Mendelian errors in HapMap control parent–offspring trios, 
deviation from Hardy–Weinberg genotype proportions and sex differences in allele 
frequency and heterozygosity.

Imputation of unobserved genetic variants and sporadic missing genotype 
calls for assayed SNPs was performed using the 1000 Genomes Project8 Phase 
3 reference panel. SHAPEIT255 was used for prephasing of haplotypes, and 
IMPUTE256,57 was used to impute nearly 35 million variants. SNP-level (INFO 
score >​ 0.5) and genotype-per-participant-level (genotype probability >​ 0.9) filters 
were used to omit poorly imputed variants. Masked variant analyses, in which 
genotyped SNPs were imputed as though they had not been assayed, indicated high 
concordance between imputed and observed genotypes: 0.982 for SNPs with MAF 
≥​0.05 and 0.998 for SNPs with MAF <​0.05.

Population structure was assessed using PCA of approximately 97,000 
autosomal genotyped SNPs chosen for call rate (>​95%), MAF (>​0.05) and LD 
(pairwise r2 <​0.1 across variants in a sliding window of 10 Mb). Tests of genetic 
association between the first 20 PCs and all SNPs confirmed that PCs did not 
represent local variation at specific genetic loci. On the basis of the scree plot and 
joint distributions, four PCs are sufficient to capture population structure within 
the PITT sample.

The Penn State sample. Participants sampled from 2006–2012 (IRB 32341) were 
genotyped on the Illumina Human Hp200c1 BeadChip. Participants sampled from 
2013–2016 (IRB 44929, 13103, 2503 and 4320) were genotyped on the 23andMe 
v3 and v4 arrays. Samples were evaluated for concordance of genetic and reported 
sex, evidence of chromosomal aberrations, biological relatedness across study 
participants, ancestry, genotype call rate and batch effects. SNPs were evaluated for 
call rate, discordant genotype calls between duplicate samples, Mendelian errors in 
HapMap control parent–offspring trios, deviation from Hardy–Weinberg genotype 
proportions and sex differences in allele frequency and heterozygosity.

Using the 1000 Genomes Project8 Phase 3 reference panel, samples with >​
500,000 variants were imputed, as fewer variants result in uncertain imputation 
probabilities. SHAPEIT255 was used for prephasing of haplotypes, and 
IMPUTE256,57 was used to impute nearly 35 million variants. SNP-level (INFO 
score >​ 0.5) and genotype-per-participant-level (genotype probability >​ 0.9) filters 
were used to omit poorly imputed variants.

To select the Europeans used in this study, the HapMap 3 dataset (n =​ 998) was 
merged with the non-imputed genotypes, and genetic ancestry was estimated using 
the ADMIXTURE program58 assuming k =​ 3 to 9 ancestral populations. On the 
basis of the cross-validation (CV) error for each k value, we selected a value of k =​ 6 
as appropriate for the dataset. These results were then used to provide a matrix of 
genetic ancestry axes, which were used to select samples most closely related to the 
CEU and TSI population references.

Additional population structure was assessed using PCA of approximately 
100,000 autosomal genotyped SNPs chosen for call rate (>​95%), MAF (>​0.05) and 
LD (pairwise r2 <​0.1 across variants in a sliding window of 10 Mb). Tests of genetic 
association between the first 20 PCs and all SNPs confirmed that PCs did not 
represent local variation at specific genetic loci. on the basis of the scree plot and 
joint distributions, three PCs are sufficient to capture population structure within 
the European-only PSU sample.

Top SNPs and annotation. We observed 1,932 genome-wide significant SNPs across 
38 loci using a 500-kb window. For each locus, a top SNP was defined as the SNP 
generating the highest association (lowest P value) in any of the 63 facial segments. 
Genes 500 kb up- and downstream of the top SNPs were identified using the Table 
Browser of the UCSC Genome Browser (see URLs). Each gene was annotated on 
the basis of the literature found in PubMed. As a search term, only the gene name 
was used, and relevant articles were selected based on their title and abstract. 
The OMIM database (see URLs) was searched for syndromes associated with the 
annotated genes.

Statistics and epigenomic analysis. SNPs—statistical association. Our global-
to-local facial phenotyping partitioned facial shape into 63 facial segments, 
each of which was represented by multiple dimensions of variation (PCs). 
CCA13, as implemented in the function canoncorr from Matlab 2016b, was 
used as a straightforward multivariate testing framework (note that CCA is also 
implemented in PLINK 1.959). CCA extracts the linear combination of PCs from 
a facial segment that has maximal correlation with the SNP being tested. The 
correlation is tested for significance based on Rao’s F-test approximation60 (right-
tail, one-sided test). Using CCA, we tested each SNP (n =​ 9,478,608) individually 
under the additive genetic model in the PITT cohort (n =​ 2,329). Note that CCA 
does not accommodate adjustments for covariates, but effects of important 
variables such as sex, age, height, weight, facial size and genetic ancestry were 
corrected for (using PLSR) at the phenotyping stage. Additionally, we applied a 
similar correction for the covariates on each SNP, again using PLSR. Therefore, 
the CCA analysis was performed under the reduced model, which was obtained 
after removing the effects of covariates on both the independent (SNP) as well as 
the dependent (facial shape) variables. The minimum MAF cutoff for SNPs to test 

was 1%. Quantile–quantile plots, provided online, indicate that the population 
stratification under this reduced model was dealt with properly.

Multiple-testing corrections. Given the burden of multiple comparisons, a 
strict significance threshold of P ≤​ 5 ×​ 10−8 was used to declare ‘genome-wide 
significance’, which corresponds to a Bonferroni correction for 1 million 
independent tests and mostly applicable in a European GWAS cohort61.  
Given that we tested facial variation as one of many facial segments separately, the 
multiple-comparisons burden was magnified. Therefore, we also determined a 
more stringent threshold for declaring ‘study-wide significance’ corresponding  
to an additional adjustment for the effective number of independent tests62.  
The eigenvalues of pairwise multivariate correlations of all 63 modules determined 
a total of 39 effective independent tests. This reduction in effective tests was 
expected because of the hierarchical and overlapping construction of the facial 
segments. Therefore, the study-wide significance threshold was determined to 
be 1.2821 ×​ 10−9 (i.e., 5 ×​ 10−8/39). Additionally, we computed an FDR-adjusted 
significance threshold of Benjamini and Yekutieli14 that is accurate for any test 
dependency structure.

SNPs—statistical replication. On the basis of previous work10, the effect found in 
the discovery cohort was measured directly in the replication cohort (n =​ 1,719), 
which was followed by a univariate analysis. First, the discovery cohort was used as 
a phenotyping reference for the replication cohort. Facial shapes of the replication 
cohort were projected onto the PCs of each of the 63 facial segments. Subsequently, 
they were further projected onto the SNP-related CCA loadings, constructing 
specific genetic effect scores10. In doing so, the phenotypic trait, once discovered, 
was fixed and explicitly measured in the replication cohort. This resulted in a 
univariate phenotypic measure that was tested for association using a standard 
linear regression. We report the regression coefficient, standard error and a P value 
(two-sided) based on a t statistic for regression coefficients using the function 
regstats from Matlab 2016b. This was done separately for each combination of 
SNP (n =​ 1,931) and facial segment that achieved genome-wide significance. 
From all replication efforts combined (n =​ 7,467), we computed an FDR-adjusted 
significance threshold14.

SNPs—tissue-specific enhancer association. ChIP–seq datasets from human  
and chimpanzee CNCCs were obtained from Prescott et al.21 and compared to 
72 publicly available H3K27ac ChIP–seq datasets corresponding to 31 cell types/
tissues (as indicated in Fig. 4a) and downloaded from the Sequence Read  
Archive (SRA) repository. Normalized H3K27ac ChIP coverage was calculated 
for 800,000 genomic regions corresponding to a superset of ENCODE DNase-
hypersensitive sites (DHSs) and transcription factor–binding sites. Next, all 
intervals in the 20-kb windows centered on the 15 top replicated SNPs were 
selected (intersectBed), and a box plot (using the boxplot function in R with 
default interval settings) of the logarithm of normalized ChIP coverage was plotted. 
As a control, a five times larger set of randomized SNP positions was used in the 
same procedure.

SNPs—CNCC chromatin state association and statistics. Identification of 
different classes of CNCC regulatory regions based on chromatin signatures 
was performed as described in Prescott et al.21. In brief, 106,000 human CNCC 
candidate regulatory regions were called on the basis of combined p300, AP2α​ 
and NR2F1 ChIP–seq and ATAC–seq data by combining MACS2-called peaks 
into one set using mean-shift clustering. Normalized coverage around these 
regions was obtained for H3K4me1, H3K4me3, H3K27ac and H3K27me3 
histone modifications. To visualize chromatin states at the candidate regions, the 
log of the H3K4me1 to H3K4me3 signal ratio was plotted versus the log of the 
ratio of H3K27ac to H3K27me3 as a scatterplot and colored by k-means (k =​ 5) 
cluster identity, corresponding to promoters, active enhancers, poised regions 
and premarked regions. Regulatory regions closest to the top replicated GWAS 
(closestBed function) SNPs were identified and are highlighted by circles. We 
observed 3 of 15 lead SNPs to be closest to a region with an active chromatin state 
(distance less than 9 kb in each case). This represents a significant enrichment for 
active chromatin–lead SNP association under Fisher’s exact test (contingency table: 
3 active regions proximal to SNP, 12 other regions proximal to SNP, 3,622 active 
regions not proximal to SNP, 102,694 other regions not proximal to SNP), exact 
P =​ 1.19 ×​ 10−2. We also compared replicated SNPs to non-replicated SNPs from the 
screen in terms of direct overlap (1-kb distance) with CNCC regulatory elements 
(contingency table: 26 non-replicated SNPs with no overlap, 0 non-replicated SNPs 
with overlap, 7 replicated SNPs with no overlap, 5 replicated SNPs with overlap), 
Fisher’s exact test P =​ 1.58 ×​ 10−3.

Chromatin modification visualization in the genome browser. Kernel smoothed 
coverage files in wig format were generated with QuEST2.063 from datasets from 
Prescott et al.21 and uploaded to the UCSC browser. Representative tracks were 
selected to make Fig. 5b concise and instructive.

Gene Ontology term enrichment analysis. Analysis was performed with GREAT 
3.0.015. Genomic positions for replicated SNPs were uploaded to http://great.
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stanford.edu/, and the results of the analysis in terms of FDR and enrichments for 
each significant category are summarized in Supplementary Fig. 4.

Cell line sources. Cells from WiCell (H9 ESC) and the laboratory of F. Gage  
(iPSC; Salk Institute) were authenticated by analyzing genomic sequence data from 
the cell lines. PCR tests were done to test for mycoplasma contamination.

Ethics statement. Institutional review board (IRB) approval was obtained at each 
recruitment site, and all participants gave their written informed consent before 
participation; for children, written consent was obtained from a parent or legal 
guardian. For the Pittsburgh sample, the following local ethics approvals were 
obtained: University of Pittsburgh IRB PRO09060553 and RB0405013; UT Health 
Committee for the Protection of Human Subjects HSC-DB-09-0508; Seattle 
Children’s IRB 12107; University of Iowa Human Subjects Office/IRB 200912764 
and 200710721. For the Penn State sample, the following local ethics approvals 
were obtained: State College, PA (IRB 44929 and 4320); New York, NY (IRB 
45727); Urbana-Champaign, IL (IRB 13103); Dublin, Ireland; Rome, Italy;  
Warsaw, Poland; and Porto, Portugal (IRB 32341); Twinsburg, OH (IRB 2503).

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Data availability. All of the genotypic markers for the Pittsburgh dataset are 
available to the research community through the dbGaP controlled-access 
repository (see URLs) at accession phs000949.v1.p1. The raw source data for the 
phenotypes—the 3D facial surface models in .obj format—are available through 
the FaceBase Consortium (see URLs). Access to these 3D facial surface models 
requires proper institutional ethics approval and approval from the FaceBase data 
access committee. Additional details can be requested from S.M.W.

The participants making up the Penn State University dataset were not 
collected with broad data sharing consent. Given the highly identifiable nature 
of both facial and genomic information and unresolved issues regarding risk to 
participants, we opted for a more conservative approach to participant recruitment. 
Broad data sharing of these collections would thus be in legal and ethical violation 
of the informed consent obtained from the participants. This restriction is 
not because of any personal or commercial interests. Additional details can be 
requested from M.D.S.

KU Leuven provides the spatially dense facial mapping software, free to use 
for academic purposes: MeshMonk (see URLs). Matlab implementations of the 
hierarchical spectral clustering to obtain facial segmentations are available upon 
request from P.C. The statistical analyses in this work were based on functions of 
the statistical toolbox in Matlab 2016b as mentioned throughout the Methods.

All relevant data to run future replications and meta-analysis efforts are 
provided in Matlab format online (see URLs). This includes the anthropometric 
mask used, facial segmentation cluster labels, PCA shape spaces for all 63 facial 

segments in the PITT cohort, CCA loadings and all association statistics for the 
peak SNPs in Table 1. An example Matlab script to explore the data is provided  
as well.
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Life Sciences Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form is intended for publication with all accepted life 
science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list 
items might not apply to an individual manuscript, but all fields must be completed for clarity. 

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research 
policies, including our data availability policy, see Authors & Referees and the Editorial Policy Checklist. 

    Experimental design
1.   Sample size

Describe how sample size was determined. Sample size was determined by the amount of data available in the public facial 
data repository (Facebase.org). This sample was previously used, and this work 
shows a strong increase in power from this data set. More information is found in 
M&M.

2.   Data exclusions

Describe any data exclusions. Data exclusions were pre-established based on image quality, facial interventions 
(e.g. facial surgery), and missing data. More information is found in M&M.

3.   Replication

Describe whether the experimental findings were 
reliably reproduced.

A completely independently sampled, imaged, genotyped, imputed... cohort was 
used to replicate any statistical findings. More information is found in M&M.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

No randomization took place, group membership of discovery and replication was 
determined by the separately obtained cohorts available. Important covariates 
were conditioned for during the analysis. More information is found in M&M.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Blinding was not relevant to this study. Two independent cohorts were used, one 
for discovery and one for replication. These cohorts were sampled by different 
research centra, and the analysis was done, by yet another research center. Each 
cohort was analyzed as a whole and no further grouping was applied. 

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size ( ) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g.  values) given as exact values whenever possible and with confidence intervals noted

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

Custom build facial mapping software was used and is made available on Github as 
stated in the manuscript. The rest of the work and analysis was performed using 
Matlab 2016b or R, all relevant functions used are quoted in the M&M, other more 
custom functions are available on request as stated in the Manuscript.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub).  guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a for-profit company.

No unique materials were used

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. WiCell (H9 ESC) and Fred Gage laboratory (iPSC)

b.  Describe the method of cell line authentication used. We have analyzed genomic sequences data from the lines

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

Yes, by PCR tests. M&M, Epigenomic analyses of CNCC regulatory chromatin 
signatures

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used
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    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived 
materials used in the study.

No animals were used

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

For the discovery cohort (the Pittsburgh (PITT) sample), data from 2,449 
participants were obtained from the 3D Facial Norms repository. The repository 
includes 3D facial surface images and self-reported demographic descriptors (e.g., 
age, ancestry) as well as basic physical characteristics (e.g. height and weight) from 
individuals recruited at four U.S. sites: Pittsburgh, PA; Seattle, WA; Houston, TX; 
and Iowa City, IA. Recruitment was limited to individual’s age three to 40 years and 
of self-reported European ancestry. Individuals were excluded if they reported a 
personal or family history of any birth defect or syndrome affecting the head or 
face, a personal history of any significant facial trauma or facial surgery, or any 
medical condition that might alter the structure of the face. 
 
For the replication cohort (the Penn State (PSU) sample), participants were 
recruited through several studies at The Pennsylvania State University and sampled 
in the following locations: State College, PA; New York, NY; Urbana-Champaign, IL; 
Twinsburg, OH; Dublin, Ireland; Rome, Italy; Warsaw, Poland, and Porto, Portugal. 
Participants self-reported information on age, ethnicity, ancestry, and body 
characteristics, and data were gathered on height, weight, and pigmentation of the 
hair and skin. Individuals were excluded from the analysis if they were below 18 
years of age (range 18 – 88) and if they reported a personal history of significant 
facial trauma or facial surgery, or any medical condition that might alter the 
structure of the face. No restriction on ancestry or ethnicity was imposed during 
recruitment, but only individuals of European descent were used in this study (N = 
2,059).  
 
For both cohorts, there was no imbalance in gender, and weight and height 
distributions follow typical distributions seen in a European-derived population. 
Population stratification was dealt with using genetic PCs from full genome data. 
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