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Such improvements would also enhance the 
compatibility of DLO Hi-C with popular 
enrichment technologies for 3C libraries, for 
example, Capture-C12.

Predicting topological trouble
Even though generating high-quality 
chromatin interaction maps no longer 
requires millions of cells or massive 
sequencing efforts, performing extensive 3C 
studies is still challenging. This is especially 
true when limited cell or tissue material is 
available, for instance, when aiming to study 
genome topology in a human disease setting. 
Moreover, once interaction maps have been 
generated, it remains difficult to test the 
effects of specific chromatin perturbations 
on 3D architecture. Computational modeling 
of 3C data is a valuable tool for visualizing 
and interpreting genome topology13. 
Moreover, modeling holds promise as an 
approach to predict 3D structure from  
1D genomic features, for example, histone 
modifications and chromatin factor 
binding14,15. Bianco et al.10 have now taken 
an important step forward by developing an 
algorithm to model 3D chromatin folding 
and predict how structural variation of 
the genome alters chromatin architecture 
(Fig. 1b). Their approach, named polymer-
based recursive statistical inference method, 
or ‘PRISMR’, uses pairwise contacts from 
Hi-C maps to infer the minimal factors  

that shape the 3D structure of a genomic 
region of interest. Importantly, the  
algorithm does not make any a priori 
assumptions, nor does it rely on additional 
or tunable parameters. Adding binding 
information for the architectural protein 
CTCF (both location and motif orientation) 
did not further improve the quality of the 
3D models, underscoring the robustness  
of PRISMR. CTCF binding information 
alone (without Hi-C data) only partially 
captured chromatin folding and TAD 
structure at the EPHA4 locus, indicating  
the involvement of other factors than  
CTCF in establishing proper genome 
topology. Leveraging wild-type Hi-C maps 
as input data for modeling and patient 
sample maps for validation purposes, the 
authors showed that PRISMR was able to 
accurately predict how large structural 
variants (for example, duplications or 
deletions) observed in individuals with 
limb malformations alter local enhancer–
promoter contacts, leading to transcriptional 
misregulation and, ultimately, disease.  
Thus, PRISMR has the potential to greatly 
facilitate Hi-C data interpretation in silico 
to help dissect complex gene regulatory 
processes and explain how genomic 
rearrangements might cause disease 
phenotypes. In the future, it will be of 
interest to see whether PRISMR can also  
be applied to smaller structural variants,  

for example, deletions of single enhancers  
or CTCF sites. ❐
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HUMAN GENETICS

Sizing up whole-genome sequencing studies of 
common diseases
The triplet code underpins analyses of rare and de novo mutations in exome sequencing data, but analysis of 
the noncoding genome is much more challenging. A new analytical framework for common, complex diseases 
highlights the need for very large samples to overcome the unavoidable multiple-testing burden and hence provides 
preemptive warnings against underpowered studies.

Naomi R. Wray and Jacob Gratten

Whole-genome sequencing (WGS) 
is increasingly being promoted as 
a platform for investigating the 

full spectrum of genetic variation associated 
with common, complex disease, but the 
analytical challenges are considerable. The 
primary motivation for a WGS study is to 
understand whether structural, rare and de 
novo mutations in the noncoding genome 
contribute to disease etiology, in addition to 
the more well-understood contribution from 

coding mutations. However, until recently, 
analyses of noncoding variants have mostly 
considered a priori hypotheses regarding 
which noncoding variants may be relevant 
to disease, such as those in promoter and 
enhancer regions1, 2, which are only a few 
of many different functional annotations 
of the genome. These studies are analogous 
to candidate gene studies, but this is not 
widely understood or acknowledged. In 
this issue, Werling et al.3 provide the first 

serious attempt to establish a framework 
for enrichment analyses of rare noncoding 
variation in WGS studies of common, 
complex diseases.

Werling et al.3 analyzed WGS data 
from 519 autism spectrum disorder (ASD) 
quartet families (child, unaffected sibling 
and two parents) from the Simons Simplex 
Collection, selected on the basis that prior 
microarray and whole-exome sequencing 
(WES) data had failed to identify putatively 
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causal de novo copy number variation 
(CNV) or loss-of-function mutations. Their 
challenge was to make sense of the 98% of 
de novo mutations that fall in noncoding 
regions of the genome (on average, 64 de 
novo single-nucleotide variants (SNVs)  
and 5 de novo indel events per person). 
Without a regulatory equivalent of the  
triplet code, knowledge about noncoding 
regions intolerant to mutation is limited. 
To address this, Werling et al.3 propose a 
framework for a category-wide association 
study (CWAS), with the aim of identifying 
categories of genomic annotations that 
harbor significantly more de novo variants 
in cases than in sibling controls in an unbiased  
scan of the genome. They defined 51,801 
categories, and, given the multiple-testing 
burden, they could not detect any  
proband–sibling differences. Although this 
is a null finding, by benchmarking against 

coding mutations, they demonstrate that 
it is unlikely that any class of noncoding 
variation is equivalent to coding loss-of-
function variants in terms of mutation 
frequency and effect size for ASD. Power 
calculations suggest that >​8,000 families 
will be needed to detect differences in the 
burden of de novo mutations in noncoding 
categories between cases and controls. They 
conclude with a strong plea to the research 
community to hold high standards with 
regard to appropriate correction for multiple 
testing in WGS studies. As others have 
noted2, multiple-testing correction needs 
to be applied to both explicit and implicit 
testing. We must heed these warnings 
and recognize that very large samples will 
be needed to address de novo and rare 
variant hypotheses in WGS studies (Fig. 1). 
As a community, we should be skeptical 
of cherry-picking strategies applied to 

underpowered studies that are primed for 
false discovery and winner’s curse estimates.

Category definition
The analytical framework of Werling et al.3  
can be used with the categories they 
provided or can be applied with user-
defined categories. We summarize their 
category definitions, divided into five sets, as 
these are key to understanding the multiple-
testing burden imposed. The ‘variant types’ 
set has categories of SNVs and indels  
(in addition to all variants), which represent 
92% and 8% of the count of de novo 
variants, respectively. The ‘conservation’ 
set has two categories based on different 
conservation metrics, each representing 
2% of variants. Enrichment of associated 
variants in conserved regions is consistently 
found in both common4 and rare5 variant 
analyses. The third set includes 17 categories 
of ‘GENCODE annotations’ applied to both 
the coding (for example, loss-of-function) 
and noncoding (for example, promoter or 
intronic) genome. The ‘gene lists’ set has  
14 categories that represent GENCODE gene 
lists based on transcription annotation and 
ASD-specific genes, and hence this subset 
would need to be updated for application 
to non-brain-related disorders. The final 
‘functional annotation’ set has 31 categories 
derived from different technologies (for 
example, ATAC–seq) and particularly from 
the Roadmap Epigenomics Project. This 
last category set is the most likely to be 
updated over time as advances in technology 
further improve annotation. Any variant 
can have multiple annotations both between 
and within sets, and 3 ×​ 3 ×​ 17 ×​ 14 ×​ 31 
category combinations are constructed for 
CWAS analysis, giving a total of 51,801 tests 
after redundant categories are removed. 
However, categories are correlated and so 
represent ~10,000 independent tests.

Relevance to common disease
Improved rates of diagnosis are fast-
tracking WES as a first-tier test in children 
with suspected monogenic disorders6. 
The falling costs of WGS, combined with 
improved calling of the coding genome as 
compared to WES7, means that in these 
applications WGS is likely to replace WES 
as the technology of choice. The high rates 
of molecular diagnosis for ASD based on 
coding de novo mutations and large de 
novo CNVs (currently up to 15%) mean that 
WGS data will grow organically. With time, 
datasets of tens to hundreds of thousands 
of families8 will be powered for CWAS, 
which in turn will help prioritize genomic 
annotations for follow-up in ASD and other 
disorders. A recent study of exome-negative 
families of children from the Deciphering 
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Fig. 1 | CWAS in the context of other experimental designs for investigating genetic variation in ASD. 
Shown are representative published studies for commonly used experimental designs in ASD genetics 
(for references, see the Supplementary Note) in relation to multiple-testing burden, sample size and 
statistical power. Studies are color-coded by experimental design and platform (SNP array, WES, WGS). 
Power calculation assumptions to estimate required sample size for 80% power are as follows: aGWAS 
(genome-wide association study): risk allele frequency =​ 0.20, odds ratio (OR) =​ 1.1, P-value threshold 
=​ 5 ×​ 10−8; bCWAS: taken from Werling et al.3; cdnLOF (de novo loss of function) gene based: maximum 
OR =​ 25, proportion of de novo loss-of-function-conferring risk =​ 0.05, number of de novo loss-of-
function mutations per person =​ 0.1, P-value threshold =​ 2.5 ×​ 10−6; dGREML: SNP heritability (SNP-h2) 
=​ 0.20 and lifetime disease risk =​ 0.01; ednLOF burden: OR =​ 2, two-tailed binomial exact test; fCNV 
burden: OR =​ 3, two-tailed binomial exact test. Calculations assume equal sample sizes for controls and 
cases. Power for CNV association is not included because it is dependent on per-locus OR estimates for 
which there is no obvious choice. Color-coded vertical dashed lines show the multiple-testing burden 
for each experimental design (for CWAS, we use 4,120 tests given the sample size in Werling et al.3; 
the number of tests stabilizes to ~10,000 as sample sizes increase). Color-coded horizontal dot-dash 
lines show the sample size required for ≥​80% power for each experimental design. CWAS for ASD will 
require sample sizes similar in magnitude to GWAS, and even larger sample sizes will be needed for 
adult-onset common diseases13. GWS, genome-wide significant; FDR, false discovery rate.
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Developmental Disorders (DDD) study2  

(that is, families in which the proband does 
not carry a diagnostic coding variant), 
which conducted hypothesis-driven targeted 
sequencing of noncoding regions (4.2 Mb, 
0.1% of the genome, including enhancers 
and conserved regions), also concluded  
that many tens of thousands of family 
trios will be needed to identify pathogenic 
noncoding de novo variants. In line with 
other severe childhood-onset disorders6, 
42% of the DDD children achieved a 
molecular diagnosis based on de novo 
mutations of the exome9, but only an 
additional 1–3% were found to carry 
pathogenic de novo mutations in regulatory 
elements active in fetal brain.

Werling et al.3 provide an important 
analysis framework and a clear plan of action 
for researchers contemplating WGS studies 
of ASD. However, the lessons for those 
contemplating WGS of population samples 
and adult-onset common diseases are 
sobering, as there is little evidence for rare 
variants of large effect for common adult-
onset diseases (except neurodegenerative 
diseases)10–12, most likely because variants of 
large effect lead to childhood presentation 
of a more severe disorder. For this reason, 
the sample size estimated by Werling et al.3 
for CWAS in ASD, which is known to have 
an important contribution to etiology from 
rare and de novo variation, is likely to be an 
underestimate for that needed for later-onset 
diseases with substantially different genetic 

architectures13. Other factors also weigh 
into the decisions for conducting WGS in 
population and common disease settings. 
For example, sequencing technology is not 
yet stabilized, and the price differential of 
WGS as compared to SNP arrays is currently 
at least 30-fold. Werling et al.3 show that, 
with current technology, 30×​ sequencing 
depth is needed for accurate detection of 
de novo mutations, and hence this is the 
depth needed in any study where the goal 
is detection of rare variants and, of course, 
read depth is directly related to cost. Given 
that very cheap SNP array analysis followed 
by imputation is now accurate for variants 
with a frequency of 0.25% or greater14, 
WGS studies will need high read depth to 
gain over cheaper technologies. The 30×​ 
coverage was particularly needed to call 
indels accurately, and, even then, validation 
rates were lower than for SNVs (96.8% 
versus 82.4%). Moreover, the same ASD 
trios have also been studied using long-
read technology, which has demonstrated 
a complexity of structural variants not 
captured by standard WGS15. Given the rate 
of technical advances in the last decade, it 
is likely that the next decade will see more 
accurate and cheaper WGS technologies. 
The transition from SNP arrays to WGS 
will inevitably come, and, when it arrives, 
we should be ready with large, deeply 
phenotyped cohorts. Hence, for application 
of WGS to common, adult-onset diseases, we 
suggest first concentrating on accumulating 

the sample sizes that will be powered for 
discovery when the technology is ripe. ❐
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