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Mendelian Gene Discovery: Fast and Furious
with No End in Sight

Michael J. Bamshad,1,2,3,* Deborah A. Nickerson,2,3 and Jessica X. Chong1,3

Gene discovery for Mendelian conditions (MCs) offers a direct path to understanding genome function. Approaches based on next-gen-

eration sequencing applied at scale have dramatically accelerated gene discovery and transformed genetic medicine. Finding the genetic

basis of �6,000–13,000 MCs yet to be delineated will require both technical and computational innovation, but will rely to a larger

extent on meaningful data sharing.
Most of what we understand about

how the human genome encodes

function and what constitutes a

causal variant has been motivated by

gene discovery for Mendelian condi-

tions (MCs).1 Indeed, the vast major-

ity of variants of known function in

the genome underlie MCs, and

study of MCs is currently the gold

standard for adjudicating variants of

unknown significance (VUSs). While

new computational strategies as well

as technologies (e.g., multiplexed as-

says for variant effects) and biological

models that can be scaled to assess the

impact of every possible variant offer

an unprecedented opportunity to

explore genome function,2 it is the

study of natural genome variation in

humans when manifested by MCs

that still provides the most efficient

and putatively cost-effective path to

link genotype with human pheno-

type. Moreover, this path leads

directly to development and testing

of new preventive, diagnostic, and

treatment strategies for rare diseases

(e.g., cystic fibrosis transmembrane

regulator modulators).3 So it is not

surprising that the overwhelming ma-

jority of genetic diagnostic tests, re-

sults returned to families, and results

that inform reproductive options,

guide clinical management, and

enable selection of therapeutics are

based on discoveries of the genes un-

derlying MCs.

Prior to 2010, gene discovery was

driven by positional cloning, which
1Department of Pediatrics, University of Washingto

98195, USA; 3Brotman-Baty Institute for Precision M

*Correspondence: mbamshad@uw.edu

https://doi.org/10.1016/j.ajhg.2019.07.011.

448 The American Journal of Human Genetics

� 2019 American Society of Human Genetics.
requires information about the

genomic location and function of a

candidate gene, the phenotype, or

both, limiting its effectiveness. Intro-

duction of computational approaches

based on exome sequencing (ES) that

required neither was a disruptive

innovation that replaced not only

positional cloning, but virtually all

incumbent approaches to gene dis-

covery.4–6 Accordingly, thousands of

MCs that had been intractable to

conventional gene discovery ap-

proaches for various reasons suddenly

became solvable using ES. The impact

has been stunning.7,8

Rapid adoption of ES, and ap-

proaches using next-generation

sequencing (NGS) in general, to iden-

tify genes associated with MCs (1)

markedly accelerated the rate of novel

gene discovery for MCs (i.e., a gene

not previously known to underlie an

MC [novel gene] or a gene found

to underlie a novel condition or

known but unexplained MC); (2)

enabled identification of >1,000 new

MCs; (3) replaced ‘‘phenotype-driven’’

with ‘‘genotype-driven’’ syndrome

delineation; (4) led to the decon-

struction of heuristic phenotypic

classes (e.g., developmental disorders,

autism, epilepsy, congenital heart

defects) into separate and often

distinct MCs with otherwise low clin-

ical recognizability (LCR); and (5)

expanded our understanding the

phenotypic effects of thousands of ge-

notypes and MCs. Summed across all
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genes underlying MCs discovered in

the past decade, application of ES

and NGS has rapidly advanced our

knowledge of genome function, trans-

formed the clinical practice of genetic

medicine and challenged our under-

standing of fundamental concepts

in human genetics (e.g., risk, pene-

trance, variable expressivity, etc.).

However, gene discovery for MCs risks

becoming a victim of its own success:

There is perception in some circles

that the pace of discovery is leveling

off or even declining, the number of

unsolved MCs is small, the remaining

MCs are unlikely to be solvable by ex-

isting ES-based approaches, and/or

many of the remaining MCs will be

solved in the course of clinical diag-

nostic testing alone. We offer a

different perspective.

From 1900 to 1950, a handful of

new MCs were characterized each

year (Figures 1A–1C, Figure S1, see

Supplemental Methods in Supple-

mental Data). In the 1950s, the rate

at which new MCs were delineated

increased coincident with the emer-

gence of the disciplines of medical

and biochemical genetics and dys-

morphology, reaching a peak in the

1970s. Despite the growing number

of rare MCs cataloged, a relatively

small number (i.e., �40) of genes un-

derlying MCs were known prior to

the introduction of positional cloning

in 1986.9 Subsequently, both the rate

of MC delineation and the rate of re-

ports (i.e., publications) of discovery
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Figure 1. Annualized Metrics of Gene Discovery for Mendelian Conditions
(A) Approximate rates of reported gene discoveries for Mendelian conditions (MCs) and of delineation of MCs over time (1900–2017).
Trends in reported (i.e., published) delineations of newMCs, including the so-called ‘‘Golden Age’’ of syndrome delineation in the 1970s,
leading to a peak throughout that decade. These data also show the impact of technical and methodological advances that fueled gene
discovery, namely the impact of positional cloning in 1986; the development of dense, genome-wide linkage maps in the early 1990s;
and increasing knowledge, gained via the Human Genome Project (1990–2001), of the physical locations and sequence content of
genes. Rates shown for gene discoveries and syndrome delineations reflect publications, not unpublished discoveries or syndrome de-
lineations, as recorded in OMIM and extracted by text analysis. The dashed line represents the number of genes forMCs reported discov-
ered by the Centers of Mendelian Genomics, most of which are unpublished.
(B) Approximate number of gene discoveries per year for MCs made by exome sequencing (ES) and next-generation sequencing (NGS)
versus conventional approaches. Following the introduction of positional cloning in 1986 and of ES in 2010, there were rapid increases
in the rate of gene discovery for MCs. Each new approach made gene discovery possible for MCs that had otherwise been intractable to
prior approaches, and this added to the baseline rate of gene discovery. Since 2010, NGS-based approaches (blue) have been used tomake
nearly all gene discoveries for MCs compared to conventional approaches (red).
(C) Approximate number of gene discoveries per year for MCs by mode of inheritance. The estimated proportion of gene discoveries for
MCs due to de novo variants (DNVs, red) has increased since 2010 as NGS made routine identification of such variants possible (see
Supplemental Methods in Supplemental Data). However, the proportions of gene discoveries for autosomal recessive (green), dominant
(orange), and X-linked (blue) MCs each continue to be equal to or greater than the number of discoveries for MCs due to de novo (red)
variants. Moreover, until 2010, the vast majority of gene discoveries for MCs were for inherited conditions (�97% before 2010; �89%
from 2010–2016; and �79% in 2017), so still, most MCs known to date (�90%–93%) are predominately due to inherited variants. MCs
assessed as being attributable to DNVs were excluded from the autosomal dominant and X-linked groups and vice versa, andMCs attrib-
uted to both dominant and recessive variants are not shown. Modes of inheritance were inferred by text analysis of OMIM entries.
(D) Impact of ES and NGS on the rate and method of syndrome delineation. Classical syndrome delineation (orange) is phenotype-
driven and proceeds by ascertaining multiple individuals with overlapping clinical findings and then identifying of the underlying
gene. In contrast, for genotype-driven syndrome delineation (teal), persons with overlapping clinical findings are identified only after
discovery that they share pathogenic variants in the same candidate gene. Introduction of NGS-based approaches rapidly extinguished
phenotype-driven syndrome delineation, and as of 2017, newMCs have been reported only after discovery of the underlying gene. MCs
for which the gene was discovered in the same year as the first publication of data from an individual with the MC were categorized as
genotype-driven; MCs for which data on the first individual with the MC was published one year or more prior to gene discovery were
categorized as phenotype-driven (see Supplemental Methods in Supplemental Data).
of genes associated withMC increased

steeply (Figure 1A). Specifically, be-

tween 1986 and 1997, the number of

MCs delineated and the number of

reported discoveries of genes underly-
ing MCs increased annually by �3

(p ¼ 5.9 3 10�4) and �10 (p ¼ 1.2 3

10�6) per year, respectively. However,

between 1998 and 2010, prior to the

introduction of ES in 20096 and its
The American Journal of Human Gene
application toward gene discovery in

2010,4,10 the rate of reports of gene

discoveries for MCs had plateaued

(Figure 1A). After 2010, the number

of MCs delineated and the number
tics 105, 448–455, September 5, 2019 449



of discoveries of genes underlying

MCs reported each year markedly

increased by �19 (p ¼ 0.006)

and �14 (p ¼ 0.06), respectively, per

year through 2015. The impact has

been rapid and profound. NGS-based

approaches (primarily ES) have led

to �36% (1,268/3,549) of all reported

Mendelian gene discoveries (Figures

S1 and S2), and by the end of 2017,

the majority (87%) of reported gene

discoveries were made via NGS-based

approaches (Figure 1C).

The annual number of MCs for

which the genetic basis is reported

peaked between 2012 and 2015 and

declined slightly each year thereafter

(Figures 1A and 1B), suggesting that

perhaps the underlying rate of gene

discovery is declining as well. To

distinguish whether discovery trends

parallel reporting trends, we reviewed

annualized totals of novel gene dis-

coveries, both published and unpub-

lished, publicly reported by the

National Institutes of Health (NIH)

Centers for Mendelian Genomics

(CMG). By 2015, the CMGs made

419 novel gene discoveries and pub-

lished 93, a ratio of gene discoveries

to published reports of 4.5.8 By the

end of 2018, the CMGs had made

1,937 discoveries, an increase

from �120 discoveries per year to

�244 per year, but reported only 287

(6.7 gene discoveries per reported dis-

covery).7 In other words, despite a

drop in publication rate, the rate of

discovery has continued to increase.

This reporting delay, of obvious

concern, has multiple explanations,

but is due in part to investigators

spending time to ascertain additional

affected families, deeply characterize

phenotypes and delineate new MCs

(an obligatory consequence of the

shift to genotype-driven delineation),

and generate functional data to

establish causality, link variants to

function and outcome, and leverage

high-impact publications. Whether

the pace of discovery of investigators

collaborating with CMGs reflects the

worldwide experience of all investiga-

tors is unclear, but the total number of

novel gene discoveries published by

the CMGs represents about one of
450 The American Journal of Human Genetics
every six publications of novel gene

discoveries; this suggests that these

data seem a reasonable estimator of

discovery trends. Public reporting of

numbers of novel genes underlying

MCs discovered each year by other

large-scale programs would help to

validate these results.

Online Mendelian Inheritance in

Man (OMIM) and Orphanet both

include only several hundred MCs

for which the underlying gene is still

unknown,11 so it is often alleged that

at the current pace of discovery, the

genetic basis of nearly all MCs will

be identified within the next ten years

or so. However, the pervasive use of ES

and NGS to identify the genetic basis

of MCs has also accelerated the pace

of novel MC delineation (Figure 1D).

Historically, delineation of new MCs

has been phenotype driven. That is,

a person, persons, or a family with a

recognizable but heretofore unre-

ported pattern of phenotypic findings

was ascertained, clinical characteriza-

tion of additional persons with an

overlapping pattern of findings estab-

lished the canonical phenotype, and

subsequently the underlying genetic

basis of the canonical phenotype was

sought. In contrast, new MCs are

now delineated only after discovery

of their genetic basis (i.e., delineation

is genotype-driven), that is the rates of

syndrome delineation and gene dis-

covery have become inextricably

linked, with >80% of the novel gene

discoveries reported each year repre-

senting genes for newly described

MCs (Figure 1D and Figure S3). The

historical totals of MCs described

by genotype-driven (n ¼ 2,023)

versus phenotype driven (n ¼ 3,149)

delineation are approaching equality

(Figure S4), and ultimately most

MCs will be ascertained via geno-

type-driven delineation.

What is the source of these new

MCs? Foremost, NGS of large

numbers of persons with a condition

representative of a phenotypic class

has enabled delineation, based on

the underlying gene responsible, of

hundreds of new LCR-MCs (e.g.,

intellectual disability, developmental

disorders12). This splitting of pheno-
105, 448–455, September 5, 2019
typic classes into separate LCR-MCs

is, and will continue to be, a primary

source of newly delineated MCs and

novel disease-associated gene discov-

eries. Moreover, even many MCs

considered to be of high clinical

recognizability (HCR) (e.g., Brach-

mann-De Lange [MIM: 122470],

Noonan [MIM: 163950], and Kabuki

[MIM: 147920]) are being found to

be comprised of multiple MCs caused

by variants in several genes. For some

such HCR-MCs (e.g., arguably, Coffin-

Siris [MIM: 135900]), the canonical

phenotype and distribution of

phenotypic effects are, in large part,

indistinguishable across different

causal genes, although they may

eventually be resolvable from one

another by deep phenotyping. In

other words, we suggest that genetic

heterogeneity in an MC is often a

reflection of our general lack of knowl-

edge of gene/genotype-phenotype re-

lationships. Thus, we predict that as

our understanding of the phenotypic

effects of variants which cause MCs

improves, fewer and fewer MCs will

be considered genetically heteroge-

neous. However, while burden

analyses of increasingly larger cohorts

of proband-parent trios diagnosed

by phenotypic class (e.g., autism,

congenital heart defects) are predicted

to increase the number of MCs found

to be caused by DNVs,13 there may be

diminishing returns as in many, if not

most, persons categorized by rare dis-

ease phenotypic class; the condition

is likely oligogenic or polygenic rather

than an MC.14

While phenotypic classes might be

a rich source of new MCs, how many

as-of-yet unknown MCs might exist?

Catalogues of hundreds of well-estab-

lished, unexplained MCs, loci for

many of which have been mapped,

demonstrate that the opportunity for

discoveries among inherited MCs re-

mains high. Moreover, MCs with

or without a known gene are still

almost entirely ascertained from

populations of European or Middle

Eastern ancestry. To what extent

this has limited our scope of knowl-

edge of MCs in general is unclear

but should be empirically assessed.
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Figure 2. Estimated Number of Genes for Mendelian Conditions
(A) Priority candidate genes for Mendelian conditions (MCs) yet to be discovered or delineated can be identified based on detecting a
deficit of variation in healthy human controls due to purifying selection (i.e., human data) or the existence of at least one mutantmouse
line with an abnormal phenotype (i.e., mouse data). Each stacked bar illustrates, from left to right, the number of human genes known to
underlie an MC but not supported by a given type of evidence (dark blue); known to underlie an MC and supported by evidence
(light blue); not known to underlie an MC (i.e., novel) and not supported by evidence (burnt orange); and not known to underlie an
MC but evidence suggests that it does and it is therefore a priority candidate gene (bright orange) supported by evidence. Selecting
the intersection of genes supported by both mouse and human data yields 4,450 priority candidate genes that are likely to underlie
one or more novel MCs.
(B) Alternatively, the union of genes supported by either mouse or human data suggests there are at least 10,467 priority candidate genes
likely to underlie one or more new MCs. Both of these estimates are probably conservative for several reasons: �25% of genes underlie
two or more distinct MCs (adjusting for this yields �6,100–14,400 potential novel MCs), mutant phenotypes for >12,000 mouse genes
have not yet been assessed, and current human constraint metrics still lack power to detect constraint in �30% of all genes and are
underpowered to detect constraint against homozygous loss of function. (See Supplemental Data for details.)
Accordingly, there is widespread

interest in prioritizing efforts to char-

acterize MCs and their underlying

genetic basis in under-represented

populations, with particular emphasis

on surveying population isolates and

populations with high levels of

consanguinity that are typically

not included in large-scale efforts

to discover genes for MCs. A dedi-

cated large-scale effort would require

extensive infrastructure, coordina-

tion, governance, and resources, but

the return on investment could be

substantial.

Orthogonal evidence from humans

and mice suggests that there are

conservatively at least twice as many

MCs that have yet to be delineated

as there are known MCs (Figure 2

and see Supplemental Methods in

Supplemental Data). Analysis of

large databases of human coding vari-

ation (e.g., gnomAD) using metrics

(e.g., Constrained Coding Regions,15

LOEUF,16 missense OEUF,16 and

nonsense-mediated decay escape

rank17) that assess the depletion of

classes of functional variation in

specific regions or genes identifies

9,596 genes under strong selective
constraint that are therefore priority

candidates for MCs, 77% (i.e., 7,416)

of which would be novel genes for

MCs (Figure 2). Furthermore, of the

10,487 mouse genes in the Mouse

Genome Database (MGI)18 that are

each linked to at least one non-lethal

phenotype in a mutant strain, the hu-

man orthologs for 72% (i.e., 7,501 pri-

ority candidate genes) have yet to be

shown to underlie an MC (Figure 2).

Taken together, mouse- and human-

supported data yield a total of 13,737

priority candidate genes for MCs,

78% (10,467) of which would be

novel (Figure 2). Even under the

more conservative assumption that a

gene must be considered a priority

candidate in both human and mouse,

there are 6,346 genes predicted to un-

derlie an MC, of which 4,450 (70%)

would be novel (Figure 2). Accord-

ingly, if we assume that each candi-

date gene underlies a single MC, there

are �1.5–3 times as many novel genes

(4,450–10,467) for MCs yet to be

discovered as there are genes (3,519)

known already to underlie an MC. If

we extrapolate that the same propor-

tion of these genes underlie multiple

MCs as is the case for known genes
The American Journal of Human Gene
for MCs (i.e., 16% underlie two MCs,

4.7% underlie three, 1.8% underlie

four, etc.), we predict that at a mini-

mum, �6,100–14,400 MCs remain to

be discovered. And these figures are

still a considerable underestimate of

the number of unsolved MCs because

we did not account for the fact that

mutant phenotypes for over half

(�12,000) of all protein-codingmouse

genes have yet to be assessed. More-

over, we used conservative cutoffs

for defining constrained genes,

and current human constraint

metrics both lack power to detect

constraint in �30% of all human

genes and are underpowered to detect

constraint against homozygous loss of

function16 mutations. For example,

our analysis identifies 1,393 known

genes for MCs that are not con-

strained in humans. The majority

(>75%) of these genes underlie MCs

that are inherited in an autosomal

recessive pattern.

The widespread use of ES in general,

and in diagnostic settings in partic-

ular, has highlighted the contribution

of de novo variants (DNVs) to risk of

rare disease in general, and especially

of MCs that markedly reduce fitness.
tics 105, 448–455, September 5, 2019 451



Yet our analysis of OMIM suggests

that each year prior to and since

2010, the majority (�80%–90%; see

Supplemental Materials in Supple-

mental Data) of discoveries of genes

underlying MCs are for MCs that are

typically inherited in an autosomal

recessive, dominant, or X-linked

pattern rather than due entirely to

DNVs (Figure 1C and Figure S5). A

similar estimate (76%) is obtained

from analysis of discoveries of genes

for MCs identified in the course of

diagnostic testing via ES (K. Retterer,

GeneDx, personal communication). In

diagnostic settings, variants in novel

candidate genes for MCs are usually

resolved as pathogenic via collabora-

tion with dedicated discovery efforts

by research programs. Such successful

informal collaboration between in-

dustry and academic gene discovery

efforts represents an opportunity

that could be, if not should be, lever-

aged at scale for mutual benefit (i.e.,

to further accelerate gene discovery

and in turn increase diagnostic rates).

More importantly, such a collabora-

tive effort across diagnostic labs and

researchers could translate into a

big windfall for families with rare

diseases.

Even with an accelerating pace of

gene discovery for MCs, efforts to

find a gene underlying an MC are

successful only about half the time.

This observation underscores the real-

ity that there are myriad factors

limiting the rate of MC gene discovery

using current ES- and NGS-based

approaches. Such limiting factors

include: (1) inability to robustly

predict the impact of missense, syn-

onymous, intronic, splice, and non-

coding variants; (2) limited access to

high-throughput functional valida-

tion of candidate variants; (3) much

slower co-evolution of the infrastruc-

ture and regulatory framework neces-

sary to share genomic data openly

and at scale worldwide (hundreds of

putative gene discoveries are unre-

ported); (4) technical limitations of

approaches based on ES (e.g., identi-

fying indels, copy number variants,

repeat expansions, structural variants,

etc.); and (5) the challenges (insuffi-
452 The American Journal of Human Genetics
cient resources, lack of organized

efforts) of ascertaining and deeply

phenotyping families with high prior-

ity candidate genotypes. The cost and

impact of overcoming each limitation

varies substantially, but to what

extent and under what circumstances

remains a topic of intense investiga-

tion both in the public and private

sectors.

Many of the efforts to further

improve the success of MC gene dis-

covery have focused on application

of new sequencing technologies and

variant calling and/or annotation.

Whole-genome sequencing (WGS),

in particular, has been considered by

many to be the logical tool to sup-

plant ES for MC gene discovery. Yet

to date, WGS has, after excluding cod-

ing, near-splice site, or structural vari-

ants (SVs) overlapping known MC-as-

sociated genes, yielded few discoveries

of novel genes or loci underlying

MCs.19 This is due in part to limited

availability and utility of annotations

for untranslated regions, enhancers,

insulators, silencers, RNA genes, and

microRNAs as well as callers for SVs

and repeat expansions. However, it

also underscores the observation that

the vast majority of known MCs are

caused predominantly by coding vari-

ants with large effect sizes, and both

ES and NGS gene panels already cover

such coding regions robustly. Indeed,

with the exception of repeat expan-

sions, pathogenic non-coding vari-

ants have been reported for only 156

MCs and of these conditions, 150

(�96%) of the genes discovered were

found via variants accessible to ES or

microarrays.19

There are a handful of examples of

successful gene discovery using WGS

to identify pathogenic non-coding

variants when ES failed, and these

can inform judicious use of WGS for

discovery. In virtually every case, the

search space was reduced to a small

fraction of the genome via linkage

analysis, homozygosity mapping, or

identification of shared chromosomal

microdeletions or duplications. For a

small number of recessive MCs, iden-

tification of only one protein-coding

variant led to the search for a non-
105, 448–455, September 5, 2019
coding variant in trans via WGS.20–24

Additionally, most non-coding patho-

genic variants identified to date are

small to moderate-size (e.g., multiple

nucleotides) deletions, insertions,

mobile element, or repeat expansions

and contractions that remove or alter

the sequence of a large portion or all

of a regulatory element,9–13 duplicate

the element in its entirety,25 or trans-

locate it out of its normal sequence

context.26,27 Enrichment for non-cod-

ing SNVs in regulatory regions has

been detected in, for example, devel-

opmental disorders28 and autism,29

but proving the pathogenicity for

any one specific SNV is challenging

because most are unique and alter

non-overlapping bases.

Use of transcriptome sequencing

(RNA-seq) to identify abnormally

spliced transcripts and/or assess tran-

script abundance facilitates identifica-

tion of non-coding variants, deep

intronic splice variants,16–18 and to a

lesser extent, synonymous variants

with unexpected effects on splicing.

However, while useful for diagnosis

or validating effects of variants

detected by ES or WGS, successful ap-

plications of RNA-seq to novel gene

discovery for MCs are currently con-

strained by lack of knowledge of

and/or access to disease-relevant tis-

sue or the expense of creating trans-

differentiated cell lines19,20 from

affected individuals and controls.30

Thus, while WGS may be technologi-

cally superior to ES at detecting non-

coding and structural variants and to

RNA-seq at highlighting pathogenic

variants that alter splicing or

transcript abundance, there is little

evidence to date that the predicted

thousands of currently undiscovered

MCs will be even largely caused by

non-coding and/or deep intronic vari-

ants that can only be detected by

widespread application of RNA-seq

or WGS.

Perhaps the principal bottleneck to

discovering genes underlying MCs is

the lack of meaningful sharing at scale

of genetic data and phenotypic infor-

mation from families with a known

or suspected novel MC. Millions of

people with rare diseases, particularly



children, have undergone targeted ge-

netic testing, and ES and/or WGS has

been performed on hundreds of thou-

sands of them.7,31,32 Yet most of these

results are buried in medical records,

proprietary or restricted-access data-

bases, and scientific papers, and most

are difficult to access, much less

leverage for gene discovery. In the

U.S., institutions that participate

in research and/or clinical care,

including diagnostic labs, must

comply with federal regulations such

as the Health Insurance Portability

and Accountability Act (HIPAA) and

the Common Rule, which place

boundaries, as well as protections, on

use of patient and research participant

data. The ambiguity of these bound-

aries can make navigating regulatory

and privacy issues surrounding

data sharing challenging and expen-

sive, but sharing of de-identified

data (e.g., candidate gene and non-

identifying phenotypic information)

among researchers, clinicians, and sci-

entists in academics and industry is

relatively straightforward. Over the

past decade, a growing number of

web-based platforms and databases

to support data sharing have been

developed and linked to one another

via a federated network called the

MatchMaker Exchange (MME)33 in

order to facilitate matching of candi-

date genes. Matching within and

between nodes of the MME has facili-

tated hundreds of discoveries of novel

genes underlying MCs.

But such sharing doesn’t happen

nearly as often as it could and should.

In some instances, it is fear of non-

compliance with HIPAA or the Com-

mon Rule and the risk of fines,

suspension, etc., a lack of awareness

of the power of sharing, or inaccessi-

bility to platforms for sharing. In

other cases, the intangible incentives

to share are offset by concern that

sharing might result in losing priority

to publish or diminish competitive-

ness for grant funding, which in turn

could adversely affect professional

recognition and career advancement.

Lately, sharing has also been threat-

ened by attempts to monetize the

discovery process by, for example,
commercial start-ups and advocacy

groups who generate or aggregate

data and then market it for profit or

fundraising. Moreover, matching on

candidate genes without additional

data (e.g., phenotype, mode of inheri-

tance, variant) is increasingly ineffi-

cient because even nowadays, most

matches are false positive matches.

This problem will only worsen as the

number of candidate genes shared

across MME approaches all human

genes. Finally, matching does not

ensure public reporting, much less

timely reporting, of the results as

demonstrated by the increasing ratio

of discoveries to publications in the

CMGs, so discoveries can remain un-

known for years and the information

unable to be used by diagnostic labs

and clinicians.

Families with MCs are arguably

eager to share health data34,35 if it

can improve their care or the care of

other families with the same condi-

tion, and when patients share their

own health data online, HIPAA and

the Common Rule do not apply. How-

ever, use of MME is restricted to clini-

cians and researchers who are often

disincentivized to share data with

one another, or who deprioritize it

due to time constraints and the

perception that is unlikely to be of

benefit, and are even less likely to

share it publicly. Over the past several

years, families have increasingly

turned to social media to circumvent

the obstacles that limit data sharing

by clinicians and researchers and to

advertise their child’s health informa-

tion and candidate genes to the public

at large to make themselves more

discoverable. This approach has led

to some notable successes that are

widely cited in the popular press.36

However, most efforts to use social

media to facilitate case-matching fail.

Some families are unable to gain the

attention of suitable researchers and

clinicians, and others lack the exper-

tise to prioritize the information that

should be shared, releasing non-stan-

dardized health and genetic informa-

tion that cannot be easily compared

or interpreted. Newer family facing

platforms (e.g., MyGene2) aim to
The American Journal of Human Gene
increase patient control over their

data and create a public knowledge

base of variant data linked to rare dis-

ease phenotypes in order to promote

and facilitate data sharing directly

from families while still allowing re-

searchers and clinicians to share de-

identified data.

Use of ES- and NGS-based strategies

coupled with phenotype-driven delin-

eation of MCs has brought us within

reach of identifying genes for all

known MCs that remain unsolved.

But importantly, it has also revealed

that the majority of MCs that exist

likely have not yet been delineated

because they are likely not recogniz-

able as discrete entities by commonly

employed clinical phenotyping ap-

proaches. Indeed, genotype-driven

delineation of MCs has rekindled an

emphasis on the need for deep-pheno-

typing in families if we are to achieve

the goal of understanding genome

function and more importantly, its

links to human disease. Moreover,

barring some currently unknown or

unexpected biological mechanism

that underlies the majority of MCs

yet to be delineated, technical innova-

tions will continue to yield only mar-

ginal improvements in rates of gene

discovery. A deeper and more sus-

tained impact on gene discovery for

MCs will likely require a far broader

commitment to more open, simpler,

and more meaningful data sharing

among all stakeholders in research

and clinical care worldwide, as well as

identifying resources to support a

worldwide infrastructure to ascertain,

sequence, and phenotype families

with a broad range of clinical findings.

The return on investment is nothing

short of a keystone in the foundation

of precision genomic medicine.
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Figure S1. Estimated number of gene discoveries per year since 1900.  
From 1900 to 1986, a handful of new MCs were characterized each year, and even fewer 
underlying genes were discovered. Beginning with the introduction of positional cloning in 1986, 
gene discovery for MCs accelerated greatly. 
 

 
Figure S2. Cumulative estimated number of gene discoveries per year since 1986. 
NGS-based approaches (primarily ES) have led to ~36% (1,268 / 3,549) of all reported Mendelian 
gene discoveries. 
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Figure S3. Estimated number of delineated syndromes per year since 1900.  
Historically, particularly prior to the introduction of positional cloning in 1986, all or nearly all 
syndrome delineations were phenotype-driven. Classical syndrome delineation (orange) is 
phenotype-driven and proceeds by identifying multiple individuals with overlapping phenotypes, 
and then discovering the underlying gene. In contrast, in genotype-driven syndrome delineation 
(teal), the underlying (candidate) gene is discovered in an individual with a new phenotype, then 
additional individuals with overlapping phenotype are identified on the basis of the shared gene. 
 

 
Figure S4. Cumulative estimated number of delineated syndromes per year since 1900. 
In total, genotype-driven syndrome delineation has led to the description of 2,023 MCs vs. 3,149 
MCs described via phenotype driven delineation. Ultimately most MCs will be ascertained via 
genotype-driven delineation. 
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Figure S5. Approximate rates of reported gene discoveries for Mendelian conditions, 
delineation of Mendelian conditions, gene discoveries caused primarily by de novo 
variants, and unpublished discoveries by the Centers for Mendelian Genomics over time 
(1900-2017).  
This graph illustrates trends in reported (i.e., published) delineations of new MCs, including the 
so-called “Golden Age” of syndrome delineation in the 1970s, leading to a peak throughout that 
decade. It also shows the impact of technical and methodological advances that fueled gene 
discovery, namely the impact of positional cloning in 1986, development of dense, genome-wide 
linkage maps in the early 1990s, and increasing knowledge via the Human Genome Project 
(1990-2001) of the physical location and sequence content of genes. The latter two made it far 
easier to locate and sequence candidate genes of interest, which facilitated genotype-driven 
syndrome delineation even prior to the introduction of ES-based approaches. Linkage maps and 
sequencing the human genome, made it possible to more efficiently identify and sequence 
candidate genes from the same pathway/gene family as a known gene in a cohort of affected 
individuals not explained by the known gene. The introduction of NGS completed the shift to 
genotype-driven delineation. The pace of discovery of MCs that are seemingly caused 
mostly/entirely by de novo variants took off after microarrays and then NGS made large-scale 
detection of DNVs possible, nevertheless, these MCs account for only a minor fraction of all 
discoveries each year. 
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Figure S6. Approximate number of gene discoveries per year for MCs made by ES/NGS 
versus conventional approaches (including data through the end of 2018).  
This graph is identical to Figure 1B except that it includes reports of gene discoveries through the 
end of 2018 (as cataloged in OMIM as of May 16, 2019). OMIM is still curating the literature for 
gene discoveries published in 2018 so a small incremental increase in the 2018 totals is expected 
as OMIM’s curation efforts lag by roughly ~6 months (personal communication, A. Hamosh).
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Methods 
 
 
Analyses based on OMIM data 
 

All analyses based on OMIM are limited to the text and data recorded in the database’s 
phenotype and gene entries as of February 15, 2019, with the exception of Figure S6 [data 
downloaded May 16, 2019]. Therefore, estimated rates of gene discovery should be interpreted 
as a reflection of the rate at which OMIM curates publications of gene discoveries. OMIM’s 
curation is a manual, human-driven process and thus not able to identify all newly-published gene 
discoveries within a fixed length of time post-publication. Furthermore, no mechanism yet exists 
through which one can directly measure the rates of unpublished discoveries being made (e.g. 
manuscripts in preparation, matches made via MatchMaker Exchange or other matchmaking 
efforts, or discoveries within a single research group). In order to adjust for lag time in curation of 
published gene discoveries by OMIM, the entries assessed in all analyses were limited to those 
with estimated year of discovery or delineation of 2017 or prior with the exception of Figure 2 
(estimation of number of undiscovered Mendelian genes), which used all entries as of the date of 
download. 

 
As shown by a recent analysis1, older legacy entries in OMIM are enriched for MCs that 

are not well-established or supported; nevertheless, some legacy entries still appear to describe 
novel, unexplained conditions, so we continue to include all such entries in these analyses.  
 

Search phrases and patterns were determined after reviewing >50 sample OMIM entries 
for common word/phrase usage. Code for analysis and generating figures is available at 
https://github.com/jxchong/mendelian_commentary.  
 
Inferring the year of gene discovery 
 

Estimated year and method (next-generation sequencing/exome sequencing/genome 
sequencing vs. conventional methods) of gene discovery were extracted from OMIM as previously 
described2.  
 
Inferring the year of and approach to syndrome delineation 
 

The estimated year and approach to (genotype-driven vs. phenotype-driven) of syndrome 
delineation were extracted from text analysis of OMIM as follows. For each OMIM phenotype 
entry in the downloadable file “OMIM.txt.gz”, the earliest year listed in the “Clinical Features” 
section was obtained by searching for in-text citations that matched patterns such as “(19XX)”, 
“(2XXX)”, “In 19XX, McKusick et al.”, “McKusick et al. described in 2XXX”, etc. We assumed that 
the earliest year detected in the Clinical Features section would correspond to either the earliest 
case report of an individual with the associated MC or the actual publication of the syndrome 
delineation. If the estimated year of gene discovery was greater than the estimated year of 
syndrome delineation, we classified the delineation as phenotype-driven; if the estimated year of 
gene discovery was equal or prior to the year of syndrome delineation, we classified the 
delineation as genotype-driven. 
 
Inferring the mode of inheritance of MCs  
 

The mode of inheritance for each MC was obtained from multiple places in the OMIM 
database as not all entries have an official mode of inheritance listed (in Clinical Synopsis: 



Inheritance and/or genemap2.txt’s phenotype name). The “Phenotypes” column in the 
“genemap2.txt” downloadable file was searched for case-insensitive matches to “autosomal 
dominant” (AD), “autosomal recessive” (AR), and “X-linked” and each match was recorded as a 
mode of inheritance for the corresponding MIM phenotype entry. These data were combined with 
modes of inheritance listed in the “Clinical Synopsis: Inheritance section of “OMIM.txt.gz.” 
Additionally, the “Clinical Synopsis: Miscellaneous” section was searched for the presence of the 
phrase “de novo.” 

 
We used additional criteria to narrow down modes of inheritance because some entries 

lack a designation in Clinical Synopsis or genemap2 Phenotypes column. We designated 
phenotypes as likely to be inherited if the genemap2 phenotype name, Clinical Features, 
Mapping, or Molecular Genetics sections of the entry contained one of the following phrases: “x-
generation,” but excluding the phrase “next-generation sequencing” (e.g. “3-generation pedigree” 
or “across four generations”), “linkage analysis”, “linkage mapping”, “lod score”, “lod (“ [e.g., lod 
(3.17)], “point linkage” (e.g. 2-point or multipoint linkage), or “linkage study”. We assumed that 
any autosomal dominant and X-linked entries that mentioned multi-generation pedigrees and/or 
linkage analysis were likely describing a MC that is at least somewhat frequently inherited by an 
affected child from an affected parent. 

 
We designated phenotype entries as likely to be de novo if the entry contained the phrase 

“de novo” in a number of different sections of the OMIM entry (TEXT [introductory summary], 
Molecular Genetics, Clinical Synopsis: Inheritance, or Clinical Synopsis: Miscellaneous); the entry 
was also listed as autosomal dominant or X-linked (consistent with an MC that could be caused 
by de novos in many/most affected individuals); and the phenotype was not categorized as likely 
to be inherited. This enabled us to count conditions that are likely caused by de novo variants and 
are likely not compatible (i.e. phenotype too severe) with being transmitted from an affected 
parent to affected child. 

 
Not all Mendelian gene discoveries have been cataloged in OMIM – in particular, genes 

that were discovered via statistical enrichment/association studies, were published with little or 
no phenotypic details, and no follow-up papers with more detailed phenotype data have been 
published (i.e., the resulting syndrome has yet to be delineated) are typically not included. 
Because most Mendelian gene discoveries discovered via contemporary enrichment studies are 
likely to be de novo, we attempted to assess the proportion of such discoveries that are likely to 
be unrepresented in OMIM. In 2017, the DDD study published 14 genes that achieved genome-
wide significance in their de novo enrichment analysis that they considered to not have been 
previously associated with developmental disorders (DD) with compelling evidence. Of the 14 
genes, nine had entries in OMIM (64%) and were successfully flagged as de novo according to 
our criteria, while five (~36%) did not have an OMIM phenotype entry for a DD (GNAI1, CNOT3, 
MSL3, KCNQ3 (in OMIM but not with a DD phenotype), TCF20). If we use this to crudely 
approximate the number of MCs typically caused by de novo variants, that are not listed in OMIM, 
and were discovered via statistical analyses of ES/GS/NGS in a large cohort study, then 
potentially a total of 565 de novo entries might exist (292 existing de novo entries discovered 
2010-2017/0.64 + 109 entries discovered prior to 2010). This is probably a gross overestimate, 
however, as currently, the vast majority of MCs caused by de novo variants are not identified 
solely by large cohort studies that only report limited phenotypic data (i.e. most such discoveries 
are also delineated in detail in a separate publication), and most large-scale de novo enrichment-
based studies to date each identified a limited number of statistically significant novel Mendelian 
genes. Thus we feel confident that as of when these analyses were conducted, most MCs 
discovered and delineated in a traditional gene discovery publication would be included in OMIM. 



Even if this higher estimate is correct, the % of phenotypes caused by de novo variants would 
only be ~12% overall and up to ~19% of all discoveries between 2010-2018. 

 
 
Estimated number of remaining “unsolved” Mendelian conditions  
 

We created a set of genes depleted of certain functional classes of variation in 
ExAC/gnomAD by selecting four complementary measurements of constraint – Constrained 
Coding Regions (CCRs) 3, Nonsense-Mediated Decay escape intolerance (NMD-)4, loss-of-
function observed/expected upper bound (LOEUF) fraction5, and missense observed/expected5.  

 
CCRs are designed to detect extremely constrained regions within genes (e.g., binding 

pocket or functional domains when the rest of the gene can tolerate variation). NMD- genes are 
relatively depleted for protein truncating variants that are predicted to escape nonsense-mediated 
decay due to their location near the 3’ end of the gene and are potential candidate genes that 
may cause disease via gain of function. LOEUF is an updated successor score to the ExAC pLI 
score (probability of loss of function intolerance) that detects genes that exhibit a deficit of 
predicted loss of function variation and are thus likely to be haploinsufficient. While an updated 
missense constraint-specific score has not yet been described by the gnomAD consortium, the 
same expected/observed upper fraction metric is available for missense variation.  

 
We designated a gene as being “supported by human data” if the gene was included in 

any of the following gene sets:  
(1) >90%ile of CCRs (as advised by the authors);  
(2) in the top 1,996 ranked NMD- gene list;  
(3) in the top 40%ile of LOEUF; or  
(4) in the top 20%ile of missense observed/expected scores.  
 
The 40%ile cutoff was chosen for LOEUF because the gnomAD manuscript demonstrates 

that the enrichment for known Mendelian genes is similar for the 0-40%iles for LOEUF (~20-25% 
of genes in each decile). The fraction that are known Mendelian genes begins to decrease at the 
50% decile, so we chose the 40%ile as a conservative cutoff. Because the missense 
observed/expected score has not yet been fully characterized by the gnomAD consortium, we 
chose the 20%ile as an informal cutoff that replicates the recall of LOEUF -- ~22% of the genes 
in the 0-20%ile of the missense observed/expected metric are known Mendelian genes. These 
cutoffs are still conservative underestimates of the number of genes with evidence for constraint 
according to these metrics. 

 
We designated a human gene as being “supported by mouse data” if at least one abnormal 

phenotype was identified in at least one mutant mouse strain for that gene’s mouse ortholog. We 
downloaded “HMD_HumanPhenotype.rpt” from 
http://www.informatics.jax.org/downloads/reports/index.html#pheno on March 4, 2019. We 
considered abnormal phenotypes to be any entry, including lethality, in the Mammalian Phenotype 
column of this file except MP:0003012 (no phenotypic analysis) and MP:0002873 (normal 
phenotype).  
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