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Women’s opportunities have been profoundly 
altered over the past century by reductions in 
the social and structural constraints that lim-
ited their access to higher education. Did the 
constraints that limited women’s educational 
attainment manifest as a suppressing influ-
ence on genetic indicators of potential? If so, 
did equalizing opportunity mean equalizing 
the role of genetics? Examining gene-
environment interplay in this way can help 
reveal more precisely how gender inequalities 
in educational outcomes have changed over 
time, and how the influence of individual 
traits on attainments is shaped by socially 
contingent environments.

Past empirical approaches, such as con-
ventional twin studies, have been limited in 
their ability to examine gene-environment 
interplay, but the development of a polygenic 
score for educational attainment provides 
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social scientists with a more direct tool to 
interrogate how social conditions shape 
genetic influence. In this article, we utilize 
three cohort studies: the Wisconsin Longitu-
dinal Study (WLS; birth years 1939 to 1940), 
the Health and Retirement Study (HRS; birth 
years 1931 to 1956), and the National Longi-
tudinal Study of Adolescent Health (Add 
Health; birth years 1975 to 1982). We look at 
whether gender moderates the relationship 
between a polygenic score for educational 
attainment and educational outcomes, not 
only across the three cohorts, but also within 
the WLS cohort, as women experienced vary-
ing structural and social constraints that 
shaped their schooling patterns over their life 
course. Prior work, particularly using poly-
genic scores, has paid little attention to either 
gender or the life course. We demonstrate that 
genetic influence must be understood in the 
context of history and cohort, the life course, 
and social structures like gender. The influ-
ence of genetics on educational attainment 
cannot be understood outside of this context.

Perspectives on Genes, 
Environment, and 
Educational Attainment

We outline contrasting perspectives on the 
relationship between genes, environment, and 
educational attainment. We do so to provide a 
heuristic for understanding the assumptions 
that underlie the existing empirical work 
devoted to this broader topic, as well as more 
broadly the dynamics of gene-environment 
interplay. Our point is not to put particular 
scholars or particular disciplines in one box 
or another, as empirical evidence continues to 
accrue and perspectives change as that evi-
dence accrues.1

Genes, Environment, and 
Educational Attainment: “Strong” 
Genetic Influences

Most research involving genetics and educa-
tional attainment is rooted in a perspective 

that assumes, tacitly or explicitly, that any 
genetic influence is separable from that of 
environments: nature and nurture can be dis-
entangled (Plomin 2018). Within economics 
and sociology, a robust literature seeks to 
separate genetic and environmental influ-
ences as a way of clarifying the role of the 
latter in educational differences. The popular-
ity of sibling models (e.g., Conley and Ben-
nett 2000; Haas and Fosse 2008; Hauser and 
Wong 1989; Warren and Hauser 1997; War-
ren, Sheridan, and Hauser 2002) and the 
growing use of “exogenous” shocks, such as 
changes in mandatory schooling laws (e.g., 
Black, Devereux, and Salvanes 2008; Gly-
mour et  al. 2008; Oreopoulos 2006), reflect 
the underlying assumption among many 
social scientists that genetic differences may 
influence educational outcomes. The goal 
with this modeling is to rule out genetics as an 
explanation. Although many of these scholars 
would have tacitly acknowledged the likeli-
hood of gene-environment interactions, they 
lacked the tools to test them.

While this segment of the social sciences 
employed empirical approaches to rule out 
genetic explanations, in order to specify envi-
ronmental influences on educational attain-
ment, another segment, behavioral genetics, 
attempted to demonstrate what Turkheimer 
(2016:25) calls “strong” genetic explanations, 
specifically that “an observed phenotypic dif-
ference is a manifestation of a specific latent 
genetic mechanism.” Turkheimer further 
argues that “the history of behavior genetics 
can be seen as an extended attempt to proceed 
from weak to strong genetic explanation.” 
Empirically, this involved using twin models 
to estimate heritability: that is, the fraction of 
the variance in a trait, like educational attain-
ment, due to genetic variation between indi-
viduals in the population. Indeed, until the 
past few years, twin studies have provided 
what evidence we have regarding the influ-
ence of genetic factors on educational attain-
ment (for a review, see Branigan, McCallum, 
and Freese 2013). On average, these studies 
show that approximately 40 percent of the 
variance in educational attainment can be 
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accounted for by genetics (Branigan et  al. 
2013).

To be clear, “strong” genetic explanations 
for educational attainment do not rule out envi-
ronmental influences (Krapohl and Plomin 
2016; Plomin 2018; Scarr and McCartney 
1983; Turkheimer 1998). In addition to the 
possibility of independent environmental 
influences acknowledged by this perspective, a 
key assumption about environment is that 
one’s genes can influence the environment in 
which one lives, which in turn influences edu-
cational attainment (e.g., if genetics make it 
harder to read, as is the case with dyslexia, one 
reads less) (Jencks 1980). Indeed, this perspec-
tive assumes this may explain a large part of 
the “effect” of environment (Kong et al. 2018; 
Plomin 2018; Scarr and McCartney 1983).

Another embedded assumption in this per-
spective is an “atomistic” view of environment—
what Boardman, Daw, and Freese (2013) call 
micro-environments—in which the considera-
tion of environmental influence centers on fam-
ily, in part reflecting the use of twin and sibling 
models to parse out heritability (Plug and 
Vijverberg 2003). As Plomin (2018:ix) notes, 
“for most of the twentieth century environmen-
tal factors were called nurture because the fam-
ily was thought to be crucial in determining 
who we become.” Though the literature specifi-
cally focused on education has attended to the 
possibility of school influences and family 
influences, the twin design has typically not 
allowed for the disentanglement of these influ-
ences (Bartels et al. 2002). More generally, this 
perspective, and the twin model empirical 
approach that grounds it, constrains the ability 
to examine broader environments ranging from 
institutions, such as educational systems (not 
simply schools), to broader social forces, such 
as gender (Boardman et al. 2013; Jencks 1980; 
Wedow et al. 2018).

Finally, a key assumption underlying this 
perspective is that complex social outcomes—
like education—do not change over time. For 
there to be a “strong” genetic influence on edu-
cational attainment, education itself will not fun-
damentally change over time. The phenotype— 
in this case educational attainment—is 

historically fixed. Or perhaps more precisely, 
environments simply do not change enough—
the variance is not large enough—to alter the 
influence of genetics, at least at this point in 
history. Plomin (2018:vii) succinctly expresses 
this view, arguing that genetics can be used to 
help us “understand who we are, and predict 
who we will become.”

One of the challenges of assessing the role 
of broader environments has been the use of 
twin studies. We will detail those limitations 
here, but we do want to emphasize that these 
studies have real advantages (from a causal 
inference perspective) and have been used to 
demonstrate novel interactions between genes 
and some broader environments, like birth 
cohorts (Boardman, Alexander, and Stallings 
2011; Boardman, Blalock, and Button 2008; 
Boardman, Blalock, and Pampel 2010), as well 
as the influence of family socioeconomic dif-
ferences in moderating genetic influences on 
cognition (e.g., Turkheimer et al. 2003). None-
theless, they have some limitations, including 
(1) the lack of directly measured genotypes 
and (2) how the small and select samples 
(which often have more limited measures of 
“environment” compared to typical longitudi-
nal cohort studies used by social scientists) 
make it generally difficult to explore how 
broader environments may modify genetic 
influences (Barnes and Boutwell 2013; Board-
man and Fletcher 2015; Conley et  al. 2013; 
Felson 2014; Fosse, Joseph, and Jones 2016; 
Haberstick et al. 2015; Petersen et al. 2011).

Genes, Environment, and 
Educational Attainment: A 
Sociocontextual Perspective

A sociocontextual perspective acknowledges 
that genetic differences play a role in shaping 
a complex social outcome like educational 
attainment, but it emphasizes that genetic 
influence must be understood in context, such 
as history and cohort, the life course, and 
social forces like gender. This perspective 
posits that the influence of genetic factors on 
educational attainment is filtered, altered, and 
shaped by broader complex environments. 
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Genetic factors that predict education may 
vary over time in response to changes in the 
environment. For example, if schools system-
atically place a greater emphasis on math 
over reading skills, the genetic factors pre-
dicting overall academic performance might 
change (Boardman et al. 2013; Jencks 1980).

This perspective contextualizes individual 
experiences in historical periods and birth 
cohorts (Boardman et al. 2013; Schmitz and 
Conley 2017; Walter et al. 2016; Wedow et al. 
2018). For example, a burgeoning literature 
examines how cohorts and historical periods 
modify the influence of genetic variants on 
health behavior outcomes like smoking, pro-
ducing evidence that genetic factors have had 
greater influence in more recent cohorts as 
laws and social norms have made it harder to 
smoke (Domingue et al. 2016; Wedow et al. 
2018). As for educational attainment, its 
social and economic value has grown over 
time, as a consequence of economic and cul-
tural changes (Brown 2001). Consequently, 
the influence of genetics—when the outcome 
is historically and culturally contingent—is 
bound to change over time, according to this 
view. And though limited, there is some evi-
dence to support the view that the relationship 
between genetic factors and educational 
attainment varies across cohorts (Branigan 
et al. 2013; Conley and Domingue 2016).

A sociocontextual perspective views envi-
ronment as “longitudinal”—environments 
change over the life course, and they can vary 
as a function of the life course stage (Board-
man et al. 2013). As Short, Yang, and Jenkins 
(2013:S93) note, there is an “intertwining of 
social and biological variation over the life 
course.” Social and structural conditions 
change over the life course, as a function of 
age (e.g., the institutions that are dominant in 
our lives vary as we age) and historical 
change (e.g., different cohorts experienced 
the women’s rights movement at different 
points in the life course).

To date, we know relatively little about the 
relationships between age, genetics, and edu-
cational attainment. Does the influence of 
genetic differences vary over the life course? 

Research shows that genetic influences on 
academic achievement change through child-
hood (Rice et al. 2018; Rimfeld et al. 2018), 
but no existing work explores how genetic 
influences vary on subsequent changes in 
educational attainment and outcomes through 
midlife. As we will detail, the process of 
obtaining postsecondary schooling continues 
through midlife, particularly for women.

Key to this viewpoint is that social forces, 
like gender, are “fundamental determinants of 
vulnerability and exposure”—the specific 
vulnerabilities and exposures are not fully 
separable from each other (Boardman et  al. 
2013:S65; Link and Phelan 1995). Gender, 
for example, is “a dynamic social, cultural, 
and institutional environment” (Short et  al. 
2013:S98), or “a social structure that is 
embedded . . . throughout social life” (Risman 
2004:431). One need not disentangle this 
intricate web to demonstrate how gender may 
modify downstream genetic factors, ulti-
mately altering their influence on a complex 
outcome like educational attainment. For 
example, gender influenced educational 
attainment throughout the first part of the 
twentieth century via institutional factors 
(e.g., women’s restricted access to postsec-
ondary schooling), cultural factors (e.g., 
social norms that ostracized women who 
attempted to pursue higher education), and 
social factors (e.g., the expectation of wom-
en’s primary role in childrearing). The 
upstream influence, however, is gender.

Nonetheless, although a growing body of 
empirical work explores gene-environment 
interactions, especially in the context of cohort, 
the literature has much less to say about gender 
as a social construct—and its possible role in 
modifying genetic influences, not only on edu-
cational attainment, but on a wide array of 
other health, behavioral, and social outcomes 
(Short et  al. 2013). But, as Short and col-
leagues (2013:S98) argue, gender differences 
can occur when “genetic variants are expressed 
in different contexts, biological or social, 
including ‘gendered’ environments.”

A few additional clarifications are needed. 
A sociocontextual perspective does not 
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assume genetic differences do not matter, or 
even that their influence is especially limited. 
For example, the idea that genetic differences 
influence environments is not necessarily 
contrary to this perspective (Jencks 1980). 
The key is that the environment is still easily 
alterable (Jencks 1980). A recent study, for 
instance, found that students with the highest 
polygenic scores were more likely to be 
tracked into higher math levels in high 
resourced compared to low resourced schools, 
but students with high scores were equally 
likely to persist in these classes across low 
and highly resourced schools; students with 
lower polygenic scores, however, were more 
likely to persist in higher math levels in 
higher rather than lower resourced schools 
(Harden et al. 2019).

This perspective does not rule out “strong” 
genetic explanations. For example, Down 
syndrome has a “strong” genetic explanation 
that links a precise genetic mechanism to 
lower cognitive functioning and lower educa-
tional attainment. Yet even here, there is 
robust evidence of environmental modifica-
tion. Children with Down syndrome largely 
did not learn to read 50 years ago, but because 
of the Disability Rights Movement, which led 
to the passage of laws stipulating that chil-
dren with disabilities have a right to an educa-
tion, a majority today do learn to read (Naess 
et  al. 2012). That said, the sociocontextual 
perspective is likely more dominant for out-
comes where there is a “weak” genetic expla-
nation: “an outcome [that] has a heritable 
basis, but the mechanisms that transmit it are 
largely unknown” (Dar-Nimrod and Heine 
2011:5; Turkheimer 1998, 2016).

The Dawn of the Polygenic Score

The major empirical constraint on the socio-
contextual perspective has been the lack of data 
to explore the dynamic processes by which 
environment and genetic factors may interact to 
influence educational attainment. The mapping 
of the human genome and the rapid decline in 
the cost of genotyping has opened the door for 
new ways to examine how environments 

influence the role of genetics in behaviors of 
interest to social scientists (Conley and Fletcher 
2017). This has led to the integration of 
genome-wide data into population-based stud-
ies commonly used to examine, among other 
things, gender differences in socioeconomic 
outcomes like educational attainment and earn-
ings (Herd, Carr, and Roan 2014; McQueen  
et al. 2015; Sonnega et al. 2014).

Because any single genetic variant plays a 
limited role in complex health or behavioral 
outcomes (Chabris et  al. 2015), there is a 
growing consensus around the development 
of polygenic scores to capture genetic “risk” 
(Boyle, Li, and Pritchard 2017; Dudbridge 
2016; Krapohl et  al. 2017). Genome-wide 
association studies find associations between 
the most common kind of genetic variation 
(specifically, single nucleotide polymor-
phisms [SNPs]) and outcomes ranging from 
height and cancers to personality and educa-
tional attainment. For each individual in these 
studies, somewhere between 1 and 2.5 mil-
lion variants (SNPs) have been identified 
(Lee et al. 2018). The genome-wide analysis 
then identifies the strength of the associations 
between each variant and the outcome, like 
educational attainment. Large samples are 
needed because the estimated effect sizes for 
any particular variant are small. The study 
used to generate the education polygenic 
score included 1.1 million individuals (Lee  
et al. 2018). The polygenic scores are effec-
tively a summary score for each individual 
that is based on the strength of the association 
between the genetic variants and the outcome, 
in this case educational attainment.

Polygenic scores that provide robust, out-
of-sample predictions have been developed 
for outcomes such as height, body mass index 
(BMI), psychiatric disorders, and smoking 
(Belsky et  al. 2012; Conley and Fletcher 
2017; Domingue et al. 2014; Domingue et al. 
2016; Kendler 2006; Koboldt et al. 2013; Liu 
and Guo 2015; Wood et al. 2014). The educa-
tion polygenic score is comparable in its pre-
dictive strength to the polygenic scores for 
obesity (Cesarini and Visscher 2017), and to 
the predictive strength of one parent’s 
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educational attainment in predicting a child’s 
educational attainment (Lee et  al. 2018), 
although there is debate over its multigenera-
tional influences (Belsky et  al. 2018; Liu 
2018). To date, studies have demonstrated 
that the education polygenic score predicts 
educational attainment in entirely independ-
ent samples, including in samples that com-
pare one full sibling to another (Domingue 
et al. 2015; Okbay et al. 2016; Rietveld et al. 
2014; Selzam et al. 2017). Yet, although the 
predictive validity of the education polygenic 
score is well demonstrated, we are only just 
beginning to explore how social and environ-
mental factors modify genetic influences on 
educational attainment.

Gender Inequalities in 
Educational Attainment 
Over The Twentieth 
Century: Change Across 
Cohorts and Over The 
Life Course

Changing gender inequalities in educational 
attainment over the twentieth century are 
well-documented (Gamoran 2001). Gender 
differences have largely been driven by dif-
ferences in postsecondary schooling, rather 
than differences in obtaining a high school 
degree. Until the 1960 birth cohort, women 
were far less likely than men to obtain bach-
elor’s degrees (DiPrete and Buchmann 2013). 
Women’s educational attainment lagged 
men’s for decades due to institutional con-
straints ranging from outright discrimination 
to specific policies, such as the GI Bill, which 
overwhelmingly benefited men (Buchmann, 
DiPrete, and McDaniel 2008; Gamoran 
2001). Weakening institutional constraints, 
increasing age at first marriage, and increas-
ing opportunities for women in the labor 
force due to legislative and cultural changes 
all contributed to women’s increased attain-
ment of postsecondary schooling (Goldin, 
Katz, and Kuziemko 2006). Substantial com-
plexity surrounding the mechanisms is 
embedded in this history, but the changes in 

gender differences in educational attainment 
over time show they are the result of alterable 
social conditions. The studies we use, specifi-
cally the WLS, HRS, and Add Health (b. 
1931 to 1982), represent the cohorts that 
experienced this dramatic change over the 
course of the twentieth century.

The size of the gender gap in postsecond-
ary attainment was at its peak in the 1930s. In 
the 1930 birth cohort, 17 percent of men 
obtained a college degree by age 28, com-
pared to only 8 percent of women. The gap 
was just as large for the 1940 birth cohort, 
although the overall likelihood of obtaining a 
college degree increased. These differences 
were largely eliminated, however, for indi-
viduals born in 1959. The HRS sample 
includes birth cohorts from 1931 to 1959 and 
thus covers the era when the bulk of this shift 
occurred (Gamoran 2001).

Women in later cohorts faced a very differ-
ent set of structural conditions and social 
expectations when they finished high school. 
The barriers women born in the 1930s through 
the 1950s faced, from sex discrimination in 
postsecondary admissions and in the work-
place to a more robust gendered distribution of 
household labor, had weakened. Leaving high 
school, women in later cohorts could expect to 
access employment commensurate with their 
educational attainment, that marriage would 
not end their labor force participation, and that 
they would likely continue in the labor market 
even after having children (Goldin et al. 2006). 
Indeed, women began to surpass men’s rates 
for bachelor’s degree completion (DiPrete and 
Buchmann 2013). The reasons for women’s 
increased attainment are well understood, but 
the flattening of men’s attainment as women’s 
attainment continues to grow is less clear and 
is increasingly a focus of research (Buchmann 
et al. 2008; DiPrete and Buchmann 2013; For-
tin, Oreopoulos, and Phipps 2015; Legewie 
and DiPrete 2012). The Add Health partici-
pants are representative of this more advan-
taged group of women, having been born 
between 1975 and 1982.

Research shows robust differences across 
cohorts, but less often detailed are changes 
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that occurred over the life course of women 
who came of age when gender inequalities in 
college completion were at their peak, in the 
1950s, but hit midlife in the 1980s, as gender 
inequalities in postsecondary schooling had 
substantially softened for younger women. 
The 1939 to 1940 birth cohort, of which 
members of the Wisconsin Longitudinal 
Study (WLS) are a part, provides a compel-
ling case study for gender differences in edu-
cational outcomes. This cohort approached 
early adulthood during the period of peak 
gender differences in educational attainment, 
particularly postsecondary attendance and 
attainment. But by the time they were in their 
30s and 40s, the postsecondary educational 
gap among younger cohorts was beginning to 
close and would eventually flip so that 
women, on average, obtained higher levels of 
education than men (Goldin 2006). As the 
WLS cohort approached middle age, women 
in their 20s were attending college at similar 
rates to their male peers. In summary, for 
women in the 1939 cohort, late adolescence 
and early adulthood was characterized by 
limited educational opportunities, but by their 
early middle age these opportunities were 
enhanced. Importantly, this intersected with 
the point in their life course when they were 
released from primary gendered responsibili-
ties for raising children.

Indeed, there were gender differences in 
the age at which individuals completed school-
ing, particularly postsecondary schooling. 
Women in the 1939 to 1940 birth cohort were 
less likely to obtain college degrees before age 
30 than were their male peers (during the late 
1950s and 1960s), but by their 40s (during the 
1980s) they went back and obtained postsec-
ondary schooling at higher rates than did men. 
In the WLS, 25 percent of female college 
graduates, compared to 11 percent of male 
college graduates, earned their degree after 
age 30. This mirrors national postsecondary 
attendance statistics over this period (Levin 
and Levin 1991). In 1972, 25 percent of men 
and 21 percent of women engaged in postsec-
ondary schooling were age 30 or older. By 
1990, this had fallen to 21 percent of men but 

had risen to 31 percent of women (U.S. Cen-
sus 2016). This likely is a function of both a 
period effect—that middle-aged women in the 
1980s were experiencing the same reduction 
in structural constraints as were younger 
women—and an age effect—that middle-aged 
women were freed of gendered caregiving 
responsibilities for children, which had con-
strained them in their 20s and 30s.

Gene-Environment 
Interactions: Does 
Gender Modify The 
Influence of Genetics on 
Educational Attainment 
and Outcomes Across 
Cohorts and Over The 
Life Course?
We have robust evidence that genetics influ-
ence educational attainment, and that struc-
tural and social factors reduced women’s 
educational attainment, but we do not know 
whether the relationship between genetics 
and educational outcomes differs by gender. 
Examining changes across cohorts and over 
the life course provides a mechanism to con-
sider how varying environments filter genetic 
influences on educational attainment.

Focusing on the 1939 to 1940 birth cohort, 
were genetic influences as consequential for 
women’s educational outcomes as for men’s? 
How did that influence vary over their life 
course? During their 20s, women in this 
cohort engaged in postsecondary schooling at 
lower rates than men, but while men’s rates 
flattened in midlife, women’s rates continued 
to grow—although they never did match 
men’s attainment. Did genetic influences on 
educational outcomes change as women in 
this cohort hit midlife and gendered barriers 
to postsecondary schooling for women, both 
institutional and familial, began to fall? Evi-
dence shows that genetic influences change 
over the life course, especially during child-
hood and adolescence, but no existing work 
explores how genetic influences vary on sub-
sequent changes in educational attainment 
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through midlife, even though the process of 
obtaining postsecondary schooling continues 
through midlife.

While the WLS allows us to examine within 
cohort change, the HRS and Add Health allow 
for examining changes across cohorts. Do gen-
der differences in the relationship between the 
education polygenic score and educational 
attainment and outcomes weaken in younger 
cohorts when the social and structural con-
straints that limited women’s educational 
attainment weakened? While there is some 
evidence that the influence of genetics on edu-
cational attainment has changed across cohorts, 
we do not know whether this influence varies 
by gender.

A Sociocontextual Explanation:  
The Exceptional Is Suppressed

Social conditions, which vary across cohorts 
and over the life course within particular 
cohorts, may have influenced women’s pro-
pensity to gain higher educational attainment 
via social constraints acting to undermine the 
genetic influence on women’s educational 
attainment—decreasing the probability to real-
ize their “actualized” potential as compared to 
men. In a widely-cited study, Turkheimer and 
colleagues (2003) report that with an eco-
nomically diverse sample of twins, heritability 
of cognitive performance was highest among 
those raised in highly educated and well-off 
households, and it was lowest in less educated 
and poorer households. The explanation was 
that in highly resourced households, genetic 
factors could manifest into observable differ-
ences in cognition. In more poorly resourced 
households, however, resource constraints did 
not allow this particular talent to manifest (for 
earlier anticipations of this idea, see Rowe, 
Jacobson, and van den Oord 1999; Scarr-
Salapatek 1971).

While no existing work uses direct genetic 
measures (specifically, genetic variants iden-
tified from large genome-wide association 
studies) to examine gender differences, there 
is some evidence from twin studies regarding 
gender differences in the heritability of 

educational attainment. For example, a recent 
meta-analysis of twin studies testing the herit-
ability of educational attainment, which 
included published and unpublished findings, 
found that heritability estimates drawn from 
twin studies range from .18 to .77 (Branigan 
et  al. 2013). On average, educational attain-
ment was more heritable for men than for 
women, although the finding varied consider-
ably across samples.

Cohort differences may explain this vari-
ance in findings regarding the influence of 
gender. Earlier work by Heath and colleagues 
(1985) found a pattern of results across 
cohorts that would support the hypothesis that 
gender—as a social force—modifies the 
influence of genetic factors on educational 
attainment. The heritability of educational 
attainment in Norway did not differ between 
men and women prior to 1940. However, as 
more generous education policies emerged 
after the war (cohorts born between 1940 and 
1960), heritability increased among men yet 
stayed the same for women, creating a gender 
difference. Men were able to avail themselves 
of the new policies in ways women were not. 
This reduced environmental constraints for 
men, but not for women, resulting in genetics 
exerting a greater influence on educational 
attainment for men as compared to women 
(Heath et al. 1985).

The insights on gender differences from 
twin heritability studies are intriguing, yet 
their generalizability has been called into 
question (Barnes and Boutwell 2013; Petersen 
et  al. 2011). For example, there is evidence 
that twins differ from non-twin children on 
traits such as language development, person-
ality, and internalizing behavioral problems 
(Kendler et  al. 1995; Pulkkinen et  al. 2003; 
Shinwell, Haklai, and Eventov-Friedman 
2009; Voracek and Haubner 2008). Most rel-
evant for this study, there is some evidence 
that twins have lower levels of cognitive 
functioning, academic performance, and edu-
cational attainment compared to singletons, 
which may be partially a function of genetic 
factors (Tsou et al. 2008; Voracek and Haub-
ner 2008).
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The inferences drawn from this suppres-
sion model, however, would lead to the fol-
lowing hypotheses:

Hypothesis 1a: The education polygenic score 
better predicts educational outcomes for 
men than for women, as the structural and 
social constraints faced by women in the 
WLS cohort (born 1939 to 1940) suppress 
genetic influences on postsecondary school-
ing.

Hypothesis 2a: The gender gap in the influence 
of the education polygenic score on educa-
tional outcomes lessens over time as women 
in the WLS cohort went back and obtained 
more postsecondary schooling in midlife, 
reflecting declines in institutional and social 
barriers, ranging from changed social norms 
to women being released from gendered 
child caregiving responsibilities (as their 
children grew older).

Hypothesis 3a: Gender differences in the influ-
ence of the education polygenic score on 
educational outcomes will decline among the 
youngest cohorts in the HRS, with no evi-
dence of a difference in the Add Health cohort.

“Strong” Genetic Effects

An alternative model, reflecting assumptions 
regarding “strong” genetic effects, predicts 
that genetic influences on higher education 
should prove resistant to environment. Indeed, 
while some twin studies back up Turkheimer 
and colleagues’ (2003) findings that the heri-
tability of cognitive performance is stronger 
among children from high-SES households 
compared to those from low-SES households, 
other studies have found the reverse (Asbury, 
Wachs, and Plomin 2005; see also the meta-
analysis by Tucker-Drob and Bates 2016).

Findings from studies focused specifically 
on academic outcomes like reading ability 
and academic performance are mixed as to 
whether they support the suppression model 
(Daw, Guo, and Harris 2015; Figlio et  al. 
2017; Hart et al. 2013; Shakeshaft et al. 2013; 
Taylor et  al. 2010; van den Oord and Rowe 
1997). Friend and colleagues (2009) actually 
found higher heritability for high reading 
ability among children born to low-SES 

parents compared to those born to high-SES 
parents.

Regarding gender, some studies support a 
“strong” genetic explanation. For example, a 
sample of more than 13,000 twins in a 1990s 
birth cohort in the United Kingdom found no 
gender differences in the heritability of a 
range of education-related outcomes (Krapohl 
et al. 2014). Moreover, Baker and colleagues 
(1996), comparing twins in Australia born 
before and after 1950, found no gender differ-
ences in the heritability of educational attain-
ment. There was also no gender difference in 
a Finnish 1936 to 1950 birth cohort (Silven-
toinen et al. 2004). And Petrill and Thompson 
(1994) found the heritability of scholastic 
achievement in secondary schooling was 
greater for women than for men.

A key limitation to these studies, however, 
it that they rely heavily on twin models and 
heritability differences to test for gender dif-
ferences in genetic influences (Jencks 1980). 
The polygenic score, however, provides a 
more flexible test of the “strong” genetic 
effect proposition. A “strong” effect may be 
demonstrated if a set of variants predict 
divorce equally—across environments. A 
critical assumption, as Plomin (2018) argues, 
is that we not only will be able to “understand 
who we are” in the present, but we can predict 
“who we will become” in the future. Thus, 
even if “heritability” remains unchanged, if 
the underlying genetic mechanism predicting 
that outcome changes, or if the polygenic 
score varies in its ability to predict an out-
come across “environments,” this does not 
qualify as a “strong” genetic explanation.

Consequently, inferences drawn from the 
strictly “strong” genetic model would lead to 
the following hypotheses:

Hypothesis 1b: There are no gender differences 
in how the polygenic score for educational 
attainment predicts postsecondary school 
outcomes in the WLS.

Hypothesis 2b: The influence of the polygen-
ic score for educational attainment does 
not vary in its influence on postsecondary 
school outcomes over the life course of 
WLS participants.
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Hypothesis 3b: Gender differences in the influ-
ence of the education polygenic score on ed-
ucational outcomes will show no evidence 
of change across cohorts based on the HRS 
and Add Health data.

Data And Methods
Data

WLS.  The Wisconsin Longitudinal Study 
(WLS) allows us to examine, within a single 
cohort born from 1939 to 1940, whether there 
are gender differences in how the relationship 
between the education polygenic score and 
educational attainment changes within indi-
viduals over the life course. HRS and Add 
Health (detailed below) only allow for educa-
tional attainment measured at a single point in 
the life course. WLS is a one-third sample of 
all 1957 Wisconsin high school graduates 
(Hauser et al. 1992; Herd et al. 2014). These 
respondents were originally empaneled with 
an in-person questionnaire at age 18 (1957), 
which was followed with a mail survey of 
parents in 1964, a telephone survey in 1975, 
mail and telephone surveys in 1993 and 2004, 
and in-person interviews in 2011. The WLS 
has a high response rate, exceeding 80 per-
cent in most rounds of data collection. Data, 
documentation, and other material are avail-
able at http://www.ssc.wisc.edu/wlsresearch/.

The WLS includes a wide range of admin-
istrative and prospectively collected data 
from early life through adulthood. The origi-
nal 1957 survey collected information regard-
ing graduates’ high school experiences, 
including administrative data such as the 
Henmon-Nelson IQ test and high school rank. 
Relevant for our analyses, these data provide 
a full record of post high school education, 
making the dataset uniquely suited for testing 
changes in educational attainment over the 
full life course.

From 2006 to 2007, WLS first collected 
saliva samples from respondents using Oragene 
kits and a mailback protocol patterned closely 
on a previous study (Rylander-Rudqvist et al. 
2006). Additional sample collection was con-
ducted in 2011 during in-person interviews 

for participants who did not submit samples 
in 2006 to 2007. Compliance to the DNA 
request was about 5 percentage points higher 
among men but broadly matched response 
rates for other data in the WLS (Herd et  al. 
2014). After quality control, a total of 9,012 
graduate and sibling respondents were geno-
typed at ~710,000 markers (before imputa-
tion) utilizing the Omni-Express BeadChip. 
Only graduate respondents were included in 
this study; thus, the analytic sample included 
5,654 participants, which constitutes 56 per-
cent of the original sample frame, or 69 per-
cent of surviving participants. It is important 
to keep in mind that the WLS is unusual in 
having a 100 percent response rate from the 
sample frame. The highest initial response 
rate for an HRS cohort, for example, is 80 
percent for the 1931 to 1939 birth cohort. 
Consequently, the total response rate is higher 
in the WLS, even as the length of the study 
(60 years) is substantially longer.

Genotyping was completed at Johns Hop-
kins’ Center for Inherited Disease Research 
(CIDR), and data cleaning was performed in 
collaboration with the Genetic Analysis 
Center at the University of Washington. The 
detailed procedures used to generate these 
data are available on the WLS website (https://
www.ssc.wisc.edu/wlsresearch/documentation/
GWAS).

HRS.  The Health and Retirement Study 
(HRS) provides data to examine whether gen-
der differences in the relationship between the 
education polygenic risk score and educa-
tional attainment changes across cohorts. The 
original sample, interviewed in 1992 and 
every subsequent two years, includes individ-
uals born between 1931 and 1941. Refresher 
cohorts were added in 1998 (War Babies, b. 
1942 to 1947), 2004 (Early Baby Boomers, b. 
1948 to 1953), and 2010 (Mid Baby Boomers, 
b. 1954 to 1959). We excluded the older 
cohorts (b. before 1930) to keep the analysis 
comparable with the WLS cohort. The older 
cohorts also suffer from significantly more 
mortality selection. Response rates for these 
cohorts were 81 percent, 70 percent, 75 

http://www.ssc.wisc.edu/wlsresearch/
https://www.ssc.wisc.edu/wlsresearch/documentation/GWAS
https://www.ssc.wisc.edu/wlsresearch/documentation/GWAS
https://www.ssc.wisc.edu/wlsresearch/documentation/GWAS
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percent, and 69 percent, respectively. Genetic 
data are available for 62 percent of the entire 
HRS sample, or over 80 percent of the sample 
that had survived and had been retained to the 
period when saliva samples were collected. Of 
the 14,774 respondents with genetic data, col-
lected between 2006 and 2010, we used 9,073 
individuals of European and non-Hispanic 
descent (Ware et al. 2018). Genetic data from 
404 white non-Hispanic individuals were not 
usable due to quality control issues. Given the 
risk of non-response and mortality selection, 
weights were developed to specifically 
account for these potential biases in the sam-
ple with genetic data (Domingue et al. 2017). 
Detailed protocol on the saliva collection can 
be found in Crimmins and colleagues (2015). 
Genotyping was done by the Center for Inher-
ited Disease Research (CIDR) using the illu-
mina HumanOmni2.5 BeadChip. Imputation 
was conducted by the University of Michi-
gan. Detailed information on the HRS bio-
samples can be found in Ware and colleagues 
(2018).

Add Health.  Add Health allows us to 
examine cohort differences by adding the 
youngest cohort as compared to HRS (b. 1931 
to 1959). Add Health is a nationally repre-
sentative cohort drawn from a probability 
sample of 80 U.S. high schools and 52 U.S. 
middle schools, representative of U.S. schools 
in 1994 to 1995 with respect to region, urban 
setting, school size, school type, and race or 
ethnic background (n = 20,745 at Wave 1 in 
1994 to 1995). Waves 3 (2001 to 2002) and 4 
(2008 to 2009) data collections included 
15,197 (mean age 22.3 years) and 15,701 
(then ages 24 to 32 years, mean age 28.9 
years) individuals, respectively. The sample 
was genotyped (via Oragene saliva collec-
tion) at Wave 4 of the study (for details, see 
Belsky et  al. 2018; Domingue et  al. 2018). 
Among participants, 15,072 provided saliva 
samples and 12,058 provided consent for 
genotyping. After quality control during gen-
otyping, 9,975 of these were retained. This 
left 5,692 participants who had European 

ancestry and were non-Hispanic. The final 
sample size was 5,514 after restricting it to 
respondents with valid educational data and 
who were born prior to 1983, to ensure indi-
viduals were a minimum of 25 years old. The 
resulting sample is comparable to the overall 
Add Health sample (Domingue et al. 2015).

Measures

Outcomes in WLS.  The first detailed educa-
tional attainment report in WLS came from 
parents in 1964. In 1975, respondents them-
selves reported on all schooling obtained since 
graduating high school. In every subsequent 
wave, participants were asked retrospective 
questions regarding any changes in their edu-
cational attainment (including additional years 
of schooling, even if no additional degree was 
obtained). The collected measures also capture 
starting and ending dates for postsecondary 
schooling. Over half of the sample did not 
pursue education past high school. We use 
three different measures: “years” of schooling, 
which is a summary measure derived from 
highest degree of postsecondary schooling, 
whether an individual engaged in any postsec-
ondary schooling, and whether an individual 
attained a four-year bachelor’s degree.

Outcomes in HRS.  The HRS collected 
educational attainment data on each new 
cohort when they were first interviewed (in 
1992, 1998, 2004, and 2010). We measure 
education based on the number of years of 
schooling and highest degree attained. The 
measure was harmonized to replicate the 
WLS measure of “years of schooling.”

Outcomes in Add Health.  Because 
this cohort is younger than the WLS and HRS 
cohorts, we only include respondents who are 
at least age 25 or were born before 1983. We 
measure educational attainment as the highest 
degree completed by the time of interview at 
Wave 4, when respondents were asked, “What 
is the highest level of education that you have 
achieved to date?”2
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Covariates

Polygenic score for educational attain-
ment.  Polygenic scores summarize predic-
tive information in the genome with respect to 
a particular trait. The scores use weights based 
on genome-wide association studies (GWAS) 
conducted in other samples. The polygenic 
score for educational attainment that we use is 
based on a 1.1-million-person GWAS (Lee 
et  al. 2018).3 Weights of individual variants 
are multiplied by the count of trait-associated 
alleles for each SNP and summed across all 
variants. Detailed information on construction 
of the education polygenic scores can be found 
in supporting documentation on the WLS 
website (https://www.ssc.wisc.edu/wlsresearch/
documentation/GWAS) as well as in addi-
tional papers (Belsky et  al. 2018; Domingue 
et  al. 2015; Trejo et  al. 2018). The score is 
standardized to have a mean of 0 and SD of 1. 
Note that the GWAS study that was used to 
develop the polygenic score had less represen-
tation of younger cohorts (Lee et al. 2018). It 
is thus possible that for the Add Health cohort, 
relevant variants specific to younger cohorts 
in predicting educational attainment are not 
included in the score. However, if a lack of a 
gender difference in the predictive capacity of 
the education polygenic score in Add Health 
is, in part, due to a cohort difference in the 
genetic variants that predict educational attain-
ment, the broader hypothesis—that environ-
ments modify genetic influence—still holds 
true. That said, as we will detail, the robust-
ness of the relationship between the polygenic 
score and educational attainment is compara-
ble across these studies in aggregate.

Figure A.1 in the online supplement shows 
the relationship between the polygenic score 
for educational attainment and educational 
attainment in the WLS. Individuals who com-
pleted only high school, for example, have a 
mean PGS of –.17. In contrast, respondents 
who completed college have a mean score of 
.34. Figure A.2 in the online supplement 
shows a robust relationship in the HRS. Fig-
ure A.3 presents the same analysis for Add 
Health, similarly showing a robust relationship 

between the polygenic score and educational 
attainment in this sample.

Additional covariates.  Additional vari-
ables include age and biological sex. We also 
include controls for the first 10 principal 
components estimated from the genome-wide 
SNP data to account for allele differences 
across ancestral groups (population stratifica-
tion) in our analytic sample (McQueen et al. 
2015). Population stratification is a key issue 
in studies of this kind. In short, there is the 
risk that results are confounded by ancestry 
differences. Even in the Wisconsin Longitudi-
nal Study, which includes respondents largely 
of Northern European ancestry, there are clear 
ancestral differences, for example, between 
individuals of Polish versus British descent 
(see Figure A.4 in the online supplement). 
Consequently, study findings, even in the 
WLS, can be sensitive to the inclusion of 
controls for population stratification.

Due to known problems associated with 
the application of polygenic scores in diverse 
populations (Martin et al. 2017), we limit our 
analyses to individuals who self-identify as 
non-Hispanic white and whose genotypes are 
consistent with European-ancestry popula-
tions. We do so because of potential concerns 
with population stratification and because pat-
terns of linkage disequilibrium (LD)—the cor-
relation between nearby genetic variants—vary 
considerably across socially defined racial and 
ethnic groups. Most notably, groups with sig-
nificant African ancestry have more genetic 
variation and thus lower LD, which creates 
problems for comparing associations of SNPs 
across groups—a problem that is compounded 
when creating genome-wide polygenic scores.

Statistical Model

Our analysis of polygenic scores involved 
running OLS or logistic models (as appropri-
ate for the outcome), stratified by gender, 
based on the following form:4

E PGS,X = f +  PGS + X’|i 0 1 iy b b( ) ( )× B

https://www.ssc.wisc.edu/wlsresearch/documentation/GWAS
https://www.ssc.wisc.edu/wlsresearch/documentation/GWAS
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where yi is the outcome, in this case educa-
tional attainment; b1 is the polygenic score; 
and X is the matrix of control variables, which 
includes age and controls for population strati-
fication (10 principal components). Analyses 
in the HRS are weighted to account for non-
response bias and mortality selection. The 
complex survey design, as well as differential 
response rates across cohorts, make this a criti-
cal adjustment in the HRS. Tables A.6a and 
A.6b in the online supplement present weighted 
and unweighted analyses for the HRS. The dif-
ferences in the estimates are nearly exclusively 
driven by non-response, which varied across 
cohorts, and complex sample survey design, 
not mortality (Domingue et al. 2017).

Results
Gender Differences in Educational 
Attainment in the Wisconsin 
Longitudinal Study (WLS) Cohort

Figures 1 and 2 present gender differences in 
educational attainment over the life course of 
WLS participants. These differences are simi-
lar to trends for the broader cohort. Figure 1 

presents gender differences in postsecondary 
schooling attendance, not completion. Wom-
en’s enrollment, although lower than men’s in 
early life, was higher than men’s in midlife, 
which reflects women’s delayed postsecond-
ary schooling pattern. Between ages 18 and 
25, 45 percent of men were enrolled in post-
secondary schooling, compared to just over 
31 percent of women. Between ages 26 and 
36 the fraction of men and women enrolled 
was 18 and 9 percent, respectively. By midlife 
(ages 37 to 54), however, a higher proportion 
of women than men were enrolled (27 versus 
19 percent). Women’s enrollment levels in 
midlife were almost equivalent to what they 
had been in their 20s.

Enrollment in postsecondary schooling 
tells us part of the story, but completion of a 
degree, particularly a bachelor’s degree, is 
also important for gender differences in edu-
cational attainment for this cohort. As Panel a 
in Figure 2 details, men were significantly 
more likely to earn a college degree. Yet, 
many participants did not actually attain col-
lege degrees until they were in their 30s and 
40s. Just 30 percent of men and 18 percent of 
women had achieved a college degree prior to 

Figure 1.  Gender Differences in Enrollment in Postsecondary Schooling in the WLS
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age 30. By age 50, however, 33 percent of 
men and 23 percent of women had obtained a 
college degree, slightly shrinking the educa-
tional attainment gap between men and 
women. Panel b in Figure 2 further clarifies 

gender differences in the timing of college 
degree completion. Among respondents who 
attained college degrees, women were signifi-
cantly more likely than men to have attained 
that degree at older ages, with 25 percent of 

Figure 2.  College Degree Attainment and Timing of Attainment, by Gender in the WLS
Panel a. Percent with a Bachelor’s Degree
Panel b. Timing of Degree among Respondents with a Bachelor’s Degree
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women and 11 percent of men obtaining their 
degree after age 30.

Gender, the Education Polygenic 
Score, and High School Academic 
Ability in the WLS

Academic performance in high school and 
general cognitive ability are two of the stron-
gest predictors of college attendance and com-
pletion (Borghans et al. 2016; Zax and Reese 
2002). Figure 3 (estimates provided in Table 
A.1 in the online supplement) shows that, in 
the WLS, a standard deviation increase in the 
education polygenic score is associated with a 
range of about .25 to .28 difference in cumula-
tive high school rank and Henmon-Nelson IQ 
scores. However, we find no evidence of gen-
der differences in the predictive value of the 
education polygenic score for either.

Gender Differences in the Polygenic 
Score’s Prediction of Educational 
Outcomes in the WLS

We test whether gender modifies the relation-
ship between the education polygenic score 

and educational outcomes in Figures 4, 5, and 
6. We find support for Hypothesis 1a, not 
Hypothesis 1b: the relationship between the 
education polygenic score and schooling is 
larger for men than for women. Figure 4 (esti-
mates provided in Table A.2 in the online 
supplement) provides the marginal effects 
produced from models using the education 
polygenic score to predict educational attain-
ment at ages 25, 36, 54, and 65. The effect is 
stronger for men than for women regardless 
of age. Even so, patterns differ for women 
and men as they age. For men, the relation-
ship between the education polygenic score 
and educational attainment strengthens con-
siderably between ages 25 and 36, but it is 
largely stable thereafter. For women, the 
increased association between ages 25 and 36 
is more moderate, but it strengthens again 
between ages 36 and 53, enough so that the 
difference between ages 25 and 54 is statisti-
cally significant (p < .001).5

In support of Hypothesis 2a, rather than 
Hypothesis 2b, we found gender differences 
in the relationship between the education 
polygenic score and going back for any kind 
of postsecondary schooling over the life 

Figure 3.  The Education Polygenic Score Regressed on High School Rank and Adolescent 
IQ in the WLS
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course. Panel a in Figure 5 (estimates pro-
vided in Table A.3 in the online supplement) 
shows how the education polygenic score 
predicts enrollment in any postsecondary 
schooling between the ages of 18 to 25, 25 to 
36, 36 to 53, and 53 to 65. From ages 18 to 25 
(1957 to 1963) and 25 to 36 (1964 to 1975), 
the education polygenic score is more predic-
tive of men going back to school than it is for 
women going back to school, with evidence 
of a larger gap among individuals with the 
highest genetic propensity for obtaining 
higher levels of educational attainment. From 
age 36 to 53 (1976 to 1992), the reverse is 
true: the education polygenic score is more 
predictive of enrollment in any postsecondary 
schooling for women than for men. Moreover, 
the gender gap is widest among respondents 
with the highest genetic propensity for higher 
educational attainment. The same trend, 
although much weaker, holds for ages 53 to 
65 (1993 to 2004).

Panel b in Figure 5 (estimates provided in 
Table A.4 in the online supplement) details 

gender differences in the probability of 
obtaining an additional degree at different 
points in the life course, rather than any 
engagement in postsecondary schooling. Note 
that the range is smaller for panel b, 0 to .4, 
compared to panel a, 0 to .8. The pattern is 
nearly identical except for ages 18 to 26. Sup-
plemental analyses indicate that this is influ-
enced by women obtaining two-year degrees 
(for fields like nursing) during this period. In 
summary, the findings presented in Figures 4 
and 5 support hypotheses that women’s 
genetic potential for higher educational attain-
ment was suppressed.6

How does the shift in the relationship 
between gender, the polygenic score, and 
obtaining more education in midlife influence 
the magnitude of overall gender differences 
in the relationship between the polygenic 
score and educational attainment? Figure 6 
shows the percentage of men and women 
obtaining a college degree across sextiles of 
the education polygenic score. The bars are 
segmented based on whether the degree was 

Figure 4.  Gender Differences in the Relationship between the Education Polygenic Score 
and Years of Schooling over the Life Course
Note: Vertical lines depict the 95 percent confidence interval with robust standard errors. The models 
control for age and the first 10 principal components of the genomic data. Sample is limited to 
individuals of European ancestry.
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completed prior to, or after, age 30. This fig-
ure shows that gender differences in the 
strength of the relationship between the edu-
cation polygenic score and completing a 

bachelor’s degree are slightly smaller once 
you account for respondents who obtained a 
college degree after age 30. The reduction is 
especially present in the top of the education 

Figure 5.  Predictive Value of Education Polygenic Score over the Life Course, 1957 to 2004
Panel a. Returning for Any Postsecondary Schooling
Panel b. Obtaining an Additional Degree
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polygenic score distribution, with little to no 
change in the difference at the bottom. The 
difference in the gender gap declines by 1 
percentage point at the first sextile and there 
is no difference at the second sextile. This 
compares to a 3 and 5 percentage point 
decline in the gender gap at the fifth and sixth 
sextiles. In percent terms, this is a difference 
of a 6 percent versus 25 percent reduction in 
the bottom and top two sextiles, respectively. 
The difference at the top sextile, after account-
ing for individuals who obtained a college 
degree after age 30, was statistically signifi-
cant (p < .01).

Gender Differences in the Polygenic 
Score’s Prediction of Educational 
Attainment in the Health and 
Retirement Study (HRS)

The HRS allowed us to test Hypothesis 3a, 
specifically, whether gender differences in the 
relationship between the education polygenic 
score and educational attainment weakened 
across cohorts, rather than within a cohort. 
We found evidence for such a decline, which 
better supports Hypothesis 3a rather than 3b. 
The HRS includes individuals born between 
1931 and 1959. Figure 7 depicts estimates 

based on five-year rolling cohorts. For exam-
ple, the coefficient for 1931 is an average of 
coefficients from 1931 to 1936. The shaded 
areas represent 84 percent confidence inter-
vals; thus, when the shaded areas do not over-
lap, the differences are significant at the p < 
.05 level (see Table A.7 in the online supple-
ment for point estimates and 95 percent con-
fidence intervals). The findings generally 
demonstrate that gender differences in the 
relationship between the education polygenic 
score and educational attainment varied 
across cohorts, with a more robust positive 
relationship for men compared to women 
evident among older cohorts, and the relation-
ship reversing among the youngest cohorts. 
The gender differences were statistically sig-
nificant (p < .05) for the 1938 to 1943 birth 
cohort, with a more robust positive relation-
ship between the education polygenic score 
and educational attainment for men than for 
women. The pooled estimates show that gen-
der differences were statistically significant 
(p < .05) for the full 1931 to 1941 HRS birth 
cohort, reflecting the reduced standard errors 
due to the larger sample (see Table A.6a in the 
online supplement).

By the 1952 to 1957 birth cohort, this rela-
tionship had reversed, with a stronger positive 

Figure 6.  Proportion Finishing a Bachelor’s Degree, by Gender and Education Polygenic 
Score Sextiles
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relationship for women than for men. The 
estimates produced from rolling cohorts par-
allel the HRS defined cohorts (for detailed 
estimates, see Table A.6a in the online supple-
ment). One important caveat is that the HRS 
only measured educational attainment when 
individuals had reached late midlife. As we 
showed in the WLS, when capturing within-
individual changes over the life course in 
schooling, the differences between men and 
women varied over the life course, but were 
weakest in midlife, at least for the 1939 birth 
cohort. The pattern, however, of higher frac-
tions of women compared to men engaged in 
postsecondary schooling at later ages contin-
ued for later cohorts, which suggests this pat-
tern might hold for younger cohorts as well 
(U.S. Census 2016). In summary, we could 
infer, based on the WLS analyses, that the 
gender differences might be stronger in the 
HRS if educational attainment was measured 
earlier in the life course.

One of the more striking trends in this set 
of analyses is the large decline in the relation-
ship between the education polygenic score 
and educational attainment for men, which is 
largely driven by the 1954 to 1959 birth cohort 
(the difference in coefficients for men in the 
1954 to 1959 [b = .577] birth cohort compared 

to the 1948 to 1953 [b = .915] birth cohort is 
significant at the p < .05 level). This decline 
actually meant that the relationship between 
the polygenic score and educational attain-
ment was larger for women than for men. This 
may reflect that the 1954 to 1959 male birth 
cohort, unlike the two prior cohorts, was not 
subject to a draft or military service for the 
Vietnam War, and thus did not have the same 
incentive to engage in postsecondary school-
ing. There is evidence that the draft, and to a 
lesser extent GI benefits, increased postsec-
ondary schooling for individuals in the 1948 
to 1953 cohort, although the decline in post-
secondary schooling for men in the 1970s was 
related to changing economic conditions 
(Card and Lemieux 2001). As shown in Table 
A.5 in the online supplement, there is evi-
dence of a flattening of the increasing trend in 
postsecondary schooling attainment among 
men for the cohorts that came of age in the 
early and mid-1970s in the HRS, as well as in 
Census data (CPS 2019). It is possible that a 
combination of the ending of the draft and 
weakening economic conditions in the 1970s 
decreased men’s incentive to participate in 
postsecondary schooling, thus weakening the 
relationship between the polygenic score and 
attainment for men. That said, Tables A.6a and 

Figure 7.  Relationship between the Education Polygenic Score and Years of Education in 
the Health and Retirement Study, Five-Year Rolling Cohort Windows
Note: The coefficients reflect five-year rolling cohorts. For example, 1930 is an average of 1930 through 
1935, and 1931 is an average of 1931 through 1936. The shaded areas represent 84 percent confidence 
intervals; no overlap thus approximates a difference in coefficients at the p < .05 level.



1088		  American Sociological Review 84(6) 

A.6b in the online supplement show that esti-
mates for men in this cohort are quite sensitive 
to weights that account for selection and attri-
tion. A replication of the results, in a different 
U.S.-based sample, for the 1954 to 1959 male 
birth cohort would be a valuable test.

Gender Differences in the Polygenic 
Score’s Prediction of Educational 
Attainment in Add Health

Add Health (b. 1975 to 1982) allows us to 
examine cohort differences using the young-
est available cohort. The social and structural 
constraints that hampered women’s educa-
tional attainment have effectively been 
removed for this cohort. Indeed, as of Wave 4, 
for the 1982 birth cohort, 56 percent of 
women and 44 percent of men had completed 
a college degree. Although we cannot assess 
changes in midlife for this cohort, as they are 
not old enough, we can assess gender differ-
ences in the strength of the relationship 
between the education polygenic score and 

educational attainment for these respondents 
in their late 20s and early 30s. We find sup-
port for Hypothesis 3a rather than 3b: there 
are no gender differences in the relationship 
between the education polygenic score and 
educational attainment. Figure 8 shows the 
relationship for respondents with high school 
degrees, as well as the relationship for the full 
cohort, including respondents who did not 
complete high school.7

Discussion
This study provided a novel analysis testing 
how history and cohort, the life course, and 
social structures like gender influence the 
relationship between the education polygenic 
score and educational attainment. Our results 
indicate that the role of genetics in shaping 
educational attainment is strongly patterned 
by gender, a social structure embedded 
throughout social life (Risman 2004). Within 
the WLS cohort (~1939), the relationship 
between genetics and educational outcomes is 

Figure 8.  Relationship between the Education Polygenic Score and Years of Education in 
Add Health
Note: The education polygenic risk score has been residualized using the first 10 principal components 
of the genomic data. Sample is limited to individuals of European ancestry.
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weaker for women than for men, especially 
between the 1950s and 1960s when a series of 
structural and social barriers limited women’s 
engagement in higher education. However, 
the relationship between genetic factors and 
education strengthened for women in middle 
age as they went back to school as their  
childrearing responsibilities wound down and 
new schooling opportunities emerged. Fur-
thermore, analyses of the HRS (1931 to 1959) 
and Add Health (1975 to 1982) cohorts dem-
onstrate that gender differences in how well 
polygenic information predicts educational 
attainment weakened substantially among 
younger cohorts. There is little evidence, 
among the youngest cohorts, that genetics has 
a greater influence on men’s versus women’s 
postsecondary schooling outcomes.

These findings provide more support for 
sociocontextual models that suggest environ-
ments play a large role in modifying the influ-
ence of genetics on educational attainment, 
rather than for strong genetic models that 
assume environments do not meaningfully 
alter genetic influences on education. We also 
find evidence that contextual factors may sup-
press genetic advantages. Larger social con-
straints reduced genetic influences on women’s 
postsecondary educational outcomes, thus 
decreasing their probability of realizing their 
“genetic” potential as compared to men. Only 
when social conditions were altered to reduce 
the structural and social barriers limiting wom-
en’s participation in higher education did gen-
der differences weaken.

For the WLS cohort, changes in social and 
structural conditions that played out over their 
life course occurred at multiple contextual 
levels, as gender is embedded throughout 
social life (Risman 2004). In particular, the 
strengthening genetic influence on educational 
attainment among WLS women during their 
40s and 50s may, in part, reflect an age and 
social context effect: specifically, women were 
released from key gendered social constraints 
linked to childbearing and childrearing as their 
childbearing years ended and their children got 
older. This age-specific experience occurred in 
the context of a particular period that saw a 

rapid increase in women obtaining postsecond-
ary schooling. This return to schooling for 
older women is reflected in larger trends. In the 
early 1960s, 9.2 percent of male college stu-
dents were age 30 and older, compared to just 
3.8 percent of female college students. By the 
mid-1980s, 25.3 percent of female college 
students were age 30 and older, compared to 
16.7 percent of male college students (CPS 
2017). The influence of genetics on educa-
tional attainment for this cohort played out, 
and varied, in the context of how gender struc-
tured age and period effects.

The approach and methods used here 
reflect current scientific standards, but some 
caveats apply, not just to this analysis, but to 
most existing work that uses polygenic scores 
to examine gene by environment interactions. 
Polygenic scores might simultaneously 
underestimate the influence of both environ-
ment and genetic differences on outcomes. 
Regarding the former, current GWAS that are 
used to generate polygenic scores include 
samples across multiple cohorts, environ-
ments, and periods. Some scholars have spec-
ulated that this approach leads to polygenic 
scores disproportionately reflecting genetic 
variants that are least likely to be influenced 
by broader social conditions and environ-
ments (Conley 2016). To address this, 
researchers have begun to propose GWAS 
that, rather than predicting means, predict 
high levels of variance in the relationship 
between genetic variants and outcomes (Al 
Kawam et al. 2018; Conley et al. 2018). The 
implications of this for our study are that we 
may have produced a lower-bound estimate 
of the role of gender in modifying the rela-
tionship between the education polygenic 
score and educational attainment.

Furthermore, existing heritability estimates 
from twin studies would indicate that the edu-
cation polygenic score used in these analyses 
explains only part of the estimated total 
genetic influence on education (Cessarini and 
Visscher 2017). The polygenic score used in 
this study predicts educational attainment 
about as well as one can by using the attain-
ment of one parent (but not both; Lee et  al. 
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2018). An important test going forward will 
be whether larger GWAS sample sizes iden-
tify additional genetic variants linked to edu-
cational attainment that explain even more of 
the variance (McClellan, Lehner, and King 
2017; Visscher et al. 2017). Nonetheless, there 
is little reason to believe that underestimates 
of heritability would substantially affect the 
relative differences by gender that we observe.

Another concern is the possibility that 
genetic variants linked to education in the 
WLS cohort might be different than those in 
the Add Health cohort. The youngest cohorts 
were somewhat underrepresented in the 
GWAS that produced the education polygenic 
score (Lee et al. 2018). That said, the overall 
strength of the relationship between the poly-
genic score and educational attainment was 
comparable between the WLS and Add 
Health. Moreover, the findings from HRS, 
given that individuals from comparable birth 
years to the HRS cohorts were better repre-
sented in the education GWAS, further sup-
port the cross-cohort differences we find. 
Finally, even if genetic mechanisms changed 
over time, a major point of this article is that 
genetic influences are filtered through social 
conditions. Even if the sum genetic influence 
did not vary across cohort/gender, a changing 
relationship between the polygenic score used 
in this article and schooling outcomes (e.g., in 
Add Health compared to WLS) would instead 
show that the genetic mechanisms do vary 
(e.g., a “weak” genetic effect).

One of the most promising areas of genetics 
research going forward will be to formally test 
whether genetic variants linked to varying phe-
notypes change over time. Existing empirical 
work has not had the statistical power to for-
mally test whether there are cohort differences 
in the specific genetic variants linked to educa-
tional attainment, so this presents a significant 
opportunity to disentangle gene-environment 
interplay (Lee et al. 2018). A recent ASR article 
has proposed a novel method (rGxE) that, as 
larger datasets become available, can help 
parse out whether genetic mechanisms vary 
across cohorts (Wedow et al. 2018).

A significant weakness—of both this article 
and social genetics research more broadly—is 

the lack of attention to populations outside of 
European ancestry. Our analysis focused on 
European ancestry populations because nearly 
90 percent of individuals in genome-wide 
association studies and genotyped samples 
have European ancestry (Mills and Rahal 
2019). Note, however, that even as calls for a 
broader inclusion of ancestry groups in genetic 
studies grows, we would not focus on “race” 
differences because race is a social, rather than 
biological, construct (Lee 2009). The resur-
gence in “race” genetics is deeply concerning, 
including researchers using genetic data to 
make claims about white supremacy. Indeed, 
the American Society of Human Genetics was 
recently compelled to release a statement 
denouncing “attempts to link genetics and 
racial supremacy” (ASGH 2018:636).

Finally, although we cannot unequivocally 
rule out some underlying biological explana-
tion linked to sex for these findings, we 
would argue this is unlikely for four reasons. 
First, the dramatic change in the relationship 
between gender and educational attainment 
over the past 50 years, a relatively short 
period, undermines the possibility of genetic 
sex differences or evolutionary explanations. 
Second, when the education polygenic score 
is separately derived for women versus men, 
the correlation between the two is nearly one, 
thus indicating that the underlying mecha-
nisms are quite similar for men and women 
(Lee et  al. 2018). Third, the change in the 
relationship between the educational poly-
genic score and educational attainment within 
a single cohort as that cohort ages further 
weakens support for biological claims. 
Fourth, the empirical tests in this article dem-
onstrated that there were no gender differ-
ences in how the education polygenic score 
predicted the capacity for higher educational 
attainment, as measured by adolescent IQ and 
high school academic performance.

Conclusions
What are the broader implications of this 
research? Educational attainment remains one 
of the most studied social determinants and 
outcomes in social science research. Yet, 
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examining the influence of genetics on educa-
tional attainment remains controversial. 
These results, however, provide evidentiary 
support for a relatively limited role of genet-
ics: genetics appear to account for 9 to 12 
percent of the variance in educational out-
comes, and the evidence points to how the 
influence of genetics cannot be understood 
independent of social structures, like gender.

The discomfort in the social sciences 
regarding the use of genetic data to study 
questions related to educational inequalities is 
grounded in social sciences’ role in the eugen-
ics movement, as well as the ongoing attempts 
to use these data to justify existing inequali-
ties as rooted in genetics (Bliss 2018; Duster 
2004; Roberts 2011). White supremacists, 
including those in academia, are using genetic 
data, falsely, to support their claims. For 
example, they claim racial differences in 
intelligence based on genetics, a strategy that 
dates back to the Progressive era. In short, 
they aim to dehumanize black people based 
on assumptions of how intelligence deter-
mines the capacity to be fully human. Their 
use of these data and interpretation of existing 
research is wrong, and it remains dangerous. 
Consequently, these concerns are well-
founded and the debate and critique are, and 
will continue to be, essential as the field con-
tinues to develop.

Discomfort with this research, however, 
may also reflect an uneasiness with the role of 
genetics in educational ability. Nearly 14 per-
cent of children age 3 to 18 have a diagnosed 
disability, many of which have a clear genetic 
basis, that influences their ability to learn in 
current educational institutions (Zablotsky 
et  al. 2019). Even among the most advan-
taged, genetic differences play a role in dif-
ferentiating who achieves higher levels of 
educational attainment. Indeed, it may matter 
even more for this group (Turkheimer et  al. 
2003). Just like we do not all have equal prob-
abilities of becoming a pianist at birth, we do 
not have equal probabilities of obtaining a 
PhD at birth either. When we gush over the 
most prominent scholars among us, while we 
acknowledge the role that race, gender, and 

class play in shaping those careers, we also 
acknowledge the “raw” talent.

McMillan Cottom (2019:27) observes that 
“[s]mart is only a construct of correspondence, 
between one’s ability, one’s environment, and 
one’s moment in history.” Being “smart” has 
never been more valued than in this historical 
moment, both socially and monetarily. We also 
have a long and robust history of dehumanizing 
and discrimination against those with cognitive 
disabilities, against those defined as not smart 
enough. We generally do not have the same 
uneasiness regarding the role of genetics in the 
development of abilities like music or art—
even though some complicated interplay of 
genes and broader environments is present 
here, just as it is for academic ability. We rarely 
insult people based on their lack of artistic abil-
ity, whereas we commonly insult people based 
on their lack, or perceived lack, of intelligence. 
Acknowledging the role of genetics in this his-
torical moment, especially when some (falsely) 
claim it is immutable, justifiability causes 
unease. We caution, however, that this discom-
fort may also reflect unexamined assumptions 
about the role of “smart” in defining who is—
and is not—fully human and equal.

Yet, a sociological perspective in this 
research is essential. Decades of theory and 
empirical work allows sociologists to think 
critically about how to conceptualize and 
measure environment when examining the 
interplay between genes and environment for 
an outcome like educational attainment. 
Social scientists, including sociologists, bring 
methodological expertise as well, with the 
development of causal inference strategies, 
such as exogenous school policy changes, 
that allow for analyses that would not be con-
founded by, for example, gene by environ-
ment correlations (Conley and Fletcher 2017).

Nonetheless, although sociology has 
played an enormously valuable role in the 
critical analyses of genetic research, with 
important exceptions (e.g., Boardman et  al. 
2008; Conley et al. 2013; Mills, Barban, and 
Tropf 2018; Wedow et  al. 2018), sociology 
has been mostly absent from genetics research 
itself, ceding it to the psychological sciences. 
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One example of how this has muddied the 
water is the tendency in the psychological 
literature to view IQ and educational attain-
ment as interchangeable (Plomin 2018). In 
this worldview, education is a psychological 
trait, like schizophrenia, and environments 
play a limited role in explaining variation in 
these traits. Sociologists, of course, know 
well the difference between a psychological 
trait and a life course attainment, as the latter 
occurs only as the product of an extended 
chain of interactions between individual 
behavior and environmental response (Freese 
2008). In fact, it was a group of sociologists 
who demonstrated, in a meta-analysis of twin 
studies, the vastly different (and much larger) 
role of environment in heritability studies of 
education versus IQ (Branigan et al. 2013).

Yet, the view, based on twin studies that 
severely limit analyses of gene-environment 
interplay, that genetics plays the dominant role 
in determining educational attainment has 
infiltrated policy debates in the United King-
dom. For example, a key advisor to the Eng-
lish Secretary of Education, after extensively 
citing research on twins by psychologists like 
Robert Plomin, claimed that schools or teacher 
quality had little influence on educational out-
comes, specifically test scores (Merrick 2013). 
Although his read of the science was dubious 
at best, twin studies and heritability estimates 
make it far more difficult to have nuanced 
discussions of how environments modify 
genetic influences. In short, if the concern is 
that engaging in this research will validate the 
view that only genetics matter, and that policy 
interventions are a fruitless mechanism to 
improve and equalize educational outcomes, 
we now actually have an empirical tool to 
counteract this view.

The advent of polygenic scores provides the 
opportunity for sociologists to have a louder 
voice in these debates by broadening the body 
of empirical work focused on the role of envi-
ronments in modifying genetic influences. It is 
far more difficult to contradict empirical evi-
dence—and to have a credible voice in these 
debates—without engaging in the relevant 
research. In 1980, Jencks presciently argued 
that heritability—and the twin models that 

provide its empirical basis—limits our ability to 
understand the role of environment in patterning 
genetic influences on social outcomes like edu-
cational attainment. Today, however, we now 
have an empirical tool that will allow us to test 
and better understand gene-environment inter-
play. The growing body of work, which increas-
ingly includes sociology, is just beginning to 
help us better understand the role of environ-
ments, from cohort to socioeconomic condi-
tions (Domingue et  al. 2016; Liu 2018; Trejo 
et al. 2018; Wedow et al. 2018). But to get there, 
we need the expertise of sociologists who have 
the theoretical and empirical knowledge of 
“environment” to properly do this work.

Our analysis provides an example of how 
sociologists can engage. We show that gender 
influences the expression of “genetic poten-
tial” into educational attainment, over the life 
course and across cohorts. The findings from 
this study, however, emphasize that you can-
not understand the role of genetics in educa-
tional attainment if you do not examine the 
social environments in which genetic factors 
are operating. Genetics does not explain the 
history of gender inequalities in educational 
attainment. Gender explains the varied rela-
tionship between the polygenic score and edu-
cational attainment across the life course and 
cohorts. It is only by acknowledging the com-
plicated interplay of genetics and environment 
that we can come closer to understanding 
precisely how environments and institutions 
shape stratification and inequality.
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Notes
  1.	 Of course, it is also true that one can look at the 

same evidence and come to different conclusions 
about which perspective it supports. Debates 
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between Turkheimer and Plomin beautifully illus-
trate this point (Turkheimer 2016).

  2.	 Response options and their numeric values (in 
parentheses) were 8th grade or less (8), some 
high school (10), high school graduate (12), some 
vocational/technical training (13), completed voca-
tional/technical training (14), some college (14), 
completed college (16), some graduate school (17), 
completed a master’s degree (18), some graduate 
training beyond a master’s degree (19), completed 
a doctoral degree (20), some post-baccalaureate 
professional education (18), and completed post-
baccalaureate professional education (19).

  3.	 The WLS and Add Health were both part of the 
GWAS sample used in Lee and colleagues (2018), 
but we obtained customized weights to use in cre-
ating our scores that excluded each sample when 
constructing polygenic scores.

  4.	 Code for the analyses presented in this study is pub-
licly available at https://osf.io/4fvu2/. The data we 
use are available but cannot be posted by us. WLS 
and Add Health analyses use restricted data that are 
available to investigators but require prospective 
users to submit and receive approval for their secure 
use. Our HRS analyses are based on their public-use 
files, but users still must register with HRS to obtain 
and use these data.

  5.	 Note that when testing for statistical differences 
across these groups, the samples are not inde-
pendent. We are comparing differences over time 
among the same group of women.

  6.	 We cannot rule out the possibility that mortality 
selection influenced these findings, given higher 
mortality rates for men and for individuals with 
lower educational attainment. Existing evidence, 
however, shows that these kinds of selection 
effects are not large, particularly within a cohort 
(Domingue et  al. 2017). In our HRS analyses, 
where some researchers have worried that mortality 
risk may pose a larger problem, we used weights to 
address the risk (Domingue et al. 2017).

  7.	 While we thought it useful to provide the stratified 
analysis for Add Health, we did not exclude respon-
dents with less than high school degrees from the 
HRS analyses because our goal was to compare 
across an extended number of cohorts within the 
HRS sample. Given differential retention rates 
across cohorts, and weight construction, attempt-
ing to parse the analyses this way would likely have 
led to significant measurement error. Moreover, in 
the younger HRS cohorts, gender differences in 
high school graduation rates, which had not dif-
fered for the 1930s birth cohorts, started to emerge, 
with more women than men completing high school 
degrees (Heckman and LaFontaine 2010).
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