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Syndromic genetic conditions, in aggregate, affect 8% of the 
population1. Many syndromes have recognizable facial fea-
tures2 that are highly informative to clinical geneticists3–5. 
Recent studies show that facial analysis technologies mea-
sured up to the capabilities of expert clinicians in syndrome 
identification6–9. However, these technologies identified only a 
few disease phenotypes, limiting their role in clinical settings, 
where hundreds of diagnoses must be considered. Here we 
present a facial image analysis framework, DeepGestalt, using 
computer vision and deep-learning algorithms, that quanti-
fies similarities to hundreds of syndromes. DeepGestalt out-
performed clinicians in three initial experiments, two with the 
goal of distinguishing subjects with a target syndrome from 
other syndromes, and one of separating different genetic sub-
types in Noonan syndrome. On the final experiment reflect-
ing a real clinical setting problem, DeepGestalt achieved 
91% top-10 accuracy in identifying the correct syndrome on 
502 different images. The model was trained on a dataset of 
over 17,000 images representing more than 200 syndromes, 
curated through a community-driven phenotyping platform. 
DeepGestalt potentially adds considerable value to pheno-
typic evaluations in clinical genetics, genetic testing, research 
and precision medicine.

Timely diagnosis of genetic syndromes improves outcomes10. 
Due to the large number of possible syndromes and their rarity, 
achieving the correct diagnosis involves a lengthy and expensive 
process (the diagnostic odyssey)11. Recognition of nonclassical pre-
sentations or ultrarare syndromes is constrained by the individual 
expert’s prior experience, making computerized systems as a refer-
ence increasingly important.

Computer vision research has long been dealing with facial anal-
ysis–related problems. DeepFace12 showed how deep convolutional 
neural networks (DCNNs) achieved human-level performance on 
the task of person verification on the dataset Labeled Faces in the 
Wild13. Current state-of-the-art systems are trained on large-scale 
datasets, ranging from 0.5 million images14 to 260 million images15. 
Computer-aided recognition of a genetic syndrome with a facial 
phenotype is closely related to facial recognition, but with additional 
challenges, such as the difficulty of data collection and the subtle 
phenotypic patterns of many syndromes. Earlier computer-aided 
syndrome recognition technologies showed promise in assisting cli-
nicians through analysis of patients’ facial images4,7,8. Use in clinical 
settings, in combination with molecular analysis, suggests that such 
technologies complement next-generation sequencing (NGS) anal-
ysis by inferring causative genetic variants from sequencing data9.  

However, most studies focus on distinguishing unaffected from 
affected individuals or recognizing a few syndromes5 using photos 
captured in a constrained manner, rather than addressing the real-
world problem of classifying hundreds of syndromes from uncon-
strained images. Additionally, previous studies have used small-scale 
data for training, typically up to 200 images, which are small for 
deep-learning models. Since no public benchmark for comparison 
exists, it is impossible to compare the performance or accuracy of 
various methods. Supplementary Table 1 compares previous studies 
in terms of number of syndromes and training samples, evaluation 
methods and accuracy.

Here we report on DeepGestalt, the technology powering 
Face2Gene (FDNA Inc.), a community-driven phenotyping plat-
form trained on tens of thousands of patient images and used to 
analyze hundreds of syndromes. It directly uses DCNNs for classifi-
cation and is based on a knowledge transfer model from an adjacent 
domain. DeepGestalt was evaluated on test sets collected from clini-
cal cases and publications. Comparison to human experts was done 
in three different experiments where reference results are available.

Results
Methodological development of DeepGestalt. Given an input 
image, the first step is face detection using a cascaded DCNN-based 
method16. Facial landmarks (Fig. 1a) are detected17 and used to geo-
metrically normalize the face (Supplementary Fig. 1a) and to crop it 
into multiple regions (Fig. 1a). Each region is scaled to a fixed size 
(100 ×​ 100 pixels) and converted to grayscale. Specialized DCNNs 
process the facial regions, predict the probability for each syndrome 
per region and aggregate a Gestalt model for syndrome classifica-
tion. Gestalt refers to the information contained in the facial mor-
phology. All specialized DCNNs were trained in the same manner, 
using the same architecture (Fig. 1b) and optimization procedure. 
The model was initially trained on the Casia-WebFace dataset14 for 
face identification and fine-tuned to the syndromes domain using 
validated patient images (Supplementary Table 2) (Fig. 1a).

DeepGestalt’s performance is evaluated by measuring the top-1, 
top-5 and top-10 accuracy. Top-10 accuracy evaluation emphasizes 
the clinical use of DeepGestalt as a reference tool, where all top syn-
dromes are considered. Where applicable, we report sensitivity and 
specificity. Each of the above is reported with its 95% confidence 
interval (CI) and P value.

Binary classification problem: distinguishing a specific syn-
drome from a set of other syndromes. Many studies on genetic 
syndrome classification deal with binary problems, differentiating 
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unaffected from affected individuals or distinguishing one specific 
syndrome from several others. We performed two binary experi-
ments of the latter type.

The model was trained using 614 Cornelia de Lange syndrome 
(CdLS) images as positive cohort, and 1079 other images as nega-
tive cohort. The test sets contained 23 images of CdLS and nine of 
non-CdLS patients4 (Supplementary Table 3). DeepGestalt achieved 
an accuracy of 96.88% (95% CI, 90.62–100%), sensitivity of 95.67% 
(95% CI, 87–100%) and specificity of 100% (95% CI, 100–100%) 
(for all binary experiments, accuracy is top-1 accuracy). We com-
pared this result with previous studies on the same test set (Table 1). 
Basel-Vanagaite et al.4 reported an accuracy of 87% and compared 
their method’s performance with that of Rohatgi et al.18, where the 

same images were assessed by 65 experts, achieving 75% accuracy. 
We measured statistical significance using the population propor-
tions test and calculated P values of 0.01 and 0.22 for the results 
of DeepGestalt and Basel-Vanagaite et al.4, respectively, versus the 
baseline of Rohatgi et al.18.

For a binary experiment on distinguishing patients with 
Angelman syndrome from other syndromes, the model was 
trained on 766 Angelman syndrome images as positive cohort 
and 2,669 images as negative cohort. In a survey by Bird et al.19, 20 
dysmorphologists examined 25 patient images for Angelman syn-
drome. The test set included 10 patients with Angelman syndrome 
and 15 with other syndromes (Supplementary Table 4). Bird et al.19  
reported an accuracy of 71% (range, 56−​92%), sensitivity of 
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Fig. 1 | DeepGestalt: high-level flow and network architecture. a, A new input image is first preprocessed to achieve face detection, landmarks detection 
and alignment. After preprocessing, the input image is cropped into facial regions. Each region is fed into a DCNN to obtain a softmax vector indicating its 
correspondence to each syndrome in the model. The output vectors of all regional DCNNs are then aggregated and sorted to obtain the final ranked list of 
genetic syndromes. The histogram on the right-hand side represents DeepGestalt’s output syndromes, sorted by the aggregated similarity score. b, The 
DCNN architecture of DeepGestalt. A snapshot of an image passing through the network. The network consists of ten convolutional layers, and all but 
the last are followed by batch normalization and a rectified linear unit (ReLU). After each pair of convolutional (CONV) layers, a pooling layer is applied 
(maximum pooling after the first four pairs and average pooling after the fifth pair). This is then followed by a fully connected layer with dropout (0.5) and 
a softmax layer. A sample feature map is shown after each pooling layer. It is interesting to compare the low-level features of the first layers with respect 
to the high-level features of the final layers; the latter identify more complex features in the input image, and distinctive facial traits tend to emerge while 
identity-related features disappear. The photograph is published with parental consent.
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60% (range, 30−​100%) and specificity of 78% (range, 47–100%).  
On the same test set, DeepGestalt achieved an accuracy of 92% 
(95% CI, 80–100%), sensitivity of 80% (95% CI, 50–100%) and 
specificity of 100% (95% CI, 100–100%) (Table 1). The P value is 
0.05, calculated with the population proportions test, versus the 
baseline of Bird et al.19.

Specialized Gestalt model: classifying different genotypes of the 
same syndrome. DeepGestalt may be used for small-scale prob-
lems, with only a few images per cohort. Here, the goal is to dis-
tinguish between molecular subtypes of a heterogeneous syndrome 
resulting from different mutations affecting the same pathway. 
Allanson et al.20 explored whether dysmorphologists can predict 
the correct Noonan syndrome–related genotype from the facial 
phenotype. They presented 81 images of patients with Noonan syn-
drome with mutations in PTPN11, SOS1, RAF1 or KRAS to two 
dysmorphologists and concluded that facial phenotype alone was 
insufficient to predict the genotype20.

We examined whether DeepGestalt performs better at a simi-
lar task using images of patients with Noonan syndrome due to a 
mutation in PTPN11, SOS1, RAF1, RIT1 or KRAS. To train this 
model, we used 278 Noonan syndrome images curated from articles 
and clinical data. To test the performance, we composed a set of 25 
images, 5 images per gene (class), excluded from the training set 
and curated from published articles20–25 (Supplementary Table 5). 
Figure 2a shows composite photos created by averaging the training 
images, illustrating the general appearance of each cohort.

The Specialized Gestalt Model is a truncated version of 
DeepGestalt, predicting only the five desired classes with a top-1 
accuracy of 64% (95% CI, 44–84%) (Fig. 2b), superior to the ran-
dom chance of 20%. A permutation test yields a P value lower  
than 1 ×​ 10−5.

DeepGestalt performs facial Gestalt analysis at scale. A multi-
class Gestalt model trained on a large database of 17,106 images of 
diagnosed cases spanning 216 distinct syndromes (Supplementary 
Table 2) was evaluated on two test sets: (1) a clinical test set of 502 
patient images of cases submitted and solved over time by clinical 
experts; and (2) a publications test set of 329 patient images from 
the London Medical Databases26, a resource of photos and informa-
tion about syndromes, genes and clinical phenotypes that is acces-
sible through Face2Gene Library.

DeepGestalt uses an aggregation of facial regions to improve 
performance and robustness. To examine how each region contrib-
utes to the final model, we evaluated the performance on both test 
sets for each region separately and in comparison to the aggregated 
model. The aggregated model performed better than each separate 
component (Table 2).

DeepGestalt achieved a top-10 accuracy of 90.6% (95% CI, 
88–93%) on the clinical test set and 89.4% (95% CI, 86–92.7%) 

on the publications test set. For patients with more than one 
frontal image, random selection of one image per patient led 
to similar results with very small variance. The top-5 and top-1 
accuracy for the clinical test set was 85.4% (95% CI, 82.3–88.4%) 
and 61.3% (95% CI, 57.2–65.5%), respectively, and for the pub-
lications test set 83.2% (95% CI, 79–87.2%) and 68.7% (95% CI, 
63.52–73.55%), respectively.

The permutation test for all experiments yielded a P value lower 
than 1 ×​ 10−6.

a KRAS PTPN11 RAF1 SOS1 RIT1

b Predicted

PTPN11 KRAS SOS1 RAF1 RIT1
A

ct
ua

l

P
T
P
N
11

K
R
A
S

S
O
S
1

R
A
F
1

R
IT
1

5.0

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

112 1 0

014 0 0

500 0 0

001 3 1

002 0 3

Fig. 2 | Composite photos and test set results of the Specialized Gestalt 
Model. a, Composite photos of patients with Noonan syndrome with 
different genotypes show subtle differences, such as less prominent 
eyebrows in individuals with a SOS1 mutation, which might reflect the 
previously recognized sparse eyebrows as an expression of the more 
notable ectodermal findings associated with mutations in this gene. The 
numbers of images used to create the composite photo for KRAS, PTPN11, 
RAF1, SOS1 and RIT1 are 34, 123, 21, 54 and 46, respectively. b, Test set 
confusion matrix for the Specialized Gestalt Model. Rows indicate the 
diagnosed gene, while columns indicate the model’s predicted gene. 
The value in each cell is the number of images with the same gene and 
prediction. The diagonal represents the true positive predictions.

Table 1 | Results comparison for the two binary experiments

Experiment Method Accuracy (%) (95% 
CI)

Sensitivity (%) (95% 
CI)

Specificity (%) (95% 
CI)

P value

CdLS Rohatgi et al.18 75 (NA) – – –

CdLS Basel-Vanagaite et al.4 87 (NA) – – 0.22

CdLS DeepGestalt 96.88 (90.1–100) 95.67 (87–100) 100 (100–100) 0.01

Angelman syndrome Bird et al.19 71 (NA) 60 (NA) 78 (NA) –

Angelman syndrome DeepGestalt 92 (80–100) 80 (50–100) 100 (100–100) 0.05

The results of detecting Cornelia de Lange syndrome (CdLS) patients using a sample size of n =​ 32 independent images are reported on the top three rows. The results of detecting Angelman syndrome 
patients using a sample size of n =​ 25 independent images are reported on the bottom two rows. To produce the CI values, we used the percentile bootstrap method with 10,000 independent experiments. 
We measured statistical significance using a two-sided population proportions test and calculated a P value. For CdLS the P value is a result for DeepGestalt and Basel-Vanagaite et al.4 versus the baseline 
of Rohatgi et al.18. For Angelman syndrome, the P value is a result for DeepGestalt versus the baseline accuracy of Bird et al.19. NA indicates not available where CI calculation was not possible.
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Discussion
We present a facial analysis framework for genetic syndrome  
classification called DeepGestalt. This framework leverages deep-
learning technology and learns facial representation from a large-
scale face-recognition dataset, followed by knowledge transfer to 
the genetic syndrome domain through fine-tuning.

DeepGestalt is able to generalize for different problems, as dem-
onstrated on binary models for CdLS and Angelman syndrome, for 
which its performance surpassed that of human experts. It can be 
optimized for specific phenotypic subsets, as shown on a Specialized 
Gestalt Model focused on identifying the correct facial phenotype 
of five genes related to Noonan syndrome, allowing geneticists to 
investigate phenotype–genotype correlations. DeepGestalt’s perfor-
mance on hundreds of genetic syndromes characterized by unbal-
anced class distributions, as evaluated on two external test sets 
wherein 90% of cases the correct syndrome appeared in the top 
10, suggests that this technology can highlight possible diagnostic 
direction in clinical practice. The common clinical practice is to 
describe the patient’s phenotype in discrete clinical terms27 and to 
use semantic similarity search engines for syndrome suggestions28. 
This approach is subjective and depends greatly on the clinician’s 
phenotyping experience. Adding an automated facial analysis 
framework to the clinical workflow could achieve better syndrome 
prioritization and diagnosis.

DeepGestalt, like many artificial intelligence systems, cannot 
explicitly explain its predictions and provides no information about 
which facial features drove the classification. To address this, a heat-
map visualization shows the goodness-of-fit between areas of the 
individual image and each suggested syndrome, achieved by back-
propagating the information through the DCNN to the input image 
(Supplementary Fig. 2). While it is possible to calculate ratios from 
the 130 detected landmarks, such as that between inner and outer 
canthal distance defining hypertelorism, this is not an intrinsic part 
of DeepGestalt.

Given the assumption underlying the clinical use of DeepGestalt 
that the patient has some syndrome, one scientific question not 
included here is the ability to determine whether a subject has a 
genetic syndrome. Such comparisons have been previously con-
ducted429,30. The results in this report are limited to patients with 
certain syndromes and, therefore, are not transferable to a test set 
including unaffected individuals.

A limitation of this study is the lack of comparison to other meth-
ods or human experts in some experiments. Previous work in this 
field lacks large datasets to allow fair comparison. We had access to 
small benchmarks in the two binary experiments and the special-
ized Gestalt experiment, where 25−​32 images were used. To enable 
comparison in future studies, the publications test set is available for 
research (Supplementary Table 6).

DeepGestalt, a form of next-generation phenotyping technol-
ogy31, assists with syndrome classification. Similar to genotypic 
data, phenotypic data are sensitive patient information, and dis-
crimination based thereon is prevented by the Genetic Information 
Nondiscrimination Act. Unlike genomic data, facial images are eas-
ily accessible. Payers or employers could potentially analyze facial 
images and discriminate based on the probability of individuals 
having pre-existing conditions or developing medical complica-
tions. Effective monitoring strategies mitigating abuse may include 
the addition of a digital footprint through blockchain technologies 
to applications using DeepGestalt.

The increased ability to describe phenotype in a standard-
ized manner enables identification of new genetic syndromes by 
matching undiagnosed patients sharing a similar phenotype. We 
believe that coupling of automated phenotype analysis with genome 
sequencing data will enable improved prioritization and interpreta-
tion of gene variant results, and may become a key factor in preci-
sion medicine.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of data availability and asso-
ciated accession codes are available at https://doi.org/10.1038/
s41591-018-0279-0.
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Methods
Ethics statement. The authors affirm that human research participants provided 
informed consent for publication of the images in Fig. 1 and Supplementary  
Figs. 1 and 2.

Study approval. This paper describes studies governed by the following 
Institutional Review Board (IRB) approval: Nemours Children’s Health System, 
DE, USA (IRB no. 2005-051); Charité–Universitätsmedizin Berlin, Germany 
(EA2/190/16); Rady Children’s Hospital, San Diego, CA, USA (31542 and 091451); 
Beilinson Rabin Medical Center, Israel (0114-17); and UKB Universitätsklinikum 
Bonn, Germany (Lfd.Nr.386/17). The authors have obtained patient consent, where 
applicable, per the respective IRB.

The building blocks of the technology behind DeepGestalt. We detail our 
image-preprocessing pipeline, phenotype extraction and syndrome classification 
methods, datasets used, training details, evaluation protocol and statistical analysis. 
Typically, facial images were captured by clinicians during patient visits using 
consumer cameras, usually smartphone cameras. There are no specific hardware 
requirements. Following upload, image quality is assessed by whether a frontal face 
can be detected or not.

From an end-to-end perspective, our goal is to achieve a function F(x), which 
maps an input image x into a list of genetic syndromes with a similarity score per 
syndrome. When sorted by this Gestalt score, the top listed syndromes represent 
those with the most similar phenotype (Fig. 1a).

Image preprocessing. Our model is designed for real-world uncontrolled 2-D 
images. The first step is to detect a patient’s face in an input image. Since real 
clinical images have a large variance due to face size, pose, expression, background, 
occlusions and lighting, a robust face detector is needed in order to identify a 
valid frontal face. We adopt a deep-learning method, based on a DCNN cascade, 
proposed in ref. 16 for face detection in an uncontrolled environment. We adjust 
this method to fit our needs and operate optimally on images of children with 
genetic syndromes, in order to identify a frontal face from the image background.

We then detect 130 facial landmarks on the patient’s face (Fig. 1a). This 
landmarks detection algorithm works in a chain of multiple steps, starting from 
a coarse step of identifying a small number of landmarks up to a more subtle 
detection of all landmarks of interest17.

The resulting face and landmarks detected are first used to geometrically 
normalize the patient’s face. The alignment of images reduces the pose variation 
among patients and shows improved performance on recognition tasks such as face 
verification32. An example of these steps is presented in Supplementary Fig 1.

The aligned image and its corresponding facial landmarks are then processed 
through a regions generator, which creates multiple predefined regions of interest 
from the patient’s face. As illustrated in Fig. 1a, the different facial crops contain 
holistic face crops and several distinct regional crops which contain the main 
features of the human face, including the eyes, nose and mouth. The final step 
in the preprocessing stage is to scale each facial cropped region to a fixed size of 
100 ×​ 100 pixels and convert it to grayscale.

Phenotype extraction and syndromes classification. DeepGestalt uses DCNNs, 
which belong to a type of machine-learning techniques that are composed of 
interconnected data units, known as artificial neurons. Each of these neurons 
has its own specialized knowledge and shares information with other neurons. 
Neurons are organized in stacked layers from input to output, where each layer’s 
output is the following layer’s input. Each layer is typically also followed by a 
nonlinear step (a sigmoid function, for example). The layers closer to the input 
extract low-level information, such as edges and corners from images, whereas 
layers closer to the output usually aggregate information from previous layers into 
more complex features. This structure allows the network to extract information 
from the input for a specific objective function (classification or other). Each layer’s 
parameters (weights) are initialized as random and updated incrementally while 
using training data samples, where the true class or value is known. This process 
repeats until convergence (typically using the backpropagation algorithm). Given a 
large and sufficiently variable training set, these networks learn a generalizable and 
powerful model to use for test images, where the label is unknown. In a DCNN, 
some layers perform a convolution kernel operation on their input layer, which was 
shown to be an effective way to extract information from images.

In order to mitigate the main challenge of our specific problem, a small 
training database with unbalanced classes, we train the DeepGestalt model in two 
steps. First, we learn a general face representation and then fine-tune it into the 
genetic syndromes classification task.

To learn the baseline facial representation, we train a DCNN on a large-scale 
face identity database. Our backbone architecture is based on that suggested by 
Yi et al.14 and is illustrated in Fig. 1b. We train separately for each facial crop, and 
combine the trained models to form a robust facial representation.

Once the general face representation model is obtained, we fine-tune  
the DCNN for each region with a smaller-scale phenotype dataset for the  
task of syndrome classification. In practice, this step acts as a transfer learning  
step between a source domain (face recognition) and a target domain  

(genetic syndromes classification)33,34. Effectively, we use the powerful face 
recognition model for face representation (which performs comparably to the 
state-of-the-art results on the Labeled Faces in the Wild benchmark13), and train 
the model to classify different genetic syndromes rather than classifying identities.

We use the different facial regions, both as expert classifiers and as an ensemble 
of classifiers35,36. Each region’s specific DCNN separately makes a prediction, and 
these are combined by averaging the results and producing a robust Gestalt model 
for a multiclass problem (Fig. 1a).

At the time of real clinical use, an image of a patient that has not been used 
during training is processed through the described pipeline. The output vector is a 
sorted vector of similarity scores, indicating the correlation of the patient’s photo to 
each syndrome supported in the model.

In order to better understand the predictions made by DeepGestalt, we create a 
heatmap describing the spatial correlation between the input image and any chosen 
syndrome. This is done by backpropagating the information from the output of 
one of the specialized DCNNs and visualizing the most correlative areas in the face 
with respect to a specific syndrome, as done in ref. 37 (Supplementary Fig. 2).

Datasets. In order to train the model for face recognition, the publicly available 
CASIA WebFace dataset14, which contains 494,414 images from 10,575 different 
subjects, is aligned, scaled and cropped, as described above. In order to fine-tune 
the networks to capture phenotypic information, we used clinical data, including 
facial images, uploaded to Face2Gene.

In this dataset, the diagnosis of cases is based on users’ annotation, and  
further validation of these diagnoses is not possible due to strict privacy rules. 
For training we use a snapshot of the dataset, supporting 216 different syndromes 
and using 17,106 images of 10,953 subjects (mean and s.d. of 1.56 ±​ 1.70 images 
per subject, median value of 1) derived from the full set of images in the current 
database (see Supplementary Table 2 for demographic and clinical information 
about the dataset).

We use only cases that have been either clinically or molecularly diagnosed 
by relevant healthcare professionals, and automatically exclude images of low 
resolution and those where no frontal face was detected. This database is exposed 
to annotation errors. However, we believe that the DeepGestalt framework is able 
to generalize well even when errors in training exist. We assume that the presence 
of such mistakes is small and is not creating a large bias in the learned model. 
Other publications in deep learning also support a similar bias assumption38.  
For system evaluation, we built two test sets:

	1.	 Clinical test set. Within a certain period of time, we sampled all diagnosed 
clinical cases of any of the syndromes supported at the time by DeepGestalt 
in Face2Gene. We removed images that were part of our training set and 
ignored duplicate images. In order to maintain similarity to clinical usage, no 
exclusions based on age or ethnicity were performed. When building the test 
set, we made sure that all images of each subject were in either the training set 
or the test set. We ended up with 502 images covering 92 different syndromes. 
The test set is skewed towards ultrarare syndromes, 65% of the syndromes 
are present in only 1 to 5 images and 35% in 6 to 42 images. This results in a 
median value of 4 and average of 5.46 images per syndrome. This distribution 
of patients and syndromes mirrors the prevalence of rare syndromes and is 
therefore a representative test set for genetic counseling (Supplementary Table 
2 for demographic and clinical information about the dataset).

	2.	 Publications test set. We composed a new test set of 329 images covering 93 
syndromes, published with the appropriate consent in the London Medical 
Databases (https://www.face2gene.com/lmd-history/)26. A complete list of 
links to images and relevant annotations is provided in Supplementary Table 6.

In order to create a high-quality test set, we applied a set of data-pruning rules 
on the full London Medical Databases dataset of thousands of images. We excluded 
images with no frontal face, images of bad quality or where the subject was under 
1 or over 18 years old, and images where the subject was occluded (wearing 
glasses for example). In this test set, 80% of the syndromes presented in only 1 to 
5 images and 20% in more than 6, with a median of 2 and mean of 3.54 images per 
syndrome (see Supplementary Table 2 for demographic and clinical information 
about the dataset).

To comply with high standards of security and privacy, a fully automated 
processing system is used. Images are automatically processed within the same 
environment as they were uploaded by users, maintaining the privacy and security 
of those images. In order to evaluate performance, only final results are reported.

Training. For each facial region, we train a face recognition DCNN using the 
large-scale face recognition dataset previously described. The training dataset is 
randomly split into training (90%) and validation (10%). The region’s networks 
are then fine-tuned for the genetic syndromes classification task. The DCNN 
architecture is similar to that described14 but with several modifications, including 
the addition of batch normalization39 layers after each convolutional layer (Fig. 1b).

The training is done using Keras40 with TensorFlow41 as the backend. Baseline 
model training uses He Normal Initializer42 weight initialization, which produced 
superior results compared to other known initializations. The optimization process 
uses Adam43, with an initial learning rate of 1 ×​ 10−3, using a cross-entropy loss 
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function. After 40 epochs (an epoch is one pass of training on the full dataset), 
we continue training the network for an additional 10 epochs using Stochastic 
Gradient Descent (SGD) with a learning rate of 1 ×​ 10−4 and a momentum of 0.9.

In the fine-tuning phase, we replace the final layer output to match the number 
of syndromes in training. We found that the initialization for the fine-tuned layer 
is very important, and the best results are achieved when using a modified version 
of Xavier Normal Initializer44. We experimented with different scales of Xavier 
Normal Initializer and found that the best result was with a scale of 0.3.

The fine-tuning optimizer is SGD with a learning rate of 5 ×​ 10−3 and a 
momentum of 0.9. No weight decay or kernel regularization is used, since we found 
that the addition of batch normalization39 to the original architecture14, which also 
includes dropout (we set the rate to 50%), performed better.

Augmentation was shown to be significantly important. Each region is 
randomly augmented by rotation with a range of 5 degrees, small vertical 
and horizontal shifts (shift range of 0.05), shear transformation (shear range 
of 5π​ / 180) and random zoom (zoom range of 0.05) horizontal flip. Without 
augmentation, training quickly overfitted, especially on the non-full-face regions.

In conclusion, each region DCNN is independently trained with 50 epochs for 
the face recognition task and an additional 500 epochs for the fine-tune step.

Evaluation. In the binary case, we measure the model’s performance using 
top-1 accuracy (the percentage of cases where the model predicted the correct 
syndrome as the first result). We also measure the sensitivity (percentage of 
correctly predicted positive cohort cases from all positive cohort cases) and 
specificity (percentage of correctly predicted negative cohort cases from all 
negative cohort cases) of the model. The statistical significance of the comparison 
to human predictions is measured with the P value, calculated using the population 
proportions test.

In the multi-class case we measure top-K accuracy, where K =​ 1, 5 or 10 (the 
percentage of images where the model predicted the correct syndrome within 
the top 1, 5 or 10 results out of 216 possible syndromes). In order to measure the 
statistical significance of our results for an unbalanced multiclass problem, we use 
a permutation test.

Statistical analysis. All values are reported with their 95% CI, calculated using the 
percentile bootstrap method45.

For the binary experiments (CdLS and Angelman syndrome), when comparing 
our experiments to experts’ performance or previous studies, we measured 
statistical significance using the P value with the two-sided population proportions 
test. This test measures the difference between two proportions on a single binary 
characteristic. The test’s result is a Z-score and the associated P value, which is 
subjected to a null hypothesis significance test.

For the multiclass experiment, we derive the statistical significance using a 
permutation test, by measuring the distribution of the test set accuracy statistic 
under the null hypothesis. We randomly permute the test set labels 1 ×​ 106 times over 
the test data images, and calculate the top-K accuracy for each of the permutations. 
This allows us to sample the accuracy distribution and to calculate its P value.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. DeepGestalt is a proprietary framework. While its source code 
cannot be shared, the framework is accessible for use by healthcare professionals 
free of charge in Face2Gene (www.face2gene.com).

Data availability
The data that support the findings of this study are divided into two groups, 
published data and restricted data. Published data are available from the  
reported references and also in Supplementary Table 6. Restricted data are  
curated from Face2Gene users under a license and cannot be published, to  
protect patient privacy.
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    Experimental design
1.   Sample size

Describe how sample size was determined. Multiple experiments are described in this paper:  
 
Binary Gestalt Model, CDLS -  
the test set size of N=32 frontal facial images is based on the publication (reference 4) in 
order to compare to the same benchmark, as published in previous work;  
 
Binary Gestalt Model, Angelman -  
test set size of N=25 is based on publication (reference 56) in order to compare to the same 
benchmark, as published in previous work;  
 
Specialized Gestalt Model, Noonan -  
test set size N=25 sampled from references (57, 58, 59, 60 , 61, 62) making sure samples 
were not used in the train sets; considering the limited available data in previous publications 
(57, 58, 59, 60 , 61, 62) we allocated 5 representative images per class.  
 
Multi-class Gestalt model -  
test set size of N=502, was sampled from real clinical cases submitted to the Face2Gene 
application, described in the Methods section. Within a certain period of time, we sampled all 
real diagnosed clinical cases of any of the syndromes supported at the time by DeepGestalt in 
Face2Gene. We removed images that were part of our training set and ignored duplicate 
images. In order to maintain similarity to clinical usage, no exclusions based on age or 
ethnicity were performed. When building the test set, we made sure that all images of each 
subject are either in the training set or in the test set. We ended up with 502 images covering 
92 different syndromes. 
In addition we sampled N=329 images from the London Medical Database, as described in 
the supplementary materials. In order to create a high quality test set, we applied a set of 
data pruning rules on the full LMD dataset of thousands of images. We excluded images with 
no frontal face, images of bad quality, or where the subject is under 1 or over 18 years old, 
images where the subject is occluded (wearing glasses for example), etc. Additional 
information can be found in the Methods section.

2.   Data exclusions

Describe any data exclusions. Exclusion criteria 1 - All data that was used to test the system in the different experiments, 
was excluded from the training sets.  
Exclusion criteria 2 - We use only cases that have been either clinically or molecularly 
diagnosed by relevant healthcare professionals 
Exclusion criteria 3 -  automatically exclude images of low resolution and images where no 
frontal face was detected. 

3.   Replication

Describe the measures taken to verify the reproducibility 
of the experimental findings.

In order to reproduce all experiments described in this paper we created a snapshot of the 
data, code and models used, including instructions for the evaluation protocol. More 
specifically, we use version control tools (Git) and docker images to make sure that our 
experiments are reproducible. In addition, to allow a reproducible research, we composed a 
new test set of 329 images covering 93 syndromes, published in the London Medical 
Database. All attempts at replication were successful.

4.   Randomization

Describe how samples/organisms/participants were 
ll d l

Multi-class Gestalt model - During a period of several weeks, we sampled all diagnosed real 
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Describe how samples/organisms/participants were 
allocated into experimental groups.

clinical cases of any of the 216 syndromes supported at the time by DeepGestalt in the 
Face2Gene application. This process included verification that the sampled images were not 
part of the training images , remove duplicates etc. As described in sub section C (Datasets) 
within the Online Methods section. The test set is skewed towards ultra-rare syndromes, 65% 
of the syndromes are present in only 1 to 5 images and 35% in 6 to 42 images. This results in 
a median value of 4 and average of 5.46 images per syndrome. This distribution of patients 
and syndromes mirrors the prevalence of rare syndromes and is, therefore, a representative 
test set for genetic counseling.

5.   Blinding

Describe whether the investigators were blinded to 
group allocation during data collection and/or analysis.

To evaluate our machine learning algorithms in each experiment , we defined a blind test set. 
Where possible we used external test sets from publications, as described in three 
experiments (CDLS, AS and Noonan Syndrome). In the Multi-class Gestalt model, we used a 
blind test set composed of images submitted to the Face2Gene application. The training and 
optimization processes were blind to the test sets.

Note: all in vivo studies must report how sample size was determined and whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or in the 
Methods section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same 
sample was measured repeatedly

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

Test values indicating whether an effect is present 
Provide confidence intervals or give results of significance tests (e.g. P values) as exact values whenever appropriate and with effect sizes noted.

A clear description of statistics including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars in all relevant figure captions (with explicit mention of central tendency and variation)

See the web collection on statistics for biologists for further resources and guidance.

   Software
Policy information about availability of computer code

7. Software

Describe the software used to analyze the data in this 
study. 

The DeepGestalt model, used in this study, is available through the Face2Gene application, 
http://face2gene.com. The access to the published dataset is available through the same 
application, as described in the supplementary materials.

For manuscripts utilizing custom algorithms or software that are central to the paper but not yet described in the published literature, software must be made 
available to editors and reviewers upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). Nature Methods guidance for 
providing algorithms and software for publication provides further information on this topic.

   Materials and reagents
Policy information about availability of materials

8.   Materials availability

Indicate whether there are restrictions on availability of 
unique materials or if these materials are only available 
for distribution by a third party.

No unique materials were used.

9.   Antibodies

Describe the antibodies used and how they were validated 
for use in the system under study (i.e. assay and species).

No antibodies were used.
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10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. No eukaryotic cell lines were used.

b.  Describe the method of cell line authentication used. No eukaryotic cell lines were used.

c.  Report whether the cell lines were tested for 
mycoplasma contamination.

No eukaryotic cell lines were used.

d.  If any of the cell lines used are listed in the database 
of commonly misidentified cell lines maintained by 
ICLAC, provide a scientific rationale for their use.

No commonly misidentified cell lines were used.

    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide all relevant details on animals and/or 
animal-derived materials used in the study.

No animals were used.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population 
characteristics of the human research participants.

The covariate-relevant population description for three of the four experiments we used data 
published by others and thus appears in the relevant references.  For the Multi-class Gestalt 
model experiment, the data was sampled from real clinical cases submitted to the Face2Gene 
application and used in a blind manner. The covariate-relevant population description for 
three out of the four experiments were published by others and appears in the relevant 
references. For the Multi-class Gestalt model experiment, the data was sampled from real 
clinical cases submitted to the Face2Gene application and used in a blind manner. Covariate 
information, when available, can be found in the supplemental materials. Following is a brief 
description of subjects used for training: Age-group:  0-12 (~47%), 12-above (~15%), the 
remainder, unreported. Sex: males (~50%), women (~40%) the remainder unreported. 
Diagnosis type: ~42% molecularly diagnosed. Ethnicity: Caucasian (~43%), different ethnicities 
(~16%), the remainder unreported. 
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