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We aggregated coding variant data for 81,412 type 2 diabetes cases and 370,832 controls of diverse ancestry, identifying 
40 coding variant association signals (P <​ 2.2 ×​ 10−7); of these, 16 map outside known risk-associated loci. We make two 
important observations. First, only five of these signals are driven by low-frequency variants: even for these, effect sizes 
are modest (odds ratio ≤​1.29). Second, when we used large-scale genome-wide association data to fine-map the associated 
variants in their regional context, accounting for the global enrichment of complex trait associations in coding sequence, 
compelling evidence for coding variant causality was obtained for only 16 signals. At 13 others, the associated coding variants 
clearly represent ‘false leads’ with potential to generate erroneous mechanistic inference. Coding variant associations 
offer a direct route to biological insight for complex diseases and identification of validated therapeutic targets; however, 
appropriate mechanistic inference requires careful specification of their causal contribution to disease predisposition.

Genome-wide association studies (GWAS) have identified 
thousands of association signals influencing multifactorial 
traits such as type 2 diabetes (T2D) and obesity1–7. Most of 

these associations involve common variants that map to noncoding 
sequence, and identification of their cognate effector transcripts has 
proved challenging. Identification of coding variants causally impli-
cated in trait predisposition offers a more direct route from associa-
tion signal to biological inference.

The exome occupies 1.5% of the overall genome sequence, but, 
for many common diseases, coding variants make a disproportion-
ate contribution to trait heritability8,9. This enrichment indicates that 
coding variant association signals have an enhanced probability of 
being causal when compared to signals involving an otherwise equiv-
alent noncoding variant. This does not, however, guarantee that all 
coding variant associations are causal. Alleles driving common vari-
ant (minor allele frequency (MAF) ≥​5%) GWAS signals typically 
reside on extended risk haplotypes that, owing to linkage disequi-
librium (LD), incorporate many common variants10,11. Consequently, 
the presence of a coding allele on the risk haplotype does not con-
stitute sufficient evidence that it represents the causal variant at the 
locus or that the gene within which it lies is mediating the associa-
tion signal. Because much coding variant discovery has proceeded 
through exome-specific analyses (either exome array genotyping 
or exome sequencing), researchers have often been poorly placed 
to position coding variant associations in the context of regional 
genetic variation. It is unclear how often this may have led to incor-
rect assumptions regarding the causal role of coding variants.

In our recent study of T2D predisposition12, we surveyed the 
exomes of 34,809 cases and 57,985 controls, of predominantly 
European descent, and identified 13 distinct coding variant associa-
tions reaching genome-wide significance. Twelve of these associations 
involved common variants, but the data hinted at a substantial pool 
of lower-frequency coding variants of moderate impact, potentially 
amenable to detection in larger samples. We also reported that, while 
many of these signals fell within common variant loci previously iden-
tified by GWAS, it was far from trivial to determine, using available 
data, whether those coding variants were causal or ‘hitchhiking’ on 
risk haplotypes.

Here we report analyses that address these two issues. First, we 
extended the scope of our exome array genotyping to include data 
from 81,412 T2D cases and 370,832 controls of diverse ancestry, 
substantially increasing power to detect coding variant associa-
tions across the allele frequency spectrum. Second, to understand 
the extent to which identification of coding variant associations 
provides a reliable guide to causal mechanisms, we undertook 
high-resolution fine-mapping of identified coding variant associa-
tion signals in 50,160 T2D cases and 465,272 controls of European 
ancestry with genome-wide genotyping data.

Results
Discovery study overview. First, we set out to discover coding vari-
ant association signals by aggregating T2D association summary sta-
tistics in up to 452,244 individuals (effective sample size of 228,825) 
across five ancestry groups, performing both European-specific 
(EUR) and trans-ethnic (TE) meta-analyses (Supplementary Tables 1 
and 2). Analysis was restricted to the 247,470 variants represented on 
the exome array. Genotypes were assembled from (i) 58,425 cases and 
188,032 controls genotyped with the exome array; (ii) 14,608 cases 
and 174,322 controls from UK Biobank and GERA (Resource for 
Genetic Epidemiology on Adult Health and Aging) genotyped with 
GWAS arrays enriched for exome content and/or coverage of low-fre-
quency variation across ancestry groups13,14; and (iii) 8,379 cases and 
8,478 controls with whole-exome sequence from the GoT2D/T2D-
GENES12 and SIGMA15 studies. Overall, this represented a threefold 
increase in effective sample size over our previous study of T2D pre-
disposition within coding sequence12. To deconvolute the impact of 
obesity on T2D-associated variants, association analyses were con-
ducted with and without adjustment for body mass index (BMI).

We considered P <​ 2.2 ×​ 10−7 as significant for protein-truncating 
variants (PTVs) and moderate-impact coding variants (including 
missense, in-frame indel, and splice-region variants) on the basis 
of a weighted Bonferroni correction that accounts for the observed 
enrichment in complex trait association signals across sequence 
annotation16. This threshold matches those obtained through other 
approaches such as simple Bonferroni correction for the number of 
coding variants on the exome array (Methods). In comparison to our 
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previous study12, the expanded sample size substantially increased 
power to detect association for common variants of modest effect 
(for example, power was increased from 14.4% to 97.9% for a variant  
with 20% MAF and odds ratio (OR) =​ 1.05) and lower-frequency 
variants with larger effects (for example, power was increased from 
11.8% to 97.5% for a variant with 1% MAF and OR =​ 1.20) assuming 
homogenous allelic effects across ancestry groups (Methods).

Insights into coding variant association signals underlying T2D 
susceptibility. We detected significant associations at 69 coding 
variants under an additive genetic model (either in BMI-unadjusted 
or BMI-adjusted analysis), mapping to 38 loci (Supplementary 
Fig.  1 and Supplementary Table  3). We observed minimal evi-
dence of heterogeneity in allelic OR between ancestry groups 
(Supplementary Table  3) and no compelling evidence for non-
additive allelic effects (Supplementary Fig.  2 and Supplementary 
Table 4). Reciprocal conditional analyses (Methods) indicated that 
the 69 coding variants represented 40 distinct association signals 
(conditional P <​ 2.2 ×​ 10−7) across the 38 loci, with 2 distinct sig-
nals each at HNF1A and RREB1 (Supplementary Table 5). These 40 
signals included the 13 associations reported in our earlier publica-
tion12, each featuring more significant associations in this expanded 
meta-analysis (Supplementary Table 6). Twenty-five of the 40 sig-
nals were significant in both EUR and TE analyses. Of the other 15, 3 
(PLCB3, C17orf58, and ZHX3) were significant in EUR analysis and 
all reached PTE <​ 6.8 ×​ 10−6 in the TE analysis: for PLCB3 and ZHX3, 
risk allele frequencies were substantially lower outside European-
descent populations. Twelve loci (Supplementary Table 3) were sig-
nificant in TE analysis alone, but for these (except PAX4, which is 
specific to East Asians) the evidence for association was proportion-
ate in the smaller EUR component (PEUR <​ 8.4 ×​ 10−5).

Sixteen of the 40 distinct association signals mapped out-
side regions previously implicated in T2D susceptibility (Table  1 
and Methods). These included missense variant signals in POC5 
(p.His36Arg, rs2307111, PTE =​ 1.6 ×​ 10−15), PNPLA3 (p.Ile148Met, 
rs738409, PTE BMI adjusted =​ 2.8 ×​ 10−11), and ZZEF1 (p.Ile2014Val, 
rs781831, PTE =​ 8.3 ×​ 10−11).

In addition to the 69 coding variant signals, we detected sig-
nificant (P <​ 5 ×​ 10−8) and new T2D associations for 20 noncod-
ing variants (at 15 loci) that were also assayed on the exome array 
(Supplementary Table 7). Three of these (POC5, LPL, and BPTF) 
overlapped with new coding signals reported here.

Contribution of low-frequency and rare coding variation to 
T2D susceptibility. Despite increased power and good coverage 
of low-frequency variants on the exome array12, 35 of the 40 dis-
tinct coding variant association signals were common, with mod-
est effects (allelic ORs of 1.02–1.36) (Supplementary Fig.  3 and 
Supplementary Table 3). The five signals attributable to lower-fre-
quency variants were also of modest effect (allelic ORs of 1.09–1.29) 
(Supplementary Fig. 3). Two of the lower-frequency variant signals 
were new, and, for both, the minor allele was protective against 
T2D: FAM63A p.Tyr95Asn (rs140386498, MAF =​ 1.2%, OR =​ 0.82 
(0.77–0.88, 95% confidence interval), PEUR =​ 5.8 ×​ 10−8) and ANKH 
p.Arg187Gln (rs146886108, MAF =​ 0.4%, OR =​ 0.78 (0.69–0.87), 
PEUR =​ 2.0 ×​ 10−7). Both variants were very rare or monomorphic in 
individuals not of European descent.

In our previous study12, we highlighted a set of 100 low-fre-
quency coding variants with allelic ORs between 1.10 and 2.66 
that, despite relatively large estimates for liability-scale variance 
explained, had not reached significance. In this expanded analy-
sis, only five of these variants, including two new associations  
(at FAM63A p.Tyr95Asn and ANKH p.Arg187Gln), attained signifi-
cance. More precise effect size estimation in the larger sample size 
indicates that OR estimates in the earlier study were subject to a 
substantial upward bias (Supplementary Fig. 3).

To detect additional rare variant association signals, we per-
formed gene-based analyses (burden and SKAT17) using previously 
defined ‘strict’ and ‘broad’ masks, filtered for annotation and MAF12,18 
(Methods). We identified gene-based associations with T2D sus-
ceptibility (P <​ 2.5 ×​ 10−6, Bonferroni correction for 20,000 genes) 
for FAM63A (10 variants, combined MAF =​ 1.9%, PEUR =​ 3.1 ×​ 10−9) 
and PAM (17 variants, combined MAF =​ 4.7%, PTE =​ 8.2 ×​ 10−9). On 
conditional analysis (Supplementary Table  8), the gene-based sig-
nal at FAM63A was entirely attributable to the low-frequency allele 
encoding p.Tyr95Asn described earlier (conditional PEUR =​ 0.26). The 
gene-based signal for PAM was also driven by a single low-frequency 
variant (p.Asp563Gly; conditional PTE =​ 0.15). A second previously 
described, low-frequency variant (PAM p.Ser539Trp19) is not repre-
sented on the exome array and did not contribute to these analyses.

Fine-mapping of coding variant association signals with T2D 
susceptibility. These analyses identified 40 distinct coding vari-
ant associations with T2D, but this information is not sufficient to 
determine that these variants are causal for disease. To assess the role 
of these coding variants given regional genetic variation, we fine-
mapped these association signals using a meta-analysis of 50,160 
T2D cases and 465,272 controls (European descent only; partially 
overlapping with the discovery samples), which we aggregated from 
24 GWAS. Each component GWAS was imputed using appropriate 
high-density reference panels (for most, the Haplotype Reference 
Consortium20; Methods and Supplementary Table  9). Before fine-
mapping, distinct association signals were delineated using approxi-
mate conditional analyses (Methods and Supplementary Table 5). We 
included 37 of the 40 identified coding variants in this fine-mapping 
analysis, excluding 3 (those in the major histocompatibility complex 
(MHC) region, PAX4, and ZHX3) that were, for various reasons (see 
the Methods), not amenable to fine-mapping in the GWAS data.

For each of these 37 signals, we first constructed ‘functionally 
unweighted’ credible variant sets, which collectively account for 99% 
of the posterior probability of association (PPA), based exclusively on 
the meta-analysis summary statistics21 (Methods and Supplementary 
Table 10). For each signal, we calculated the proportion of PPA attrib-
utable to coding variants (missense, in-frame indel, and splice-region 
variants; Fig. 1 and Supplementary Figs. 4 and 5). There were only two 
signals at which coding variants accounted for ≥​80% of PPA: HNF4A 
p.Thr139Ile (rs1800961, PPA >​ 0.999) and RREB1 p.Asp1171Asn 
(rs9379084, PPA =​ 0.920). However, at other signals, including those 
for GCKR p.Pro446Leu and SLC30A8 p.Arg276Trp, for which robust 
empirical evidence has established a causal role22,23, genetic support 
for coding variant causation was weak. This is because coding vari-
ants were typically in high LD (r2 >​ 0.9) with large numbers of non-
coding variants, such that the PPA was distributed across many sites 
with broadly equivalent evidence for association.

These functionally unweighted sets are based on genetic 
fine-mapping data alone and do not account for the dispropor-
tionate representation of coding variants among GWAS associa-
tions for complex traits8,9. To accommodate this information, we 
extended the fine-mapping analyses by incorporating an ‘annota-
tion-informed prior’ model of causality. We derived priors from 
estimates of the enrichment of association signals by sequence 
annotation from analyses conducted by deCODE across 96 quanti-
tative and 123 binary phenotypes16 (Methods). This model ‘boosts’ 
the prior and, hence, the posterior probabilities (we use ‘aiPPAs’ to 
denote annotation-informed PPAs) of coding variants. It also takes 
into account (in a tissue-non-specific manner) the GWAS enrich-
ment of variants within enhancer elements (as assayed through 
DNase I hypersensitivity) when compared to noncoding vari-
ants mapping elsewhere. The annotation-informed model gener-
ated smaller 99% credible sets across most signals, corresponding 
to fine-mapping at higher resolution (Supplementary Table  10).  
As expected, the contribution of coding variants was increased under  
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ASCC2 p.Asp407His ASCC2 p.Pro423Ser ASCC2 p.Val123Ile

IL17REL p.Leu333Pro

SETD2 p.Pro1962Lys

CALCOCO2 p.Pro347Ala

ABCC8 p.Ala1369Ser

PPIP5K2†

TM6SF2 p.Leu156Pro

PARVB p.Trp37Arg

MACF1 p.Met1424Val MACF1 p.Lys1625Asn

IL17REL†

NBEAL2† KIF9†

SNF8 p.Arg155His
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Fig. 1 | Posterior probabilities for coding variants across loci with annotation-informed priors. Fine-mapping of 37 distinct association signals was 
performed using European-ancestry GWAS meta-analysis including 50,160 T2D cases and 465,272 controls. For each signal, we constructed a credible 
set of variants accounting for 99% of the posterior probability of driving the association, incorporating an annotation-informed prior model of causality, 
which boosts the posterior probability of driving the association signal that is attributed to coding variants. Each bar represents a signal, with the total 
probability attributed to the coding variants within the 99% credible set plotted on the y axis. When the probability (bar) is split across multiple coding 
variants (at least 0.05 probability attributed to a variant) at a particular locus, these variants are indicated by blue, pink, yellow, and green. The combined 
probability of the remaining coding variants is highlighted in gray. RREB1(a), RREB1 p.Asp1171Asn; RREB1(b), RREB1 p.Ser1499Tyr; HNF1A(a), HNF1A 
p.Ala146Val; HNF1A(b), HNF1A p.Ile75Leu; PPIP5K2†, PPIP5K2 p.Ser1207Gly; MTMR3†, MTMR3 p.Asn960Ser; IL17REL†, IL17REL p.Gly70Arg; NBEAL2†, 
NBEAL2 p.Arg511Gly, KIF9†, KIF9 p.Arg638Trp
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Table 1 | Summary of discovery and fine-mapping analyses of the 40 index coding variants associated with T2D (P <​ 2.2 ×​ 10−7)
Discovery meta-analysis using exome array component: 81,412 T2D cases and 370,832 controls from diverse ancestries Fine-mapping meta-analysis using GWAS: 50,160 

T2D cases and 465,272 controls of European 
ancestry

Locus Index variant rsID Chr. Pos. (bp) Alleles 
(R/O)

RAF BMI unadjusted BMI adjusted RAF OR L95 U95 P Group

OR L95 U95 P OR L95 U95 P

Previously reported T2D-associated loci

MACF1 MACF1 
p.Met1424Val

rs2296172 1 39,835,817 G/A 0.193 1.06 1.05 1.08 6.7 ×​ 10−16 1.04 1.03 1.06 5.9 ×​ 10−8 0.22 1.08 1.06 1.10 1.6 ×​ 10−15 3

GCKR GCKR 
p.Pro446Leu

rs1260326 2 27,730,940 C/T 0.630 1.06 1.05 1.08 5.3 ×​ 10−25 1.06 1.04 1.07 3.2 ×​ 10−18 0.607 1.05 1.04 1.07 9.1 ×​ 10−10 1

THADA THADA 
p.Cys845Tyr

rs35720761 2 43≠​,519,977 C/T 0.895 1.08 1.05 1.10 4.6 ×​ 10−15 1.07 1.05 1.10 8.3 ×​ 10−16 0.881 1.1 1.07 1.12 3.4 ×​ 10−12 2

GRB14 COBLL1 
p.Asn901Asp

rs7607980 2 165,551,201 T/C 0.879 1.08 1.06 1.11 8.6 ×​ 10−20 1.09 1.07 1.12 5.0 ×​ 10−23 0.871 1.08 1.06 1.11 3.6 ×​ 10−10 2

PPARG PPARG 
p.Pro12Ala

rs1801282 3 12,393,125 C/G 0.887 1.09 1.07 1.11 1.4 ×​ 10−17 1.10 1.07 1.12 2.7 ×​ 10−19 0.876 1.12 1.09 1.14 3.7 ×​ 10−17 3

IGF2BP2 SENP2 
p.Thr291Lys

rs6762208 3 185,331,165 A/C 0.367 1.03 1.01 1.04 1.6 ×​ 10−6 1.03 1.02 1.05 3.0 ×​ 10−8 0.339 1.02 1.01 1.04 0.01 2

WFS1 WFS1 
p.Val333Ile

rs1801212 4 6,302,519 A/G 0.748 1.07 1.06 1.09 1.1 ×​ 10−24 1.07 1.05 1.08 7.1 ×​ 10−21 0.703 1.07 1.05 1.09 4.1 ×​ 10−13 2

PAM-PPIP5K2 PAM 
p.Asp336Gly

rs35658696 5 102,338,811 G/A 0.045 1.13 1.10 1.17 1.2 ×​ 10−16 1.13 1.09 1.17 7.4 ×​ 10−15 0.051 1.17 1.13 1.22 2.5 ×​ 10−17 1

RREB1 RREB1 
p.Asp1171Asn

rs9379084 6 7,231,843 G/A 0.884 1.08 1.06 1.11 1.1 ×​ 10−13 1.10 1.07 1.13 1.5 ×​ 10−17 0.888 1.09 1.06 1.12 1.1 ×​ 10−9 1

RREB1 
p.Ser1499Tyr

rs35742417 6 7,247,344 C/A 0.836 1.04 1.03 1.06 5.5 ×​ 10−8 1.04 1.02 1.06 2.2 ×​ 10−7 0.817 1.04 1.02 1.07 0.00012 2

MHC TCF19 
p.Met131Val

rs2073721 6 31,129,616 G/A 0.749 1.04 1.02 1.05 1.6 ×​ 10−10 1.04 1.02 1.05 2.3 ×​ 10−9 NA NA NA NA NA NA

PAX4 PAX4 
p.Arg190His

rs2233580 7 127,253,550 T/C 0.029 1.36 1.25 1.48 1.8 ×​ 10−12 1.38 1.26 1.51 4.2 ×​ 10−13 0 NA NA NA NA NA

SLC30A8 SLC30A8 
p.Arg276Trp

rs13266634 8 118,184,783 C/T 0.691 1.09 1.08 1.11 1.9 ×​ 10−47 1.09 1.08 1.11 1.3 ×​ 10−47 0.683 1.12 1.10 1.14 8.2 ×​ 10−36 1

GPSM1 GPSM1 
p.Ser391Leu

rs60980157 9 139,235,415 C/T 0.771 1.06 1.05 1.08 3.2 ×​ 10−16 1.06 1.05 1.08 6.6 ×​ 10−16 0.756 1.06 1.04 1.09 8.3 ×​ 10−8 3

KCNJ11-ABCC8 KCNJ11 
p.Lys29Glu

rs5219 11 17,409,572 T/C 0.364 1.06 1.05 1.07 5.7 ×​ 10−22 1.07 1.05 1.08 1.5 ×​ 10−22 0.381 1.07 1.05 1.09 8.1 ×​ 10−16 1

CENTD2 ARAP1 
p.Gln802Glu

rs56200889 11 72,408,055 G/C 0.733 1.04 1.02 1.05 4.8 ×​ 10−8 1.05 1.03 1.06 5.2 ×​ 10−10 0.727 1.05 1.03 1.07 2.3 ×​ 10−8 2

KLHDC5 MRPS35 
p.Gly43Arg

rs1127787 12 27,867,727 G/A 0.850 1.06 1.04 1.08 1.4 ×​ 10−11 1.05 1.03 1.07 1.5 ×​ 10−8 0.842 1.06 1.04 1.09 2.2 ×​ 10−7 2

HNF1A HNF1A 
p.Ile75Leu

rs1169288 12 121,416,650 C/A 0.323 1.04 1.03 1.06 1.1 ×​ 10−11 1.04 1.02 1.06 1.9 ×​ 10−10 0.33 1.05 1.04 1.07 4.6 ×​ 10−9 1

HNF1A 
p.Ala146Val

rs1800574 12 121,416,864 T/C 0.029 1.11 1.06 1.15 6.1 ×​ 10−8 1.10 1.06 1.15 1.3 ×​ 10−7 0.03 1.16 1.10 1.21 5.0 ×​ 10−9 1

MPHOSPH9 SBNO1 
p.Ser729Asn

rs1060105 12 123,806,219 C/T 0.815 1.04 1.02 1.06 5.7 ×​ 10−7 1.04 1.02 1.06 1.1 ×​ 10−7 0.787 1.04 1.02 1.06 3.6 ×​ 10−5 2

CILP2 TM6SF2 
p.Glu167Lys

rs58542926 19 19,379,549 T/C 0.076 1.07 1.05 1.10 4.8 ×​ 10−12 1.09 1.06 1.11 3.4 ×​ 10−15 0.076 1.09 1.05 1.12 2.0 ×​ 10−7 1

GIPR GIPR 
p.Glu318Gln

rs1800437 19 46,181,392 C/G 0.200 1.03 1.02 1.05 7.1 ×​ 10−5 1.06 1.04 1.07 6.8 ×​ 10−12 0.213 1.09 1.06 1.12 4.6 ×​ 10−9 1

HNF4A HNF4A 
p.Thr139Ile

rs1800961 20 43,042,364 T/C 0.032 1.09 1.05 1.13 2.6 ×​ 10−8 1.10 1.06 1.14 5.0 ×​ 10−8 0.037 1.17 1.12 1.22 1.4 ×​ 10−12 1

MTMR3ASCC2 ASCC2 
p.Asp407His

rs28265 22 30,200,761 C/G 0.925 1.09 1.06 1.11 2.1 ×​ 10−12 1.09 1.07 1.12 4.4 ×​ 10−14 0.916 1.1 1.07 1.14 9.6 ×​ 10−11 3

New T2D-associated loci

FAM63A FAM63A 
p.Tyr95Asn

rs140386498 1 150,972,959 A/T 0.988 1.21 1.14 1.28 7.5 ×​ 10−8 1.19 1.12 1.26 6.7 ×​ 10−7 0.986 1.15 1.06 1.25 0.00047 3

CEP68 CEP68 
p.Gly74Ser

rs7572857 2 65,296,798 G/A 0.846 1.05 1.04 1.07 8.3 ×​ 10−9 1.05 1.03 1.07 6.6 ×​ 10−7 0.830 1.06 1.03 1.08 6.6 ×​ 10−7 2

KIF9 KIF9 
p.Arg638Trp

rs2276853 3 47,282,303 A/G 0.588 1.02 1.01 1.04 8.0 ×​ 10−5 1.03 1.02 1.05 5.3 ×​ 10−8 0.602 1.04 1.02 1.05 2.6 ×​ 10−5 3

ANKH ANKH 
p.Arg187Gln

rs146886108 5 14,751,305 C/T 0.996 1.29 1.16 1.45 1.4 ×​ 10−7 1.27 1.13 1.41 3.5 ×​ 10−7 0.995 1.51 1.29 1.77 3.5 ×​ 10−7 1

POC5 POC5 
p.His36Arg

rs2307111 5 75,003,678 T/C 0.562 1.05 1.04 1.07 1.6 ×​ 10−15 1.03 1.01 1.04 2.1 ×​ 10−5 0.606 1.06 1.05 1.08 1.1 ×​ 10−12 1

LPL LPL p.Ser474* rs328 8 19,819,724 C/G 0.903 1.05 1.03 1.08 6.8 ×​ 10−9 1.05 1.03 1.07 2.3 ×​ 10−7 0.901 1.08 1.05 1.11 7.1 ×​ 10−8 1

PLCB3† PLCB3 
p.Ser778Leu

rs35169799 11 64,031,241 T/C 0.071 1.05 1.02 1.08 1.3 ×​ 10−5 1.06 1.03 1.09 1.8 ×​ 10−7 0.065 1.07 1.04 1.11 3.8 ×​ 10−5 1

TPCN2 TPCN2 
p.Val219Ile

rs72928978 11 68,831,364 G/A 0.890 1.05 1.02 1.07 5.2 ×​ 10−7 1.05 1.03 1.07 1.8 ×​ 10−8 0.847 1.03 1.00 1.05 0.042 2

WSCD2 WSCD2 
p.Thr113Ile

rs3764002 12 108,618,630 C/T 0.719 1.03 1.02 1.05 3.3 ×​ 10−8 1.03 1.02 1.05 1.2 ×​ 10−7 0.736 1.05 1.03 1.07 8.1 ×​ 10−7 1

Continued
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the annotation-informed model. At these 37 association signals, we 
distinguished three broad patterns of causal relationship between 
coding variants and T2D risk.

Group 1: T2D association signal driven by coding variants. At 16 
of the 37 distinct signals, coding variation accounted for >​80% 
of the aiPPA (Fig.  1, Table  2, and Supplementary Table  10). This 
was attributable to a single coding variant at 11 signals and mul-
tiple coding variants at 5 signals. Reassuringly, group 1 signals 
confirmed coding variant causation for several loci (GCKR, PAM, 
SLC30A8, and KCNJ11–ABCC8) at which functional studies have 
established strong mechanistic links to T2D pathogenesis (Table 2). 
T2D association signals at the 12 remaining signals (Fig.  1 and 
Supplementary Table  10) had not previously been shown to be 
driven by coding variation, but our fine-mapping analyses pointed 
to causal coding variants with high aiPPA values: these included 
HNF4A, RREB1 (p.Asp1171Asn), ANKH, WSCD2, POC5, TM6SF2, 
HNF1A (p.Ala146Val; p.Ile75Leu), GIPR, LPL, PLCB3, and PNPLA3 
(Table  2). At several of these, independent evidence corroborates 
the causal role of the genes harboring the associated coding vari-
ants. For example, rare coding mutations at HNF1A and HNF4A 
are causal for monogenic, early-onset forms of diabetes24, and at 
TM6SF2 and PNPLA3 the associated coding variants are implicated 
in the development of non-alcoholic fatty liver disease (NAFLD)25,26.

The use of priors to capture the enrichment of coding variants 
seems a reasonable model, across the genome. However, at any 
given locus, strong priors (especially for PTVs) might elevate to 
apparent causality variants that would have been excluded from a 
causal role on the basis of genetic fine-mapping alone. Comparison 
of the annotation-informed and functionally unweighted credible 
sets for group 1 signals indicated that this scenario was unlikely. 
For 11 of the 16 (GCKR, PAM, KCNJ11–ABCC8, HNF4A, RREB1 
(p.Asp1171Asn), ANKH, POC5, TM6SF2, HNF1A (p.Ala146Val), 
PLCB3, and PNPLA3), the coding variant had the highest PPA in 
the fine-mapping analysis (Table  2), even under the functionally 
unweighted model. At SLC30A8, WSCD2, and GIPR, the coding 
variants had similar PPAs to the lead noncoding SNPs under the 
functionally unweighted prior (Table 2). At these 14 signals, there-
fore, coding variants have either greater or equivalent PPA to the 
best flanking noncoding SNPs under the functionally unweighted 
model, but receive a boost in PPA after incorporating the annota-
tion weights.

The situation is less clear at LPL. Here fine-mapping resolution 
is poor under the functionally unweighted prior and the coding 
variant sits on an extended haplotype in strong LD with noncoding 
variants, some with higher PPA, such as rs74855321 (PPA =​ 0.048) 
(compared to LPL p.Ser474* (rs328, PPA =​ 0.023)). However, LPL 
p.Ser474* is annotated as a PTV and benefits from a substan-
tially increased prior that boosts its annotation-informed ranking 
(Table 2). Ultimately, decisions regarding the causal role of any such 
variant must rest on the amalgamation of evidence from diverse 
sources, including detailed functional evaluation of the coding vari-
ants and of other variants with which they are in LD.

Group 2: T2D association signals not attributable to coding variants. 
At 13 of the 37 distinct signals, coding variation accounted for <​20%  
of the PPA, even after applying the annotation-informed prior 
model. These signals are likely to be driven by local noncoding vari-
ation and mediated through regulatory mechanisms. Five of these 
signals (TPCN2, MLX, ZZEF1, C17orf58, and CEP68) represent new 
T2D association signals identified in the exome-focused analysis. 
Given the exome array discoveries, it would have been natural to 
consider the named genes at these and other loci in this group as 
candidates for mediation of their respective association signals. 
However, the fine-mapping analyses indicate that these coding vari-
ants do not provide useful mechanistic inference given low aiPPA 
(Fig. 1 and Table 2).

The coding variant association at the CENTD2 (ARAP1) locus 
is a case in point. The association with the p.Gln802Glu variant in 
ARAP1 (rs56200889, PTE =​ 4.8 ×​ 10−8 but aiPPA <​ 0.001) is seen in the 
fine-mapping analysis to be secondary to a substantially stronger 
noncoding association signal involving a cluster of variants includ-
ing rs11603334 (PTE =​ 9.5 ×​ 10−18, aiPPA =​ 0.0692) and rs1552224 
(PTE =​ 2.5 ×​ 10−17, aiPPA =​ 0.0941). The identity of the effector tran-
script at this locus has been the subject of detailed investigation, and 
some early studies used islet expression data to promote ARAP127. 
However, a more recent study integrating human islet genomics and 
mouse gene knockout data has established STARD10 as the gene 
mediating the GWAS signal, consistent with the reassignment of the 
ARAP1 coding variant association as irrelevant to causal inference28.

While at these loci the coding variant associations represent false 
leads, this does not necessarily exclude the genes concerned from 
a causal role. At WFS1, for example, coding variants too rare to be 
visible to the array-based analyses we performed, and statistically 

Discovery meta-analysis using exome array component: 81,412 T2D cases and 370,832 controls from diverse ancestries Fine-mapping meta-analysis using GWAS: 50,160 
T2D cases and 465,272 controls of European 
ancestry

Locus Index variant rsID Chr. Pos. (bp) Alleles 
(R/O)

RAF BMI unadjusted BMI adjusted RAF OR L95 U95 P Group

OR L95 U95 P OR L95 U95 P

ZZEF1 ZZEF1 
p.Ile402Val

rs781831 17 3,947,644 C/T 0.422 1.04 1.03 1.05 8.3 ×​ 10−11 1.03 1.02 1.05 1.8 ×​ 10−7 0.407 1.04 1.02 1.05 2.1 ×​ 10−5 2

MLX MLX 
p.Gln139Arg

rs665268 17 40,722,029 G/A 0.294 1.04 1.02 1.05 2.0 ×​ 10−8 1.03 1.02 1.04 1.1 ×​ 10−5 0.280 1.04 1.02 1.06 5.2 ×​ 10−6 2

TTLL6 TTLL6 
p.Glu712Asp

rs2032844 17 46,847,364 C/A 0.754 1.04 1.02 1.06 1.2 ×​ 10−7 1.03 1.01 1.04 0.00098 0.750 1.04 1.02 1.06 9.5 ×​ 10−5 3

C17orf58† C17orf58 
p.Ile92Val

rs9891146 17 65,988,049 T/C 0.277 1.04 1.02 1.06 1.3 ×​ 10−7 1.02 1.00 1.04 0.00058 0.269 1.05 1.03 1.07 1.7 ×​ 10−7 2

ZHX3† ZHX3 
p.Asn310Ser

rs17265513 20 39,832,628 C/T 0.211 1.05 1.03 1.07 9.2 ×​ 10−8 1.04 1.02 1.05 2.9 ×​ 10−6 0.208 1.02 1.00 1.04 0.068 NA

PNPLA3 PNPLA3 
p.Ile148Met

rs738409 22 44,324,727 G/C 0.239 1.04 1.03 1.05 2.1 ×​ 10−10 1.05 1.03 1.06 2.8 ×​ 10−11 0.230 1.05 1.03 1.07 5.8 ×​ 10−6 1

PIM3 PIM3 
p.Val300Ala

rs4077129 22 50,356,693 T/C 0.276 1.04 1.02 1.05 1.9 ×​ 10−7 1.04 1.02 1.06 3.5 ×​ 10−8 0.280 1.04 1.02 1.06 8.7 ×​ 10−5 3

Chr., chromosome; Pos., position build 37; RAF, risk allele frequency; R, risk allele; O, other allele; BMI, body mass index; OR, odds ratio; L95, lower 95% confidence interval; U95, upper 95% confidence 
interval; GWAS, genome-wide association studies. Fine-mapping group 1, signal is driven by coding variants; group 2, signal attributable to noncoding variants; group 3, consistent with a partial role for 
coding variants. P values are based on the meta-analyses of discovery-stage and fine-mapping studies as appropriate.aSummary statistics from European-ancestry-specific meta-analyses of 48,286 cases 
and 250,671 controls.

Table 1 | Summary of discovery and fine-mapping analyses of the 40 index coding variants associated with T2D (P <​ 2.2 ×​ 10−7) (Continued)
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independent of the common p.Val333Ile variant we detected, cause 
an early-onset form of diabetes that renders WFS1 the strongest 
local candidate for T2D predisposition.

Group 3: Fine-mapping data consistent with a partial role for cod-
ing variants. At 8 of the 37 distinct signals, the aiPPA attributable to 
coding variation lay between 20% and 80%. At these signals, the evi-
dence is consistent with ‘partial’ contributions from coding variants, 
although the precise inference is likely to be locus specific, depen-
dent on subtle variations in LD, imputation accuracy, and the extent 
to which global priors accurately represent the functional impact of 
the specific variants concerned.

This group includes PPARG, for which independent evidence cor-
roborates the causal role of this specific effector transcript with respect 
to T2D risk. PPARG encodes the target of antidiabetic thiazolidinedi-
one drugs and harbors very rare coding variants causal for lipodys-
trophy and insulin resistance, conditions highly relevant to T2D. The 
common variant association signal at this locus has generally been 
attributed to the p.Pro12Ala coding variant (rs1801282), although 
empirical evidence that this variant influences PPARγ​ function is 
scant29–31. In the functionally unweighted analysis, p.Pro12Ala had 
an unimpressive PPA (0.0238); after including annotation-informed 
priors, the same variant emerged with the highest aiPPA (0.410), 
although the 99% credible set included 19 noncoding variants, span-
ning 67 kb (Supplementary Table  10). These credible set variants 
included rs4684847 (aiPPA =​ 0.0089), at which the T2D-associated 
allele has been reported to impact PPARG expression and insulin 
sensitivity by altering binding of the homeobox transcription factor 
PRRX132. These data are consistent with a model whereby regulatory 
variants contribute to altered PPARγ​ activity in combination with, or 

potentially to the exclusion of, p.Pro12Ala. Future improvements in 
functional annotation for regulatory variants (gathered from relevant 
tissues and cell types) should provide increasingly granular priors 
that allow fine-tuned assignment of causality at loci such as this.

Functional impact of coding alleles. In other contexts, the func-
tional impact of coding alleles is correlated with (i) variant-spe-
cific features, including measures of conservation and predicted 
impact on protein structure, and (ii) gene-specific features, such 
as extreme selective constraints as quantified by the intolerance 
to functional variation33. To determine whether similar measures 
could capture information pertinent to T2D causation, we com-
pared coding variants falling into the different fine-mapping groups 
for a variety of measures, including MAF, Combined Annotation-
Dependent Depletion (CADD) score34, and the loss-of-function 
(LoF) intolerance metric pLI33 (Fig. 2 and Methods). Variants from 
group 1 had significantly higher CADD scores than those in group 
2 (Kolmogorov–Smirnov P =​ 0.0031). Except for the variants at 
KCNJ11–ABCC8 and GCKR, all group 1 coding variants considered 
likely to be driving T2D association signals had a CADD score ≥​20. 
On this basis, we predict that the East Asian–specific coding variant 
at PAX4, for which the fine-mapping data were not informative, is 
also likely causal for T2D.

T2D loci and physiological classification. The development of 
T2D involves dysfunction of multiple mechanisms. Systematic 
analysis of the physiological effects of known T2D risk alleles 
has improved understanding of the mechanisms through which 
these alleles exert their primary impact on disease risk35. We 
obtained association summary statistics for diverse metabolic traits  
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Fig. 2 | Plot of measures of variant-specific and gene-specific features of distinct coding signals to access the functional impact of coding alleles. Each 
point represents a coding variant with the MAF plotted on the x axis and the CADD score plotted on the y axis. The size of each point varies with the 
measure of intolerance of the gene to LoF variants (pLI), and the color represents the fine-mapping group to which each variant is assigned. In group 1, 
signal is driven by the coding variant; in group 2, signal is attributable to noncoding variants; in group 3, signal is consistent with a partial role for coding 
variants. Group 4 represents an unclassified category and includes PAX4, ZHX3, and signal at TCF19 within the MHC region where we did not perform fine-
mapping. Inset, plot showing the distribution of CADD scores between different groups. The plot is a combination of violin plots and box plots; the width of 
each violin corresponds to the frequency at the corresponding CADD score, and box plots show the median and the 25% and 75% quantiles. The P value 
indicates significance from a two-sample Kolmogorov–Smirnov test.

Nature Genetics | www.nature.com/naturegenetics

© 2018 Nature America Inc., part of Springer Nature. All rights reserved.

http://www.nature.com/naturegenetics


ArticlesNature Genetics

Table 2 | Posterior probabilities for coding variants within 99% credible sets across loci with annotation-informed and functionally 
unweighted priors based on fine-mapping analysis performed using 50,160 T2D cases and 465,272 controls of European ancestry

Locus Variant rsID Chr. Pos. (bp) Posterior probability Cumulative posterior 

probability attributed to 

coding variants

PPA aiPPA PPA aiPPA

MACF1 MACF1 p.Ile39Val rs16826069 1 39,797,055 0.012 0.240 0.032 0.628

MACF1 p.Met1424Val rs2296172 1 39,835,817 0.011 0.224

MACF1 p.Lys1625Asn rs41270807 1 39,801,815 0.008 0.163

FAM63A FAM63A p.Tyr95Asn rs140386498 1 150,972,959 0.005 0.129 0.012 0.303

GCKR GCKR p. Pro 446Leu rs1260326 2 27,730,940 0.773 0.995 0.773 0.995

THADA THADA p.Cys845Tyr rs35720761 2 43,519,977 <0.001 0.011 0.003 0.120

THADA p.Thr897Ala rs7578597 2 43,732,823 0.003 0.107

CEP68 CEP68 p.Gly74Ser rs7572857 2 65,296,798 <​0.001 0.004 <​0.001 0.004

GRB14 COBLL1 p.Asn901Asp rs7607980 2 165,551,201 0.006 0.160 0.006 0.160

PPARG PPARG p.Pro12Ala rs1801282 3 12,393,125 0.023 0.410 0.024 0.410

KIF9 SETD2 p.Pro1962Lys rs4082155 3 47,125,385 0.008 0.171 0.018 0.384

NBEAL2 p.Arg511Gly rs11720139 3 47,036,756 0.005 0.097

KIF9 p.Arg638Trp rs2276853 3 47,282,303 0.003 0.059

IGF2BP2 SENP2 p.Thr291Lys rs6762208 3 185,331,165 <​0.001 <​0.001 <​0.001 <​0.001

WFS1 WFS1 p.Val333Ile rs1801212 4 6,302,519 <​0.001 0.001 <​0.001 0.004

ANKH ANKH p.Arg187Gln rs146886108 5 14,751,305 0.459 0.972 0.447 0.972

POC5 POC5 p.His36Arg rs2307111 5 75,003,678 0.697 0.954 0.702 0.986

PAM-PPIP5K2 PAM p.Asp336Gly rs35658696 5 102,338,811 0.288 0.885 0.309 0.947

PPIP5K2 p.Ser1207Gly rs36046591 5 102,537,285 0.020 0.063

RREB1 p.Asp1171Asn RREB1 p.Asp1171Asn rs9379084 6 7,231,843 0.920 0.997 0.920 0.997

RREB1 p.Ser1499Tyr RREB1 p.Ser1499Tyr rs35742417 6 7,247,344 <​0.001 0.013 0.005 0.111

LPL LPL p.Ser474* rs328 8 19,819,724 0.023 0.832 0.023 0.832

SLC30A8 SLC30A8 p.Arg276Trp rs13266634 8 118,184,783 0.295 0.823 0.295 0.823

GPSM1 GPSM1 p.Ser391Leu rs60980157 9 139,235,415 0.031 0.557 0.031 0.557

KCNJ11–ABCC8 KCNJ11 p.Val250Ile rs5215 11 17,408,630 0.208 0.412 0.481 0.951

KCNJ11 p.Lys29Glu rs5219 11 17,409,572 0.190 0.376

ABCC8 p.Ala1369Ser rs757110 11 17,418,477 0.083 0.163

PLCB3 PLCB3 p.Ser778Leu rs35169799 11 64,031,241 0.113 0.720 0.130 0.830

TPCN2 TPCN2 p.Val219Ile rs72928978 11 68,831,364 <​0.001 0.004 0.006 0.140

CENTD2 ARAP1 p.Gln802Glu rs56200889 11 72,408,055 <​0.001 <​0.001 <​0.001 <​0.001

KLHDC5 MRPS35 p.Gly43Arg rs1127787 12 27,867,727 <​0.001 <​0.001 <​0.001 <​0.001

WSCD2 WSCD2 p.Thr113Ile rs3764002 12 108,618,630 0.281 0.955 0.282 0.958

HNF1A p.Ile75Leu HNF1A p.Gly226Ala rs56348580 12 121,432,117 0.358 0.894 0.358 0.894

HNF1A p.Ile75Leu rs1169288 12 121,416,650 <​0.001 <​0.001

HNF1A p.Ala146Val HNF1A p.Ala146Val rs1800574 12 121,416,864 0.269 0.867 0.280 0.902

MPHOSPH9 SBNO1 p.Ser729Asn rs1060105 12 123,806,219 0.002 0.054 0.002 0.057

ZZEF1 ZZEF1 p.Ile402Val rs781831 17 3,947,644 <​0.001 0.001 <​0.001 0.018

MLX MLX p.Gln139Arg rs665268 17 40,722,029 0.002 0.038 0.002 0.039

TTLL6 TTLL6 p.Glu712Asp rs2032844 17 46,847,364 <​0.001 <​0.001 0.016 0.305

CALCOCO2 p.Pro347Ala rs10278 17 46,939,658 0.0100 0.187

SNF8 p.Arg155His rs57901004 17 47,011,897 0.005 0.092

C17orf58 C17orf58 p.Ile92Val rs9891146 17 65,988,049 <​0.001 0.009 <​0.001 0.009

CILP2 TM6SF2 p.Glu167Lys rs58542926 19 19,379,549 0.211 0.732 0.263 0.913

TM6SF2 p.Leu156Pro rs187429064 19 19,380,513 0.049 0.172

GIPR GIPR p.Glu318Gln rs1800437 19 46,181,392 0.169 0.901 0.169 0.901

Continued
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(and other outcomes) for 94 T2D-associated index variants. These 
94 variants were restricted to sites represented on the exome array 
and included the 40 coding signals plus 54 distinct noncoding signals 
(12 new and 42 previously reported GWAS lead SNPs). We applied 
clustering techniques (Methods) to generate multi-trait association 
patterns, allocating 71 of the 94 loci to one of three main physiologi-
cal categories (Supplementary Fig. 6 and Supplementary Table 11). 
The first category, comprising nine T2D risk loci with strong BMI 
and dyslipidemia associations, included three of the new coding 
signals: PNPLA3, POC5, and BPTF. The T2D associations at both 
POC5 and BPTF were substantially attenuated (>​2-fold decrease in 
–log10 P) after adjusting for BMI (Table 1, Supplementary Fig. 7, and 
Supplementary Table 3), indicating that their impact on T2D risk is 
likely mediated by a primary effect on adiposity. PNPLA3 and POC5 
are established loci for NAFLD25 and BMI6, respectively. The second 
category featured 39 loci at which multi-trait profiles indicated a pri-
mary effect on insulin secretion. This set included four of the new 
coding variant signals (ANKH, ZZEF1, TTLL6, and ZHX3). The 
third category encompassed 23 loci with primary effects on insu-
lin action, including signals at the KIF9, PLCB3, CEP68, TPCN2, 
FAM63A, and PIM3 loci. For most variants in this category, the T2D 
risk allele was associated with lower BMI, and T2D association sig-
nals were more pronounced after adjustment for BMI. At a subset 
of these loci, including KIF9 and PLCB3, the T2D risk alleles were 
associated with higher waist–hip ratio and lower body fat percent-
age, indicating that the mechanism of action likely reflects limita-
tions in storage capacity of peripheral adipose tissue36.

Discussion
The present study adds to mounting evidence constraining the con-
tribution of lower-frequency variants to T2D risk. Although the 
exome array interrogates only a subset of the universe of coding 
variants, it captures the majority of low-frequency coding variants 
in European populations. The substantial increase in sample size in 
the present study over our previous effort12 (effective sample sizes of 
228,825 and 82,758, respectively) provides more robust evaluation 
of the effect size distribution in this low-frequency variant range and 
indicates that previous analyses are likely, if anything, to have over-
estimated the contribution of low-frequency variants to T2D risk.

The present study is less informative regarding rare variants. 
These are sparsely captured on the exome array. In addition, the 

combination of greater regional diversity in rare allele distribution 
and the enormous sample sizes necessary to detect rare variant asso-
ciations (likely to require meta-analysis of data from diverse popula-
tions) acts against their identification. Our complementary genome 
and exome sequence analyses have thus far failed to register strong 
evidence for a substantial rare variant component to T2D risk12. It 
is therefore highly unlikely that rare variants missed in our analyses 
are causal for any of the common or low-frequency variant associa-
tions we have detected and fine-mapped. On the other hand, it is 
probable that rare coding alleles, with associations that are distinct 
from the common variant signals we have examined and detected 
only through sequence-based analyses, will provide additional clues 
to the most likely effector transcripts at some of these signals (WFS1 
provides one such example).

Once a coding variant association is detected, it is natural to 
assume a causal connection between that variant, the gene in which 
it sits, and the phenotype of interest. While such assignments may 
be robust for many rare protein-truncating alleles, we demonstrate 
that this implicit assumption is often inaccurate, particularly for 
associations attributable to common, missense variants. One-third 
of the coding variant associations we detected were, when assessed 
in the context of regional LD, highly unlikely to be causal. At these 
loci, the genes within which they reside are consequently deprived of 
their implied connection to disease risk and attention is redirected 
toward nearby noncoding variants and their impact on regional 
gene expression. As a group, coding variants we assign as causal are 
predicted to have a more deleterious impact on gene function than 
those that we exonerate, but, as in other settings, coding annotation 
methods lack both sensitivity and specificity. It is worth emphasiz-
ing that empirical evidence that the associated coding allele is ‘func-
tional’ (that is, can be shown to influence cognate gene function 
in some experimental assay) provides limited reassurance that the 
coding variant is responsible for the T2D association, unless that 
specific perturbation of gene function can itself be plausibly linked 
to the disease phenotype.

Our fine-mapping analyses make use of the observation that 
coding variants are globally enriched across GWAS signals8,9,16, with 
greater prior probability of causality assigned to those with more 
severe impact on biological function. We assigned diminished pri-
ors to noncoding variants, with the lowest support for those map-
ping outside of DNase I–hypersensitive sites. The extent to which 

Locus Variant rsID Chr. Pos. (bp) Posterior probability Cumulative posterior 

probability attributed to 

coding variants

PPA aiPPA PPA aiPPA

ZHX3 ZHX3 p.Asn310Ser rs17265513 20 39,832,628 <​0.001 0.003 0.003 0.110

HNF4A HNF4A p.Thr139Ile rs1800961 20 43,042,364 1.000 1.000 1.00 1.000

MTMR3–ASCC2 ASCC2 p.Asp407His rs28265 22 30,200,761 0.011 0.192 0.028 0.481

ASCC2 p.Pro423Ser rs36571 22 30,200,713 0.007 0.116

ASCC2 p.Val123Ile rs11549795 22 30,221,120 0.006 0.107

MTMR3 p.Asn960Ser rs41278853 22 30,416,527 0.004 0.065

PNPLA3 PNPLA3 p.Ile148Met rs738409 22 44,324,727 0.112 0.691 0.130 0.806

PARVB p.Trp37Arg rs1007863 22 44,395,451 0.017 0.103

PIM3 IL17REL p.Leu333Pro rs5771069 22 50,435,480 0.041 0.419 0.047 0.475

IL17REL p.Gly70Arg rs9617090 22 50,439,194 0.005 0.054

PIM3 p.Val300Ala rs4077129 22 50,356,693 <​0.001 0.002

Chr., chromosome; Pos., position build 37; PPA, functionally unweighted prior; aiPPA, annotation-informed prior. Index coding variants are highlighted in bold.

Table 2 | Posterior probabilities for coding variants within 99% credible sets across loci with annotation-informed and functionally unweighted 
priors based on fine-mapping analysis performed using 50,160 T2D cases and 465,272 controls of European ancestry (Continued)
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our findings corroborate previous assignments of causality (often 
substantiated by detailed, disease-appropriate functional assess-
ment and other orthogonal evidence) suggests that even these 
sparse annotations provide valuable information to guide target val-
idation. Nevertheless, there are inevitable limits to the extrapolation 
of these ‘broad-brush’ genome-wide enrichments to individual loci: 
improvements in functional annotation for both coding and regula-
tory variants, particularly when gathered from trait-relevant tissues 
and cell types, should provide more granular, trait-specific priors 
to fine-tune assignment of causality within associated regions. 
These will motivate target validation efforts that benefit from the 
synthesis of both coding and regulatory mechanisms of gene per-
turbation. It also needs to be acknowledged that, without whole-
genome sequencing data on sample sizes comparable to those we 
have examined here, imperfections arising from the imputation 
may confound fine-mapping precision at some loci and that robust 
inference will inevitably depend on integration of diverse sources of 
genetic, genomic, and functional data.

The term ‘smoking gun’ has often been used to describe the 
potential of functional coding variants to provide causal inference 
with respect to pathogenetic mechanisms37. This study provides a 
timely reminder that, even when a suspect with a smoking gun is 
found at the scene of a crime, it should not be assumed that they 
fired the fatal bullet.

URLs. Type 2 Diabetes Knowledge Portal, http://www.type2diabe-
tesgenetics.org/.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-018-0084-1.
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Methods
Ethics statement. All human research was approved by the relevant institutional 
review boards and conducted according to the Declaration of Helsinki. All 
participants provided written informed consent.

Derivation of significance thresholds. We considered five categories of 
annotation16 of variants on the exome array in order of decreasing effect on 
biological function: (i) PTVs (stop-gain and stop-loss, frameshift indel, donor and 
acceptor splice-site, and initiator codon variants, n1 =​ 8,388); (ii) moderate-impact 
variants (missense, in-frame indel, and splice-region variants, n2 =​ 216,114); (iii) 
low-impact variants (synonymous, 3′​ and 5′​ UTR, and upstream and downstream 
variants, n3 =​ 8,829); (iv) other variants mapping to DNase I–hypersensitive sites 
(DHSs) in any of 217 cell types8 (DHSs, n4 =​ 3,561); and (v) other variants not 
mapping to DHSs (n5 =​ 10,578). To account for the greater prior probability of 
causality for variants with greater effect on biological function, we determined 
a weighted Bonferroni-corrected significance threshold on the basis of reported 
enrichment16, denoted wi, in each annotation category i: w1 =​ 165; w2 =​ 33; w3 =​ 3; 
w4 =​ 1.5; w5 =​ 0.5. For coding variants (annotation categories 1 and 2)
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We note that this threshold is similar to a simple Bonferroni correction for the total 
number of coding variants on the array, which would yield
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For noncoding variants (annotation categories 3–5), the weighted Bonferroni-
corrected significance threshold is
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Discovery exome array study-level analyses. Within each study, genotype calling 
and quality control were undertaken according to protocols developed by the UK 
Exome Chip Consortium or the CHARGE central calling effort38 (Supplementary 
Table 1). Within each study, variants were then excluded for the following reasons: 
(i) not mapping to autosomes or the X chromosome; (ii) multiallelic and/or 
insertion–deletion; (iii) monomorphic; (iv) call rate <​99%; or (v) exact P <​ 10−4 for 
deviation from Hardy–Weinberg equilibrium (autosomes only).

We tested association of T2D with each variant in a linear mixed model, 
implemented in RareMetalWorker17, using a genetic relationship matrix (GRM) 
to account for population structure and relatedness. For participants from 
family-based studies, known relationships were incorporated directly in the 
GRM. For founders and participants from population-based studies, the GRM 
was constructed from pairwise identity-by-descent (IBD) estimates based on 
LD-pruned (r2 <​ 0.05) autosomal variants with MAF ≥​1% (across cases and 
controls combined), after exclusion of those in high LD and complex regions39,40 
and those mapping to established T2D loci. We considered additive, dominant, and 
recessive models for the effect of the minor allele, adjusted for age and sex (where 
appropriate) and additional study-specific covariates (Supplementary Table 2). 
Analyses were also performed with and without adjustment for BMI (where 
available; Supplementary Table 2).

For single-variant association analyses, variants with minor allele count ≤​10  
in cases and controls combined were excluded. Association summary statistics  
for each analysis were corrected for residual inflation by means of genomic 
control41, calculated after excluding variants mapping to established T2D 
susceptibility loci. For gene-based analyses, we made no variant exclusions on the 
basis of minor allele count.

Discovery exome sequence analyses. We used summary statistics of T2D 
association from analyses conducted on 8,321 T2D cases and 8,421 controls across 
different ancestries, all genotyped using exome sequencing. Details of samples 
included, sequencing, and quality control are described elsewhere12,15 (http://www.
type2diabetesgenetics.org/). Samples were divided into 15 subgroups according 
to ancestry and study of origin. Each subgroup was analyzed independently, 
with subgroup-specific principal components and GRMs. Association tests were 
performed with both a linear mixed model, as implemented in EMMAX42, using 
covariates for sequencing batch, and the Firth test, using covariates for principal 
components and sequencing batch. Related samples were excluded from the Firth 
analysis but maintained in the linear mixed model analysis. Variants were then 
filtered from each subgroup analysis, according to call rate, differential case–
control missingness, or deviation from Hardy–Weinberg equilibrium (as computed 
separately for each subgroup). Association statistics were then combined via a 
fixed-effects inverse-variance-weighted meta-analysis, both at the level of ancestry 

and across all samples. P values were taken from the linear mixed model analysis, 
while effect size estimates were taken from the Firth analysis. Analyses were 
performed with and without adjustment for BMI. From exome sequence  
summary statistics, we extracted variants passing quality control and present on 
the exome array.

Discovery GWAS analyses. The UK Biobank is a large detailed prospective study 
of more than 500,000 participants aged 40–69 years when recruited in 2006–201013. 
Prevalent T2D status was defined using self-reported medical history and 
medication in UK Biobank participants43. Participants were genotyped with the 
UK Biobank Axiom Array or UK BiLEVE Axiom Array, and quality control and 
population structure analyses were performed centrally at UK Biobank. We defined 
a subset of samples of ‘white European’ ancestry (n =​ 120,286) as those who both 
self-identified as white British and were confirmed as ancestrally European descent  
from the first two axes of genetic variation from principal-components analysis. 
Imputation was also performed centrally at UK Biobank for the autosomes only, up 
to a merged reference panel from the 1000 Genomes Project (multi-ethnic, phase 
3, October 2014 release)44 and the UK10K Project9. We used SNPTESTv2.545 to 
test for association of T2D with each SNP in a logistic regression framework under 
an additive model and after adjustment for age, sex, six axes of genetic variation, 
and genotyping array as covariates. Analyses were performed with and without 
adjustment for BMI, after removing related individuals.

GERA is a large multi-ethnic population-based cohort, created for investigating 
the genetic and environmental basis of age-related diseases (dbGaP phs000674.p1).  
T2D status is based on ICD-9 codes in linked electronic medical health records, 
with all other participants defined as controls. Participants were previously 
genotyped using one of four custom arrays, which were designed to maximize 
coverage of common and low-frequency variants in non-Hispanic white, East 
Asian, African-American, and Latino ancestry groups46,47. Methods for quality 
control have been described previously14. Each of the four genotyping arrays was 
imputed separately, up to the 1000 Genomes Project reference panel (autosomes, 
phase 3, October 2014 release; X chromosome, phase 1, March 2012 release) using 
IMPUTEv2.348,49. We used SNPTESTv2.545 to test for association of T2D with 
each SNP in a logistic regression framework under an additive model and after 
adjustment for sex and nine axes of genetic variation from principal-components 
analysis as covariates. BMI was not available for adjustment in GERA.

For UK Biobank and GERA, we extracted variants passing standard imputation 
quality-control thresholds (IMPUTE info ≥​ 0.4)50 and present on the exome 
array. Association summary statistics under an additive model were corrected 
for residual inflation by means of genomic control41, calculated after excluding 
variants mapping to established T2D susceptibility loci: GERA (λ =​ 1.097 for BMI-
unadjusted analysis) and UK Biobank (λ =​ 1.043 for BMI-unadjusted analysis, 
λ =​ 1.056 for BMI-adjusted analysis).

Discovery single-variant meta-analysis. We aggregated association summary 
statistics under an additive model across studies, with and without adjustment 
for BMI, using METAL51: (i) effective sample size weighting of z scores to obtain 
P values and (ii) inverse-variance weighting of log-odds ratios. For exome array 
studies, allelic effect sizes and standard errors obtained from the RareMetalWorker 
linear mixed model were converted to the log-odds scale before meta-analysis to 
correct for case–control imbalance52.

The European-specific meta-analyses aggregated association summary 
statistics from a total of 48,286 cases and 250,671 controls from (i) 33 exome 
array studies of European ancestry; (ii) exome array sequence from individuals 
of European ancestry; and (iii) GWAS from UK Biobank. Note that noncoding 
variants represented on the exome array were not available in exome sequence. The 
European-specific meta-analyses were corrected for residual inflation by means of 
genomic control41, calculated after excluding variants mapping to established T2D 
susceptibility loci: λ =​ 1.091 for BMI-unadjusted analysis and λ =​ 1.080 for BMI-
adjusted analysis.

The trans-ethnic meta-analyses aggregated association summary statistics 
from a total of 81,412 cases and 370,832 controls across all studies (51 exome array 
studies, exome sequence, and GWAS from UK Biobank and GERA), irrespective 
of ancestry. Note that noncoding variants represented on the exome array were not 
available in exome sequence. The trans-ethnic meta-analyses were corrected for 
residual inflation by means of genomic control41, calculated after excluding variants 
mapping to established T2D susceptibility loci: λ =​ 1.073 for BMI-unadjusted 
analysis and λ =​ 1.068 for BMI-adjusted analysis. Heterogeneity in allelic effect 
sizes between exome array studies contributing to the trans-ethnic meta-analysis 
was assessed by Cochran’s Q statistic53.

Discovery detection of distinct association signals. Conditional analyses were 
undertaken to detect association signals by inclusion of index variants and/or tags 
for previously reported noncoding GWAS lead SNPs as covariates in the regression 
model at the study level. Within each exome array study, approximate conditional 
analyses were undertaken under a linear mixed model using RareMetal17, which 
uses score statistics and the variance–covariance matrix from the RareMetalWorker 
single-variant analysis to estimate the correlation in effect size estimates between 
variants due to LD. Study-level allelic effect sizes and standard errors obtained 
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from the approximate conditional analyses were converted to the log-odds  
scale to correct for case–control imbalance52. Within each GWAS, exact  
conditional analyses were performed under a logistic regression model using 
SNPTESTv2.545. GWAS variants passing standard imputation quality-control 
thresholds (IMPUTE info ≥​ 0.4)50 and present on the exome array were extracted 
for meta-analysis.

Association summary statistics were aggregated across studies, with and 
without adjustment for BMI, using METAL51: (i) effective sample size weighting of 
z scores to obtain P values and (ii) inverse-variance weighting of log-odds ratios.

We defined new loci as mapping >​500 kb from a previously reported lead 
GWAS SNP. We performed conditional analyses where a new signal mapped close 
to a known GWAS locus and the lead GWAS SNP at that locus was present  
(or tagged) on the exome array (Supplementary Table 5).

Discovery non-additive association models. For exome array studies only, we 
aggregated association summary statistics under recessive and dominant models 
across studies, with and without adjustment for BMI, using METAL51: (i) effective 
sample size weighting of z scores to obtain P values and (ii) inverse-variance 
weighting of log-odds ratios. Allelic effect sizes and standard errors obtained 
from the RareMetalWorker linear mixed model were converted to the log-odds 
scale before meta-analysis to correct for case–control imbalance52. The European-
specific meta-analyses aggregated association summary statistics from a total 
of 41,066 cases and 136,024 controls from 33 exome array studies of European 
ancestry. The European-specific meta-analyses were corrected for residual inflation 
by means of genomic control41, calculated after excluding variants mapping to 
established T2D susceptibility loci: λ =​ 1.076 and λ =​ 1.083 for BMI-unadjusted 
analysis, under the recessive and dominant models, respectively, and λ =​ 1.081 and 
λ =​ 1.062 for BMI-adjusted analysis, under the recessive and dominant models, 
respectively. The trans-ethnic meta-analyses aggregated association summary 
statistics from a total of 58,425 cases and 188,032 controls across all exome array 
studies, irrespective of ancestry. The trans-ethnic meta-analyses were corrected 
for residual inflation by means of genomic control41, calculated after excluding 
variants mapping to established T2D susceptibility loci: λ =​ 1.041 and λ =​ 1.071 for 
BMI-unadjusted analysis, under the recessive and dominant models, respectively, 
and λ =​ 1.031 and λ =​ 1.063 for BMI-adjusted analysis, under the recessive and 
dominant models, respectively.

Discovery gene-based meta-analyses. For exome array studies only, we aggregated 
association summary statistics under an additive model across studies, with and 
without adjustment for BMI, using RareMetal17. This approach uses score statistics 
and the variance–covariance matrix from the RareMetalWorker single-variant 
analysis to estimate the correlation in effect size estimates between variants due to 
LD. We performed gene-based analyses using a burden test (assuming all variants 
had the same direction of effect on T2D susceptibility) and SKAT (allowing 
variants to have different directions of effect on T2D susceptibility). We used two 
previously defined filters for annotation and MAF18 to define group files: (i) a strict 
filter, including 44,666 variants, and (ii) a broad filter, including all variants from 
the strict filter and 97,187 additional variants.

We assessed the contribution of each variant to gene-based signals by 
performing approximate conditional analyses. We repeated RareMetal analyses 
for the gene, excluding each variant in turn from the group file, and compared the 
strengths of the association signal.

Fine-mapping of coding variant association signals with T2D susceptibility. 
We defined a locus as mapping 500 kb upstream and downstream of each index 
coding variant (Supplementary Table 5), excluding the MHC. Our fine-mapping 
analyses aggregated association summary statistics from 24 GWAS incorporating 
50,160 T2D cases and 465,272 controls of European ancestry from the DIAGRAM 
Consortium (Supplementary Table 9). Each GWAS was imputed using miniMAC12 
or IMPUTEv248,49 up to high-density reference panels: (i) 22 GWAS were imputed 
up to the Haplotype Reference Consortium20; (ii) the UK Biobank GWAS was 
imputed to a merged reference panel from the 1000 Genomes Project (multi-
ethnic, phase 3, October 2014 release)44 and the UK10K Project9; and (iii) the 
deCODE GWAS was imputed up to the deCODE Icelandic population-specific 
reference panel based on whole-genome sequence data19. Association with T2D 
susceptibility was tested for each remaining variant using logistic regression, 
adjusting for age, sex, and study-specific covariates, under an additive genetic 
model. Analyses were performed with and without adjustment for BMI. For 
each study, variants with minor allele count <​5 (in cases and controls combined) 
or those with imputation quality r2-hat <​0.3 (miniMAC) or proper-info <​0.4 
(IMPUTE2) were removed. Association summary statistics for each analysis were 
corrected for residual inflation by means of genomic control41, calculated after 
excluding variants mapping to established T2D susceptibility loci.

We aggregated association summary statistics across studies, with and without 
adjustment for BMI, in a fixed-effects inverse-variance-weighted meta-analysis, 
using METAL51. The BMI-unadjusted meta-analysis was corrected for residual 
inflation by means of genomic control (λ =​ 1.012)41, calculated after excluding 
variants mapping to established T2D susceptibility loci. No adjustment was 
required for BMI-adjusted meta-analysis (λ =​ 0.994). From the meta-analysis, 

variants were extracted that were present on the HRC panel and reported in at least 
50% of the total effective sample size.

We included 37 of the 40 identified coding variants in fine-mapping analyses, 
excluding 3 that were not amenable to fine-mapping in the GWAS datasets: (i) the 
locus in the MHC region because of the extended and complex structure of LD 
across the region, which complicates fine-mapping efforts; (ii) the East Asian–
specific PAX4 p.Arg190His (rs2233580) signal, as the variant was not present in 
European-ancestry GWAS; and (iii) ZHX3 p.Asn310Ser (rs4077129) because the 
variant was only weakly associated with T2D in the GWAS datasets used for fine-
mapping.

To delineate distinct association signals in four regions, we undertook 
approximate conditional analyses, implemented in GCTA54, to adjust for the 
index coding variants and noncoding lead GWAS SNPs: (i) RREB1 p.Asp1171Asn 
(rs9379084), p.Ser1499Tyr (rs35742417), and rs9505118; (ii) HNF1A p.Ile75Leu 
(rs1169288) and p.Ala146Val (rs1800574); (iii) GIPR p.Glu318Gln (rs1800437) 
and rs8108269; and (iv) HNF4A p.Thr139Ile (rs1800961) and rs4812831. We made 
use of summary statistics from the fixed-effects meta-analyses (BMI unadjusted 
for RREB1, HNF1A, and HNF4A; BMI adjusted for GIPR, as this signal was only 
seen in BMI-adjusted analysis) and genotype data from 5,000 random individuals 
of European ancestry from the UK Biobank, as reference for LD between genetic 
variants across the region.

For each association signal, we first calculated an approximate Bayes’ factor55 in 
favor of association on the basis of allelic effect sizes and standard errors from the 
meta-analysis. Specifically, for the jth variant
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where βj and Vj denote the estimated allelic effect (log-OR) and corresponding 
variance from the meta-analysis. The parameter ω denotes the prior variance in 
allelic effects, taken here to be 0.0455.

We then calculated the posterior probability that the jth variant drives the 
association signal, given by
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In this expression, ρj denotes the prior probability that the jth variant drives the 
association signal and the summation in the denominator is over all variants across 
the locus. We considered two prior models: (i) functionally unweighted, for which 
ρj =​ 1 for all variants, and (ii) annotation informed, for which ρj is determined 
by the functional severity of the variant. For the annotation-informed prior, we 
considered five categories of variation16, such that (i) ρj =​ 165 for PTVs; (ii) ρj =​ 33 
for moderate-impact variants; (iii) ρj =​ 3 for low-impact variants; (iv) ρj =​ 1.5 for 
other variants mapping to DHSs; and (v) ρj =​ 0.5 for all other variants.

For each locus, the 99% credible set21 under each prior was then constructed 
by (i) ranking all variants according to their posterior probability of driving 
the association signal and (ii) including ranked variants until their cumulative 
posterior probability of driving the association equaled or exceeded 0.99.

Functional impact of coding alleles. We used CADD34 to obtain scaled CADD 
scores for each of the 40 significantly associated coding variants. The CADD 
method objectively integrates a range of different annotation metrics into a single 
measure (CADD score), providing an estimate of deleteriousness for all known 
variants and an overall rank for this metric across the genome. We obtained 
estimates of the intolerance of a gene to harboring LoF variants (pLI) from the 
ExAC dataset33. We used the Kolmogorov–Smirnov test to determine whether 
fine-mapping groups 1 and 2 had the same statistical distribution for each of these 
parameters.

T2D loci and physiological classification. To explore the different patterns of 
association between T2D and other anthropometric, metabolic, and/or endocrine 
traits and diseases, we performed hierarchical clustering analysis. We obtained 
association summary statistics for a range of metabolic traits and other outcomes 
for 94 coding and noncoding variants that were significantly associated with T2D 
through collaboration or by querying publically available GWAS meta-analysis 
datasets. The z score (allelic effect/standard error) was aligned to the T2D risk 
allele. We obtained the distance matrix among the z scores of the loci/traits using 
the Euclidean measure and performed clustering using the complete agglomeration 
method. Clustering was visualized by constructing a dendrogram and heat map.

Life Sciences Reporting Summary. Further information on experimental design is 
available in the Life Sciences Reporting Summary.

Data availability. Summary-level data of the exome array component of this 
project can be downloaded from the DIAGRAM consortium website at  
http://diagram-consortium.org/ and the Accelerating Medicines Partnership  
T2D portal at http://www.type2diabetesgenetics.org/.
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Life Sciences Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form is intended for publication with all accepted life 
science papers and provides structure for consistency and transparency in reporting. Every life science submission will use this form; some list 
items might not apply to an individual manuscript, but all fields must be completed for clarity. 

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research 
policies, including our data availability policy, see Authors & Referees and the Editorial Policy Checklist.

Please do not complete any field with "not applicable" or n/a.  Refer to the help text for what text to use if an item is not relevant to your study. 
For final submission: please carefully check your responses for accuracy; you will not be able to make changes later.

    Experimental design
1.   Sample size

Describe how sample size was determined. We aimed to bring together the largest possible sample size (N>80,000 T2D cases and 
>350,00 controls) to study the role of coding variants in T2D. Our sample size is adequate to 
recover known T2D associated regions, and identify 28 novel T2D associated regions. Also, 
analytical power calculation showed that our dataset has >97% power to identify variant with 
20% allele frequency and 1.05 OR or variant with 1% allele frequency and OR 1.20. 

2.   Data exclusions

Describe any data exclusions. We used established protocols to conduct rigorous data quality control for each exome-array 
study: variants were excluded for the following reasons: (i) not mapping to autosomes or X 
chromosome; (ii) multi-allelic and/or insertion-deletion; (iii) monomorphic; (iv) call rate <99%; 
or (v) exact p<10-4 for deviation from Hardy-Weinberg equilibrium (autosomes only) (details 
in Supplementary Tables 1 & 9 and Online methods pages 41-42). We made sure that the 
allele labels and strand were well aligned between studies. We also visually examined the 
allele frequencies from the sample and the reference dataset (1000 Genomes Project), and 
made sure that the allele frequencies are consistent. 

3.   Replication

Describe the measures taken to verify the reproducibility 
of the experimental findings.

Experimental replication was not attempted.

4.   Randomization

Describe how samples/organisms/participants were 
allocated into experimental groups.

Not applicable.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

Not applicable.

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 
Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

The software used has been described in Online Methods section. Softwares are: GenCall, 
zCall, optiCall, RAREMETALWORKER, RareMETALS, METAL, IMPUTE2, PLINK, SHAPEITv2. In 
addition, study-specific software, used by each study to perform analyses is listed in 
Supplementary Tables 1 and 9.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a third party.

Not applicable.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b.  Describe the method of cell line authentication used. Not applicable.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

Not applicable.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

Not applicable.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide all relevant details on animals and/or 
animal-derived materials used in the study.

No animals were used in the study.



3

nature research  |  life sciences reporting sum
m

ary
N

ovem
ber 2017

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

We provide a description of outcome and covariates used for each study in Supplementary 
Tables 1 and 9. In general, association analyses were conducted with adjustment for age, sex, 
kinship matrix, and any other study specific covariates. Where available, analysis was also 
conducting after adjustment for body mass index.
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