
Articles
https://doi.org/10.1038/s41588-018-0336-0

1Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan. 2Pharmaceutical Discovery Research Laboratories, 
Teijin Pharma Limited, Hino, Japan. 3Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa 
University, Ishikawa, Japan. 4Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. 5Department of Allergy 
and Rheumatology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan. 6Department of Biomedical Informatics, Harvard Medical School, 
Boston, MA, USA. 7Division of Human Genetics, National Institute of Genetics, Shizuoka, Japan. 8Department of Diabetes and Metabolic Diseases, 
Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. 9Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu 
University, Fukuoka, Fukuoka, Japan. 10Department of Otorhinolaryngology, Head and Neck Surgery, Osaka University Graduate School of Medicine, 
Osaka, Japan. 11Department of Neurology, Osaka University Graduate School of Medicine, Osaka, Japan. 12Department of Obstetrics and Gynecology, 
Osaka University Graduate School of Medicine, Osaka, Japan. 13Department of Pediatrics, Osaka University Graduate School of Medicine, Osaka, Japan. 
14Laboratory of Genome Technology, Institute of Medical Science, The University of Tokyo, Tokyo, Japan. 15Department of Computational Biology and 
Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan. 16Laboratory for Genotyping Development, RIKEN Center 
for Integrative Medical Sciences, Yokohama, Japan. 17RIKEN Center for Integrative Medical Sciences, Yokohama, Japan. 18Kyoto-McGill International 
Collaborative School in Genomic Medicine, Sakyo-ku, Kyoto, Japan. 19Laboratory of Statistical Immunology, Immunology Frontier Research Center  
(WPI-IFReC), Osaka University, Suita, Japan. *e-mail: yokada@sg.med.osaka-u.ac.jp

Genetic variants of the major histocompatibilty complex 
(MHC) region at 6p21.3 confer the largest number of asso-
ciations that explain substantial phenotypic variations of a 

wide range of complex human diseases and quantitative traits1. The 
MHC region is one of the most polymorphic sites in the human 
genome and is characterized by population-specific complex link-
age disequilibrium (LD) structure and long-range haplotypes2–5. 
Among the >​200 genes densely contained in the MHC region6,7, 
human leukocyte antigen (HLA) genes are considered to explain 
most of the genetic risk of MHC. Fine-mapping efforts to identity 
causal variants within the MHC region reported many HLA alleles 
and amino acid polymorphisms associated with complex human 
traits8. In particular, development of the HLA imputation method 
and construction of population-specific reference panels have suc-
cessfully accelerated the identification of causal variants that should 
be useful for personalized medicine9–12.

However, several points have yet to be implemented in genetic 
and phenotypic studies of MHC. The first point is the use of NGS 
for fine-mapping MHC risk. Compared with traditional HLA typing  

methods, such as sequence-specific oligonucleotide hybridization 
(SSO) and sequencing-based typing, HLA typing by NGS could 
provide higher resolution of alleles for a wider spectrum of HLA 
and HLA-related genes beyond a limited number of classical HLA 
genes13–16. Population-specific whole-genome sequencing (WGS) 
data contribute to imputing functional rare variants with high 
accuracy17. Given that variants of the nonclassical HLA genes are 
responsible for disease risk, as well as those of the classical HLA 
genes, and that functional variants of non-HLA genes within the 
MHC region affect clinical phenotypes18,19, MHC risk analyses using 
the NGS-based reference panel are warranted to achieve more accu-
rate fine-mapping of the causal variants.

The second point is the application of the HLA imputation 
method to large-scale genome-wide association study (GWAS) 
data that represent all the participants of population-level cohorts. 
Many nation-wide biobanks have recently been launched to capture 
the genetic and phenotypic variation of these populations. To date, 
large-scale GWAS data from >​100,000 samples have been publicly 
released from several biobanks (for example, >​500,000 from UK 
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Biobank17,20 and >​170,000 from BioBank Japan Project (BBJ)21,22). 
Although HLA imputation of such big genotype data needs fur-
ther tuning in the analytic pipeline, achievement of this task should 
enhance the knowledge of the genetic landscape of MHC in these 
populations.

The third point is a phenome-wide assessment of risk vari-
ants in the MHC region. Cross-phenotype analysis has identi-
fied shared genetic correlations among human traits, which 
are represented as pleiotropic associations of the variants and 
cross-phenotype network that are linked to disease biology23–26. 
Phenome-wide association studies (PheWASs) that use electronic 
medical records or medical information collected throughout a 
cohort have successfully identified clinically useful genotype–
phenotype correlations27,28. MHC is one of the most pleiotro-
pic sites in the genome1, and thus application of the PheWAS 
approach should elucidate the phenotypic landscape of the MHC 
variants as well29.

Here we report a comprehensive analysis that characterizes the 
genetic and phenotypic landscape of MHC in the Japanese popula-
tion. We newly constructed an HLA imputation reference panel of 
Japanese individuals (n =​ 1,120) through high-resolution NGS typ-
ing of both classical and nonclassical HLA genes (n =​ 33). Together 
with accurate imputation of single-nucleotide variants (SNVs) and 
indels in a broad allele-frequency spectrum by using the popula-
tion-specific deep-WGS reference data (n =​ 1,276)30, HLA imputa-
tion of the 166,190 Japanese individuals from the BBJ genotype data 
was conducted to apply a PheWAS of 106 complex human diseases 
and quantitative traits extracted from clinical records.

Results
NGS typing of HLA genes in the Japanese population. For the 
1,120 unrelated Japanese individuals, we conducted high-resolu-
tion typing of 33 HLA-related genes with up to six-digit-level allele 
information (study design in Supplementary Fig. 1). We adopted 
target-capture technique and sequencing with relatively longer read 
lengths (350 base pairs (bp) and 250 bp for paired-end, an average 
depth of 260.1×​)31,32. By conducting validation with the traditional 
SSO method for some individuals (n =​ 182), we observed higher 
accuracy in classical HLA allele typing than that in previous NGS-
based reports (<​0.56% potentially inaccurate typing). NGS-based 
HLA typing was able to update allele information that was incor-
rectly assigned by traditional typing methods (for example, HLA-
DRB1*14:01 by SSO was corrected as HLA-DRB1*14:54 by NGS33; 
details in Supplementary Table 1).

Among the 33 sequenced HLA genes, 9 are classical HLA 
genes (3 for class I and 6 for class II), and 24 are nonclassical HLA 
genes (Supplementary Table 2; HLA gene classification criteria 
in Methods). Whereas alleles of classical HLA genes were highly 
polymorphic (on average, there were 9.7, 20.1 and 21.6 alleles per 
gene for two-digit, four-digit and six-digit-level allele informa-
tion, respectively), those of nonclassical HLA genes showed lower 
variations (1.4, 3.1 and 4.0 alleles per gene, respectively; Fig. 1a 
and Supplementary Tables 2 and 3). Of these, HLA-B, HLA-DRB1 
and MICA had the largest numbers of alleles for class I and II 
classical HLA genes and nonclassical HLA genes, respectively 
(n =​ 39, 33 and 15 in four-digit-level allele information). Because 
there was inconsistent definition of the registered sequences for 
one of the nonclassical HLA genes of TAP2, it was difficult to 
consistently define the four-digit (and also six-digit) alleles of 
TAP2 (details in Supplementary Table 4). Although elucidation 
of six-digit allele distribution is one of the topics that was finally 
achieved by introduction of NGS, we found that increments of 
HLA allele variations from four to six digits (+​1.4 and +​0.9 for 
classical and nonclassical HLA alleles, respectively) were limited 
as compared with those from two to four digits (+​10.4 and +​1.7 
alleles, respectively).

High-dimensional compression elucidates HLA-variant pat-
terns. Systematic visualization of LD patterns among HLA genes 
contributes to the understanding of population-specific LD struc-
ture of genetic variants within MHC4. Thus, we introduced an 
entropy-based LD-measurement index (ε​) to assess distributions 
of the four-digit HLA alleles and to quantify pairwise LD between 
the HLA genes. Within MHC, there exist four major LD blocks of 
the HLA genes (ε >​ 0.15): HLA-G, HLA-H, HLA-K and HLA-A for 
block 1; HLA-C, HLA-B, MICA and MICB for block 2; HLA-DRA, 
HLA-DRB family genes, HLA-DQA1, HLA-DQB1 and HLA-DOB 
for block 3; and HLA-DPA1 and HLA-DPB1 for block 4 (Fig. 1b),  
thus demonstrating that classical and nonclassical HLA genes 
together constitute the LD patterns within MHC.

One challenge in HLA-polymorphism characterization in per-
sonalized regenerative medicine or organ transplantation is an 
optimized classification of the haplotypes based on HLA typing 
data34. Classifying haplotypes according to simple combinations of 
multiple HLA alleles and genes is likely to subdivide samples into 
clusters that are too segmented. Thus, we introduced a machine-
learning-based clustering approach. We adopted t-distributed sto-
chastic neighbor embedding (tSNE), a machine-learning method 
for high-dimensionality compression and visualization35,36, to the 
HLA typing data. We then performed unsupervised clustering of 
the haplotypes by using tSNE components (tSNE1 and tSNE2) and 
the DBSCAN algorithm37.

For classical HLA alleles, 3, 10 and 11 clusters were constructed 
for two-digit, four-digit and six-digit alleles, respectively (fre-
quency >​0.01; Fig. 2a). Although haplotypes of higher- and lower-
digit alleles were clustered separately, clusters of the higher-digit 
alleles were subsets of those of the lower-digit alleles, corresponding 
to the original definition of HLA allele nomenclature (Fig. 2b)5. The 
clusters of the six-digit classical HLA alleles had lower increments 
in variations than those of the four-digit classical HLA alleles (+​1 
cluster), whereas variations substantially increased from two-digit 
to four-digit alleles (+​7 clusters). Given that the highly polymor-
phic nature of the HLA alleles is derived from balancing selection 
such as heterozygosity advantage, four-digit alleles (that is, amino 
acid polymorphisms) of the HLA genes might be main targets of the 
selection pressure rather than two-digit or six-digit alleles.

However, haplotype clusters of nonclassical HLA alleles had 
different patterns than those of classical HLA alleles (Fig. 2a), and 
parsimonious correspondences of the clusters between classical and 
nonclassical HLA alleles seemed to be difficult to define (Fig. 2b). 
This result suggests that nonclassical HLA genes have independent 
genetic landscapes in their variations compared with those of classi-
cal HLA genes, and that risk assessments of nonclassical HLA-gene 
variants should additionally contribute to fine-mapping efforts to 
identify causal functional variants in the MHC region.

NGS-based HLA and SNV imputation of Japanese GWAS data. 
Motivated by the newly identified genetic architecture of both classi-
cal and nonclassical HLA genes, we constructed a new HLA imputa-
tion reference panel of the Japanese population (n =​ 1,120). Whereas 
previous studies have focused primarily on the core MHC region 
for risk fine-mapping (around 29–33 Mb on chromosome 6, NCBI 
Build 37), we extended the target region into the MHC and its flank-
ing region (24–36 Mb), which we define as the ‘entire MHC’ herein. 
Together with genotyping of the SNPs in the entire MHC region, we 
incorporated sequenced variants of the HLA genes and constructed 
the reference panel by using SNP2HLA9. The imputation accuracy 
of the constructed HLA imputation reference panel was empirically 
evaluated by a cross-validation approach12. Whereas previous studies 
have reported limited accuracy of NGS-based HLA typing14,38, the 
newly constructed reference panel achieved high imputation accu-
racy (96.4 and 99.1% for the four-digit classical and nonclassical 
HLA alleles, respectively; Supplementary Table 3). This concordance 
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was even better than that of the previously constructed SSO-method-
based reference panel of Japanese individuals (95.9% for the four-
digit classical HLA alleles, n =​ 908 for independent samples)4.

Using the constructed reference panel, we densely imputed the 
HLA variants of the GWAS genotype data of the Japanese population 
constructed by BBJ (n =​ 166,190)21,22. To apply HLA imputation to 
such large-scale GWAS data, we updated the protocol to incorporate 
multiple software for genotype phasing and imputation (SNP2HLA, 
Eagle and minimac3; details in Methods). Furthermore, to comple-
ment SNP-microarray-based incomplete coverage of the variants, 
we densely imputed SNV and indels within the entire MHC region 
by using the deep-WGS data of the Japanese population as a refer-
ence (n =​ 1,276, average depth =​ 24.6×​)30. After application of strict 
postimputation variant filtering (minor allele frequency (MAF)  
≥​ 0.5% and imputation score Rsq ≥​ 0.7), we obtained genotype dos-
ages of 108 two-digit, 184 four-digit and 200 six-digit alleles and 
2,273 amino acid polymorphisms of classical and nonclassical HLA 
genes, as well as 62,030 SNV and 4,203 indels in the entire MHC 
region (68,998 variants in total).

PheWAS identifies pleiotropy of MHC with human phenotypes. 
Using the NGS-based HLA, SNV and indel imputation data of 
the BBJ GWAS, we conducted PheWAS to comprehensively elu-
cidate the genetic and phenotypic landscapes of the entire MHC. 
We incorporated data on 106 phenotypes collected from medical 
records of nationwide hospitals belonging to BBJ (Supplementary 

Table 5). Of these, 46 were complex diseases classified into four 
categories (immune related, metabolic and cardiovascular, cancers 
and other diseases)21,22, and 60 were quantitative traits classified into 
ten categories (anthropometric, metabolic, protein, kidney related, 
electrolyte, liver related, other biochemical, hematological, blood 
pressure and echocardiographic)25,26.

In the PheWAS, we evaluated associations of the entire MHC 
region with all of the 106 phenotypes. Approximately half of the 
phenotypes (n =​ 52; 16 diseases and 36 quantitative traits) indicated 
the association signals that satisfied the genome-wide-significance 
threshold (P <​ 5.0 ×​ 10−8; ref. 39; Table 1 and Supplementary Fig. 2), 
thus demonstrating substantial pleiotropic roles of MHC in a wide 
range of human phenotypes. Furthermore, stepwise conditional 
analysis identified multiple independent association signals in as 
many as 20 phenotypes (Supplementary Table 6). On average, 2.0 
independent signals per phenotype were observed, with the larg-
est number of seven signals observed for adult height and alkaline 
phosphatase. This result suggests that the genetic risk in MHC may 
reflect polygenic combinations of multiple functional and biologi-
cal origins. Applying a multivariate regression model fitting nonad-
ditive effects of the HLA alleles, we found significant nonadditive 
effects of HLA-DPB1*05:01 and HLA-DPB1*02:02 alleles on the 
risk of Graves’ disease (P <​ 3.7 ×​ 10−16; Supplementary Figure 3). 
Despite limited increments in allele variations from four-digit to 
six-digit alleles, several six-digit HLA alleles indicated more signifi-
cant associations than those observed for the ancestral four-digit 
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Fig. 1 | High-resolution allele-frequency spectra and linkage disequilibrium of HLA genes. a, Cumulative frequency (freq.) spectra of two-digit, four-digit 
and six-digit HLA alleles obtained by using NGS-based typing. Genes with the largest numbers of alleles are labeled separately for classical HLA genes 
(class I and class II) and nonclassical HLA genes. b, Pairwise evaluation of LD measurement, ε​, among the HLA genes. ε​ uses normalized entropy of the 
haplotype frequency, and a higher ε​ value represents stronger LD. LD blocks (ε >​ 0.15) are highlighted with white boundaries.
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alleles (for example, odds ratio =​ 1.32 and P =​ 4.0 ×​ 10−28 at HLA-
DRB4*01:03:02 but odds ratio =​ 1.13 and P =​ 8.4 ×​ 10−11 at HLA-
DRB4*01:03 with asthma).

PheWAS-based classifications of MHC-association patterns. 
Although our PheWAS approaches identified abundant association 
signals, their association patterns could be classified according to 
the types of the responsible genes (Fig. 3). (i) Associations of classi-
cal HLA genes were most evident (28 of the 52 top association sig-
nals and 52 of the 97 independent association signals). We observed 
that a series of quantitative traits, including hematological and 
blood pressure traits, were enriched in associations with the class I  
classical HLA gene variant (for example, P =​ 6.7 ×​ 10−24 at HLA-C 
Tyr116 with basophil count and P =​ 5.0 ×​ 10−40 at HLA-B amino acid 
position 116 with eosinophil count). As for the class II classical HLA 
genes, associations with diseases such as immune-related diseases 
and cancers were more evident than those with quantitative traits 
(for example, P =​ 3.3 ×​ 10−43 at HLA-DQβ​1 amino acid position 57 
with chronic hepatitis B and P =​ 1.1 ×​ 10−16 at rs9273367 in LD with 
HLA-DQβ​1 Ile185 (r2 =​ 0.81) with type 1 diabetes). (ii) Nonclassical 
HLA gene variants showed significant associations as well (for 
example, P =​ 4.0 ×​ 10−28 at HLA-DRB4*01:03:02 with asthma and 
P =​ 6.7 ×​ 10−10 at rs2844726 in LD with HLA-E amino acid posi-
tion 107 (r2 =​ 0.76) with red-blood-cell count). (iii) Associations 
of non-HLA gene variants were observed within each class of the 
MHC region (for example, P =​ 9.5 ×​ 10−14 at rs2233965 at C6orf15 
with type 2 diabetes in the class I region, P =​ 2.2 ×​ 10−20 at rs3830041 
at NOTCH4 with aspartate aminotransferase in the class III region, 
and P =​ 2.6 ×​ 10−13 at rs3864302 at C6orf10 with atopic dermatitis 

in the class II region). Such top association signals observed at the 
non-HLA gene variant within MHC still remained significant when 
conditioned on nearby HLA gene variants with the strongest asso-
ciation, thus confirming their independent phenotypic effects from 
the HLA genes. (iv) Non-HLA genes in the extended MHC region 
showed associations (for example, P =​ 5.7 ×​ 10−18 at rs1799945 at 
HFE with mean corpuscular hemoglobin and P =​ 4.4 ×​ 10−29 at 
rs2762353 at SLC17A1 with uric acid). (v) Furthermore, non-HLA 
genes in the region flanking the MHC also showed associations (for 
example, P =​ 1.9 ×​ 10−12 at rs73743323 at IP6K3 with phosphorus 
and P =​ 5.4 ×​ 10−77 at rs139458943 at GPLD1 with alkaline phos-
phatase). In pattern 5, we observed the contribution of rare SNVs 
(MAF <​0.01) on several traits (for example, GPLD1 for alkaline 
phosphatase and GRM4 and HMGA1 for adult height and estimated 
glomerular filtration rate). Our NGS-based HLA, SNV and indel 
imputation enabled us to detect such independent association sig-
nals from classical HLA genes. (vi) Population-specific long-range 
haplotypes characterize the LD structure of MHC4. Here, we show 
that a long-range haplotype that spans the entire MHC region spe-
cific to the Japanese population2,4 had pleiotropic effects on multiple 
phenotypes (P =​ 3.6 ×​ 10−23 with estimated glomerular filtration 
rate and P =​ 7.3 ×​ 10−17 with triglyceride). (vii) Analogously to the 
identification of multiple independent association signals for a 
single phenotype, several traits confer combinations of multiple 
association patterns (for example, associations with adult height 
in the class II classical HLA variant (P =​ 6.7 ×​ 10−17 at HLA-DRβ​
1 74Ala, pattern 2), the extended MHC region (P =​ 2.0 ×​ 10−39 at 
rs9379833 at HIST1H2BE, pattern 5) and the region flanking the 
MHC (P =​ 5.7 ×​ 10−72 at rs4713762 at HMGA1, pattern 4)).

a

Classical HLA alleles

Two-digit Four-digit Six-digit

Four-digit HLA alleles

Classical Nonclassical

Classical HLA alleles (two-digit)

tSNE1

tS
N

E
2

Classical HLA alleles (four-digit)

tSNE1

tS
N

E
2

Classical HLA alleles (six-digit)

tSNE1

tS
N

E
2

Nonclassical HLA alleles (four-digit)

tSNE1

tS
N

E
2

b
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Table 1 | Significant association signals in the entire MHC region identified by PheWAS

Trait No. samples 
(cases, controls)

No. 
independent 
signals in MHC

Top associated 
varianta

Position (hg19) Allele 
1/2 

Gene Allele 1 
frequency 
(cases, 
controls)

Effect size  
(allele 1)

Pb

Immune-related diseases

Asthma (7,207, 62,407) 1 HLA-DRB4*01:03:02 32,502,549 – HLA-DRB4, 
HLA-DRB1

(0.173, 0.140) 1.32 (1.25–1.38) 4.0 ×​ 10−28

Atopic dermatitis (2,358, 62,407) 1 rs3864302 32,278,792 T/C C6orf10 (0.266, 0.316) 0.79 (0.74–0.84) 2.6 ×​ 10−13

Chronic hepatitis B (1,238, 62,407) 4 HLA-DQβ​1 position 57 32,631,702 – HLA-DQB1 – – 3.3 ×​ 10−43

Chronic hepatitis C (5,333, 62,407) 2 HLA-B position 156 31,323,307 – HLA-B – – 4.2 ×​ 10−12

Graves’ disease (1,938, 62,407) 4 rs72500561 33,039,958 G/A HLA-DPA1, 
HLA-DPB1

(0.587, 0.464) 1.63 (1.53–1.74) 7.0 ×​ 10−50

Pollinosis (5,139, 58,556) 1 rs9272544 32,606,878 A/G HLA-DQA1 (0.417, 0.439) 0.89 (0.85–0.93) 1.8 ×​ 10−8

Rheumatoid arthritis (2,346, 62,407) 2 HLA-DQA1*03:03 32,605,398 – HLA-DQA1, 
HLA-DRB1

(0.322, 0.157) 2.65 (2.49–2.83) 2.0 ×​ 10−173

Type 1 diabetes mellitus (106, 62,407) 1 rs9273367 32,626,438 T/A HLA-DQB1 (0.707, 0.423) 3.29 (2.44–4.43) 1.1 ×​ 10−16

Metabolic and cardiovascular diseases

Hyperlipidemia (43,939, 62,407) 1 HLA-DQβ​1 position 
–21

32,631,702 – HLA-DQB1 – – 3.5 ×​ 10−18

Myocardial infarction (11,868, 62,407) 1 HLA-B position 80 31,323,307 – HLA-B – – 3.4 ×​ 10−14

Stable angina (14,461, 62,407) 1 rs1362104 30,101,656 C/T Long-range 
haplotype

(0.386, 0.369) 1.08 (1.05–1.11) 1.5 ×​ 10−8

Type 2 diabetes mellitus (36,698, 62,407) 1 rs2233965 31,080,899 G/T C6orf15 (0.328, 0.346) 0.93 (0.91–0.95) 9.5 ×​ 10−14

Cancers

Lung cancer (3,615, 62,407) 1 HLA-DQβ​1 position 67 32,631,702 – HLA-DQB1 – – 6.1 ×​ 10−9

Liver cancer (1,587, 62,407) 1 rs9271377 32,587,165 G/T HLA-DQA1 (0.148, 0.186) 0.75 (0.68–0.83) 9.4 ×​ 10−9

Other diseases

Liver cirrhosis (1,824, 62,407) 1 rs3129943 32,338,695 G/A C6orf10 (0.415, 0.368) 1.22 (1.14–1.31) 7.2 ×​ 10−9

Nephrotic syndrome (871, 62,407) 1 HLA-DQA1*05:05:01 32,605,398 – HLA-DQA1 (0.069, 0.041) 1.81 (1.49–2.19) 2.1 ×​ 10−8

Anthropometric QTL

Adult height 151,336 7 rs4713762 34,231,661 A/G HMGA1 0.131 0.096 (0.0053) 5.7 ×​ 10−72

Body mass index 150,369 3 HLA-DQβ​1  
position 185

32,631,702 – HLA-DQB1 – – 2.8 ×​ 10−13

Metabolic QTL

Total cholesterol 123,854 1 HLA-DQβ​1  
position 30

32,631,702 – HLA-DQB1 – – 1.3 ×​ 10−9

HDL cholesterol 68,016 1 rs4947340 32,435,338 C/T HLA-DRA 0.451 –0.034 (0.0054) 7.5 ×​ 10−10

Triglyceride 101,870 1 rs9469053 31,755,776 G/A Long-range 
haplotype

0.075 0.069 (0.0081) 7.3 ×​ 10−17

Blood sugar 89,917 1 rs28360985 30,993,244 T/C MUC22 0.211 −​0.039 (0.0057) 1.8 ×​ 10−11

Hemoglobin A1c 41,121 1 rs2844542 31,347,274 C/G MICA 0.348 0.040 (0.0073) 2.9 ×​ 10−8

Protein QTL

Total protein 109,640 2 rs13197513 32,990,121 C/T HLA-DPB1 0.051 −​0.074 (0.0097) 1.5 ×​ 10−14

Albumin 98,739 1 rs77849299 31,456,345 C/G MICB 0.224 −​0.043 (0.0054) 2.2 ×​ 10−15

Nonalbumin protein 95,151 2 rs28752797 31,291,172 C/T HLA-C 0.193 0.061 (0.0058) 6.8 ×​ 10−26

Albumin/globulin ratio 95,238 4 6:31468859 31,469,859 T/TC MICB 0.189 −​0.070 (0.0059) 7.4 ×​ 10−33

Kidney-related QTL

Serum creatinine 137,322 2 rs28360975 30,978,834 T/G Long-range 
haplotype

0.081 0.066 (0.0067) 9.6 ×​ 10−22

Estimated glomerular 
filtration rate

138,827 3 rs28360975 30,978,834 T/G Long-range 
haplotype

0.081 −​0.068 (0.0069) 3.6 ×​ 10−23

Uric acid 105,190 3 rs2762353 25,794,431 T/C SLC17A1 0.160 −​0.066 (0.0058) 4.4 ×​ 10−29

Electrolyte QTL

Potassium 128,510 1 rs3129943 32,338,695 G/A C6orf10 0.367 0.022 (0.0041) 4.7 ×​ 10−8

Phosphorus 41,346 1 rs73743323 33,705,355 T/C IP6K3 0.032 −​0.138 (0.0195) 1.9 ×​ 10−12

Liver-related QTL

Total bilirubin 106,555 1 HLA-DQA1*03:03:01 32,605,398 – HLA-DQA1 0.162 0.039 (0.0059) 2.5 ×​ 10−11

Aspartate 
aminotransferase

129,615 1 rs3830041 32,191,339 A/G NOTCH4 0.185 0.047 (0.0049) 2.2 ×​ 10−20

Alanine 
aminotransferase

129,662 1 rs206769 32,961,104 T/C HLA-DMA 0.214 0.026 (0.0047) 4.7 ×​ 10−8

Continued
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Cluster visualization of the observed association patterns could 
help illustrate the overall genetic and phenotypic landscape within 
the entire MHC region (Fig. 4). Significant MHC associations with 
11 traits were newly identified by our study (that is, pollinosis, 
hyperlipidemia, myocardial infarction, stable angina, type 2 diabe-
tes, liver cancer, liver cirrhosis, nephrotic syndrome, total protein, 
potassium and creatine kinase). In addition, we newly identified 
trait-associated signals on previously unreported HLA variants or 
other MHC variants in 37 phenotypes (Supplementary Table 7).

Our NGS-based MHC fine-mapping efforts were able to refine 
responsible risk variants that had not been identified earlier 
(Supplementary Table 6). For example, previous studies on hepa-
titis B in Japanese individuals have suggested that HLA-DRB1, 
HLA-DQB1 and HLA-DPB1 allele haplotypes can explain the risk 
embedded within the MHC class II region40. However, our study 
shows that the amino acid polymorphisms of HLA-DQβ​1 (posi-
tion 57), HLA-DPα​1 (position 111) and HLA-DQα​1 (position 160) 
independently explained the risk. Although a contribution of the 
HLA-C allele was originally suggested for monocyte count41, our 
study additionally identifies risk at MICB (rs2395040), which would 
support the roles of monocytes in disease pathophysiology42.

Genetic correlation within MHC highlights phenotype networks. 
Another approach to infer genetic and phenotypic overlap is to estimate 
genetic correlation24–26. Contrary to the PheWAS approach that assesses 
point-by-point connections between single variants and phenotypes, 
genetic correlation could account for shared polygenic architecture 
across the phenotypes. To that end, we estimated region-wide poly-
genic heritability of phenotypes that was explained by variants within 
the entire MHC (Fig. 5a and Supplementary Table 5). As reported 
previously4,18,40,43, immune-related diseases such as type 1 diabetes, 

rheumatoid arthritis, Graves’ disease, chronic hepatitis B and asthma 
showed the highest region-wide heritability (9.8, 9.5, 4.6, 3.5 and 1.1%, 
respectively). Although single-variant associations were not significant, 
possibly because of the small sample size of the cases (n =​ 547), uterine 
cervical cancer showed relatively high heritability among the pheno-
types (1.6%). When the proportions of the heritability explained by 
classical HLA gene variants and other MHC variants not in LD with 
them (r2 <​ 0.1) were quantified, immune-related diseases showed the 
largest proportions of heritability derived from classical HLA gene 
variants (on average 0.69), whereas metabolic and cardiovascular dis-
eases showed the smallest proportions (on average 0.32).

Finally, we estimated genetic correlations of the entire MHC 
region across the phenotypes and visualized cross-phenotype 
networks reflecting shared polygenic architecture and embed-
ded biological information. As suggested by single-phenotype 
heritability analysis, the genetic-correlation network of classical 
HLA gene variants and that of other MHC variants showed dif-
ferent patterns of connections (Fig. 5b). In the former, several 
tight connections among the phenotypes belonging to the same 
categories (for example, immune related, metabolic and cardio-
vascular, hematological and protein) together configure the entire 
network. In the latter, the entire network was divided into subnet-
works constituted separately by diseases and quantitative traits. As 
an example of a specific trait, rheumatoid arthritis showed posi-
tive correlations with asthma, type 1 and 2 diabetes mellitus, and 
total bilirubin but a negative correlation with body mass index 
in classical HLA gene variants, whereas it showed negative cor-
relations with hyperlipidemia, stable angina, myocardial infarc-
tion, lactate dehydrogenase and eosinophil count in other MHC 
variants. These results indicate that polygenic architecture of the 
entire MHC region confers pleiotropic diversity according to the 

Trait No. samples 
(cases, controls)

No. 
independent 
signals in MHC

Top associated 
varianta

Position (hg19) Allele 
1/2 

Gene Allele 1 
frequency 
(cases, 
controls)

Effect size  
(allele 1)

Pb

Alkaline phosphatase 101,464 7 rs139458943 24,497,823 A/G GPLD1 0.065 −​0.168 (0.0090) 5.4 ×​ 10−77

Other biochemical QTL

Creatine kinase 102,511 1 HLA-DQβ​1  
position –17

32,631,702 – HLA-DQB1, 
HLA-DRB1

– – 1.1 ×​ 10−24

Lactate dehydrogenase 122,047 1 HLA-DQβ​1  
position −​4

32,631,702 – HLA-DQB1 – – 6.7 ×​ 10−29

Hematological QTL

White-blood-cell count 104,453 4 rs2524084 31,241,639 A/G HLA-C 0.425 0.052 (0.0043) 1.1 ×​ 10−32

Neutrophil count 60,350 2 rs2853946 31,247,203 T/A HLA-C 0.275 0.059 (0.0064) 5.6 ×​ 10−20

Eosinophil count 60,350 3 HLA-B position 116 31,323,307 – HLA-B, 
HLA-C

– – 5.0 ×​ 10−40

Basophil count 60,350 1 HLA-C Tyr116 31,238,217 – HLA-C 0.428 −​0.059 (0.0058) 6.7 ×​ 10−24

Monocyte count 60,350 2 rs2524084 31,241,639 A/G HLA-C 0.425 0.066 (0.0058) 1.0 ×​ 10−29

Lymphocyte count 60,350 2 rs4959105 32,583,146 T/C HLA-DRB1 0.456 −​0.053 (0.0057) 1.7 ×​ 10−20

Red-blood-cell count 105,252 1 rs2844726 30,444,357 T/C HLA-E 0.322 0.029 (0.0046) 6.7 ×​ 10−10

Hemoglobin 105,146 1 rs2302398 31,088,232 A/G CDSN 0.228 0.030 (0.0051) 1.1 ×​ 10−8

MCV 104,487 1 rs9264579 31,235,746 A/G HLA-C 0.346 0.031 (0.0045) 1.5 ×​ 10−11

Mean corpuscular 
hemoglobin

104,308 2 rs1799945 26,091,179 G/C HFE 0.029 0.112 (0.0127) 5.7 ×​ 10−18

MCHC 104,912 1 rs1799945 26,091,179 G/C HFE 0.029 0.093 (0.0127) 5.1 ×​ 10−13

Platelet count 104,696 5 rs5745568 33,548,394 A/C BAK1 0.230 0.070 (0.0051) 3.3 ×​ 10−41

Blood-pressure QTL

Systolic blood pressure 132,148 1 rs2523557 31,331,257 G/A HLA-B 0.143 0.032 (0.0054) 3.6 ×​ 10−9

Mean arterial pressure 132,033 1 rs4947311 31,326,166 C/T HLA-B 0.158 0.029 (0.0053) 2.6 ×​ 10−8

Significantly associated variants identified by the PheWAS are indicated. aWhen the omnibus P value of the HLA amino acid position indicated the most significant associations, no amino acid residue was 
indicated. bTwo-tailed P values calculated with logistic or linear regression that satisfied the genome-wide-significance threshold (P <​ 5.0 ×​ 10−8) are indicated without adjustment.

Table 1 | Significant association signals in the entire MHC region identified by PheWAS (Continued)
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(3) Non-HLA gene in the MHC region (type 2 diabetes mellitus)

(2) Nonclassical HLA gene (asthma)

(1) Classical HLA gene (class II, chronic hepatitis B)

(1) Classical HLA gene (class I, basophil count)

(6) Long-range haplotype spanning the entire MHC region (eGFR)

(7) Combinations of multiple association patterns (adult height)

(4) Non-HLA gene in the extended MHC region (MCH)

(5) Non-HLA gene in the region flanking MHC (phosphorus)

Extended MHC region Region flanking MHC

HLA class I region HLA class II region HLA class III region

Classical HLA gene (class I) Classical HLA gene (class II) Non-classical HLA gene
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Fig. 3 | Genotype–phenotype association patterns identified by PheWAS with NGS-based HLA, SNV and indel imputation. Regional association plots of 
the entire MHC region in the PheWAS on the large-scale GWAS of the BBJ. Horizontal bar represents significance threshold. NGS-based HLA, SNV and 
indel imputation enabled classification of the association patterns of genetic risk factors within MHC (from top to bottom): (1) classical HLA gene (class I 
and II), (2) nonclassical HLA gene, (3) non-HLA gene in the MHC region, (4) non-HLA gene in the extended MHC region, (5) non-HLA gene in the region 
flanking MHC, (6) long-range haplotype spanning the entire MHC region and (7) combinations of the multiple association patterns. Two-tailed P values 
calculated with logistic or linear regression are indicated without adjustment (n =​ 166,190 independent Japanese individuals). Dotted horizontal lines 
indicate genome-wide-significance threshold of P =​ 5.0 ×​ 10−8. MCH, mean corpuscular hemoglobin; eGFR, estimated glomerular filtration rate.
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phenotypes, phenotype categories and functional categories of the 
responsible genes.

Discussion
Through NGS-based typing of high-resolution HLA gene polymor-
phisms and implementation of the imputation reference panel in 
the Japanese population, our PheWAS approach using large-scale 
GWAS data successfully fine-mapped the genetic risk embedded in 
the entire MHC region and excavated the cross-phenotype genetic-
correlation network.

Our study highlights several new findings. First, we constructed 
a catalog of NGS-based high-resolution frequency spectra of both 
classical and nonclassical HLA alleles. Our resources should con-
tribute to the understanding of the biological and clinical roles 
of nonclassical HLA genes, a challenging area of MHC yet to be 
investigated13. Our next steps will include (i) direct construction of 
a highly accurate HLA imputation reference panel from WGS data 
without target sequencing of HLA and (ii) application of long-read 
sequencing technology to copy number variants and other complex 
genomic regions such as killer cell immunoglobulin-like receptor44. 
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The strategy in this study to separately impute HLA and SNV by 
using different reference panels could disrupt LD among the variants,  
and imputation of all the variants of interest by using a single panel 
is warranted. Second, application of a high-dimensional compres-
sion technique to the HLA data, such as tSNE originally applied 

for epigenetic data45,46, effectively configured unbiased clustering 
of the haplotypes. The result is notable because machine-learning-
based unsupervised clustering successfully recaptured the original 
definition of HLA-allele nomenclature and identify the independent 
genetic landscapes of classical and nonclassical HLA genes without 
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prior biological or genetic knowledge. This finding indicates that 
trans-omics sharing of analytical methods between genomics and 
epigenomics fields may yield innovative findings47. Third, NGS-based 
HLA, SNV and indel imputation followed by the PheWAS approach 
successfully demonstrated a wide range of genotype–phenotype cor-
relations in complex human traits. Approximately half of the pheno-
types examined in our PheWAS showed significant associations; this 
proportion was larger than we expected on the basis of similar previ-
ous approaches27,29. Our study indicates the value of PheWAS focus-
ing on large-scale genotype data on sites with pleiotropic features. 
Further accumulation of genotype and clinical data is warranted to 
achieve larger study scales. Fourth, dense fine-mapping efforts high-
lighted several patterns of association signals within the entire MHC 
region. In particular, we confirmed independent phenotype risk from 
classical HLA genes, namely nonclassical HLA genes and non-HLA 
genes within the core MHC, extended MHC and flanking regions. 
Finally, MHC-region-wide heritability and genetic-correlation esti-
mates depicted cross-phenotype networks in a manner comple-
menting those obtained from single-variant and multiple-phenotype 
associations such as PheWAS. As an intermediate approach between 
single-variant analysis and genome-wide polygenic assessments, 
region-wide or locus-based approaches may be promising as well48.

In conclusion, our study comprehensively elucidated the genetic 
and phenotypic landscapes of MHC in the Japanese population.

URLs. The BioBank Japan Project (BBJ), https://biobankjp.org/eng-
lish/index.html; Japan Biological Informatics Consortium (JBIC), 
http://www.jbic.or.jp/english/; Omixon Target software, https://
www.omixon.com/; BWA, http://bio-bwa.sourceforge.net/; GATK, 
https://software.broadinstitute.org/gatk/; IPD-IMGT/HLA data-
base, https://www.ebi.ac.uk/ipd/imgt/hla/; OptiType, https://github.
com/FRED-2/OptiType/; POLYSOLVER, https://software.broadin-
stitute.org/cancer/cga/polysolver/; HLA-HD, https://www.genome.
med.kyoto-u.ac.jp/HLA-HD/; Kourami, https://github.com/
Kingsford-Group/kourami/; eLD, http://www.sg.med.osaka-u.ac.jp/
tools.html; Rtsne R package, https://cran.r-project.org/web/pack-
ages/Rtsne/index.html; DBSCAN R package, https://cran.r-project.
org/web/packages/dbscan/index.html; Alluvial R package, https://
github.com/mbojan/alluvial/; SNP2HLA, http://software.broadin-
stitute.org/mpg/snp2hla/; Eagle, https://data.broadinstitute.org/
alkesgroup/Eagle/; Minimac3, https://genome.sph.umich.edu/wiki/
Minimac3#Download/; R statistical software, https://cran.r-project.
org/; GCTA, http://cnsgenomics.com/software/gcta/; Igraph R pack-
age, https://cran.r-project.org/web/packages/igraph/index.html.
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Methods
Cohort. To construct the NGS-based HLA typing data, we enrolled 1,120 
unrelated individuals of Japanese ancestry. Genomic DNA was obtained from 
Epstein–Barr virus–transformed B-lymphoblast cell lines of unrelated Japanese 
individuals established by the Japan Biological Informatics Consortium (JBIC)12. 
In the PheWAS, 166,190 individuals were enrolled from BBJ, and participants were 
affected with any of the 45 target diseases defined by the project (Supplementary 
Table 5)21,22. As for the WGS-based SNV imputation reference panel, 1,276 
independent individuals of BBJ were enrolled (patients with myocardial infarction, 
drug eruption, colorectal cancer, breast cancer, prostate cancer or gastric cancer)30. 
Individuals determined to be of non-Japanese origin either by self-reporting 
or by principal component analysis were excluded, as described12,25,26,30. All the 
BBJ individuals provided written informed consent, as approved by the ethical 
committees of RIKEN Yokohama Institute and the Institute of Medical Science, 
University of Tokyo. This study was approved by the ethical committee of Osaka 
University Graduate School of Medicine.

NGS-based HLA typing of Japanese individuals. We conducted high-resolution 
allele typing (two-digit, four-digit and six-digit alleles) of 33 HLA and HLA-related 
genes, of which 9 were classical HLA genes (HLA-A, HLA-B and HLA-C for class I;  
HLA-DRA, HLA-DRB1, HLA-DQA1, HLA-DQB1, HLA-DPA1 and HLA-DPB1 for 
class II) and 24 were nonclassical HLA genes (HLA-E, HLA-F, HLA-G, HLA-H, 
HLA-J, HLA-K, HLA-L, HLA-V, HLA-DRB2, HLA-DRB3, HLA-DRB4, HLA-
DRB5, HLA-DRB6, HLA-DRB7, HLA-DRB8, HLA-DRB9, HLA-DOA, HLA-DOB, 
HLA-DMA, HLA-DMB, MICA, MICB, TAP1 and TAP2; Supplementary Table 2). 
Although current definitions of the HLA gene classifications are ambiguous (for 
example, classical HLA gene, nonclassical HLA gene, HLA-like gene or pseudo-
HLA gene)6,7, in this study, we defined the major classical HLA genes as classical 
HLA genes and other genes as nonclassical HLA genes. We also defined alleles of 
classical HLA genes as classical HLA alleles and those of nonclassical HLA genes as 
nonclassical HLA alleles for simplicity.

Entire HLA gene sequencing with the sequence-capture method was used 
for high-resolution HLA typing13. The sequence-capture method was based on 
hybridization between DNA of an adapter-ligated library (KAPA Hyper Prep Kit, 
Roche) and a biotinylated DNA probe (SeqCap EZ choice kit, Roche) custom 
designed on the basis of target sequences of 33 HLA genes (length of total target 
regions =​ 236,885 bp; Supplementary Table 8). Paired-end sequence reads (read 
1, 350 bp; read 2, 250 bp) were obtained by using a MiSeq sequencer (Illumina). 
Typing of two-digit, four-digit and six-digit HLA alleles was conducted in Omixon 
Target software version 1.9.3 (Omixon) with IPD-IMGT/HLA Database release 
3.21.0. Phase-defined HLA gene analysis was also used to resolve the phase 
ambiguity31,32. In parallel, to complement the HLA allele information that was 
specific to the Japanese population and not correctly implemented in Omixon 
Target software, we obtained SNV genotypes in PCR-amplified regions according 
to the variant-calling pipeline31, and partially updated the HLA typing results on 
the basis of those obtained according to the sequencing-based typing method. 
The sequence reads were aligned to the reference human genome with the contig 
sequences of the MHC region (GRCh37 (human_g1k_v37.fasta), hap2_cox contig 
and hap5_mcf contig) using BWA (version 0.7.15). Variant calling was conducted 
with GATK HaplotypeCaller and UnifiedGenotyper (version 3.6). HLA allele 
sequences were obtained from the IPD-IMGT/HLA database5.

We empirically confirmed the accuracy of HLA typing by evaluating 
concordance rates of the four-digit HLA alleles with those additionally genotyped 
with the SSO method (a WAKFlow HLA typing kit (Wakunaga) together with the 
Luminex Multi-Analyte Profiling system (xMAP, Luminex); n =​ 182 for HLA-A,  
HLA-B, HLA-C and HLA-DRB1, and n =​ 144 for HLA-DQA1, HLA-DQB1 and 
HLA-DPB1). We observed a high concordance rate of 98.2% between typed 
alleles of NGS and SSO (2,278 of 2,320 alleles in total). We confirmed that most 
mismatched alleles (29 of 42) derived from wrong typing of SSO but not NGS as 
previously reported (for example, HLA-DRB1*14:01 by SSO was corrected to HLA-
DRB1*14:54 by NGS33; details in Supplementary Table 1). This provides confidence 
in the accuracy of our NGS-based HLA typing protocol (≤​0.56% of potentially 
inaccurate typing). Although we further attempted to verify these ambiguous 
mismatched alleles by using tools to estimate HLA alleles from WGS or whole-
exome-sequencing data (OptiType (version 1.3.1)49, Polysolver (version 4)50,  
HLA-HD (version 1.2.0.1)51 and Kourami (version 0.9.6)52), it was difficult to 
determine the correct alleles, owing to inconsistent outputs of the tools.

In addition, we assessed concordance rates of the SNV genotypes between 
microarray-based SNP genotyping data (described below) and those obtained 
by target sequencing used for NGS-based HLA typing. Among the 203 SNVs 
genotyped by both SNP microarray and NGS, the genotype concordance was as 
high as 0.997. Of these, 29 and 45 SNVs were included in the coding regions of 
classical and nonclassical HLA genes, with concordance rates of 0.994 and 0.998, 
respectively.

Assessment of LD structure on the basis of normalized entropy index. To 
evaluate LD structure among HLA genes, we introduced an LD-measurement 
index called ε​, which uses differences in the normalized entropy of the 
haplotype-frequency distributions between LD and the null hypothesis of linkage 

equilibrium53, by using eLD software (version 1.0)54. ε​ was originally developed to 
assess LD among multiple biallelic markers, and we previously showed that ε​ is also 
applicable to assess LD between two multiallelic markers such as the HLA alleles4. 
For each pair of HLA genes, we calculated ε​ to quantify LD between the HLA 
genes, by using the observed frequency of the four-digit HLA alleles. Because the 
estimation of ε​ can be biased when the haplotype frequency distribution is sparse, 
we combined the HLA alleles with frequency <​0.01 into a single dummy allele. The 
value of ε​ ranges between 0 and 1, and a higher ε​ value represents stronger LD.

Machine-learning-based clustering by using HLA allele information. We 
performed unsupervised clustering of haplotypes with NGS-based HLA typing 
data by using tSNE, a machine-learning method for high-dimensionality 
compression and visualization35,36. tSNE is usually used to classify cells by using 
single-cell transcriptome or immunoprofiling data (cytometry by time of flight)45,46, 
and in this study we applied tSNE to classify haplotypes to obtain unbiased 
classification patterns based on HLA allele information47. We conducted tSNE 
for phased haplotype data of HLA alleles separately for classical or nonclassical 
HLA genes and for each digit by using the Rtsne R package (version 0.13). On the 
basis of the two components obtained from the tSNE results (tSNE1 and tSNE2), 
we conducted unsupervised clustering by adopting the DBSCAN R package 
(version 1.1.1)37. We first determined the following parameters to optimize the 
average silhouette width score by using the four-digit classical HLA alleles: a 
perplexity value =​ 25, a minimum number of reachable points =​ 3, and a reachable 
epsilon neighborhood parameter =​ 8.62. We fixed the perplexity value and the 
minimum number of reachable points, and then determined the reachable epsilon 
neighborhood parameters for two-digit classical, six-digit classical and four-digit 
nonclassical HLA alleles separately to optimize the average silhouette width score 
(10.0, 8.96 and 8.94, respectively). Parsimonious connections of the clusters were 
constructed with the alluvial R package (version 0.1–2).

Construction of population-specific NGS-based HLA imputation reference 
panel. For individuals with NGS-based HLA typing data, we obtained high-density 
SNP data of the MHC region by genotyping with the Illumina HumanCoreExome 
BeadChip (v1.1; Illumina). We applied stringent quality control (QC) filters as 
previously described12,55. Briefly, we applied QC filters to the individuals (call 
rates >​0.99, exclusion of outliers by principal component analysis, exclusion of 
closely related individuals) and then applied QC filters to the SNPs (call rates  
≥​0.99, MAF ≥​0.01, Hardy–Weinberg-equilibrium P value ≥​ 1.0 ×​ 10−7). 
We extracted the genotyped SNPs in the entire MHC region (24–36 Mb on 
chromosome 6, NCBI Build 37). In addition to the HLA alleles typed by NGS 
(two-digit, four-digit and six-digit), we incorporated HLA gene amino acid 
polymorphisms corresponing to the four-digit HLA alleles according to the 
IPD-IMGT/HLA database5. We encoded both HLA alleles and HLA amino acid 
polymorphisms, and constructed the NGS-based HLA imputation reference panel 
of the Japanese population together with SNP genotype data with SNP2HLA 
software (version 1.0.3; n =​ 1,120 for the 33 HLA genes)9.

The imputation accuracy of the constructed HLA imputation reference panel 
was empirically evaluated by a cross-validation approach12. We randomly split 
the panel into two data sets (n =​ 560 for each data set). HLA alleles from one 
of the data sets were masked and then imputed by using another data set as an 
imputation reference. The concordance between imputed and genotyped HLA 
allele dosages was calculated separately for each HLA gene and each allele digit. To 
relatively compare the imputation accuracy among the different reference panels, 
we evaluated accuracy in the previously reported HLA imputation reference panel 
of independent Japanese individuals in the same way (n =​ 908)4,12.

HLA and SNV imputation of GWAS data of BBJ individuals. Using the 
constructed NGS-based HLA imputation reference panel, we imputed the HLA 
variants of the large-scale GWAS data of the BBJ individuals (n =​ 166,190). 
Detailed characteristics of the GWAS data and the QC process are described 
elsewhere21,22. Although we usually use SNP2HLA software for HLA imputation 
because of the high imputation accuracy and ability to impute HLA amino acid 
polymorphisms9,56, SNP2HLA is currently not applicable to such large-scale GWAS 
data, owing to a very large requirement of memory resources. Therefore, we 
initially used SNP2HLA to align SNP-strand and position information between 
the GWAS data and the reference panel, and then imputed the HLA variants with 
standard genome-wide imputation software. Specifically, we phased the GWAS 
data with Eagle (version 2.3) and imputed the variants with minimac3 (version 
2.0.1). In addition, we densely imputed SNV and indels within the entire MHC 
region by using the deep-WGS data of the Japanese population as a reference 
(n =​ 1,276, average depth =​ 24.6×​, sequenced on the Illumina HiSeq2500 platform 
(Illumina))30. For the PheWAS, we applied stringent postimputation QC filtering of 
the variants (MAF ≥​0.5% and imputation score Rsq ≥​0.7).

PheWAS of HLA variants by using imputed BBJ GWAS data. PheWAS was 
conducted by using clinical information of the individuals included in the imputed 
BBJ GWAS data. Associations of the imputed variants in the MHC region with 106 
phenotype datasets (46 diseases and 60 quantitative traits; Supplementary Table 5)  
were examined. The diseases comprise four major categories (immune related 
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(n =​ 10), metabolic and cardiovascular (n =​ 10), cancers (n =​ 13) and other diseases 
(n =​ 13)). The quantitative traits comprised ten major categories (anthropometric 
(n =​ 2), metabolic (n =​ 6), protein (n =​ 4), kidney related (n =​ 4), electrolyte (n =​ 5), 
liver related (n =​ 6), other biochemical (n =​ 6), hematological (n =​ 13), blood 
pressure (n =​ 4) and echocardiographic (n =​ 10)). Definitions of the diseases and 
the process of patient registration have been described elsewhere21,22. For the 
controls in disease association studies, we constructed a shared control group by 
excluding individuals affected by diseases known to have associations in the MHC 
region. Detailed processes of outlier exclusion, adjustment with clinical status and 
normalization methods of the quantitative traits have been described elsewhere25,26.

We evaluated associations of the HLA variants with the risk of the diseases, by 
using a logistic regression model, and with dosage effects on the normalized values 
of the quantitative traits, by using a linear regression model18, with a glm() function 
implemented in R statistical software (version 3.2.3). We defined the HLA variants 
as biallelic SNVs in the entire MHC region (24–36 Mbp at chromosome 6, NCBI 
build 37), two-digit, four-digit and six-digit biallelic alleles of the HLA genes, 
biallelic HLA amino acid polymorphisms corresponding to the respective residues 
and multiallelic HLA amino acid polymorphisms for each amino acid position. 
We assumed additive effects of the allele dosages on phenotypes in the regression 
models. We included the top ten principal components obtained from the GWAS 
genotype data (not including the MHC region) as covariates in the regression 
models to correct potential population stratification. An omnibus P value for 
each HLA amino acid position was obtained by a log likelihood-ratio test for the 
likelihood between the null model and the fitted model, followed by a χ​2  
distribution with m – 1 degree(s) of freedom for an amino acid position with m 
residues. To evaluate the nonadditive effects of the HLA alleles, we conducted a 
multivariate regression analysis that additionally included nonadditive genotype 
dosages of the HLA alleles as previously described18,57. We adopted a genome-wide-
significance threshold of P <​ 5.0 ×​ 10−8 in our study39.

Assignments of the candidate responsible genes to the top-associated variants 
of the phenotypes in the nominal and conditional analyses were conducted in 
the following manner: (i) when the variant was in moderate LD with any of the 
HLA alleles or amino acid polymorphisms (r2 ≥​ 0.5), or located in the coding 
region of the HLA gene, the HLA gene was assigned; (ii) when the variant was 
in LD with the coding variants of the non-HLA gene, the non-HLA gene was 
assigned; and (iii) when the variant was located in an intergenic region, the nearest 
gene was assigned. Considering the strong functional effects of the HLA gene 
polymorphisms on human phenotypes, our assignment protocol puts relatively 
higher weights on HLA genes than on non-HLA genes. We note that r2 values (that 
is, correlation of haplotypes) between the imputed dosages were approximately 
estimated by calculating Pearson’s correlation of genotype dosages (R2).

Conditional-association analysis of HLA variants. To evaluate independent risk 
among variants (and genes), we conducted a forward-type stepwise conditional 
regression analysis for phenotypes that satisfied the genome-wide-significance 
threshold. In each conditional step, we additionally included the associated variants 
as covariates in the regression model and repeated the analysis until no variants 
satisfied the significance threshold. When the top-associated variant itself was the 
HLA gene polymorphism or the SNV and indel in strong LD with any of the HLA 
gene polymorphisms (r2 ≥​ 0.7), we additionally included all the two-digit, four-
digit and six-digit alleles and the amino acid polymorphisms of the corresponding 
HLA gene as covariates in the regression to robustly condition the associations 
attributable to the HLA gene, as previously described4,18. Otherwise, the top-
associated SNV and indels were additionally included as the associated variants.

Heritability estimates of the variants within the MHC region. We estimated the 
heritability of the phenotypes in the PheWAS that was explained by the variants 
within the entire MHC region, as well as calculating pairwise genetic correlations 
among the phenotypes. We adopted a Haseman–Elston regression implemented 
in GCTA software (version 1.91.1beta)58, because a genomic restricted maximum-
likelihood method, a typical method for estimating SNP-based heritability59, was 
difficult to apply to the large sample size of our study. The estimated heritability 
of the diseases was adjusted according to disease prevalence in the Japanese 
population (Supplementary Table 5)59. In addition to the heritability estimation 
using all the MHC variants, we repeated the analysis separately for classical HLA 
variants (using the polymorphisms of classical HLA genes) and other variants 
(using the MHC variants not in LD with any of the classical HLA variants 
(r2 <​ 0.1)), and quantified their relative proportions. Standard errors (s.e.) of the 

proportions were estimated by simulating the distribution of the proportion 
values according to random sampling from the mean and s.e.m. of the heritability 
estimates (×​100,000 iterations). Although there have been discussions on how 
to precisely estimate heritability within a genetic locus with strong LD60, because 
our main focus was on relative comparison of heritability across traits rather than 
quantification of absolute heritability values, we adopted GCTA as a standard 
method, as previously applied61.

Using the matrix of pairwise genetic correlations among the phenotypes, we 
constructed a network of phenotypes representing shared genetic backgrounds 
of MHC across the phenotypes. We assigned each phenotype to a node, and 
the nodes were connected by edges weighted according to the magnitude of the 
corresponding genetic correlation. To effectively extract biological information 
embedded in the network and to avoid dense visualization, we used only highly 
significant genetic correlations (top 10% of the significance in the phenotype pairs 
and P <​ 0.05 after adjustment of Bonferroni’s correction). Network visualization 
was conducted according to the Fruchterman–Reingold algorithm, with the igraph 
R package (version 1.1.2).

Statistical analyses. Two-tailed logistic and linear regression was applied by using 
a glm() function implemented in R statistical software (version 3.2.3).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability
Software and codes used for this study are available from URLs or upon request to 
the authors.

Data availability
HLA data have been deposited at the National Bioscience Database Center 
(NBDC) Human Database (research ID: hum0114) as open data without any access 
restrictions. GWAS data and phenotype data of the BBJ individuals are available at 
the NBDC Human Database (research ID: hum0014).
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