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Atrial fibrillation (AF) affects more than 33 million individu-
als worldwide1 and has a complex heritability2. We conducted 
the largest meta-analysis of genome-wide association studies 
(GWAS) for AF to date, consisting of more than half a million 
individuals, including 65,446 with AF. In total, we identified 
97 loci significantly associated with AF, including 67 that 
were novel in a combined-ancestry analysis, and 3 that were 
novel in a European-specific analysis. We sought to identify 
AF-associated genes at the GWAS loci by performing RNA-
sequencing and expression quantitative trait locus analyses 
in 101 left atrial samples, the most relevant tissue for AF. We 
also performed transcriptome-wide analyses that identified 
57 AF-associated genes, 42 of which overlap with GWAS loci. 
The identified loci implicate genes enriched within cardiac 
developmental, electrophysiological, contractile and struc-
tural pathways. These results extend our understanding of 
the biological pathways underlying AF and may facilitate the 
development of therapeutics for AF.

Atrial fibrillation (AF) is the most common heart rhythm disorder, 
and is a leading cause of heart failure and stroke3. Prior genome-wide 
association studies (GWAS) have identified at least 30 loci associated 
with AF4–9. We conducted a large-scale analysis with more than half 
a million participants, including 65,446 with AF, from more than 50 
studies. Our AF sample was composed of 84.2% European, 12.5% 
Japanese, 2% African American and 1.3% Brazilian and Hispanic pop-
ulations (Supplementary Table 1). We used the Haplotype Reference 
Consortium (HRC) reference panel to impute variants from SNP array 
data for 75% of the samples (Fig. 1). In the remainder, we included 
HRC overlapping variants from 1000 Genomes imputed data, or from 
a combined reference panel. We analyzed 8,328,530 common variants 
(minor allele frequency (MAF) > 5%), 2,884,670 low-frequency vari-
ants (1%< MAF≤ 5%) and 936,779 rare variants (MAF ≤ 1%).

The combined-ancestry meta-analysis revealed 94 AF-associated 
loci, 67 of which were novel at genome-wide significance (P value 
(P) <  1 ×  10−8). This conservative threshold accounts for testing inde-
pendent variants with MAF ≥ 0.1% using a Bonferroni correction, 
while use of a more commonly utilized threshold of 5 ×  10−8 resulted 
in the identification of an additional 10 loci (Supplementary Table 2). 
The majority of sentinel variants (n =  92) were common (MAF > 5%), 
with relative risks ranging from 1.04 to 1.55. Two low-frequency sen-
tinel variants were identified within the genes C1orf185 and UBE4B 
(Fig. 2, Table 1, Supplementary Table 3 and Supplementary Fig. 1).

We then conducted a gene set enrichment analysis with the results 
from the combined-ancestry meta-analysis using MAGENTA. We 
identified 55 enriched gene sets or pathways that largely fall into 
cardiac developmental, electrophysiological, and cardiomyocyte 
contractile or structural functional groups (Supplementary Table 
4). In total, 48 of the 67 novel loci contain one or more genes 
within 500 kilobases (kb) of the sentinel variant that were part of an 
enriched gene set or pathway (Supplementary Fig. 2).

Next, we performed ancestry-specific meta-analyses. Among 
individuals of European ancestry, we identified three additional loci 
associated with AF, each of which had a subthreshold  association 

(P <  1 ×  10−6) in the combined-ancestry meta-analysis. These 
loci were located close to or within the genes CDK6, EPHA3 and 
GOSR2 (Supplementary Table 5 and Supplementary Figs. 3 and 
4). The region most significantly associated with AF in European, 
Japanese and African American populations (Supplementary Figs. 
5 and 6) was on chromosome 4q25, upstream of the gene PITX2 
(Supplementary Fig. 7). We did not observe significant heterogene-
ity of effect estimates across ancestries for most associations, sug-
gesting that top genetic susceptibility signals for AF have a relatively 
constant effect across ancestries (Table 1, Supplementary Table 3 
and Supplementary Fig. 8). The proportion of heritability explained 
by the loci from the European ancestry analysis was 42%, compared 
to the previously reported 25% (ref. 10 and Supplementary Table 6).

In conditional and joint analyses of the European ancestry 
results, we found 11 loci with multiple, independent AF-associated 
signals. At a locus centered on a cluster of sodium-channel genes, 
we identified three regions that independently associate with AF 
within SCN10A, SCN5A and a third signal between both genes.  
At the previously described TBX5 locus8, we detected a novel inde-
pendent signal close to TBX3. Pairwise linkage disequilibrium 
(LD) estimates between the independent variants at both loci were 
extremely low (r2 <  0.03; Supplementary Table 7).

For 13 AF loci, the sentinel variant or a proxy (r2 >  0.6) was a 
missense variant. A missense variant (rs11057401) in CCDC92 was 
predicted to be damaging by four of five in silico prediction algo-
rithms (Supplementary Table 8); and was previously associated with 
coronary artery disease11. Since most AF-associated variants reside 
in non-coding regions, we sought to determine whether the senti-
nel variants or their proxies (r2 >  0.6) fell within regulatory regions 
in heart tissues based on chromatin states from the Roadmap 
Epigenomics Consortium. At 64 out of 67 novel loci, variants 
were located within regulatory elements (Supplementary Table 9);  
AF-associated loci were also significantly enriched within regula-
tory elements (Supplementary Fig. 9).

We then sought to link risk variants to candidate genes by assess-
ing their effect on gene expression levels. First, since AF often arises 
from the pulmonary veins and left atrium (LA), we performed 
RNA-sequencing, genotyping and expression quantitative trait locus 
(eQTL) analyses in 101 human LA samples without structural heart 
disease from the Myocardial Applied Genomics Network repository. 
Second, we identified eQTLs from right atrial (RA) and left ven-
tricular (LV) cardiac tissue from the Genotype-Tissue Expression 
(GTEx) project. Finally, we performed a transcriptome-wide anal-
ysis using the MetaXcan12 method, which infers the association 
between genetically predicted gene expression and disease risk.

We observed eQTLs to 1 or more genes at 17 novel loci. Of the ten 
eQTLs detected in LA tissue, eight were also detected in RA or LV, with 
consistent directionality. For example, we observed that rs4484922 
was an eQTL for CASQ2 only in LA tissue. Although we detected 
more AF loci with eQTLs in the RA or LV data, for many of these 
(n =  8) the results pointed to multiple genes per locus (Supplementary 
Tables 10–12). LA eQTL studies may facilitate the prioritization of 
candidate genes, but are currently limited by sample size.

Multi-ethnic genome-wide association study for 
atrial fibrillation
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For the transcriptome-wide analyses, we used GTEx human 
atrial and ventricular expression data as a reference. We identified 
57 genes significantly associated with AF. Of these, 42 genes were 
located at AF loci, whereas the remaining 15 were > 500 kb from an 
AF sentinel variant (Supplementary Table 13 and Fig. 3). The proba-
ble candidate genes at each locus are summarized in Supplementary 
Table 12. For example, at the locus with the lead variant rs4484922, 
we observed results from all downstream analyses pointing towards 
the nearest gene CASQ2, at rs12908437 towards the gene IGFR1, 
and at rs113819537 towards the gene SSPN. However, for many loci, 
the evaluation of candidate genes remains challenging.

We then sought to assess the pleiotropic effects of the identi-
fied AF risk variants. First, we queried the NHGRI-EBI GWAS 
Catalog to detect associations to other phenotypes (Supplementary 
Table 14). Second, using the UK Biobank13, we performed a phe-
nome-wide association study (PheWAS) for 12 AF risk factors 
(Supplementary Table 15). As illustrated in Fig. 4, distinct clusters 
of variants were associated with AF as well as height, body mass 
index and hypertension. For example, we observed a pleiotropic 
effect at rs880315 (CASZ1) for blood pressure14 and hyperten-
sion14, which was also observed in the UK Biobank (association 
with hypertension, P =  2.56 ×  10−34).

In sum, we identified a total of 97 distinct AF loci from 65,446 
AF cases and more than 522,000 referents. A recent study reported 
111 loci from 60,620 AF cases and more than 970,000 referents15, 
including more than 18,000 AF cases from our previous report8. 
We therefore performed a preliminary meta-analysis for the top 
loci in non-overlapping participants from these two large efforts, 
with a resulting total of more than 93,000 AF cases and more than 
1 million referents. In aggregate, we identified at least 134 distinct 
AF-associated loci (Supplementary Table 16).

Four major themes emerge from the identified AF loci. First, two 
AF loci contain genes that are primary targets for current antiar-
rhythmic medications used to treat AF. The SCN5A gene encodes a 
sodium channel in the heart, the target of sodium-channel  blockers 

such as flecainide and propafenone. Similarly, KCNH2 encodes 
the alpha subunit of the potassium channel complex, the target of 
potassium-channel-inhibiting medications such as amiodarone, 
sotalol and dofetilide. SCN5A and KCNH2 have previously been 
implicated in AF through GWAS8, candidate gene analysis16 and 
family-based studies17,18.

Second, transcriptional regulation appears to be a key feature of AF 
etiology. TBX3 and the adjacent gene TBX5 encode transcription fac-
tors that have been shown to regulate the development of the cardiac 
conduction system19. Similarly, NKX2-5 encodes a transcription factor 
that is an early cue for cardiac development and has been  associated 
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Fig. 1 | study and analysis flowchart. Top, overview of the participating studies, number of AF cases and referents, and the percentage of samples imputed 
with each reference panel. Middle, summary of the primary analyses and the newly discovered loci for AF. Bottom, overview of the secondary analyses to 
evaluate AF risk variants and loci.
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Fig. 2 | Manhattan plot of combined-ancestry meta-analysis. The plot 
shows 67 novel (red) and 27 known (blue) genetic loci associated with 
AF at a significance level of P <  1 ×  10−8 (dotted line), for the combined-
ancestry meta-analysis (n =  588,190). The significance level accounts 
for multiple testing of independent variants with MAF ≥ 0.1% using a 
Bonferroni correction. P values (two-sided) were derived from a meta-
analysis using a fixed-effects model with an inverse-variance weighted 
approach. The y axis has a break between –log10(P) of 30 and 510 to 
emphasize the novel loci.
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Table 1 | Novel loci in combined-ancestry meta-analysis

rsid chr hg19 risk/ref 
allele

raF 
(%)

rr 95% ci PMeta Nearest gene(s)a Func imp 
Qual

I2
Het PHet

rs187585530 1 10167425 A/G 0.5 1.55 1.36–1.77 1.18 ×  10–10 UBE4B Missense 0.81 0.0 1.000

rs880315 1 10796866 C/T 37.4 1.04 1.03–1.06 5.04 ×  10−9 CASZ1 Intronic 0.97 40.7 0.150
rs146518726 1 51535039 A/G 2.6 1.18 1.12–1.24 2.05 ×  10−10 C1orf185 Intronic 0.96 0.0 1.000
rs4484922 1 116310818 G/C 68.3 1.07 1.05–1.08 4.57 ×  10−16 CASQ2 Intronic 0.98 0.0 0.689
rs79187193 1 147255831 G/A 94.8 1.12 1.08–1.16 8.07 ×  10−10 GJA5 Upstream 0.97 39.8 0.190
rs4951261 1 205717823 C/A 38.2 1.05 1.03–1.06 1.17 ×  10−9 NUCKS1 Intronic 0.99 0.0 0.788
rs6546620 2 26159940 C/T 75.3 1.07 1.05–1.09 2.96 ×  10−14 KIF3C Intronic 0.95 33.0 0.201
rs6742276 2 61768745 A/G 61.2 1.05 1.03–1.06 2.42 ×  10−11 XPO1 Upstream 0.99 0.0 0.731
rs72926475 2 86594487 G/A 87.0 1.07 1.05–1.10 3.49 ×  10−10 REEP1,KDM3A Intergenic 0.97 38.7 0.180
rs56181519 2 175555714 C/T 74.0 1.08 1.06–1.10 1.52 ×  10−19 WIPF1,CHRNA1 Intergenic 0.94 0.0 0.519
rs295114 2 201195602 C/T 59.7 1.07 1.05–1.09 1.76 ×  10−20 SPATS2L Intronic 1.00 21.9 0.275
rs2306272 3 66434643 C/T 31.8 1.05 1.04–1.07 4.54 ×  10−11 LRIG1 Missense 0.99 30.6 0.218
rs17490701 3 111587879 G/A 85.7 1.07 1.05–1.10 5.43 ×  10−11 PHLDB2 Intronic 0.97 46.8 0.111
rs4855075 3 179170494 T/C 14.3 1.06 1.04–1.08 4.00 ×  10−9 GNB4 Upstream 0.95 10.1 0.348
rs3822259 4 10118745 T/G 67.9 1.05 1.03–1.06 1.93 ×  10−9 WDR1 Upstream 0.96 0.0 0.922
rs3960788 4 103915618 C/T 42.4 1.05 1.04–1.07 2.09 ×  10−12 SLC9B1 Intronic 0.98 35.7 0.183
rs55754224 4 114428714 T/C 25.0 1.05 1.03–1.07 9.25 ×  10−9 CAMK2D Intronic 0.99 0.0 0.511
rs10213171 4 148937537 G/C 8.2 1.11 1.08–1.14 6.09 ×  10−14 ARHGAP10 Intronic 0.96 0.0 0.584
rs174048 5 142650404 C/T 15.7 1.07 1.05–1.09 1.05 ×  10−11 ARHGAP26,NR3C1 Intergenic 0.99 0.0 0.852
rs6882776 5 172664163 G/A 67.2 1.06 1.05–1.08 3.18 ×  10−14 NKX2–5 Upstream 0.95 0.0 0.858
rs73366713 6 16415751 G/A 86.2 1.11 1.09–1.14 5.80 ×  10−21 ATXN1 Intronic 0.94 0.0 0.879
rs34969716 6 18210109 A/G 31.1 1.09 1.07–1.11 2.91 ×  10−25 KDM1B Intronic 0.80 19.5 0.290
rs3176326 6 36647289 G/A 80.4 1.06 1.04–1.08 7.95 ×  10−11 CDKN1A Intronic 0.95 0.0 0.450
rs117984853 6 149399100 T/G 8.9 1.12 1.09–1.15 8.38 ×  10−17 UST Downstream 0.83 56.5 0.100
rs55734480 7 14372009 A/G 26.6 1.05 1.03–1.07 7.34 ×  10−10 DGKB Intronic 0.94 0.0 0.441
rs6462078 7 28413187 A/C 74.7 1.06 1.04–1.08 1.35 ×  10−11 CREB5 Intronic 0.98 22.2 0.278
rs74910854 7 74110705 G/A 6.9 1.10 1.07–1.13 3.36 ×  10−9 GTF2I Intronic 0.74 24.4 0.265
rs62483627 7 106856002 A/G 23.5 1.05 1.03–1.07 5.17 ×  10−9 COG5 Intronic 0.98 15.1 0.318
rs7789146 7 150661409 G/A 80.3 1.06 1.04–1.08 6.51 ×  10−10 KCNH2 Intronic 0.96 66.0 0.019
rs7846485 8 21803735 C/A 86.8 1.09 1.07–1.12 3.71 ×  10−15 XPO7 Intronic 0.99 0.0 0.676
rs62521286 8 124551975 G/A 6.7 1.13 1.10–1.16 1.24 ×  10−16 FBXO32 Intronic 0.96 0.0 0.678
rs35006907 8 125859817 A/C 32.9 1.05 1.03–1.06 2.76 ×  10−9 MTSS1,LINC00964 Regulatory reg. 0.97 0.0 0.542
rs6993266 8 141762659 A/G 53.8 1.05 1.03–1.06 9.73 ×  10−10 PTK2 Intronic 0.99 5.7 0.374
rs4977397 9 20235004 A/G 57.0 1.04 1.03–1.06 8.60 ×  10−9 SLC24A2,MLLT3 Intergenic 0.95 38.3 0.166
rs4743034 9 109632353 A/G 23.4 1.05 1.03–1.07 3.98 ×  10−9 ZNF462 Intronic 1.00 0.0 0.963
rs10760361 9 127178266 G/T 64.7 1.04 1.03–1.06 7.03 ×  10−9 PSMB7 Upstream 0.97 0.0 0.680
rs7919685 10 65315800 G/T 53.3 1.06 1.04–1.07 5.00 ×  10−16 REEP3 Intronic 1.00 49.2 0.097
rs11001667 10 77935345 G/A 22.2 1.06 1.05–1.08 1.06 ×  10−11 C10orf11 Intronic 0.98 26.8 0.243
rs1044258 10 103605714 T/C 66.2 1.05 1.03–1.06 1.07 ×  10−9 C10orf76 3’ UTR 0.98 14.0 0.325
rs1822273 11 20010513 G/A 27.1 1.07 1.05–1.09 8.99 ×  10−17 NAV2 Intronic 0.98 0.0 0.764
rs949078 11 121629007 C/T 27.1 1.05 1.04–1.07 4.77 ×  10−11 SORL1,MIR100HG Intergenic 0.97 0.0 0.600
rs113819537 12 26348429 C/G 74.3 1.05 1.03–1.07 2.23 ×  10−9 SSPN Upstream 0.98 0.0 0.597
rs12809354 12 32978437 C/T 14.7 1.08 1.06–1.11 5.48 ×  10−16 PKP2 Intronic 0.97 31.5 0.211
rs7978685 12 57103154 T/C 27.9 1.06 1.04–1.07 5.99 ×  10−12 NACA Downstream 0.98 2.4 0.393
rs35349325 12 70097464 T/C 54.1 1.05 1.04–1.07 9.04 ×  10−13 BEST3 Upstream 0.96 0.0 0.863
rs11180703 12 76223817 G/A 56.0 1.05 1.03–1.06 3.58 ×  10−10 KRR1,PHLDA1 Intergenic 0.97 0.0 0.482
rs12810346 12 115091017 T/C 14.9 1.07 1.05–1.09 2.34 ×  10−9 TBX5-AS1,TBX3 Intergenic 0.84 0.0 0.428
rs12298484 12 124418674 C/T 67.4 1.05 1.03–1.06 2.05 ×  10−9 DNAH10 Intronic 1.00 0.0 0.973
rs9580438 13 23373406 C/T 32.5 1.06 1.04–1.07 1.01 ×  10−13 LINC00540,BASP1P1 Intergenic 0.98 0.0 0.485
rs28631169 14 23888183 T/C 19.9 1.07 1.05–1.09 3.80 ×  10−14 MYH7 Intronic 0.97 14.5 0.319

Continued

Nature GeNetics | www.nature.com/naturegenetics

© 2018 Nature America Inc., part of Springer Nature. All rights reserved.

http://www.nature.com/naturegenetics


Letters NATuRE GENETIcS

rsid chr hg19 risk/ref 
allele

raF 
(%)

rr 95% ci PMeta Nearest gene(s)a Func imp 
Qual

I2
Het PHet

rs2145587 14 32981484 A/G 28.1 1.08 1.06–1.10 2.32 ×  10−21 AKAP6 Intronic 0.94 0.0 0.888

rs73241997 14 35173775 T/C 16.4 1.07 1.05–1.10 1.10 ×  10−13 SNX6,CFL2 Intergenic 0.98 62.2 0.032

rs10873299 14 77426711 A/G 38.4 1.05 1.03–1.07 9.62 ×  10−11 LRRC74,IRF2BPL Intergenic 0.96 4.4 0.381

rs62011291 15 63800013 G/A 22.9 1.05 1.04–1.07 6.14 ×  10−9 USP3 Intronic 0.96 0.0 0.727

rs12591736 15 70454139 G/A 82.0 1.06 1.04–1.08 2.47 ×  10−9 TLE3,UACA Intergenic 0.92 0.0 0.966

rs12908004 15 80676925 G/A 15.9 1.08 1.06–1.10 1.95 ×  10−14 LINC00927,ARNT2 Intronic 0.96 57.4 0.052

rs12908437 15 99287375 T/C 39.2 1.05 1.03–1.06 1.25 ×  10−10 IGF1R Intronic 0.98 0.0 0.818

rs2286466 16 2014283 G/A 80.9 1.07 1.05–1.09 3.53 ×  10−14 RPS2 Synonymous 0.92 0.0 0.882

rs8073937 17 7435040 G/A 36.6 1.05 1.04–1.07 1.02 ×  10−11 POLR2A,TNFSF12 Intergenic 0.96 12.3 0.335

rs72811294 17 12618680 G/C 88.7 1.07 1.05–1.09 6.87 ×  10−9 MYOCD Intronic 0.95 32.3 0.206

rs242557 17 44019712 G/A 61.3 1.04 1.03–1.06 4.35 ×  10−9 MAPT Intronic 0.94 62.1 0.032

rs7219869 17 68337185 G/C 43.9 1.05 1.03–1.06 1.49 ×  10−10 KCNJ2,CASC17 Intergenic 0.99 16.1 0.312

rs9953366 18 46474192 C/T 65.5 1.05 1.04–1.07 9.03 ×  10−11 SMAD7 Intronic 0.93 0.0 0.565

rs2145274 20 6572014 A/C 91.3 1.11 1.08–1.14 6.97 ×  10−13 CASC20,BMP2 Regulatory reg. 0.96 19.0 0.295

rs7269123 20 61157939 C/T 58.5 1.05 1.03–1.06 5.59 ×  10−9 C20orf166 Intronic 0.85 68.7 0.012

rs2834618 21 36119111 T/G 89.8 1.12 1.09–1.14 2.93 ×  10−18 LOC100506385 Intronic 0.93 21.6 0.277

rs465276 22 18600583 G/A 61.5 1.05 1.04–1.07 1.84 ×  10−11 TUBA8 Intronic 0.90 0.0 0.654

Sentinel variants at novel genetic loci associated with AF at a significance level of P <  1 ×  10−8, for the combined-ancestry meta-analysis (n =  588,190). The significance level accounts for multiple testing 
of independent variants with MAF ≥  0.1% using a Bonferroni correction. PMETA (two-sided) was derived from a meta-analysis using a fixed-effects model with an inverse-variance weighted approach. PHET 
was derived from a Cochran’s Q-test (two-sided) for heterogeneity. Chr, chromosome; CI, confidence interval; Func, functional consequence (most severe consequence by variant effect predictor); HET, 
heterogeneity; I2, I-square; impQual, average imputation quality; META, meta-analysis; P, P value; RAF, risk allele frequency; reg, region; ref, reference; RR, relative risk. aReported is either the gene that 
overlaps with the sentinel variant or the nearest gene(s) up- and downstream of the sentinel variant (separated by a comma).

Table 1 | Novel loci in combined-ancestry meta-analysis (continued)
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Fig. 3 | Volcano plot of transcriptome-wide analysis from human heart tissues. a,b, Plots showing the results from the transcriptome-wide analysis based 
on LV (a, n =  190) and RA appendage (b, n =  159) tissue from GTEx, calculated with the MetaXcan method based on the combined-ancestry summary 
level results (n =  588,190). Each plotted point represents the association results for an individual gene. The x axis shows the effect size for associations 
of predicted gene expression and AF risk for each tested gene. The y axis shows the –log10(P) for the associations per gene. Genes with a positive 
effect (red) showed an association of increased predicted gene expression with AF risk. Genes with a negative effect (blue) showed an association of 
decreased predicted gene expression with AF risk. The highlighted genes are significant after Bonferroni correction for all tested genes and tissues with a 
P value <  5.36 ×  10−6. The result for one gene for the RA appendage (b) is not shown (SNX4, effect =  6.94, P =  0.2).
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with congenital heart disease20 and heart rate21 (Supplementary  
Table 14). Further, reduced function of the transcription factor 
encoded by PITX2 has been associated with AF, shortening of the left 
atrial action potential and modulation of sodium-channel-blocker 
therapy in the adult LA22–24. A transcriptional co-regulatory network 
governed by transcription factors encoded by TBX5 and PITX2 has 
been shown to be critical for atrial development25.

Third, the transcriptome-wide analyses revealed a number of 
compelling findings. Decreased expression of PRRX1 associated 
with AF, a result consistent with findings where reduction of PRRX1 
in zebrafish and stem cell-derived cardiomyocytes was associated 
with action potential shortening26. Further, increased expression of 
TBX5 and KCNJ5 was associated with AF, a finding consistent with 
gain-of-function mutations in TBX5 reported in a family with Holt–
Oram syndrome and a high penetrance of AF27. Similarly, KCNJ5 
encodes a potassium channel that underlies a component of the IKAch 
current, a channel that is upregulated in AF. Thus, previous studies 
support both the role of PRRX1, TBX5 and KCNJ5 in AF and the 
observed directionality.

Fourth, many of the novel loci implicate genes that under-
lie Mendelian forms of arrhythmia syndromes. Mutations in 
CASQ2 lead to catecholaminergic polymorphic ventricular 
 tachycardia28,29. Pathogenic variants in PKP2 impair cardiomyo-
cyte communication and structural integrity, and are a common 
cause of arrhythmogenic right ventricular cardiomyopathy30,31. 
Mutations in GJA5, KCNH2, SCN5A, KCNJ2, MYH7 and NKX2-
5 have been mapped in a variety of inherited arrhythmia, car-
diomyopathy or conduction system diseases32. Our observations 
highlight the pleiotropy of variation in genes specifying cardiac 
conduction, morphology and function, and underscore the com-
plex, polygenic nature of AF.

In conclusion, we conducted the largest AF meta-analysis to 
date and report a more than threefold increase in the number of 
loci associated with this common arrhythmia. Our results lay the 
groundwork for functional evaluations of genes implicated by AF 
risk loci. Our findings also broaden our understanding of biologi-
cal pathways involved in AF and may facilitate the development of 
therapeutics for AF.
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Fig. 4 | cross-trait associations of aF risk variants with aF risk factors in the uK Biobank. The heatmap shows associations of novel and known sentinel 
variants at AF risk loci from the combined-ancestry meta-analysis. Shown are variants and phenotypes with significant associations after correcting for 12 
phenotypes via Bonferroni correction with P <  4.17 ×  10−3. P values (two-sided) were derived from linear and logistic regression models. Listed next to each 
trait is the number of cases for binary traits or the total sample size for quantitative traits. Hierarchical clustering was performed on a variant level using 
the complete linkage method based on Euclidian distance. Coloring represents Z scores for each respective trait or disease, oriented toward the AF risk 
allele. Red indicates an increase in the trait or disease risk while blue indicates a decrease in the trait or disease risk. BMI, body mass index; CAD, coronary 
artery disease; PVD, peripheral vascular disease.
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We excluded samples with sex mismatches, outliers in heterozygosity and missing 
rates, samples that carry sex chromosome configurations other than XX or XY and 
samples that were excluded from the kinship inference procedure as flagged in the 
UKBB QC file. We further removed one sample for each pair of third-degree or 
closer relatives (kinship coefficient > 0.0442), preferentially keeping samples with 
AF case status. Primary analyses for all other studies were performed at the study 
sites and the summary level data of the results were provided. Prevalent cases were 
analyzed in a logistic regression model and most incident cases were analyzed 
in a Cox proportional hazards model. Studies with both prevalent and incident 
cases analyzed these either separately using a logistic regression model or a Cox 
proportional hazards model respectively, or jointly in a logistic regression model. 
The following tools were used for primary GWAS: ProbABEL46, SNPTEST47, 
FAST48, mach2dat (http://www.unc.edu/~yunmli/software.html), R49, EPACTS 
(http://genome.sph.umich.edu/wiki/EPACTS), Hail (https://github.com/hail-is/
hail) and PLINK42 (Supplementary Table 18). Summary-level results were filtered, 
keeping variants with imputation quality > 0.3 and MAF ×  imputation quality ×  N 
events ≥ 10. We performed post-analysis QC of the summary-level results for 
each study. We checked reported allele frequencies against allele frequencies 
from imputation reference panels by ancestry. We inspected Manhattan plots for 
spurious associations and quantile–quantile plots to identify genomic inflation. We 
also calculated the genomic inflation factor (λGC) for each study (Supplementary 
Table 18). Furthermore, we plotted the reported P value versus the P value derived 
from the Z score (effect/SE) to check for consistency of results. We checked the 
distribution of effect estimates and standard errors and confirmed that known AF 
risk variants5 showed consistent directionality with reported effect estimates.

Meta-analyses. Summary-level results were meta-analyzed jointly with METAL 
(released on March 25, 2011) using a fixed-effects model with an inverse-variance 
weighted approach, correcting for genomic control50. Separate meta-analyses were 
conducted for each ancestry. The results for the Japanese-specific9 and Hispanic-
specific8 analyses have previously been reported and therefore their ancestry-
specific results are not shown. Variants were included if they were present in at 
least two studies and showed an average MAF ≥  0.1%. To correct for multiple 
testing, a genome-wide significance threshold of P <  1 ×  10−8 was applied for each 
analysis. This threshold is based on a naive Bonferroni correction for independent 
variants with MAF ≥  0.1%, using an LD threshold of r2 <  0.8 to estimate the 
number of independent variants based on European-ancestry LD51. As these 
meta-analyses are based on effect estimates and standard errors from both logistic 
regression and Cox proportional hazards regression, we report variant effects as 
relative risk, calculated as the exponential of effect estimates. For sentinel variants 
reaching genome-wide significance in the combined ancestry meta-analysis, 
we assessed whether effect estimates were homogeneous across ancestries by 
calculating an I2 statistic52 across ancestry-specific meta-analyses. We account for 
multiple testing across 94 variants using a Bonferroni correction, resulting in a 
significance threshold of P <  5.32 ×  10−4 for the heterogeneity test.

Broad AF LD reference and proxies. A LD reference file was created including 
26,796 European ancestry individuals from the Broad AF study. The LD reference 
was based on HRC-imputed genotypes. Monomorphic variants and variants with 
imputation quality < 0.1 were removed before conversion to hard calls. A genotype 
probability threshold filter of > 0.8 was applied during hard call conversion. For 
multi-allelic sites, the more common alleles were kept. Variants were included in 
the final reference file if the variant call rate was > 70%.

We identified proxies of sentinel variants as variants in LD of r2 >  0.6 based on 
the Broad AF LD reference file, using PLINK v1.9042.

Meta-analysis of provisional loci. We meta-analyzed 111 variants from externally 
reported15 provisional loci within predominantly non-overlapping samples from 
the Broad AF study, BBJ, EGCUT, PHB, SiGN and the Vanderbilt AF Registry 
with METAL (released on March 25, 2011)50. The predominantly non-overlapping 
samples included a total of 32,957 AF cases and 83,546 referents, with minimal 
overlap from the studies MGH AF, BBJ and AFLMU. We subsequently meta-
analyzed these results with the reported provisional results with METAL using 
a fixed-effects model with an inverse-variance weighted approach. We analyzed 
a total of 93,577 AF cases and 1,053,762 referents. We compared our discovery 
results with the provisional loci using the same significance cutoff of P <  5 ×  10−8 
for both results. Overlapping loci were identified if the reported sentinel variants 
were located within 500 kb of each other. For overlapping loci with differing 
sentinel variants, we calculated the LD between the sentinel variants, based on the 
Broad AF LD reference panel of European ancestry.

Variant consequence on protein-coding sequence. The most severe consequence 
for variants was identified with the Ensembl Variant Effect Predictor version 89.7 
using RefSeq as a gene reference and the option ‘pick’ to identify one consequence 
per variant with the default pick order53. We queried sentinel variants and their 
proxies to identify tagged variants with HIGH and MODERATE impact including 
the following consequences: ‘transcript_ablation’, ‘splice_acceptor_variant’, 
‘splice_donor_variant’, ‘stop_gained’, ‘frameshift_variant’, ‘stop_lost’, ‘start_lost’, 
‘transcript_amplification’, ‘inframe_insertion’, ‘inframe_deletion’, ‘missense_variant’ 

Methods
Samples. Participants from more than 50 studies were included in this analysis. 
Participants were collected from both case-control studies for AF and population-
based studies. The majority of studies were part of the Atrial Fibrillation Genetics 
(AFGen) consortium and the Broad AF study (Broad AF). Additional summary-
level results from the UK Biobank (UKBB) and Biobank Japan (BBJ) were included 
(Fig. 1). Cases include participants with paroxysmal or permanent AF, or atrial 
flutter, and referents were free of these diagnoses. Adjudication of AF for each 
study is described in the Supplementary Notes. Ascertainment of AF in the UKBB 
includes samples with one or more of the following codes: non-cancer illness code, 
self-reported (1471, 1483); operation code (1524); diagnoses – main/secondary 
ICD10 (I48, I48.0-4, I48.9); underlying (primary/secondary) cause of death: 
ICD10 (I48, I48.0-4, I48.9); diagnoses – main/secondary ICD9 (4273); operative 
procedures – main/secondary OPCS (K57.1, K62.1-4)8,10,33. Baseline characteristics 
for each study are reported in Supplementary Table 17. We analyzed 55,114 cases 
and 482,295 referents of European ancestry, 1,307 cases and 7,660 referents of 
African American ancestry, 8,180 cases and 28,612 referents of Japanese ancestry, 
568 cases and 1,096 referents from Brazil, and 277 cases and 3,081 referents of 
Hispanic ethnicity. Samples from the UKBB, the Broad AF study and some studies 
from the AFGen consortium (SiGN, EGCUT, PHB and the Vanderbilt Atrial 
Fibrillation Registry) were previously not included in primary AF GWAS discovery 
analyses. There is minimal sample overlap from the studies MGH AF, BBJ and 
AFLMU between this and previous analyses. Ethics approval for participation was 
obtained individually by each study. All relevant ethical regulations were followed 
for this work. Written informed consent was obtained from all study participants.

The Institutional Review Board (IRB) at Massachusetts General Hospital 
reviewed and approved the overall study.

Genotyping and genotype calling. Samples within the Broad AF study were 
genotyped at the Broad Institute using the Infinium PsychArray-24 v1.2 Bead Chip. 
They were genotyped in 19 batches, grouped by origin of the samples and with 
a balanced case-control mix on each array. Common variants (≥ 1% MAF) were 
called with GenomeStudio v1.6.2.2 and Birdseed v1.3334, while rare variants (< 1% 
MAF) were called with zCall35. Batch-specific quality control (QC) was performed 
on each call set including > 95% sample call rate, Hardy–Weinberg equilibrium 
P >  1 ×  10−6 and variant call rate > 97%. For common variants, a consensus merge 
was performed between the call sets from GenomeStudio and Birdseed. For 
each genotype, only concordant calls between the two algorithms were kept. 
The common variants from the consensus call were then combined with the 
rare variant calls from the zCall algorithm. Samples from all batches were joined 
before performing pre-imputation QC steps. Detailed procedures for genotyping 
and genotype calling for the SiGN study36, the UKBB37 and BBJ9 are described 
elsewhere. Details on genotyping and calling for all participating studies are listed 
in Supplementary Table 18.

Imputation. Pre-imputation QC filtering of samples and variants was conducted 
according to recommended guidelines as described in Supplementary Table 19. QC 
steps were performed by each study and are described in Supplementary Table 18. 
Most studies with European ancestry samples performed imputation with the HRC 
reference v1.138 panel on the Michigan Imputation Server v1.0.139. Studies without 
available HRC imputation were included on the basis of imputation to the 1000 
Genomes Phase 1 integrated v3 panel (March 2012)40. Participants of the SiGN 
study were imputed to a combined reference panel consisting of 1000 Genomes 
phase 1 plus Genome of the Netherlands41. Studies from Brazil were imputed with 
the HRC reference v1.1 panel. Studies of Japanese ancestry or Hispanic ethnicity 
were imputed to the 1000G Phase 1 integrated v3 panel (March 2012). Studies 
of African American ancestry were imputed to the HRC reference v1.1 panel or 
the 1000G Phase 1 integrated v3 panel (March 2012). Studies were advised to use 
the HRC preparation and checking tool (http://www.well.ox.ac.uk/~wrayner/
tools/) before imputation. Prephasing and imputation methods for each study are 
described in Supplementary Table 18.

Primary statistical analyses. Genome-wide association testing on autosomal 
chromosomes was performed using an additive genetic effect model based on 
genotype probabilities. Each ancestry group was analyzed separately for each study. 
For the Broad AF study, the primary statistical analysis was performed jointly on 
unrelated individuals, excluding one of each pair for related samples with PI_HAT 
> 0.2 as calculated in PLINK v1.9042. Samples with sex mismatches and sample 
call rate < 97% were excluded. Ancestry groups were defined with ADMIXTURE43 
based on genotyped, independent and high-quality variants, using the supervised 
method with 1000 Genomes phase 1 v3 samples as a reference. A cutoff of 80% 
European ancestry was used to define the European subset and a cutoff of 60% 
African ancestry was used to define the African American subset. A Brazilian 
cohort within the Broad AF study was analyzed separately. Principal components 
were calculated within each ancestry group with the smartpca program from 
EIGENSOFT v6.1.144. For the UKBB, a European subset was selected within 
samples with self-reported white race (British, Irish or other) and similar genetic 
ancestry. Genetic similarity was defined with the aberrant45 package in R based on 
principal components, following the same method as described for the UKBB37. 
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(GCTA v1.25.2)69 using a stepwise selection procedure to identify independently 
associated variants on each chromosome. We used the Broad AF LD reference file 
for LD calculations.

Gene set enrichment analysis. A meta-analysis gene-set enrichment of variant 
associations (MAGENTA) v2.470 was performed with a combined gene set input 
database (GO_PANTHER_INGENUITY_KEGG_REACTOME_BIOCARTA) 
based on publicly available data. The analysis was conducted using the summary-
level results from the combined ancestry meta-analysis. A total of 4,045 gene 
sets were included and multiple testing was corrected via FDR. Gene sets 
were manually assigned to one or more of the following functional groups: 
developmental, electrophysiological, contractile/structural, and other. Genes within 
500 kb of a sentinel variant were identified on the basis of the longest spanning 
transcribed region in the RefSeq gene reference. For each gene set, genes close 
to significant loci were listed. The selected genes were assigned to one or more 
functional groups based on their affiliation to gene sets. Functional groups from 
gene sets with a single label were preferentially assigned.

Association with other phenotypes. To determine whether the sentinel AF risk 
variants had associations with other phenotypes, two sources of data were used.

GWAS catalog. We queried the NHGRI-EBI Catalog of published GWAS71,72 
(accessed August 31, 2017) to detect associations of AF risk variants with other 
phenotypes.

UKBB PheWAS. A PheWAS was conducted in the UKBB in European-ancestry 
individuals. Ancestry definition and sample QC exclusions were performed 
in the same manner as for the primary statistical analysis, as described above. 
We further removed one sample for each pair of second-degree or closer 
relatives (kinship coefficient > 0.0884), preferentially keeping the sample with 
case status or non-missing phenotype. We included the following phenotypes: 
height, body mass index, smoking, hypertension, heart failure, stroke, mitral 
regurgitation, bradyarrhythmia, peripheral vascular disease, hypercholesterolemia, 
coronary artery disease and type II diabetes. Phenotype definitions are shown 
in Supplementary Table 21. The number of samples analyzed, and case and 
referent counts for each phenotype, are listed in Supplementary Table 22. Binary 
phenotypes were analyzed with a logistic regression model and quantitative 
phenotypes with a linear regression model using imputed genotype dosages in 
PLINK 2.0042. As covariates, we included sex, age at first visit, genotyping array and 
the first ten principal components.

Proportion of heritability explained. We calculated SNP-heritability (h2
g) of 

AF-associated loci with the REML algorithm in BOLT-LMM v2.273 in 120,286 
unrelated samples of European ancestry from a subset of the UKBB data set 
comprising a prior interim release as previously described in separate work from 
our group10. We defined loci on the basis of a 1 Mb (± 500 kb) window around 84 
sentinel variants from the European-ancestry meta-analysis. We transformed the 
h2

g estimates into liability scale (AF prevalence =  2.45% in the UKBB). We then 
calculated the proportion of h2

g explained at AF loci by dividing the h2
g estimate of 

AF-associated loci by the total h2
g for AF, which was based on 811,488 LD-pruned 

and hard-called common variants (MAF ≥  1%)10.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability. The data sets generated during and/or analyzed during the 
current study are available from the corresponding author upon reasonable 
request. The results of this study are available on the Cardiovascular Disease 
Knowledge Portal (http://www.broadcvdi.org/). The left atrial RNA-sequencing 
data can be accessed via dbGaP under the accession number phs001539.
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and ‘protein_altering_variant’. We evaluated each identified consequence on 
the protein-coding sequence with in silico prediction tools to assess potentially 
damaging effects. The evaluation included MutationTaster54 (disease-causing 
automatic or disease-causing), SIFT55 (damaging), LRT56 (deleterious) and 
Polyphen257 prediction based on HumDiv and HumVar (probably damaging or 
possibly damaging).

Chromatin states. Chromatin state annotation. We identified chromatin states for 
sentinel variants and their proxies from the Roadmap Epigenomics Consortium 
25-state model (2015)58 using HaploReg v459. We looked for chromatin states 
occurring in any included tissues as well as chromatin states occurring in heart 
tissue. Heart tissues include: E065, aorta; E083, fetal heart; E095, left ventricle; 
E104, right atrium; E105, right ventricle.

Regulatory region enrichment. One thousand sets of control loci were generated by 
matching SNPs to sentinel variants from the AF combined-ancestry analysis, with 
the SNPSnap60 tool. We used the European 1000 Genomes Phase 3 population 
to match via MAF, gene density, distance to nearest gene and LD buddies using 
r2 >  0.6 as the LD cutoff and otherwise default settings. We excluded input SNPs 
and HLA SNPs from the matched SNPs. Loci were defined as SNPs and their 
proxies with r2 >  0.6 based on LD from the European 1000 Genomes Phase 3 
population. We identified SNPs in regulatory regions across all tissues and in 
cardiac tissues (E065, E095, E104 and E105) based on the Roadmap Epigenomics 
Consortium 25-state model (2015)58 using HaploReg v459. Regulatory regions 
included the following states: 2_PromU, 3_PromD1, 4_PromD2, 9_TxReg, 
10_TxEnh5, 11_TxEnh3, 12_TxEnhW, 13_EnhA1, 14_EnhA2, 15_EnhAF, 
16_EnhW1, 17_EnhW2, 18_EnhAc, 19_DNase, 22_PromP and 23_PromBiv. 
We calculated the percentage of overlap of each annotation per locus, defined 
as the number of SNPs per locus that fall in regulatory regions divided by the 
total number of SNPs per locus. Statistical significance was calculated with a 
permutation test from the perm package in R61.

eQTL. Variants identified from GWAS were assessed for overlap with eQTLs from 
two sources.

LA tissue from the Myocardial Applied Genomics Network (MAGNet) repository. 
We performed RNA-sequencing on 101 LA tissue samples from the MAGNet 
repository (http://www.med.upenn.edu/magnet/) on the Illumina HiSeq 4000 
platform at the Broad Institute Genomic Services. LA tissue was obtained at 
the time of cardiac transplantation from normal donors with no evidence of 
structural heart disease. All left atrial samples were from individuals of European 
ancestry. A summary of the clinical characteristics for these samples is shown in 
Supplementary Table 20. Reads were aligned to the reference genome by STAR 
v2.4.1a62 and assigned to genes based on the GENCODE gene annotation63. Gene 
expression was measured in fragments per kilobase of transcript per million 
mapped reads and subsequently quantile-normalized and adjusted for age, sex and 
the first ten principal components. Genotyping was performed on the Illumina 
OmniExpressExome-8v1 array and imputed to the HRC reference panel. Principal 
components were calculated with the smartpca program from EIGENSOFT 
v6.1.144 and European ancestry was confirmed by assessing principal components 
in the samples combined with 1000 Genomes European samples40. Associations 
between gene expression and genotypes were tested in a linear regression model 
with QTLtools v1.064, to detect cis-eQTLs, defined as eQTLs within 1 Mb of the 
transcription start site of a gene. To account for multiple testing, an empirical false 
discovery rate (FDR) was used to identify significant eQTLs with a FDR <  5%.

GTEx project. We queried the GTEx65 version 6p database for cis-eQTLs with 
significant associations to gene expression levels in the two available heart tissues: 
LV and RA appendage66.

Association between predicted gene expression and risk of atrial fibrillation. 
To investigate transcriptome-wide associations between predicted gene expression 
and AF disease risk, we employed the method MetaXcan v0.3.512. MetaXcan 
extends the previous method PrediXcan67 to predict the association between gene 
expression and a phenotype of interest, using summary association statistics. Gene 
expression prediction models were generated from eQTL data sets using Elastic-
Net to identify the most predictive set of SNPs. Only models that significantly 
predict gene expression in the reference eQTL data set (FDR <  0.05) were 
considered. Pre-computed MetaXcan models for the two available heart tissues 
(LV and RA appendage) in the GTEx project version 6p66 were used to predict the 
association between gene expression and risk of AF. Summary-level statistics from 
the combined ancestry meta-analysis were used as input. A total of 4,859 genes 
were tested for LV and 4,467 genes were tested for RA appendage. Bonferroni 
correction was applied to account for the number of genes tested across both 
tissues, resulting in a significance threshold of P <  5.36 ×  10−6, calculated as  
0.05/(4,859 +  4,467).

Conditional and joint analyses. Conditional and joint analyses68 of GWAS 
summary statistics were performed with Genome-wide Complex Trait Analysis 
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    Experimental design
1.   Sample size

Describe how sample size was determined. We analyzed the largest sample size available from the AFGen consortium, 
the Broad AF study, the UK Biobank and the Biobank Japan, including 
65,446 individuals with atrial fibrillation (AF) and 522,744 referents. No 
method was applied to predetermine sample size. 

2.   Data exclusions

Describe any data exclusions. Samples and variants were excluded during the pre-imputation quality 
control procedure. Sample exclusion criteria included: sample call rate, 
heterozygosity outliers, ancestry outliers, related individuals and sex 
mismatches. Variant exclusion criteria included: variant call rate, 
deviations from Hardy-Weinberg, high discordance rates, excess of 
Mendelian inconsistencies and rare variants. Variant exclusions for the 
summary level results, prior to meta-analysis, included an imputation 
quality filter > 0.3 and a score of MAF * imputation quality * N events ≥  
10. Variants available in just 1 study were excluded from the meta-analysis.

3.   Replication

Describe whether the experimental findings were reliably reproduced. Experimental replication was not attempted.

4.   Randomization

Describe how samples/organisms/participants were allocated into 
experimental groups.

AF cases: participants with paroxysmal or permanent atrial fibrillation, or 
atrial flutter. Referents: participants free of these diagnoses. Participants 
were grouped for analysis by study and by ancestry.

5.   Blinding

Describe whether the investigators were blinded to group allocation 
during data collection and/or analysis.

Blinding was not relevant to our study. The participants from the included 
studies were sampled by multiple different research centers. The meta-
analysis was conducted centrally on summary level results from each 
study.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.
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6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or the Methods 
section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample 
was measured repeatedly. 

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. p values) given as exact values whenever possible and with confidence intervals noted

A summary of the descriptive statistics, including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this study. METAL (released on 2011-03-25): https://genome.sph.umich.edu/wiki/
METAL_Documentation 
Michigan Imputation Server (v1.0.1): https://
imputationserver.sph.umich.edu 
HaploReg (v4): http://archive.broadinstitute.org/mammals/haploreg/
haploreg.php 
MetaXcan (v0.3.5): https://github.com/hakyimlab/MetaXcan/wiki 
GCTA (v1.25.2): http://cnsgenomics.com/software/gcta/ 
MAGENTA (v2.4): https://software.broadinstitute.org/mpg/magenta/ 
LocusZoom (v1.3): https://genome.sph.umich.edu/wiki/
LocusZoom_Standalone 
VEP (v89.7): http://www.ensembl.org/info/docs/tools/vep/script/ 
R (v3.2.1, v3.2.3): https://www.r-project.org/ 
PLINK (v2.00, v1.90): https://www.cog-genomics.org/plink/ 
EIGENSOFT (v6.1.1): https://www.hsph.harvard.edu/alkes-price/software/ 
QTLtools (v1.0): https://qtltools.github.io/qtltools/ 
STAR (v2.4.1a): http://code.google.com/p/rna-star/ 
ProbABEL (v0.5.0): http://www.genabel.org/packages/ProbABEL 
SNPTEST (v2.4.1, v2.5, v2.5.2, v2.5.4): https://mathgen.stats.ox.ac.uk/
genetics_software/snptest/snptest.html 
mach2dat (v1.2.4): https://genome.sph.umich.edu/wiki/
Mach2dat:_Association_with_MACH_output 
EPACTS (v3.2.6): https://genome.sph.umich.edu/wiki/EPACTS 
Hail (v0.1): https://github.com/hail-is/hail 
MaCH (v1.0.16, v1.0.151): http://csg.sph.umich.edu/abecasis/mach/ 
Minimac (v3): https://genome.sph.umich.edu/wiki/Minimac 
ShapeIT (v2.r790, v1.r532, v2.r837): https://mathgen.stats.ox.ac.uk/
genetics_software/shapeit/shapeit.html 
IMPUTE2 (v2.3.0, v2.1.0, v2.3.2, v2.2.2): http://mathgen.stats.ox.ac.uk/
impute/impute_v2.html 
Eagle (v2.3): https://data.broadinstitute.org/alkesgroup/Eagle/ 
FAST: https://bitbucket.org/baderlab/fast/wiki/Home 
BOLT-LMM (v2.2): https://data.broadinstitute.org/alkesgroup/BOLT-LMM/ 
SNPSnap: https://data.broadinstitute.org/mpg/snpsnap/

For all studies, we encourage code deposition in a community repository (e.g. GitHub). Authors must make computer code available to editors and reviewers upon 
request.  The Nature Methods guidance for providing algorithms and software for publication may be useful for any submission.
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   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of unique 
materials or if these materials are only available for distribution by a 
for-profit company.

No unique materials were used.

9.   Antibodies

Describe the antibodies used and how they were validated for use in 
the system under study (i.e. assay and species).

No antibodies were used.

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used.

c.  Report whether the cell lines were tested for mycoplasma 
contamination.

No eukaryotic cell lines were used.

d.  If any of the cell lines used in the paper are listed in the database 
of commonly misidentified cell lines maintained by ICLAC, 
provide a scientific rationale for their use.

No eukaryotic cell lines were used.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived materials used in 
the study.

No animals were used.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population characteristics of the 
human research participants.

Sample for GWAS analyses: 
The sample was composed of 91% European, 6% Japanese, 1.5% African 
American, 0.3% Brazilian and 0.6% Hispanic ancestry. In total 46% of the 
participants were male with an average age of 58 years at DNA draw and 
an average BMI of 27. Detailed population characteristics for each study 
are provided in Supplementary Table S17. 
 
Sample for left atrial eQTL analyses: 
The participants were of European ancestry. In total 44% of the 
participants were male, with an average age of 59, including 59% 
participants with hypertension, 20%  with diabetes and 14% with history of 
atrial fibrillation.


	Multi-ethnic genome-wide association study for atrial fibrillation
	Methods
	Acknowledgements
	Fig. 1 Study and analysis flowchart.
	Fig. 2 Manhattan plot of combined-ancestry meta-analysis.
	Fig. 3 Volcano plot of transcriptome-wide analysis from human heart tissues.
	Fig. 4 Cross-trait associations of AF risk variants with AF risk factors in the UK Biobank.
	Table 1 Novel loci in combined-ancestry meta-analysis.


