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Large-scale biobanks offer the potential to link genes to health 
traits documented in electronic health records (EHR) with 
unprecedented power1. In turn, these discoveries are expected 

to improve our understanding of the etiology of common and 
complex diseases as well as our ability to treat and prevent these 
conditions. To this end, the MVP was established in 2011 by the 
Veteran Affairs Office of Research and Development as a nation-
wide research program within the Veteran Affairs healthcare sys-
tem2. The overarching goal of MVP is to find new biologic insights 
and clinical associations broadly relevant to human health and 
to enhance the care of veterans (former US military personnel) 
through precision medicine.

Blood concentrations of low-density lipoprotein cholesterol 
(LDL-C), triglycerides, total cholesterol and high-density lipopro-
tein cholesterol (HDL-C) are heritable risk factors for atheroscle-
rotic cardiovascular disease3, a highly prevalent condition among 
US veterans. Genome-wide association studies (GWAS) to date 
have identified at least 268 loci that influence these levels4–12, many 
of which are under investigation as potential therapeutic tar-
gets13,14. However, off-target effects have dampened enthusiasm for 
some of these molecules15,16. Understanding the full spectrum of 
clinical consequences of a genetic variant through phenome-wide  

association studies (PheWAS17) may shed light on potential unin-
tended effects as well as novel therapeutic indications for some of 
these molecules.

We first performed a GWAS including a discovery phase in MVP 
and a replication phase in the Global Lipids Genetics Consortium 
(GLGC) (Fig. 1). In the discovery phase (stage 1), we performed 
association testing among 297,626 white (European ancestry), black 
(African ancestry) and Hispanic MVP participants with blood 
lipids stratified by ethnicity followed by a meta-analysis of results 
across all three groups. Replication of MVP findings was conducted 
in stages 2a or 2b with data from either one of two independent 
studies from the GLGC. Next, we leveraged the results of our dis-
covery and meta-analysis to (1) estimate the variance explained by 
known and newly discovered lipid loci; (2) assess the potential of 
the use of multiple lipid measurements for discovery within MVP; 
(3) perform a transcriptome-wide association study (TWAS), a 
competitive gene-set pathway analysis and a tissue-expression 
analysis. We then focused on novel, genome-wide lipid-associated, 
low-frequency missense variants unique to our non-European pop-
ulations as well as predicted loss of gene function (pLOF) mutations 
across all ethnic groups, as these associations have identified tar-
get pathways for pharmacological inactivation and modulation of 
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cardiovascular risk14,18,19. Lastly, we performed a PheWAS for a set 
of DNA sequence variants within genes that have already emerged 
as therapeutic targets for lipid modulation, leveraging the full cata-
log of International Classification of Disease, ninth edition (ICD-9) 
diagnosis codes in the Veteran Affairs EHR to better understand 
the potential consequences of pharmacological modulation of these 
genes or their products. We followed up significant findings from 
our PheWAS with multivariate Mendelian randomization analyses.

Results
Demographics of genotyped MVP participants. A total of 353,323 
veterans had genetic data available in MVP, with clinical phe-
notypes recorded in the Veteran Affairs EHR for over 3,088,030 
patient-years prior to enrollment (median of 10.0 years per partici-
pant) and 61,747,974 distinct clinical encounters (median of 99 per 
participant). We categorized veterans into three mutually exclusive 
ancestral groups for association analysis: (1) non-Hispanic white, 
(2) non-Hispanic black and (3) Hispanic participants. Admixture 
plots depicting the genetic background of the black and Hispanic 
groups are shown in Supplementary Figs. 1 and 2. Demographics 
and participant counts for a number of cardiometabolic traits for 
the 312,571 white, black and Hispanic MVP participants that passed 
our quality control are depicted in Table 1.

A subset of 297,626 participants passing quality control had at 
least one laboratory measurement of blood lipids in their EHR. 
These individuals collectively had a total of 15,456,328 laboratory 
entries for blood lipids, or a median of 12 measurements per lipid 
fraction per participant. To minimize potential confounding from 
the use of lipid-altering agents with variable adherence, we selected 
a participant’s maximum LDL-C, triglycerides and total choles-
terol as well as his or her minimum HDL-C for genetic association 
analysis20. Table 2 summarizes characteristics at enrollment and 
the distribution lipid levels for MVP participants included in our 
analysis. As expected, most of the participants were male and 28% 
were of non-European ancestry. While approximately 45% of par-
ticipants had evidence of a statin prescription at the time of enroll-
ment, only 8–9% participants had such evidence at the time of their 
maximum LDL-C or total cholesterol measurement used for our 
GWAS analysis.

Lipid genetic association and conditional analyses. We success-
fully imputed (INFO >​ 0.3, minor allele frequency (MAF) >​ 0.0003) 
19.3, 31.4, and 30.4 million variants for white, black and Hispanic 
veterans, respectively, using the 1000 Genomes Project21 reference 
panel (Table 2). Black and Hispanic participants had substantially 
more variants available for analysis, reflecting the known greater 
genetic diversity within these populations21,22. We also identified 
6,657 pLOF variants in 4,294 genes across the three ethnicities 
(Supplementary Fig. 3).

We compared the Z scores and effect estimates from the pub-
lished literature with those observed in MVP for 444 previously 
reported11 exome-wide significant variants for lipids. We found 
a strong correlation of genetic associations across all four traits, 
validating the lipid data obtained from the EHR (Supplementary 
Figs. 4,5).

We performed association testing separately among individu-
als of each of three ancestries (white, black, and Hispanic) in our 
initial discovery analysis and then meta-analyzed results across 
ancestry groups using an inverse-variance-weighted fixed-effects 
method (Fig. 1a, Supplementary Fig. 6). Following trans-ethnic 
meta-analysis in the discovery phase of our study (stage 1), a total 
of 46,526 variants at 188 of the 268 known loci for lipids met the 
genome-wide significance threshold (P <​ 5 ×​ 10−8) (Supplementary 
Tables 1–4). We performed pairwise comparisons of the allele fre-
quencies and effect estimates between white and black participants 
as well as between white and Hispanic participants for 354 of the 

444 previously established independent variants for lipids that were 
well-imputed in all three ancestral groups in MVP11 (Fig. 2). We 
observed a much stronger correlation for effect allele frequencies 
between white and Hispanic participants (Pearson’s correlation 
coefficient R =​ 0.96) than between white and black participants 
(R =​ 0.72), likely reflecting the greater European admixture in the 
MVP Hispanic participants. The effect estimates among the three 
ethnicities varied by lipid trait (Fig. 2, Supplementary Fig. 7).

We sought replication for variants within MVP with suggestive 
associations (P <​ 1 ×​ 10−4) in either stages 2a or 2b (Fig. 1b). We 
first attempted replication of these variants using summary statis-
tics from the 2017 GLGC exome array meta-analysis (stage 2a)11. 
If association statistics for promising DNA sequence variants from 
stage 1 were not available for replication in the 2017 exome array-
focused study, we sought replication of these variants in publicly 
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Fig. 1 | GWAS study design. a, DNA sequence variants across three  
separate ancestry groups in the MVP were meta-analyzed using an 
inverse-variance-weighted fixed-effects method in the discovery phase 
(stage 1). Variants with suggestive association were then brought forward 
for independent replication. b, DNA sequence variants with suggestive 
associations (two-sided linear regression P <​1 ×​ 10−4) in the discovery 
analysis (stage 1) were brought forward for independent replication and 
tested using summary statistics from the 2017 exome-array-focused GLGC 
meta-analysis (stage 2a). Only variants with suggestive associations in  
stage 1 that were not present in the GLGC 2017 exome-array study  
(stage 2a) were alternatively replicated in the 2013 GLGC joint  
meta-analysis (stage 2b).

Nature Genetics | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


ArticlesNature Genetics

available summary statistics from the 2013 GLGC ‘joint meta-
analysis’ (stage 2b). We did not attempt replication of any variant 
in both studies given the substantial overlap of participants in these 
two studies. A total of 170,925 variants demonstrated suggestive 
association (P <​ 10−4) in the MVP discovery analysis. Among these 
variants, 39,663 were also available for in silico replication in either 
stage 2a (GLGC 2017) or stage 2b (GLGC 2013). We defined sig-
nificant novel associations as those that were at least nominally sig-
nificant in replication (P <​ 0.05) with consistent direction of effect 
and had an overall P <​ 5 ×​ 10−8 (genome-wide significance) in the 

discovery and replication cohorts combined. Following replication, 
118 novel loci (from 141 lead variants) exceeded genome-wide sig-
nificance (P <​ 5 ×​ 10−8, Supplementary Tables 5–8). MAFs of lead 
variants ranged from 0.08% to 49.9%, with effect sizes ranging 
from 0.01 to 0.243 standard deviations (σ). For example, carriers 
of a rare missense mutation in the gene encoding sorting nexin 8 
(SNX8 Ile414Thr, (rs144787122, NC_000007.13: 2296552A>​G) 
MAF =​ 0.35% in MVP) demonstrated a 0.10σ (3.8 mg dl−1) higher 
plasma LDL-C after testing in 587,481 individuals.

More than one variant may independently affect plasma lipid 
levels at any given genetic locus. We performed a conditional 
analysis using combined summary statistics from MVP and pub-
licly available data from GLGC for each lipid trait (Supplementary 
Fig. 8) and identified a total of 826 independently associated 
lipid variants across 118 novel and 268 previously identified loci 
(Supplementary Table 9).

Variance explained obtained from multiple lipid measure-
ments. The previously mapped 444 lipid variants explain about 
7.5–10.5% of the phenotypic variance in lipid levels in the MVP 
population. The 118 novel loci in our study explain an additional 
0.38–0.74% in phenotypic variance, and the 826 independent 
variants identified in our conditional analysis increase the over-
all explained phenotypic variance to 8.8–12.3% (Supplementary 
Table 10).

We subsequently explored the impact of multiple lipid measure-
ments in an analysis restricted to 171,314 European MVP participants  
with ≥​5 lipid measurements in their EHR. We constructed a 
weighted genetic risk score (GRS) of 223 variants across 268 
of the previously mapped loci with effect estimates available 
in the 2017 GLGC exome array analysis summary statistics11 
(Supplementary Table 11). Generally across the four lipid traits, 
the GRS explained a larger proportion of the phenotypic vari-
ance with an increasing number of lipid measurements included 
in the analysis (Supplementary Table 12). In addition, when the 
maximum/minimum lipid values were used as in our discovery 
GWAS, the GRS explained more total variance than when using 
up to five lipid measurements for the LDL-C, triglycerides and 
total cholesterol phenotypes.

Transcriptome-wide association study. We next performed a 
TWAS23 using: (1) pre-computed weights from expression array 
data measured in peripheral blood from 1,245 unrelated control 

Table 1 | Demographic and clinical characteristics of black, 
white and Hispanic individuals passing quality control in the 
MVP

Basic demographics Genotyped veterans

n 312,571

Age at enrollment in years (mean ±​ σ) 62.4 ±​ 13.5

Male, n (%) 287,441 (92.0%)

Body mass index in kg m−2 (mean ±​ σ) 30.3 ±​ 6.0

Current smoker, n (%) 59,385 (19.0%)

Former smoker, n (%) 159,459 (51.0%)

n with ≥​1 measurement of plasma lipids (%) 297,626 (95.2%)

Number of lipid measurements (median per 
lipid fraction)

15,456,328 (12)

Race/ethnicity
Black, n (%) 59,007 (18.9%)

White, n (%) 227,817 (72.8%)

Hispanic, n (%) 25,747 (8.1%)

Cardiometabolic disease at enrollmenta

Coronary artery disease, n (%) 67,912 (21.7%)

Type 2 diabetes, n (%) 92,079 (29.5%)

Peripheral artery disease, n (%) 21,418 (6.9%)

Abdominal aortic aneurysm, n (%) 5,618 (1.8%)

Deep venous thrombosis or pulmonary 
embolism, n (%)

7,009 (2.2%)

a Diseases are defined by ICD-9 diagnosis codes.

Table 2 | Demographic and clinical characteristics for 297,626 veterans in the Million Veteran Program lipids analysis

White Black Hispanic

Veterans, n (%) 215,551 (72.4%) 57,332 (19.3%) 24,743 (8.3%)

Age at enrollment in years (mean ±​ σ) 64.2 ±​ 13 57.7 ±​ 11.8 56.3 ±​ 15.0

Male, n (%) 200,900 (93.2%) 50,059 (87.3%) 22,601 (91.3%)

Body mass index in kg m−2 (mean ±​ σ) 30.1 ±​ 5.9 30.4 ±​ 6.3 30.7 ±​ 5.8

Statin therapy prescription at enrollment, n (%) 100,024 (46.4%) 23,302 (40.6%) 9,646 (39.0%)

Statin therapy prescription at time of maximum LDL-C blood 
draw, n (%)

18,818 (8.7%) 5,024 (8.8%) 2,262 (9.1%)

Statin therapy prescription at time of maximum total cholesterol 
blood draw, n (%)

18,433 (8.6%) 5,027 (8.8%) 2,162 (8.7%)

Minimum HDL-C in mg dl−1 (mean ±​ σ) 36.2 ±​ 11.4 38.9 ±​ 12.8 36.4 ±​ 11.0

Maximum LDL-C in mg dl−1 (mean ±​ σ) 139 ±​ 38.4 142.2 ±​ 40.7 141.3 ±​ 38.1

Median maximum triglycerides ±​ IQR in mg dl−1 211 ±​ 174 179 ±​ 149 221 ±​ 184

Maximum total cholesterol in mg dl−1 (mean ±​ σ) 218.6 ±​ 46.7 220.8 ±​ 47.2 221.9 ±​ 48.0

Variants included in analysis 19,342,852 31,448,849 30,455,745

IQR, interquartile range.
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individuals from The Netherlands Twin Registry24, RNA-sequencing 
data measured in adipose tissue from 563 control individuals from 
the Metabolic Syndrome in Men study23 and RNA-sequencing data 
from post-mortem liver (97 individuals) and tibial artery (285 
individuals) tissue from the Genotype-Tissue Expression project25 
(GTEx V6); and (2) combined MVP and GLGC summary statistics 
for each of the four lipid traits. In brief, this approach integrates 
information from expression reference panels (variant–expression 
correlation), GWAS summary statistics (variant–trait correlation), 
and linkage disequilibrium (LD) reference panels (variant–vari-
ant correlation) to assess the association between the cis-genetic 
component of expression and phenotype23. The results yield  
candidate causal genes from the GWAS results under the  
assumption that the causal mechanism of the tested genes involves 
changes in cis-expression.

Our TWAS identified a total of 655 genome-wide significant 
(P <​ 5 ×​ 10−8) gene–lipid associations (summed across expression 
reference panels) in 333 distinct genes, including 194 that were 
significant in more than one tissue or lipid trait (Supplementary 
Tables 13–16, Supplementary Figs. 9–10). The 333 distinct genes fell 
within 122 genomic loci, 117 of which were within a lipid GWAS 
region (±​1 Mb around a mapped sentinel GWAS variant) identi-
fied in either a prior analysis or in the current study. However, five 
genes identified by TWAS fell outside of previously mapped GWAS 

regions, representing potentially novel genomic loci for lipids 
(Supplementary Table 17). Previous work has suggested that future 
lipid GWAS with larger sample sizes will likely confirm the novel 
lipid loci identified by our TWAS26. Results from additional com-
petitive gene-set pathway and tissue expression analyses are avail-
able in the Supplementary Note.

Non-European low-frequency missense variant associations. 
We next focused on ancestry specific low-frequency (MAF <​ 5%) 
missense variants, as these variants have been suggested to have a 
higher likelihood of causality27,28. We identified several novel low-
frequency missense variants associated with one or more lipid levels 
at genome-wide significance that were specific to black or Hispanic 
participants. We found a total of five variants associated with LDL-C 
and/or total cholesterol among black individuals (Supplementary 
Table 18) and two associated with HDL-C and/or total cholesterol 
among Hispanic individuals (Supplementary Table 19) in PCSK9, 
LDLR, APOB and ABCA1. All ten associations were directionally 
consistent with the 2017 GLGC exome chip meta-analysis with nine 
reaching nominal significance (P <​ 0.05) among 17,009 black and 
5,084 Hispanic individuals included in the GLGC study. In addi-
tion, the seven variants that we identified were either monomorphic 
or had a MAF <​ 0.0005 in the approximately 215,000 white veterans 
in MVP. Of note, we observed the low-frequency 443Thr allele in 
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Fig. 2 | Comparison of 354 independent lipid-associated variants across ethnicities. a,b, Allele frequencies of lipid-associated variants observed in  
white individuals (n =​ 215,196; x axes) compared to black (a; n =​ 57,280; Pearson’s R =​ 0.72), or Hispanic (b; n =​ 24,742; Pearson’s R =​ 0.96) individuals.  
c,d, Linear regression effect estimates for LDL-C associations in white individuals (n =​ 215,196; x axes) compared to black (c; n =​ 57,280; β =​ 1.07) or 
Hispanic (d; n =​ 24,742; β =​ 1.06) individuals.
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PCSK9 within Hispanic individuals to be eightfold more common 
in black individuals (MAF =​ 0.011 in Hispanic versus 0.092 in black 
individuals). We also found that this variant was associated with 
total cholesterol in black individuals at genome-wide significance.

Predicted loss of gene function lipid associations. We focused 
next on the subset of genotyped or imputed pLOF variants (variants 
that were annotated as premature stop (nonsense), canonical splice 
sites (splice-donor or splice-acceptor) or insertion/deletion variants 
that shifted frame (frameshift) by the Variant Effect Predictor soft-
ware29). A total of 15 distinct pLOF variants demonstrated genome-
wide significant lipid associations across individuals of all three 
ethnic groups (Supplementary Table 20). We replicated known 
pLOF associations at PCSK919, APOC318, ANGPTL88, LPL30, CD3631 
and HBB32, and we observed genome-wide significant associations 
of comparable magnitude of effect in each of the three ethnic groups 
for two pLOF variants: a base substitution in APOC3 55+​1G>​A and 
a mutation in LPL encoding Ser747Ter.

We identified one novel pLOF association. Among white MVP 
participants, carriers of a rare stop-gain mutation in PDE3B (encod-
ing Arg783Ter; carrier frequency of 1 in 625), exhibited 4.72 mg dl−1 
(0.41σ) higher blood HDL-C levels (P <​ 2.8 ×​ 10−16) and 43.3 mg dl−1 
(−​0.27σ) lower blood triglyceride levels (P =​ 7.5 ×​ 10−8). We found 
this signal to be independent of a previously reported genome-wide 
significant association in the region involving a common polymor-
phism, rs103737811 (Arg783Ter; conditional analysis P =​ 6.3 ×​ 10−16 
for HDL-C and P =​ 8.91 ×​ 10−8 for triglycerides). We also identified 
one individual who was homozygous for Arg783Ter. This PDE3B 
‘human knockout’ was in his sixth decade of life and had HDL-C 
and triglycerides levels of 73 and 56 mg dl−1, respectively. He was not 
on lipid-lowering medication and was free of coronary artery dis-
ease (CAD). We replicated the triglyceride and HDL-C associations 
for this pLOF variant in an independent sample of approximately 
45,000 participants of the DiscovEHR study (Fig. 3a,b).

Loss of PDE3B function and risk of coronary artery disease. 
Hypothesizing that mutations that were damaging or causing loss 
of function in PDE3B could protect against the development of 
CAD based on their association with lifelong lower levels of tri-
glycerides in blood, we conducted a case-control study of CAD 
involving five cohorts: MVP, UK Biobank, Myocardial Infarction 
Genetics Consortium (MIGen), Penn Medicine Biobank (PMBB) 
and DiscovEHR. For three studies that underwent exome sequenc-
ing (MIGen, PMBB and DiscovEHR), we combined pLOF vari-
ants with missense variants that were predicted to be damaging or 
possibly damaging by each of five computer prediction algorithms 
(LRT score, MutationTaster, PolyPhen-2, HumDiv, PolyPhen-2 
HumVar, and SIFT) as performed previously30,33. Because damaging 
mutations are individually rare, we aggregated them in subsequent 
association analysis with CAD (Supplementary Table 21). Among 
103,580 individuals with CAD and 566,813 controls available for 
meta-analysis in these five cohorts, carriers of damaging PDE3B 
mutations were found to have a 24% decreased risk of CAD (odds 
ratio, 0.76; 95% confidence interval, 0.65–0.90; P =​ 0.0015; Fig. 3c). 
Data from an additional analysis examining the association of all 
novel lipid loci identified in our study with CAD are available in the 
Supplementary Note.

PheWAS of variants in genes targeted by lipid therapies. We 
leveraged a median of 65 unique ICD-9 diagnosis codes per par-
ticipant prior to enrollment in MVP to explore the spectrum of 
phenotypic consequences of genetic variation within genes targeted 
by lipid-lowering medicines. We selected five lipid-associated genes 
currently being targeted by pharmaceutical agents and identified 
functional variants in these genes: two nonsense variants (LPL 
Ser474Ter and ANGPTL8 Gln121Ter) and three missense variants 
(ANGPTL4 Glu40Lys, APOA5 Ser19Trp, PCSK9 Arg46Leu). We 
considered phenotypes to be significantly associated with a vari-
ant if they met a Bonferroni corrected P <​ 4.98 ×​ 10−5 (0.05/1,004 
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Fig. 3 | PDE3B loss of gene function, lipids and coronary disease. a,b, Linear regression results for the association of the pLOF mutation Arg783Ter in 
PDE3B with HDL-C (a) and triglycerides (TG) (b) for white veterans in MVP with independent replication in the DiscovEHR study. Two-sided P values 
are displayed. CI, confidence interval. c, Meta-analysis of the association of damaging PDE3B mutations and coronary artery disease across five studies, 
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effects meta-analysis. Minimal evidence of heterogeneity across cohorts was observed (I2 =​ 0%). Two-sided P values are displayed.
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traits), a conservative threshold given the correlation structure pres-
ent among PheWAS phenotypes34.

Data from a total of 176,913 white veterans were available for 
analysis after quality control. Among these individuals, we identi-
fied 33 statistically significant phenotypic associations across the 
five variants, all of which are correlated with lipids (Supplementary 
Table 22). We replicated known associations with CAD for LPL30, 
ANGPTL414 and PCSK919. Notably, carriers of triglyceride-low-
ering and/or HDL-C-raising mutations in ANGPTL4 (Glu40Lys; 

7,013 carriers) were also found to have a reduced risk of type 2 
diabetes (Fig. 4). We replicated the type 2 diabetes association for 
the ANGPTL4 E40K variant in an independent sample of approx-
imately 452,000 participants in the recently published trans-eth-
nic diabetes GWAS35(odds ratio, 0.89; 95% confidence interval, 
0.86–0.93; P =​ 9.24 ×​ 10−10; Supplementary Fig. 11). In addition, 
carriers of LDL-C-lowering mutations in PCSK9 (Arg46Leu; 
5,537 carriers) also demonstrated a reduced risk of abdominal 
aortic aneurysm (AAA, Fig. 5).
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Statistically significant logistic regression associations are shown in blue. Two-sided P values are displayed.
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Lipids and AAA Mendelian randomization analysis. To further 
explore the causal relationship of lipids on AAA development, we 
performed a multivariate Mendelian randomization analysis using a 
weighted GRS of 223 lipid-associated variants and summary data from 
a GWAS of 5,002 AAA cases and 139,968 controls in MVP. Consistent 
with our PheWAS results, a 1σ genetically elevated LDL-C was associ-
ated with an increased risk of AAA (odds ratio, 1.47; 95% confidence 
interval, 1.28–1.68; P =​ 4.4 ×​ 10−8). Furthermore, a 1σ genetically ele-
vated HDL-C level was associated with a decreased risk of AAA (odds 
ratio, 0.79; 95% confidence interval, 0.68–0.91; P =​ 0.001); and a 1σ 

genetically elevated triglyceride level was associated with an increased 
risk of AAA (odds ratio, 1.40, 95% confidence interval, 1.18–1.66; 
P =​ 8.5 ×​ 10−5; Fig. 6). An MR-Egger analysis36 indicated no pleiotropic 
bias of our lipid genetic instruments (MR-Egger intercept P >​ 0.05 for 
all three lipid fractions (Supplementary Table 23)).

Discussion
We leveraged clinical and genetic data from the MVP to investigate 
the inherited basis of blood lipids in nearly 300,000 US veterans. 
Our investigation resulted in several key findings. First, we robustly 
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confirmed 188 previously identified loci while concurrently uncov-
ering an additional 118 novel genome-wide significant loci. Next, 
we identified a total of 826 independent lipid-associated variants 
increasing the phenotypic variance explained by nearly 2%. We per-
formed a TWAS in four tissues identifying five additional novel lipid 
loci at a genome-wide level of significance and performed a pathway 
analysis highlighting lipid transport mechanisms in our GWAS 
results. We identified ancestry-specific effects of rare coding varia-
tion on lipids among white, black and Hispanic participants, and 
observed 15 pLOF mutations associated with lipids at a genome-
wide level of significance, including a protein-truncating variant in 
PDE3B that lowers triglycerides, raises HDL-C and protects against 
CAD. Finally, we examined the full spectrum of phenotypic conse-
quences for mutations in lipid genes emerging as therapeutic targets, 
identifying protective effects of functional mutations in PCSK9 for 
abdominal aortic aneurysm and in ANGPTL4 for type 2 diabetes.

We obtained four main insights through our findings. First, we 
confirm the enormous potential of a large-scale multi-ethnic bio-
bank built within an integrated health-care system in the discov-
ery of the genetic basis of human traits. Specifically, we leveraged 
the Veteran Affairs’ mature nationwide EHR to efficiently extract 
existing repeated laboratory measures of lipids collected during 
the course of clinical care in nearly 300,000 veterans over a median 
of 10 years for GWAS analysis. Our results highlight the expected 
increase in variance explained by known loci when repeated lipid 
measurements are considered but also demonstrate the efficiency of 
examining the single most extreme lipid value least likely influenced 
by the use of lipid-altering medications. Subsequent meta-analysis 
(combined n >​ 600,000) with existing datasets increased the num-
ber of known independent genetic lipid loci to nearly 400, including 
several lipid pathways with links to human disease. For example, 
common variants near genes such as COL4A2 and ITGA1 identi-
fied for LDL-C and/or total cholesterol suggest links to extracellular 
matrix and cell adhesion biology, two pathways recently impli-
cated by GWAS of CAD37,38. We also demonstrated that carriers of 
a rare missense mutation in the gene encoding perilipin 1 (PLIN1 
Leu90Pro) possess a markedly higher plasma HDL-C (0.243σ). In 
humans, perilipin 1 is required for lipid-droplet formation, triglyc-
eride storage, as well as free fatty-acid metabolism, and frameshift 
pLOF mutations in the PLIN1 gene have been reported to result in 
severe lipodystrophy39. A variant downstream of BDNF (encoding 
brain-derived neurotrophic factor) was found to be associated with 
HDL-C and triglycerides levels, supporting recent evidence linking 
this gene with metabolic syndrome and diabetes40. These findings 
not only improve our understanding of the genetic basis of dyslip-
idemia, but also provide insights into targets for the development of 
novel therapeutic agents.

Our second insight embraces the benefit of studying individuals 
with a diverse ethnic background. Such a design can provide valu-
able incremental information on the nature of previously identified 
human genetic associations. In MVP, we examined nearly 60,000 
black and 25,000 Hispanic veterans for analysis, representing one 

of the largest single-cohort GWAS to date for these ethnic groups 
for any trait. Among these individuals, we compared the effect 
estimates and allele frequencies of lipid-associated variants across 
ancestral groups and identified seven novel low-frequency coding 
variants associated with lipids only in non-European populations. 
Conversely, we also confirmed a shared genetic architecture across 
all three ethnic groups for pLOF variation at the LPL and APOC3 
loci. Previous work identifying low-frequency missense and pLOF 
variation in lipid genes have led to the development of the next gen-
eration of pharmaceutical agents for cardiovascular disease14,15,41,42. 
Expansion of these efforts to larger sample sizes and additional 
ancestries may help to explain differences in blood lipid levels and 
risk of atherosclerosis among select populations.

Our third insight centers around our findings for the deleterious 
exonic variants within PDE3B. These findings lend human genetic 
support to PDE3B inhibition as a therapeutic strategy for athero-
sclerosis. Cilostazol, an inhibitor of both the 3A and 3B isoforms 
of the phosphodiesterase enzyme, is known to have anti-platelet43, 
vasodilatory44 and inotropic45 effects through inhibition of PDE3A, 
and also has well-documented, substantial effects on triglycerides 
and HDL-C levels46—likely through antagonism of PDE3B. We 
demonstrate that a PDE3B pLOF variant recapitulates the known 
lipid effects of cilostazol and extend these findings to show that 
damaging PDE3B mutations are also associated with reduced risk 
of CAD. Randomized control trials to date have demonstrated the 
efficacy of cilostazol in intermittent claudication46 and prevention 
of restenosis following percutaneous coronary intervention47. The 
drug is also currently used off-label for the prevention of stroke 
recurrence through a presumed anti-platelet effect48. We note that 
mice genetically deficient in Pde3b display reduced atherosclerosis49 
as well as decreased infarct size and improved cardiac function fol-
lowing experimental coronary artery ligation50. In light of our find-
ings, use of cilostazol, or one of its derivatives, for the primary or 
secondary prevention of CAD deserves further consideration.

Our final insight highlights the potential benefit of PheWAS 
across a large-scale EHR-based biobank to predict both potentially 
adverse and beneficial consequences of artificially inhibiting gene 
function. Here, we provide evidence that pharmacologic PCSK9 
inhibition may reduce abdominal aortic aneurysm risk in addi-
tion to its known effects on atherosclerotic cardiovascular disease13. 
This finding is further supported by: our Mendelian randomization 
results; a recently published analysis using an independent AAA 
dataset51; and a recent report demonstrating that a Pcsk9 gain-of-
function mutation augments AAA development in a mouse model52. 
However, we also recognize the possibility that these results may be 
a consequence of pleiotropic effects induced by a high phenotypic 
correlation between AAA and the presence of advanced atheroscle-
rotic disease. Thus, additional studies are necessary before defini-
tive conclusions can be made on causality. Similarly, we expand on 
the potential indications for ANGPTL4 inhibition to include type 
2 diabetes. Future PheWAS efforts may identify associations that 
facilitate prioritization of drugs currently in development, repur-
posing of therapies already in clinical use, or prediction of adverse 
or off-target effects prior to investigation through expensive and 
time-consuming clinical trials.

Several limitations deserve to be mentioned. First, our MVP 
lipid phenotype definitions are based entirely on EHR data with 
a high prevalence of use of lipid-lowering therapy at enrollment. 
We used maximum or minimum values to capture untreated lipid 
levels, but the possibility of misclassification of lipid levels remains 
for participants entering the Veteran Affairs healthcare system on 
therapy. Such misclassification, however, would be expected to 
generally reduce our power to detect genetic associations. Second, 
participants in MVP are overwhelmingly male. Although almost 
25,000 women were included in our discovery analysis, we did 
not attempt to detect genetic associations specific to females or 
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Fig. 6 | Lipid associations with abdominal aortic aneurysm. Logistic 
regression association results of the 223 variant lipid genetic risk score with 
abdominal aortic aneurysm in a multivariable Mendelian randomization 
analysis. Odds ratios are displayed per 1σ genetically increased lipid 
fraction. Two-sided P values are displayed.
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heterogeneity of effects between sexes due to suspected limited 
power. Third, our TWAS identifies candidate causal genes under the 
assumption that the causal mechanism of the tested genes involves 
changes in cis-expression. However, we are unable to discriminate 
between instances of pleiotropy (when a given variant may alter 
gene expression and affect lipid levels independently) with TWAS 
alone and further functional analysis may be necessary. Fourth, 
our analysis demonstrating a lack of association between HDL-C 
raising alleles and CAD risk may be underpowered given the 
small number of examined alleles, although this finding has been 
demonstrated consistently in previous studies53,54. Lastly, power 
to detect associations for less common diseases in our PheWAS 
may also be limited despite the overall number of participants  
included in the analysis.

In conclusion, we identified more than 100 new genetic signals 
for blood lipid levels utilizing a biobank that exploits existing EHRs 
of US veterans. We demonstrate the potential of this approach in 
the discovery of novel genetic associations and the development of 
novel therapeutic agents.

URLs. R statistical software, www.R-project.org; EasyQC, https://
www.uni-regensburg.de/medizin/epidemiologie-praeventivmed-
izin/genetische-epidemiologie/software/; PheWAS, https://github.
com/PheWAS/PheWAS; GCTA, http://cnsgenomics.com/software/
gcta/#Overview; FUMA, http://fuma.ctglab.nl/; ExAC browser, 
http://exac.broadinstitute.org/; SNPTEST software program, http://
mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html; 
CARDIoGRAMplusC4D and MIGen and CARDIoGRAM Exome 
investigators datasets, http://www.cardiogramplusc4d.org.
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Methods
The design of the MVP has been previously described2. In brief, individuals aged 
19–104 years have been recruited from more than 50 Veterans Affairs Medical 
Centers nationwide since 2011. Each veteran’s EHR data are being integrated 
into the MVP biorepository, including inpatient ICD-9 diagnosis codes, Current 
Procedural Terminology procedure codes, clinical laboratory measurements and 
reports of diagnostic imaging modalities. The MVP received ethical and study 
protocol approval from the Veteran Affair Central Institutional Review Board in 
accordance with the principles outlined in the Declaration of Helsinki. Informed 
consent was obtained from all participants of the MVP study.

Genetic data. DNA extracted from whole blood was genotyped using a 
customized Affymetrix Axiom biobank array, the MVP 1.0 Genotyping Array. 
With 723,305 total DNA sequence variants, the array is enriched for both 
common and rare variants of clinical importance in different ethnic backgrounds. 
Veterans of three mutually exclusive ethnic groups were identified for analysis: 
(1) non-Hispanic white veterans (European ancestry), (2) non-Hispanic black 
veterans (African ancestry) and (3) Hispanic veterans. Further details on 
the methods used to assign ancestry and perform sample quality control are 
described in the Supplementary Note.

Variant quality control. Prior to imputation, variants that were poorly called 
(genotype missingness >​ 5%) or that deviated from their expected allele frequency 
based on reference data from the 1000 Genomes Project21 were excluded. After 
pre-phasing using EAGLE55 v.2, genotypes from the 1000 Genomes Project21 
phase 3, v.5 reference panel were imputed into MVP participants via Minimac3 
software56. Ethnicity-specific principal component analysis was performed using 
the EIGENSOFT software57.

Following imputation, variant-level quality control was performed using the 
EasyQC R package58 (see URLs), and the following exclusion metrics were used: 
ancestry-specific Hardy–Weinberg equilibrium59 P <​ 1 ×​ 10−20, posterior call 
probability <​ 0.9, imputation quality/INFO <​ 0.3, MAF <​ 0.0003, call rate <​ 97.5% 
for common variants (MAF >​ 1%) and call rate <​ 99% for rare  
variants (MAF <​ 1%). Variants were also excluded if they deviated by >​10%  
from their expected allele frequency based on reference data from the 1000 
Genomes Project21.

EHR-based lipid phenotypes. EHR clinical laboratory data were available for 
MVP participants from as early as 2003. We extracted the maximum LDL-C, 
triglycerides and total cholesterol values and minimum HDL-C values for each 
participant for analysis. These extreme values were selected to approximate 
plasma lipid concentrations in the absence of lipid-lowering therapy as described 
previously20. For each phenotype (LDL-C, natural log-transformed triglycerides, 
HDL-C and total cholesterol), residuals were obtained after regressing on age, 
age2, sex and 10 principal components of ancestry. Residuals were subsequently 
inverse-normal transformed for association analysis. Statin therapy prescription at 
enrollment was defined as the presence of a statin prescription in the EHR within 
90 days before or after enrollment in the MVP. Statin therapy prescription at the 
maximum lipid measurement was defined as the presence of a statin prescription 
in the EHR within 90 days prior to the maximum lipid laboratory measurement 
used in our GWAS analysis. Further details on lipid-phenotype quality control are 
described in the Supplementary Note.

MVP association analysis. Genotyped and imputed DNA sequence variants with 
a MAF >​ 0.0003 were tested for association with the inverse-normal-transformed 
residuals of lipid values through linear regression assuming an additive genetic 
model. In our initial discovery analysis (stage 1), we performed association testing 
separately among individuals of each of three genetic ancestries (whites, blacks and 
Hispanics) and then meta-analyzed results across ethnic groups using an inverse-
variance-weighted fixed-effects method. For variants with suggestive associations 
(association P <​ 10−4), we sought replication of our findings in one of two 
independent studies: the 2017 GLGC exome array meta-analysis11 (stage 2a) or the 
2013 GLGC joint meta-analysis5 (stage 2b). Replication was first attempted using 
summary statistics from the 2017 GLGC exome array study (stage 2a). A total of 
242,289 variants in up to 319,677 individuals were analyzed after quality control 
and were available for replication. If a DNA sequence variant was not available for 
replication in the above exome array-focused study, we sought replication from 
publicly available summary statistics from the 2013 GLGC joint meta-analysis 
(stage 2b). An additional 2,044,165 variants in up to 188,587 individuals were 
available for replication in this study. In total, 2,286,454 DNA sequence variants 
in up to 319,677 individuals were available for independent replication in either 
stage 2a or stage 2b. We emphasize that if a variant was available for replication in 
both studies, replication was performed only using summary statistics from the 
2017 GLGC exome array study given its larger sample size. We defined significant 
novel associations as those that were at least nominally significant in replication 
(P <​ 0.05) and had an overall P <​ 5 ×​ 10−8 (genome-wide significance) in the 
discovery and replication cohorts combined. Novel loci were defined as being 
greater than 1 Mb away from a known genome-wide-associated lead variant for 
lipids. Additionally, LD information from the 1000 Genomes Project21 was used 

to determine independent variants for which a locus extended beyond 1 Mb. All 
association P values were two-sided. Further details on the association analysis are 
described in the Supplementary Note.

Conditional analysis. We used the COJO-GCTA software (see URLs) to perform 
an approximate, stepwise conditional analysis to identify independent variants 
within lipid-associated loci given that individual level data for the prior GLGC 
lipid analyses are not publicly available. We used summary statistics of ~1.9 million 
overlapping variants that we meta-analyzed across either one of the two GLGC 
datasets (predominantly European) and the European MVP dataset to conduct 
this analysis (Supplementary Fig. 8) combined with an LD matrix obtained from 
10,000 unrelated European individuals randomly sampled from the UK Biobank 
interim release.

Variance explained using multiple lipid measurements. We estimated the 
proportion of variance explained by the set of 444 previously mapped independent 
lipid variants, the 118 novel lipid loci identified in our study, and the 826 
independent lipid variants identified from conditional analysis using ridge 
regression with the glmnet R package. The variance explained was determined 
after tuning the hyperparameter (lambda) to approximate an optimal value, and 
then calculating the model R2 after performing linear regression with the inverse-
normal-transformed lipid outcome and each set (444, 118, 826) of independent 
genome-wide lipid variants as predictors.

We estimated the variance explained for a GRS of 223 previously described 
GWAS lipid variants weighted by their previously reported effect sizes11 
(Supplementary Table 11) as a function of the number of lipid measurements 
in MVP to assess the potential impact of using multiple lipid measurements in 
discovery. We performed this analysis using the mean of one, two, three, four 
and five lipid measurements for each individual starting with their measurement 
closest to enrollment and moving towards the past. To account for the use of statin 
therapy, individuals with evidence of a statin prescription in their EHR at the time 
of enrollment had their LDL-C and total cholesterol values adjusted by dividing by 
0.7 and 0.8, respectively, as previously described5. In addition, we also calculated 
the variance explained by the single maximum triglycerides, LDL-C and/or total 
cholesterol levels and minimum HDL-C levels from the EHR without adjustment 
for lipid-lowering therapy. Our analyses were restricted to a subset of 171,314 
European MVP participants with ≥​5 lipid measurements.

Lipid TWAS. We performed a TWAS using summary statistics after a meta-
analysis of ~1.9 million overlapping variants among GLGC (predominantly 
European) and European MVP datasets (Supplementary Fig. 8) and four gene-
expression reference panels (whole blood from The Netherlands Twin Registry, 
adipose tissue from the Metabolic Syndrome in Men study, and tibial artery and 
liver from GTEx) in independent samples as previously described23. In brief, for  
a given gene, variant-expression weights in the 1-Mb cis locus were first computed 
with BSLMM60, which “models effects on expression as a mixture of normal 
distributions to account for the sparse expression architecture. Given weights w, 
lipid Z scores Z, and variant-correlation (LD) matrix D; the association between 
predicted expression and lipids (that is, the TWAS statistic) was estimated as 
ZTWAS =​ w'Z/(w'Dw)1/2” (details have been previously described23). We computed 
TWAS statistics by using either the variants genotyped in each expression reference 
panel or imputed HapMap3 variants. To account for multiple hypotheses, we 
applied a genome-wide significant P value threshold (two-sided P <​ 5 ×​ 10−8), 
considerably more stringent than previously used Bonferroni corrections in 
prior TWAS26. We defined novel TWAS loci as a TWAS gene falling outside of a 
previously identified lipid GWAS region (±​1 Mb around a mapped sentinel  
GWAS variant).

Identification of independent low-frequency coding variant lipid associations 
specific to blacks and hispanics. We used the P value and LD-driven clumping 
procedure in PLINK version 1.90b (--clump) to identify associations between low-
frequency coding variants and lipids specific to black and Hispanic individuals. 
Input-included summary lipid association statistics from our MVP 1000 Genomes 
imputed genome-wide association study of black and Hispanic individuals, and 
reference LD panels of 661 African and 347 admixed American samples from 1000 
Genomes phase 3 whole-genome sequencing data. Variants were clumped with 
stringent r2 (<​0.01) and P (<​5 ×​ 10−8) thresholds in a 1-Mb region surrounding 
the lead variant at each locus to reveal independent index variants at genome-wide 
significance. From this list of independent variants, we report novel protein-
altering variants specific to black and Hispanic individuals at a MAF <​ 0.05.

Loss of gene function analysis. We used the Variant Effect Predictor29 software 
to identify pLOF DNA sequence variants defined as: premature stop (nonsense), 
canonical splice-sites (splice-donor or splice-acceptor) or insertion/deletion 
variants that shifted frame (frameshift). For the pLOF lipids analysis, we then 
merged these variants with data from the Exome Aggregation Consortium27 
(v.0.3.1, see URLs), a publicly available catalogue of exome-sequence data to 
confirm consistency in variant annotation. We required that pLOF DNA sequence 
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variants be observed in at least 50 individuals, and set a statistical significance 
threshold of P <​ 5 ×​ 10−8 (genome-wide significance).

Loss of PDE3B gene function and CAD. We identified a novel lipid association 
for a pLOF mutation in the PDE3B gene (rs150090666, Arg783Ter). For carriers 
of damaging mutations in phosphodiesterase 3B, we examined the effects of the 
mutation on risk for CAD using logistic regression in five separate cohorts: MVP, 
UK Biobank and three cohorts with exome sequencing: the MIGen, the PMBB 
and DiscovEHR. In studies with exome sequencing, we combined pLOF variants 
with missense variants predicted to be damaging or possibly damaging by each 
of five computer prediction algorithms (LRT score, MutationTaster, PolyPhen-2, 
HumDiv, PolyPhen-2 HumVar and SIFT) as performed previously30,33. Because 
any individual damaging mutation was rare, variants were aggregated together 
for subsequent phenotypic analysis. We performed logistic regression on disease 
status, adjusting for age, sex and principal components of ancestry as appropriate. 
Effects of PDE3B damaging mutations were pooled across studies using an inverse-
variance-weighted fixed-effects meta-analysis. Further details on participating 
cohorts and CAD case definitions are described in the Supplementary Note. We set 
a two-sided P <​ 0.05 threshold for statistical significance.

PheWAS of variation in genes targeted by lipid-lowering therapies. For a set 
of DNA sequence variants within genes targeted by lipid-lowering medicines, we 
performed a PheWAS leveraging the full catalog of EHR ICD-9 diagnosis codes. 
We selected five lipid genes currently being targeted by pharmaceutical agents and 
identified functional variants in these genes: two nonsense variants (LPL Ser474Ter 
and ANGPTL8 Gln121Ter) and three missense variants (ANGPTL4 Glu40Lys, 
APOA5 Ser19Trp, PCSK9 Arg46Leu). Details on PheWAS quality control, case 
definitions and association analysis are described in the Supplementary Note. We 
considered phenotypes to be significantly associated with a variant if they met a 
Bonferroni corrected two-sided P <​ 4.98 ×​ 10−5 (0.05/1,004 traits). For replication 
of our ANGPTL4 Glu40Lys type 2 diabetes finding, we combined the PheWAS 
results with publicly available data from the recently published trans-ethnic type 2 
diabetes GWAS35 using an inverse-variance-weighted fixed-effects method.

Lipids and AAA Mendelian randomization analysis. Summary-level data 
for 223 genome-wide lipid-associated variants were obtained from publicly 
available data from the Global Lipids Genetics Consortium11. We then utilized 
results from a GWAS of 5,002 AAA cases and 139,968 controls performed in 
white MVP participants using the previously proposed definition17. The effect 
alleles were matched with all lipid and AAA summary data and three different 
Mendelian randomization analyses were performed: (1) inverse-variance-

weighted; (2) multivariable; and (3) MR-Egger to account for pleiotropic bias. 
First, we performed inverse-variance-weighted Mendelian randomization using 
each set of variants for each lipid trait as instrumental variables. This method, 
however, does not account for possible pleiotropic bias. Therefore, we next 
performed inverse-variance-weighted multivariable Mendelian randomization. 
This method adjusts for possible pleiotropic effects across the included lipid 
traits in our analyses using effect estimates from the variant–AAA outcome and 
effect estimates from variant–LDL-C, variant–HDL-C and variant–triglycerides 
as predictors in one multivariable model. We additionally performed MR-Egger 
as previously described36. This technique can be used to detect bias secondary to 
unbalanced pleiotropy in Mendelian randomization studies. In contrast to inverse-
variance-weighted analysis, the regression line is unconstrained, and the intercept 
represents the average pleiotropic effects across all variants. Bonferroni-corrected 
two-sided P values (P =​ 0.016 (0.05/3)) for three tests were used to declare 
statistical significance.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The full summary-level association data from the trans-ancestry meta-analysis 
for each lipid trait from this report are available through dbGaP, with accession 
number phs001672.v1.p1.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection Phenotypic data was collected  from the electronic health record and genetic data using the Million Veteran Program (MVP) Axiom array. 
All data was collated using R-3.2 as documented in the URLs section

Data analysis Data was collected using the EasyQC package (exemplar code link documented in the URLs section), and SNPTEST software program as 
outlined in the supplementary methods (exemplar code link documented in the URLs section)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Data is to be posted online 
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size All samples available of three ancestries (European, African, Hispanic)were used for analysis (after quality control). Sample size was 
determined based on genetic data available from MVP.

Data exclusions Data were excluded if they did not pass our QC metrics, or if they did not fall within the three main ancestries used for analysis

Replication Replication was performed using data from one of 2 sources: 1) GLGC 2017 exome chip GWAS summary statistics, or 2) GLGC 2013 joint-
meta-analysis GWAS summary statistics

Randomization N/A

Blinding N/A

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology
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Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Human research participants
Policy information about studies involving human research participants

Population characteristics Demographics and participant counts for a number of cardiometabolic traits for the 312,571 white, black, and Hispanic MVP 
participants that passed our quality control are depicted in Table 1.  

Recruitment Individuals aged 19 to 104 years have been recruited voluntarily from more than 50 VA Medical Centers nationwide for 
participation in the Million Veteran Program biobank study.
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