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ABSTRACT

Background and aims Few studies have explored how polygenic propensity to cannabis use unfolds across develop-
ment, and no studies have yet examined this question in the context of environmental contributions such as peer cannabis
use. Outlining the factors that contribute to progression from cannabis initiation to problem use over time may ultimately
provide insights into mechanisms for targeted interventions. We sought to examine the relationships between
polygenic liability for cannabis use, cannabis use trajectories from ages 12–30 years and perceived peer cannabis use at
ages 12–17 years. Design Mixed-effect logistic and linear regressions were used to examine associations between
polygenic risk scores, cannabis use trajectory membership and perceived peer cannabis use. Setting United States.

Participants From the Collaborative Study on the Genetics of Alcoholism (COGA) study, a cohort of 1167 individuals
aged 12–26 years at their baseline (i.e. first) interview. Measurements Key measurements included life-time cannabis
use (yes/no), frequency of past 12-month cannabis use, maximum life-time frequency of cannabis use, cannabis use
disorder (using DSM-5 criteria) and perceived peer cannabis use. Polygenic risk scores (PRS) were created using summary
statistics from a large (n = 162082) genome-wide association study (GWAS) of cannabis use. Findings Three trajecto-
ries reflecting no/low (n = 844), moderate (n = 137) and high (n = 186) use were identified. PRS were significantly asso-
ciated with trajectory membership [P = 0.002–0.006, maximum conditional R2 = 1.4%, odds ratios (ORs) = 1.40–1.49].
Individuals who reported that most/all of their best friends used cannabis had significantly higher PRS than those who
reported that none of their friends were users [OR = 1.35, 95% confidence interval (CI) = 1.04, 1.75, P = 0.023]. Perceived
peer use itself explained up to 11.3% of the variance in trajectory class membership (OR = 1.50–4.65). When peer cannabis
use and the cannabis use PRS were entered into the model simultaneously, both the PRS and peer use continued to be
significantly associated with class membership (P < 0.01). Conclusions Genetic propensity to cannabis use derived from
heterogeneous samples appears to correlate with longitudinal increases in cannabis use frequency in young adults.
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INTRODUCTION

The growing controversy regarding cannabis legalization
in the United States [1] is based in part on the question of
whether increased access is associated with escalations of
both use and misuse [2], with the latter currently affecting
approximately 6% of the population [3]. Longitudinal stud-
ies have classified young cannabis users into those who
remain casual users, those who transition to moderate
levels of use and remain stable, those who show initial

increases followed by declines in use and, importantly,
those who demonstrate accelerated use and progression
to problem use [4–11]. Outlining the factors that contrib-
ute to the likelihood of progression to problem use might
provide insights into targets for intervention.

Cannabis use andmisuse are heritable (h2 = 50–70% of
the variation). Several genome-wide association studies
(GWAS) have attempted to identify loci that might contrib-
ute to this heritable variation [12–18]. For cannabis use,
the largest published study to date (n = 184765
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individuals of European descent [19]; results used here on
n = 162082; see Supporting information for details) iden-
tified four independent genome-wide significant loci and
found a genome-wide single nucleotide polymorphism
(SNP) heritability of 10%, suggesting that the aggregated
effects of common SNPs captured a sizeable proportion of
the heritability of cannabis use. Polygenic risk scores
(PRS) offer a complementary approach to the study of such
aggregated effects [20]. In brief, a PRS is a person-specific
index of genetic propensity to a trait (e.g. cannabis use);
PRS are constructed by multiplying the effect size from a
discovery GWAS by the number of risk alleles that an indi-
vidual possesses at that SNP. PRS approaches are widely
used in psychiatric genetics, including substance use and
dependence, and can be used to assess whether genetic risk
for one disorder or trait is associated with aspects of the
same trait or with a correlated disorder/trait [21,22]. For
instance, one study found that PRS for schizophrenia risk
predicted cannabis use in individuals with bipolar disorder
[23]. However, few studies have explored how genetic pro-
pensity to cannabis initiation (i.e. cannabis PRS) influences
patterns of cannabis use across development.

In addition to genetic risk, affiliations with cannabis-
using peers are believed to be among the leading contribu-
tors to persistent cannabis use [8,11,24,25]. However, re-
sults from longitudinal samples remain mixed (e.g. [7]).
While peer use is readily viewed as an ‘environmental’
agent of risk, it can also represent heritable aspects of un-
derlying behavior, with at least one study suggesting a her-
itability of 25–28% for general peer group deviance, a
broad measure including peer marijuana use [26]. That
study also found that approximately 50–78% of the genetic
variance in peer group deviancewas attributable to genetic
factors related to cannabis use [27–29]. Another study
[30] reported that the heritability of perceived peer alcohol
use ranged from 7% at age 12–14 to 38% by age 18, and
that the relationship between peer alcohol use and one’s
own alcohol use was attributable to genetic factors with a
correlation of 0.83. Taken together, these observations
raise the possibility that polygenic risk for cannabis use
may interface with peer cannabis use in several possible
ways, ranging from a main effect to a potential interactive
effect. To our knowledge, these hypotheses remain
untested.

To understand more clearly the role of genetic propen-
sity and peer use in the longitudinal course of cannabis
use, we used data on 1167 individuals of European descent
who were part of a large longitudinal study of the genetics
of addictions. We first identified trajectories of cannabis use
frequency, and then examined whether trajectory class
membership was related to (a) cannabis use PRS and/or
(b) perceived peer cannabis use when the subject was aged
12–17 years. We also examined whether the relationship
between polygenic risk, perceived peer use and trajectory

membership could be explained by an interaction model
where perceived peer use moderated the influence of poly-
genic risk on trajectory membership. Results from these
analyses can provide a framework for how genetic liability
and peer use might interface to shape the developmental
unfolding of cannabis use.

METHODS

Participants

The Collaborative Study on the Genetics of Alcoholism
(COGA) study recruited alcohol-dependent probands
through substance use treatment programs at seven sites
throughout the United States. Probands and their family
members were invited to participate, resulting in an over-
representation of densely affectedmultiplex pedigrees. Con-
trol families (two parents and three or more offspring over
the age of 14) were also selected from a variety of commu-
nity sources (e.g. driver license registries). The institutional
review boards for all seven data collection sites, and addi-
tional data analysis sites, approved the study [31].

For the current analyses, data from a cohort of 3618
individuals (‘September 2017’ data freeze) who were aged
12–26 years at their baseline (i.e. first) interview and com-
prised the longitudinal component of COGA, were used
[32]. Briefly, participants were offspring of COGA families,
with 61.6% having one parent with alcohol use disorder.
Since 2004, participants have been interviewed every
2 years with the same structured interview; follow-up in-
terviews are ongoing. We included only subjects with
GWAS data and of European–American (EA; as verified
by genotype) descent to match the ethnicity of the
discovery GWAS [13] (n = 1897); of these individuals,
1840 had non-missing data for relevant variables. For
the longitudinal growth curve analyses, a further
reduction in sample size resulted from subsetting on those
who were EA, had GWAS data and had three or more
assessments, including the baseline assessment (final
analytical n = 1167). When compared to the larger
subset of 1840 individuals, those with three or more
assessments did not vary on any demographic or
cannabis-related characteristics, suggesting that
selection for those with greater than or equal to three
assessments did not significantly bias findings
(Supporting information, Table S1).

Assessment

All individuals were interviewed using a version of the
Semi-Structured Assessment for the Genetics of Alcohol-
ism (SSAGA [33,34]) with individuals aged < 18 years
administered a child version (C-SSAGA [33,34]).
• Life-time cannabis use was coded using all assessment
responses to an item onwhether they had ever used can-
nabis (response: yes or no).
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• Frequency of past 12-month cannabis use was also re-
corded as the response at each interview to an item que-
rying howoften the participant had used cannabis in the
past 12months; the range was from 0 to 935. Datawere
winsorized to remove outliers (> 3 standard deviations)
at each age and were binned into 31 categories in 20-
unit intervals. The interval length was chosen to capture
variation in the data and allow for model optimization
(sensitivity analyses with a 10-unit interval were also
conducted; see Supporting information).

• Maximum life-time frequency of cannabis use was the
maximum reported frequency of past 12-month canna-
bis use; this variable was log-transformed before analysis
due to being right-skewed.

• Cannabis use disorder (CUD) was coded using DSM-5
criteria [35] (without the requirement for clustering of
symptoms).

• Perceived peer cannabis use was coded as the response to
an item: ‘When you were 12–17, howmany of your best
friends used marijuana?’ (0 = none, 1 = a few, 2 = most,
3 = all; categories representing ‘most’ and ‘all’were com-
bined, as the latter was only endorsed by 35 individuals);
to minimize recall bias, peer use reported at the last
assessment was used for those aged 12–17 (n = 818),
and at the assessment closest to age 12–17 for
subjects aged 18 and older (349, although 91% were
aged 18–21 years).

Genotypic data

Members of COGA’s prospective cohort were genotyped as a
part of multiple initiatives on different Illumina and
Affymetrix arrays. The reported pedigree structure was
assessed using a pruned set of 1 519440 SNPs. In total,
6 881872 SNPs passed quality control and data cleaning
thresholds and were available for analysis (see details in
Supporting information).

Polygenic risk for cannabis use

Effect sizes and effect alleles were derived from genome-
wide summary statistics from a large GWAS meta-analysis
of 162082 individuals, all of European ancestry (charac-
teristics of discovery GWAS [19] in Supporting informa-
tion). PRS were created for each COGA individual of
genetically verified European descent with SNPs meeting
increasingly lenient P-value thresholds from the discovery
GWAS (from PT < 0.0001 to PT < 0.50). Details are pro-
vided in Supporting information but briefly, for each COGA
individual, effect sizes from the discovery GWAS by Pasman
et al. weremultiplied by the number of effect alleles for each
SNP, and then averaged across all SNPs within a certain P-
value threshold (e.g. PT < 0.10) (e.g. tuning parameter
[36]) in the discovery GWAS to create one score per indi-
vidual for that PT. This PT threshold is not reflective of

significance of the PRS in a traditional statistical sense
(i.e. P < 0.05). Instead, it is predicated on the assumption
of a high degree of polygenicity, which has been found to
be true for most complex traits [37]; therefore, SNPs that
do not reach stringent genome-wide significance cut-offs
(typically P < 5e–8) in the discovery GWAS are still
predicted to make small but incremental and additive
contributions to risk liability for the outcome [20,38,39].

Covariates

Sex, age at first (i.e. baseline) and last interview were
included as covariates. Two additional covariates were also
included. First, three principal components, reflecting
continuous variation in genetic ancestry were derived from
all the GWAS data (details in Supporting information) and
included to account for subtle ancestral differences [40].
Secondly, the type of genotyping array used for each
individual was included as a covariate in order to control
for potential differences in genomic content, quality control
or imputation (see Supporting information, Table S1 for
descriptive data).

Statistical analyses

Estimation of trajectories

Only subjects with GWAS data and cannabis frequency of
use data available at three or more assessment waves
(n = 1167) were included in the growth mixture models.
Latent class growth analysis (LCGA) with a zero-inflated
Poisson model in MPlus version 8 [41] was used to assign
these individuals to classes that were derived using canna-
bis past-year frequency of use categories from each of the
up to seven interviews (baseline to 12-year follow-up).
Age at assessment was used as the analytical unit (i.e.
the x-axis). Analysis details are available in Supporting
information.

PRS analyses

The PRSwere standardized (using the ‘scale’ function in R)
before analysis. Mixed-effect logistic regression models
were used to test the association between PRS (at varying
PT) and trajectory class membership (using pairwise
comparisons between classes), the associations between
peer use and trajectory class membership, between the
PRS and peer use and also to test whether an interaction
between PRS and peer cannabis use predicted trajectory
membership, while accounting for all second-order
interaction terms (see [42]). All analyses included the
family identifier and recruitment site as random effects
(family nested within site).

All the above analyses were conducted in R [43]. To
assess model fit and the relative amount of variance
explained by the PRS, we used the ‘MuMIn’ package in R
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to calculate both marginal and conditional R2 for each
mixed model [43]. We use the conditional R2 to select the
most predictive PT (see Supporting information), but report
both statistics for the most predictive PRS threshold. The
proportion of variance attributable to the PRS
(Δconditional R [2]) was estimated as the difference
between the conditional R2 for a model with covariates
alone and the model that included covariates and the
PRS [i.e. conditional R2 (full model) – conditional R2

(model without PRS)]. The use of ΔR [2] (typically
Nagelkerke’s pseudo-R2 for binary traits [20]) as an index
of the most predictive PRS relates to its role as an index of
predictor efficacy [38,39,44], such that the addition of
the PRS to a model improves the fit of the model, thus indi-
cating unique variance attributable to the PRS, over and
above covariates. As peer use was restricted to recall at
age 12–17, we did not test whether trajectorymembership
influenced future peer use. The Bonferroni-corrected sig-
nificance threshold for the PRS analyses was set at
0.0019 (corrected for 27 tests: three class compari-
sons × nine PRS thresholds), while the significance thresh-
old was set at α < 0.05 for the remaining analyses. In
addition, to overcome concerns that uncertainty in class
membership might have influenced results, we re-ran
analyses for the most predictive PRS threshold using the
BCH approach in MPlus [45]. In this approach, the LCGA
model is fitted to data and weights are assigned to
likelihood of membership in each class while simulta-
neously examining between-class differences in PRS and
accounting for the effect of covariates on class membership
(see Supporting information).

Role of externalizing behaviors

To examine whether cannabis use PRS represented a gen-
eral propensity to externalizing behaviors, we examined
their association with (a) the thrill/adventure-seeking and
the disinhibition subscales from Zuckerman’s sensation
scale (from baseline assessments; for adults [46]; Russo’s
modified sensation-seeking scale for children [47];
standardized) and (b) with a life-time diagnosis of conduct
disorder from the SSAGA.

Negative control analyses

As a negative control, we also tested whether the PRS sig-
nificantly predicted height at baseline, a trait not expected
to be genetically associated with cannabis use.

RESULTS

Trajectories of recent cannabis use

As shown in Supporting information, Fig. S1, three classes
were identified as the three-class model had a lower Bayes-
ian Information Criterion (BIC) than the two-class solution,

the Lo–Mendel–Rubin adjusted likelihood ratio test
(LMR-ALRT) P-value for the four-class solution
(P = 0.1002) was not significant, and the entropy for
the three-class solution (0.917) was high (fit statistics
in Supporting information, Table S2; parameter esti-
mates for the best-fitting model in Supporting informa-
tion, Table S3). Classification probabilities were high
(0.975, 0.928, 0.977). Sensitivity analyses with 10-unit
intervals of cannabis use frequency were similar
(Supporting information, Table S2). Broadly speaking
(Table 1), the classes represented (a) users who consis-
tently used cannabis infrequently during the entire pe-
riod of follow-up, and included never users of cannabis,
that we termed the ‘no-low’ use class (n = 844); (b) an-
other class that included individuals with very high fre-
quency of initial use that continued to escalate during
the follow-up period and remained elevated at the final
assessment, that we termed the ‘high’ use class
(n = 186); and (c) a class that included escalating use
that involved similar high use at baseline but a less steep
increase in use during the follow-up, that we termed the
‘moderate’ use class (n = 137). Also, as shown in
Table 1, those in the high and moderate use trajectories
were significantly more likely to be male, have used can-
nabis at an earlier age and meet criteria for a life-time
history of cannabis use disorder (CUD) as well as con-
duct disorder.

Associations between cannabis use PRS and overall
cannabis use in the sample

In the analytical sample (n = 1167) we found no evidence
that the cannabis PRS was associated with a binary mea-
sure of life-time cannabis use (P = 0.111), nor with fre-
quency of use at baseline (in ever-users, P = 0.390),
frequency of use at last assessment (in ever-users,
P = 0.513) or maximum frequency of cannabis use (in
ever-users, P = 0.090). However, the cannabis use PRS
was associated with life-time history of DSM-5 CUD
(P = 0.028) but was no longer significant in the subset of
ever-users (P = 0.090, Supporting information, Table S4).
The pattern of association with cannabis use was similar
when individuals with fewer than three assessments
(n = 1840) were studied, although in this larger sample
the PRS was associated with maximum frequency of can-
nabis use (P = 0.013) and with DSM-5 cannabis use disor-
der in both the full sample (P = 0.005) and in ever-users
(n = 1144, P = 0.014).

Cannabis use PRS predicting cannabis use trajectories

The cannabis use PRS was significantly associated with
cannabis use trajectory class membership (Table 2). At
themost significantly associated PRS threshold of PT< 0.1,
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the cannabis use PRS explained approximately 1.4% of
the conditional variance in high versus no-low class
membership (2.30% of the marginal variance); for ev-
ery unit increase in PRS, membership in the high versus
no-low class increased by an odds ratio (OR) of 1.40
[95% confidence interval (CI) = 1.13, 1.74]
(Supporting information, Fig. S2; full results for all
thresholds in Table 2, all covariates in Table 3). Canna-
bis PRS also explained 3.6% of the conditional variance
in high versus moderate class membership, although
this comparison did not survive Bonferroni correction
(OR = 1.49, 95% CI = 1.12, 1.97, P = 0.006). There
was no evidence that cannabis use PRS was associated
with height at baseline (P = 0.730). Results from the
BCH approach identified identically significant differ-
ences in mean PRS across the high class when com-
pared with the moderate and the no-low class
(Supporting information, Table S5).

Peer cannabis use predicting cannabis use trajectories

Of the 1162 individuals with peer use data available,
57.5, 28.3 and 14.2% reported that none, few and
most or all of their close peers used cannabis. Per-
ceived peer cannabis use explained up to 11.3% of
the variance in trajectory class membership
(ORs = 1.50–4.65). When peer cannabis use and
the cannabis use PRS were entered into the model si-
multaneously, the association between the cannabis
use PRS and membership in high versus moderate
class was only slightly attenuated (OR = 1.46, 95%
CI = 1.09, 1.94; P = 0.010), as was the association
with the high versus no-low class comparison
(OR = 1.34, 95% CI = 1.07, 1.68, P = 0.012). Peer
cannabis use was independently and significantly as-
sociated with all three comparisons in these models
that also included the PRS as a predictor (both high
versus no-low and moderate versus no-low
P < 0.001, high versus moderate P = 0.017).

Cannabis use PRS predicting peer cannabis use

Those who reported that most or all of their best friends
used cannabis had significantly higher PRS than those
who reported that ‘none’ of their best friends used can-
nabis (most significant OR=1.38, 95% CI = 1.07, 1.78,
P = 0.012). Other comparisons (e.g. none versus few:
P = 0.799; few versus most or all, P = 0.096) did not
significantly differ from each other on cannabis PRS (de-
tails in Supporting information).

Role of externalizing behaviors

The disinhibition scale scorewas significantly associated
with both trajectory membership and all peer cannabisTa
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use comparisons, while thrill-seekingwas only significantly
associated with belonging to the high trajectory class ver-
sus no-low class and with the peer cannabis use compari-
son between none versus a few (details in Supporting
information, Table S6). Cannabis use PRS did not signifi-
cantly predict either scale, but was significantly associated
with conduct disorder diagnosis, as were peer use and all
three of the trajectory class comparisons (Supporting infor-
mation, Table S6). The association between peer use and
trajectory membership (high versus no-low class:
P<0.001; high versusmoderate:P=0.037;moderate ver-
sus no-low: P = < 0.001) was only somewhat attenuated
when including conduct disorder as a covariate. Inclusion

of conduct disorder also modestly attenuated the associa-
tion between PRS and class membership (e.g. high versus
no-low class: ORconduct = 1.37, 95% CI = 1.11, 1.69,
P = 0.003; versus ORno-conduct: 1.40, 95% CI = 1.13,
1.74, P = 0.002; high versus moderate ORconduct = 1.45,
95%CI= 1.10, 1.90,P=0.008 versus ORno-conduct = 1.49,
95% CI = 1.12, 1.97, P = 0.006).

PRS × peer use predicting cannabis use trajectories

PRS × peer use interaction was not significant (Supporting
information, Table S7), suggesting independent effects of
PRS and peer use on trajectory membership.

Table 2 Results from mixed-effect logistic regression models predicting cannabis use trajectory class membership by polygenic risk scores
for cannabis initiation. All models controlled for age at baseline, age at last assessment, sex, the first three ancestry principal components
and array type, and site and family id were included as nested random effects. The n SNPs column is the minimum number of SNPs
included in each PRS threshold (some individuals had fewer SNPs included in the score due to missing genotypes). The PRS P-value
threshold of PT < 0.1 is shown in bold type, as this PRS was the most significant threshold associated with belonging to the high use
class compared to both the no-low use class and the moderate use class, and this PRS threshold explained the most conditional
variance (see Fig. S2). Thus, this PRS was used in all analyses reported in the main paper.

Moderate class versus no-low class High class versus no-low class High class versus moderate class

P-value threshold (PT) n SNPs Beta SE P Beta SE P Beta SE P

P5 298 678 0.054 0.128 0.676 0.242 0.106 0.022 0.185 0.132 0.162
P4 258 733 0.042 0.121 0.727 0.284 0.107 0.008 0.222 0.137 0.106
P3 211 705 0.034 0.128 0.792 0.306 0.111 0.006 0.256 0.136 0.060
P2 157 496 0.022 0.124 0.857 0.271 0.106 0.011 0.239 0.138 0.083
P1a 92504 �0.055 0.121 0.651 0.339 0.109 0.0018 0.396 0.145 0.006
P05 52656 �0.116 0.116 0.315 0.263 0.104 0.011 0.390 0.140 0.005
P01 14102 �0.122 0.115 0.289 0.011 0.097 0.910 0.109 0.132 0.408
P001 2166 0.066 0.111 0.553 �0.003 0.097 0.978 �0.081 0.123 0.508
P0001 372 0.131 0.111 0.240 0.076 0.099 0.445 �0.099 0.132 0.451

aCorresponding results for PRS PT< 0.1 using the BCH approach are in Supporting information, Table S5. PRS= polygenic risk scores; SNP= single nucleotide
polymorphism; SE = standard error.

Table 3 Associations between cannabis initiation polygenic scores and cannabis use trajectories. The most significant PRS is reported,
which was defined with a P-value threshold of PT < 0.1 (see Table 2 for results for all thresholds).

Moderate versus no-low High versus no-low High versus moderate

Beta SE P Beta SE P Beta SE P

Cannabis use PRS �0.055 0.121 0.651 0.339 0.109 0.0018 0.396 0.145 0.006
Sex 1.117 0.222 5.03e–07 1.037 0.194 9.79e–08 0.015 0.258 0.955
Age at baseline �0.046 0.065 0.482 0.140 0.057 0.014 0.207 0.078 0.008
Age at last assessment 0.101 0.050 0.042 �0.116 0.043 0.007 �0.225 0.064 4.12e–04
Principal component 1 �276.537 124.649 0.027 �224.026 129.429 0.083 �51.340 219.127 0.815
Principal component 2 �81.749 82.385 0.321 101.019 101.375 0.319 69.935 168.781 0.679
Principal component 3 �29.864 49.378 0.545 7.594 48.627 0.876 38.246 70.134 0.586
Array design 1 �0.043 0.260 0.869 �0.505 0.228 0.027 �0.312 0.279 0.265
Array design 2 �0.268 0.633 0.672 �0.437 0.518 0.399 �0.089 0.713 0.900

Arrays 1 and 2 are two dummy-coded variables included in the model to control for the genotyping arrays. Principal components reflect genetic ancestry.
PRS = polygenic risk scores; SE = standard error. Results shown in bold type are significant predictors in the model after multiple testing corrections
(α < 0.0019).
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DISCUSSION

There are three key implications from our study. First,
we found a statistically significant association between
cannabis PRS and trajectory membership, and the effect
size (Δconditional R2 up to 3.6%) was consistent with
other PRS analyses [21]. Thus, genetic propensity to
cannabis initiation derived from a large, heterogeneous
discovery sample appears to differentiate between classes
derived from frequency of cannabis use in an
ascertained, longitudinal cohort. Interestingly, life-time
cannabis use was not significantly related to PRS.
However, maximum frequency of use and DSM-5 CUD
were associated with PRS in the larger sample of
1840. It is possible that even though the discovery
GWAS was aimed at assessing genetic propensity to
life-time use, that polygenic liability is better captured
along a developmental spectrum in these data. While,
to some extent, the classes differed in severity of use
(e.g. CUD), associations with class membership (e.g. high
versus no-low) far exceeded cross-sectional associations
with CUD, suggesting that class membership in this
young and ascertained sample may be a superior index
of genetic propensity than cross-sectional indices alone.

Secondly, the ‘environmental’ risk factor in our
study, perceived peer cannabis use, explained up to
11.3% of the variance in trajectory membership. This
suggests that, although genetics certainly plays a role
in the progression of cannabis use, established environ-
mental influences such as peer use are better predictors
of cannabis use than PRS at the moment, and this is
also likely to be true for other complex behavioral
traits. Uniquely, genetic propensity to cannabis use
was also associated with greater perceived peer engage-
ment in cannabis use. Consistent with prior heritability
studies, this finding of genetic contributions to perceived

peer use might reflect gene–environment correlations
[48,49] or causal processes, such as Mendelian ran-
domization [50]. However, both PRS and peer use
remained significantly associated with class membership
when simultaneously modeled, suggesting some inde-
pendent effects.

Thirdly, we found no evidence that peer cannabis use is
a moderator of polygenic contributions to cannabis use
trajectories. Previous studies have found some evidence
for interaction effects between peer substance use and
genetic liabilities for substance use [48], but few have used
genome-wide PRS to do so.

Although results from the discovery GWAS for can-
nabis use were genetically correlated with risk-taking
(SNP-rg = 0.425, P = 3.4e–42) [19], we found no ev-
idence that our measures of risk-taking were consis-
tently related to the cannabis use PRS. Even though
PRS were correlated with conduct disorder, associations
between the PRS and trajectory membership persisted
even after controlling for conduct disorder. Thus, gen-
eral deviance does not appear to fully account for these
associations.

Our study had several limitations, including a mod-
est target sample size (target n = 1167, discovery sam-
ple size n = 162082; given the current sample size
and a significance level of α = 0.05, our study had
80% power [51] to detect an effect size of R2 ≥
0.0068.). Further replication studies in larger, indepen-
dent samples are warranted. Also, the current analyses
were restricted to individuals of European ancestry, so
we cannot confidently extrapolate our conclusions to
other populations. Thirdly, COGA is ascertained for ge-
netic liability to addiction, which may have influenced
findings. Our ‘high’ group (16%) is somewhat larger
than those noted in two prior general-population longi-
tudinal studies [6,8], but similar to one study that

Table 4 Associations between cannabis initiation polygenic score and perceived peer cannabis use. The PRS that was most strongly
associated with cannabis use trajectories is reported (PT < 0.1; see Table 2).

None versus a few None versus most/all A few versus most/all

Beta SE P Beta SE P Beta SE P

Cannabis use PRS 0.021 0.083 0.799 0.324 0.129 0.012 0.184 0.111 0.096
Sex 0.419 0.145 0.004 0.528 0.222 0.018 0.073 0.201 0.717
Age at baseline 0.099 0.045 0.026 0.315 0.072 < 0.001 0.134 0.061 0.028
Age at last assessment �0.021 0.033 0.529 �0.124 0.052 0.018 �0.055 0.044 0.212
Principal component 1 �380.544 255.575 0.137 �407.265 95.435 < 0.001 116.519 309.088 0.706
Principal component 2 �53.450 135.154 0.692 �261.639 125.320 0.037 �309.740 188.027 0.099
Principal component 3 5.692 52.102 0.913 93.302 63.840 0.144 82.689 67.168 0.218
Array design 1 0.365 0.181 0.043 �0.416 0.269 0.122 �0.631 0.226 0.005
Array design 2 0.402 0.382 0.292 �0.846 0.672 0.208 �0.715 0.582 0.219

Arrays 1 and 2 are two dummy-coded variables included in the model to control for the genotyping arrays. Principal components reflect genetic ancestry.
Results shown in bold type are significant predictors in the model (α < 0.05).
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oversampled for tobacco [4] smoking and lower than a
study with over-representation of individuals from high
crime neighborhoods [7]. Thus, similar classes have
been noted, although there is much variability in their
class size. Fourthly, while self-report of perceived peer
use is commonly studied and does not significantly dif-
fer from actual peer use [52], it is possible that it is less
objective than reports by peer nominees [53]. Further-
more, as we did not have reports of concurrent peer
cannabis use at older ages (and the sample has a di-
verse age range at final assessment), we cannot specu-
late whether trajectory membership was associated
with subsequent affiliations with cannabis-using peers.
Fifthly, we binned frequency of use data into 20-unit
intervals and this may have obscured the identification
of smaller classes. For instance, our method combined
those using one to two times in the past year with
those who may have used cannabis 15–20 times. How-
ever, sensitivity analyses with 10-unit intervals provided
similar results. It is also possible that reported
frequency at the upper end of use was imprecise (e.g.
using 550 versus 600 times).

It is hoped that with larger discovery efforts of both
cannabis use [54] and of cannabis use disorders the predic-
tive quality of PRS, not merely in terms of what they
predict, but also when and how they do so, will be eluci-
dated more clearly. However, this study highlights that
even as discovery GWAS sample sizes grow and PRS begin
to attain a greater level of precision [21,39], it will be of
paramount importance to consider not only how genetic
liability shapes health and behavior, but also the
environmental context within which such behavior un-
folds (e.g. [55]).
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PRS*covariate and peer use*covariate interactions.
Figure S1 Three Latent Class Zero-Inflated Poisson Growth
Mixture Model of Cannabis Frequency Category in the Last
12 Months by Age at Assessment

Figure S2 Percentage of the variance in cannabis use tra-
jectory class membership explained by cannabis initiation
polygenic risk scores defined at varying p-value thresholds.
The change in conditional R2 explained by the PRS was
calculated for eachmixedmodel (a separatemodel for each
PRS p-value threshold). Asterisk indicates the PRS thresh-
old with the most significant association between the PRS
and cannabis use trajectory membership.
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