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ABSTRACT Thousands of genes responsible for many diseases and other common traits in humans have been detected by Genome

Wide Association Studies (GWAS) in the last decade. However, candidate causal variants found so far usually explain only a small

fraction of the heritability estimated by family data. The most common explanation for this observation is that the missing heritability

corresponds to variants, either rare or common, with very small effect, which pass undetected due to a lack of statistical power. We

carried out a meta-analysis using data from the NHGRI-EBI GWAS Catalog in order to explore the observed distribution of locus effects

for a set of 42 complex traits and to quantify their contribution to narrow-sense heritability. With the data at hand, we were able to

predict the expected distribution of locus effects for 16 traits and diseases, their expected contribution to heritability, and the missing

number of loci yet to be discovered to fully explain the familial heritability estimates. Our results indicate that, for 6 out of the 16 traits,

the additive contribution of a great number of loci is unable to explain the familial (broad-sense) heritability, suggesting that the gap

between GWAS and familial estimates of heritability may not ever be closed for these traits. In contrast, for the other 10 traits, the

additive contribution of hundreds or thousands of loci yet to be found could potentially explain the familial heritability estimates, if this

were the case. Computer simulations are used to illustrate the possible contribution from nonadditive genetic effects to the gap

between GWAS and familial estimates of heritability.
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UNDERSTANDING the genetic architecture of complex

traits has become a fundamental topic of study in human

genetics (Gibson 2012; Timpson et al. 2018). In recent years,

huge efforts have been made to investigate the genetic basis

of human complex traits through Genome-Wide Association

Studies (GWAS) or meta-analyses of their results (Paternoster

et al. 2015; Gormley et al. 2016; Justice et al. 2017; Visscher

et al. 2017). There has been a parallel increase in the number

of big Consortiums able to carry out large GWAS with higher

and higher numbers of individuals, and, therefore, with in-

creasing statistical power (SIGMAType 2 Diabetes Consortium

et al. 2014; Yengo et al. 2018), as well as of genomic reposi-

tories and online resources, including databases specialized

in published GWAS results (Sudlow et al. 2015; MacArthur

et al. 2017; Canela-Xandri et al. 2018). To date, thousands of

SNPs have been identified to be associated with hundreds of

human diseases or other traits with genome-wide significance,

according to data recorded by the NHGRI-EBI GWAS Catalog

(MacArthur et al. 2017). However, SNP markers of known var-

iants explain but a small percentage of the heritabilitymeasured

by cohort studies for almost every studied trait, what has been

referred to as “missing” heritability (Manolio et al. 2009; Nolte

et al. 2017).

The most common assumption to explain the missing

heritability is that many common variants of small effect pass

unnoticed in most GWAS due to a lack of statistical power

(Yang et al. 2010), and a number of loci on the order of

hundreds to thousands are yet to be found (Visscher et al.

2017). In fact, the missing heritability gap of well-studied

traits such as human height has been reduced as GWAS

had been performed with increasingly larger sample sizes

and statistic power (Wood et al. 2014; Yengo et al. 2018),

although the newly found SNPs tend to have smaller effect
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sizes on average (Park et al. 2010), and the gap is reduced slowly

(Nolte et al. 2017). In addition, common genotyped SNPs can

capture up to 60% of familial heritability estimates (Yang et al.

2010; de los Campos et al. 2013; Nolte et al. 2017) or even higher

proportions (Yang et al. 2015).

The narrow-sense heritability explained by SNPs found in

GWAstudies is comparedwith estimates obtained from family

data, usually twin designs. These may involve nonadditive

(dominance and epistasis) genetic components as well

as other interaction terms including environmental effects

(Zuk et al. 2012; Chen et al. 2015; Ni et al. 2018). Therefore,

although it has been suggested thatmost genetic variation for

human traits is of additive nature (Hill et al. 2008; Polderman

et al. 2015; Zhu et al. 2015), some part of the gap between

GWAS and familial heritability estimates may also be due to

the bias involved in the familial estimates (Zuk et al. 2012;

Hemani et al. 2013). One way to address this issue is to try

getting the expected full contribution to narrow-sense heri-

tability from loci detected by GWAS, and compare it with the

familial estimates. In this work we attempt to do so by using

information from the GWAS Catalog.

Our analysis consists of extracting information on effects

and frequencies of variants for a number of human traits and

diseases from the GWAS Catalog with the following objec-

tives: (1) To investigate the nature of the distribution of locus

effect sizes already discovered and their contribution to nar-

row-sense heritability, and (2) to predict the expected full

distribution of effects and frequencies of loci in order to

ascertain whether or not this could be able to explain the

estimates of heritability obtained from family studies. Our

results indicate that the familial heritability of 10 out of the

16 traits studied could be potentially explained by the con-

tribution of the average effects of hundreds to thousands of

loci yet to be found by GWAS. However, for the other six traits

there is a substantial gap between the expected GWAS her-

itability and the familial heritability, suggesting that an addi-

tive contribution of single loci is unable to explain the familial

heritability values.

Methods

In short, we began by processing the GWAS Catalog in two

steps, in order to get a set of data with the most meaningful

information associated to SNPs and GWA studies. First, by

filtering incomplete or low informative data and, second, by

clustering together traits with a highly overlapping genetic

background. Additional processing was required for sub-

sequent analyses involving locus effect sizes, frequencies,

and contributions to heritability. Computer simulations

were carried out to illustrate the possible impact of non-

additive genetic variation on familial estimates of

heritability.

Processing of the GWAS catalog

All data manipulation, including statistical analysis, was car-

ried out using theR language (RCore Team2017).Weworked

with the NHGRI-EBI GWAS Catalog data (MacArthur et al.

2017), publicly available at https://www.ebi.ac.uk/gwas/,

and accessed on December 5, 2017. We started by selecting

a limited number of fields from the database for each scien-

tific study PubMed ID (PMID), as the SNP ID itself, the

mapped gene, the effect, reported as an odds ratio (OR)

or beta-coefficient (BETA), the frequency of the risk allele,

and the reported P-value. PMID-related variables were also

gathered, as the name of the disease or trait examined in the

study and the total population sample, computed from

the information of the initial and replication samples used.

The Catalog contains some ambiguity regarding the units

of the effects registered. Doubtful cases were checked by

looking at the corresponding publications, and, if their ef-

fect could not be assigned as BETA or, e.g., because it was

measured in trait units rather than in standardized units,

they were disregarded.

We checked for the occurrence of a list of necessary var-

iables (effect, gene, P-value, SNP, and trait), and removed

any row corresponding to a SNP without a complete infor-

mation on these variables. We also limited our study to the

most significant associations, eliminating SNPs with a signif-

icance level higher than the standard P-value = 5 3 1028.

A separate dataset without filtering for statistical significance

was also considered for the final set of traits. For all purposes,

only one SNP per associated Catalog gene (that with the

lowest P-value) was considered. Thus, the gene or intergenic

name was the unit considered in the analysis aimed at rep-

resenting a potential causal locus. Thus, hereafter each dif-

ferent GWAS-Catalog gene represents a locus corresponding

to the information of a single SNP. For example, for the trait

Height, the Catalog version analyzed contained a total of

855 SNP entrances from 25 different PMIDs. Many of these

SNPs were associated to the same Catalog gene or intergenic

sequence. Considering only different gene names and select-

ing the SNP with the lowest P-value associated to each gene,

only 370 different loci remained. Later, after filtering by type

of effect (BETA), which implied removing one PMID with

ambiguous type and another with OR type, the remaining

final set of data for this trait contained 346 loci arising from

10 PMID.

Because we wanted to investigate the distribution of locus

effects with robustness, we only considered traits with a wide

and well-known genetic background composed by at least

30 unique genes detected. We initially differentiated as many

traits as unique names were given to the mapped disease or

trait field in the original GWAS Catalog. However, it often

occurs that different researchers studying the same trait

publish their results using different trait names (e.g., “LDL”

and “LDL levels”). In order to avoid working with duplicated

or redundant traits, we clustered some of them (see Supple-

mental Material, Table S1) on the basis of their common ge-

netic background and carried out some additional processing

steps, as explained in File S1. After this step, we restricted the

traits analyzed to those represented by at least three different

PMIDs.
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Contribution of loci to heritability

From the filtered GWAS database, narrow-sense locus-specific

heritability ðh2locÞ was estimated through the calculation of the

contribution of each locus to the additive variance VAloc
by

using the classical formula (Falconer and Mackay 1996),

VAloc
¼ 2a2

locqlocð12 qlocÞ, where qloc is the risk allele frequency

and aloc is the average effect of the gene substitution for the

locus (henceforth, the average effect or locus effect). For BETA

traits, the additive variance equals the heritability ðh2loc ¼ VAloc
Þ,

as the average effects are measured in phenotypic SD. For OR

traits, we estimated the locus-specific heritability h2loc (i.e., var-

iance in liability) following the method described by So et al.

(2011), assuming additivity of SNP effects, and the prevalence

values published in different epidemiology and genetic papers

(Table S2). From the h2loc and frequency values, locus effects

for OR traits were obtained in the same units of phenotypic SD

as BETA traits. Finally, the contribution to heritability of all loci

corresponding to a given trait were added together to obtain

the GWAS heritability ðh2gwasÞ for each trait.

After all the above filtering steps, the dataset for locus

effects and heritability analyses had a total of 7886 loci

corresponding to 328 studies and 42 human traits. The esti-

mated h2gwas values are shown in Table S2 along with the

reported values of familial heritability ðh2famÞ found in the

literature.

In order to measure the proportional contribution of dif-

ferent classes of locus effects to global h2gwas we defined three

arbitrary, but well-defined, effect classes: low, medium, and

high. These classes were assigned to each trait according

to the mean and SD of their distribution of effect sizes.

Low-effect sizes were defined as those with a value lower

than e21 SD below the mean effect size. Medium-effect sizes

were those between e21 SD below and above the mean, and

high-effect sizes those with effects larger than e21 SD above

the mean. With these definitions, an average of �50% of the

loci were in the low-effect class, �36% in the medium-effect

class, and �14% in the high-effect class.

Analysis of the change in locus effect size, frequency,
and explained heritability for increasing sample sizes

Weassumedthat locuseffects and frequencieswouldbebetter

estimated in studies with larger sample sizes (N), in agree-

ment with previous studies (Auer and Lettre 2015; Visscher

et al. 2017) as well as our own observation from the GWAS

Catalog. Thus, estimates obtained in studies with larger N

were reassigned to the corresponding gene identity, indepen-

dently of the study. That is, if we consider two studies, PMID1

and PMID2, regarding the same human trait, with sample

sizes N1 ,N2, the SNP effects and frequencies associated to

genes found in PMID1 that were also present in PMID2 were

assigned the values of the corresponding genes in PMID2.

Therefore, a locus found in different studies would have an

associated effect and frequency corresponding to a single

SNP from the study with the largest sample size, usually,

but not always, the most recent one.

We tested three different regressionmodels tomeasure the

relationship between variables in the analyses of locus effects,

frequencies (in terms of the minor allele frequency, MAF) or

heritability. These regression models were: simple linear

regression: logY ¼ aþ b � X; two-parameter exponential

regression: Y ¼ a � Xb; and four-parameter logistic re-

gression: Y ¼ cþ d2 c
1þeb�½lnX2lne�; where the dependent variable Y

may refer to themean locus effect size, frequency, heritability,

or any other related variable, such as the parameters of the

distribution of locus effects, and the independent variable X is

the number of loci found at a given stage in studies with

increasing sample sizes.

When these models were performed using the accumu-

lated number of loci as an independent variable, we only

considered those traits that had at least three observations

(i.e., three PMIDs) in which the cumulated number of loci

was at least 30, so that every regression analysis had at least

three points, each corresponding to an estimate obtained

with at least 30 loci. This corresponds to a subset of 16 traits,

177 PMIDs, and 5692 loci. For model selection, the Akaike

Information Criterion (AIC) was used (Akaike 1974). The

final dataset with all unique loci described for each trait after

all above processing steps, and after updating locus effect

sizes and frequencies, is shown in Table S3. This is the dataset

used for estimating heritabilities from the GWAS Catalog

shown in Table S2.

Inferring the distribution of locus effects, the missing
number of loci, and the expected value of heritability

Locus effects and MAFs were fitted into known probability

distributions using the R package “fitdistrplus” (Delignette-

Muller and Dutang 2015) using the maximum likelihood es-

timation method. In order to determine which distribution

best fitted the observed locus effects, we considered the fol-

lowing possible continuous distributions: Beta, Exponential,

Gamma, Gaussian, Logistic, and Log-normal. We then se-

lected the best fit by using AIC (see Table S4).

Given that the change in the parameters of the distribution

of locuseffectsandMAFasnewloci arebeingdiscoveredcould

also be predicted with the regression parameters described in

the previous section, the expected distribution of locus effects

and frequencies, including those yet unobserved, could be

inferred. From these, we could obtain the number of loci

necessary to explain the observed value of familial heritability

ðh2famÞ, or the closest one. To do so, we assumed an increasing

number of loci for each trait, and sampled that number from

the predicted distribution of effect sizes and MAF. For each

number of loci sampled, the distribution parameters were

those predicted from the corresponding regression parame-

ters (Table S5). This process was repeated 10,000 times for

each set of loci that were added (up to 20,000 loci), providing

a distribution of expected heritability values. From this dis-

tribution, the expected parameters and numbers of loci that

could explain h2fam within 95% confidence intervals were cho-

sen. If h2fam could not be explained by any expected distribu-

tion and any number of added loci, the median heritability
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estimate closest to h2fam was chosen. A detailed example of the

prediction procedure is shown in File S2 and Figure S1

therein.

Cross-validation of predictions

Weevaluated the accuracy of the predictions on a different set

of data composed of new variants published in a more recent

versionof theGWASCatalogaccessedonAugust27,2018.For

validation purposes, we only considered new gene-associated

SNPs that belong to traits already present on our final dataset

of 16 traits used for inferring the distribution of locus effects.

This test set contained data of 153 SNPs mapping new gene

names (loci) described in11different PMIDs corresponding to

the following eight traits: Body mass index, Height, Prostate

cancer, Psoriasis, Rheumatoid arthritis (including Rheuma-

toid arthritis ACPA-positive), Systemic lupus erythematosus,

Type 2 diabetes, and Waist-to-hip ratio adjusted for BMI, i.e.,

Waist-to-hip-related traits (Table S6).

Computer simulations

Computer simulations were carried with an in-house C pro-

gram to illustrate the possible biases inherent to estimates of

heritability obtained from family data, particularly twin stud-

ies, when dominance and epistasis models are assumed. The

expected distributions of locus effect sizes and frequencies for

the trait “Digestive disease”were used for illustration. A pop-

ulation of size 2 3 106 randomly mated diploid individuals

was considered where alleles for 660 biallelic loci have

homozygous effects a, where a values are twice the allelic

average effects sampled from the inferred log-normal distri-

bution of average effects for the Digestive disease trait (mean

a = 0.029). Heterozygous effects (ah) were assumed either

additive (h = 0.5), partially recessive (h = 0.2), or fully re-

cessive (h = 0). Allelic frequencies (q) were taken from the

expected distribution of frequencies for the Digestive disease.

Individual genotypes for the quantitative trait were the sum of

the genotypic values for all loci involved, and phenotypic ef-

fects were obtained by adding an environmental deviation

normally distributed with mean zero and variance VE adjusted

such that the phenotypic variance is VP = 1.

The additive (VAg) and dominance (VDg) variances in the

absence of epistasis (genic variances) were obtained from the

sum of the variances of individual loci. Thus, VAg = S2a2pq

and VDg = S(2dpq)2, where a = ah – 2dq, d = a(h – 1/2),

the summation is over all loci, h2g = VAg/VP is the narrow-

sense genic heritability, and d2g = VDg/VP the genic domi-

nance contribution to phenotypic variance. The genotypic

variance (VG) was calculated from the multilocus genotypic

values of individuals, and the broad-sense heritability was

obtained as H2 = VG/VP.

A twindesignwas carriedoutproducing106 families of two

monozygotic and two dizygotic twins. The phenotypic corre-

lations between monozygotic (tMZ) and dizygotic (tDZ) twins

were obtained from ANOVA. Estimates of familial heritabil-

ities were calculated as h2twins = 2(tMZ–tDZ). No shared envi-

ronmental effects were assumed between twins. Thus, h2twins

is expected to estimate h2g + 1.5d2g in the absence of epistasis

(Lynch and Walsh 1998, p. 538). Average locus effects (a)

were estimated from the regression of the individual pheno-

typic values on the number of copies of the alleles for each

locus, and the contribution of each locus to heritability was

obtained as VA;loc ¼ h2loc ¼ 2a2qð12 qÞ; because VP = 1,

where q is the allele frequency. The analogous to GWAS her-

itability ðh2gwasÞ was obtained as the sum of contributions

from all loci.

A multilocus epistatic model was assumed where homo-

zygous genotypes for the trait interactwith one another. Thus,

epistasis occurs only between homozygous loci such that their

multilocus genotypic effects for the trait are doubled. Four

scenarios were then considered combining within-locus ad-

ditive or recessive gene action, and between-locus additive or

epistatic gene action. Under dominance, the epistatic model

assumed involves additive by additive (VAA), additive by

dominance (VAD) and dominance by dominance (VDD) com-

ponents. Allelic homozygous and dominance effects account-

ing for the epistatic effects imply an increase in the additive

variance relative to the case of no epistasis (Cheverud and

Routman 1995). The GWAS heritability ðh2gwasÞ is expected to

estimate the narrow-sense heritability (h2) while the twins

heritability ðh2twinsÞ is expected to estimate h2 + 3
2
VD/VP +

3
2
VAA/VP +

7
4
VAD/VP +

15
8
VDD/VP + higher order epistatic com-

ponents (Lynch andWalsh 1998, p. 583). All simulation val-

ues and estimates were averaged over 20 replicates.

Data availability

The GWAS Catalog database is publicly accessible and down-

loadable from https://www.ebi.ac.uk/gwas/. The Supple-

mental Material contains two Files, five Figures, with

Figure S1 included in File S2, and seven Tables. Relevant

code has been made available in a public repository at Github

(https://github.com/armando-caballero/Missing-heritability).

Supplemental material available at FigShare: https://doi.org/

10.25386/genetics.7798580.

Results

The observed distribution of locus effect sizes

Locus effect sizes for most traits (90%) fitted better to a log-

normal distribution than to any of the other distributions

assessed (beta, exponential, gamma, Gaussian, and logistic),

the remaining10%fittingbest to abetadistribution(TableS4).

Figure 1 shows how the average locus effect (a) steadily

declines as new loci are found with larger samples sizes. The

total number of loci considered for each of the traits is avail-

able in Table S2. This decline is remarkably consistent across

traits, with a two-parameter exponential model fitting best

the observations (average R2 = 0.96). The trend observed is

in accordance with the expectation that loci of large effect are

likely to be found with low sample sizes, whereas decreas-

ingly lower locus effects would only be found with larger

and larger sample sizes. The rate of decline of a on number

894 E. López-Cortegano and A. Caballero



of accumulated loci was substantially lower for skeletal

traits (b = 20.19 6 0.05), i.e., Height- and Waist-related

traits, than for the rest of traits (b = 20.48 6 0.04) (see

Figure 1 and Table S5A). Finally, higher average locus

effects were associated with lower MAF for all 42 traits

(see Table S4) with a linear regression of locus effects on

MAF of b = 20.263 6 0.033, averaged across traits.

Loci contributions to heritability

Estimates of the heritability explained by the contribution of

individual loci ðh2gwasÞ and of familial heritability estimates

ðh2famÞ for 42 human traits are given in Table S2, with aver-

ages 0.13 6 0.02 and 0.53 6 0.03, respectively. The pro-

portion of h2fam explained by h2gwas was 25% on average,

ranging widely from 1.6% (Migraine) to 100% (Basal cell

carcinoma, and Red blood cell traits).

Figure 2 shows the increase in h2gwas for each trait as more

loci are found with higher sample sizes (as for Figure 1). A

two-parameter exponential model gave the best fit to the

data with average R2 = 0.97 (Table S5C). The figure shows

that, for most traits, there is a substantial increase in the

heritability explained as new loci have been found. However,

for some traits (e.g., Digestive disease, number 6 in Figure 2)

it looks like h2gwas is approaching an asymptotic value. It can

also be seen that in many cases the intercept is expected to be

well above zero, suggesting that loci contributing most to the

heritability were found in the studies with the lowest sample

sizes, usually the earliest ones.

The proportional contribution of loci with different effect

sizes to h2gwas is shown in Figure 3. Three arbitrary classes of

effect sizes were made such that �50% of loci were within

the low-effect class, �36% within the medium-effect class,

and �14% within the high-effect class (panel A). Most of the

heritability, however, was explained by loci of large effect

(57.2% 6 19.5; panel B), with those of medium and low

effect explaining much lower proportions (29.8% 6 13.5

and 13.0% 6 7.2, respectively), even though there is a neg-

ative correlation between allele frequencies and locus effect

sizes. Similar results are obtained when considering all

42 traits (data not shown).

Expected distribution of effects, and inference of the
missing number of loci to explain the estimates of
familial heritability

Because, as shown above, the observed distribution of locus

effect sizesfittedwell toa log-normaldistribution, theMAFs to

a normal distribution (Table S4), and the change of their

distribution parameters with the number of loci found to an

exponential regression model (Figure 1 and Table S5, D–G),

we were able to predict their expected distributions for any

given number of loci, and thus infer the expected heritability

closest to h2fam. The results are summarized in Figure 4, which

shows the current values of h2gwas (dark bars) and h2fam (light

bars). The heritability computed from the expected distribu-

tion of locus effects, which explains or approachesmost to the

familial heritability, is shown as a dot (median value) and a

95% confidence interval. The height of the error bar is highly

related to the magnitude of the variance parameter (and

therefore skewness) of the log-normal distribution. The

expected number of loci necessary to explain the familial

Figure 1 Decline of the average locus

effect (a) with the number of loci found.

The points represent the cumulated re-

sults of successive GWAS with increas-

ing larger sample sizes. The first point at

the left of the series is the mean effect

of loci found in the GWAS with the low-

est sample size (conditional on finding

at least 30 loci), and the following points

give the mean effect of loci as additional

ones are found by studies with larger

sample sizes (usually, but not always, by

more recent studies). The lines are the fit

of the observations to an exponential

model (average R2 = 0.96). Traits are

colored depending on the functional do-

main they belong: cancer (green), derma-

tological (pink), endocrine (orange),

gastrointestinal (brown), hematological

(red), immunological (yellow), metabolic

(beige), skeletal (gray). The final set of

data corresponding to the last (right-

hand side) points for each line are given

in Table S3.
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heritabilities (when reachable) are given over the bars. The

expected distributions of effects obtained for all traits are

shown in Figures S2 and S3, and the corresponding param-

eters in Table S7.

For 10 out of 16 traits, the expected distribution found

would be able to predict the familial heritability accounting

only for the contribution of average effects of single loci.

Thus, if a number of loci (within those indicated over the

bars) were found, and their contribution to heritability were

added, the values of the familial heritability could be poten-

tially reached, although this does not mean that this would

actually be the case. In contrast, for the remaining six traits

(Psoriasis, Body mass index, Type 2 diabetes, Digestive

disease, Ulcerative colitis, and Rheumatoid arthritis), the

familial heritability could not be reached when considering

the average effects of single loci. Thus, even if an increasingly

large number of loci from the expected distribution are

considered, their additive contribution to h2gwas would not

be able to reach h2fam.

Cross-validation of predictions

We tested the predictions on a set of new data from a more

recent release of the Catalog, incorporating 11 new studies on

eight of the 16 traits previously analyzed (Figure 5). The change

in mean locus effect and h2gwas was rather consistent with the

previous results, as indicated by the approximate concordance

between the large dots (new results) and the projections based

on thepreviousdata (lines). The inferreddistributionparameters

based on the cumulated number of loci showed a low bias when

applied to the new data (Figure S4).

Simulation results

Simulation results assuming the distribution of locus effects

inferred for the Digestive disease trait under different models

of gene action (additive or recessive within loci, and additive

or epistatic between loci) are shown inTable 1. This shows the

difference between the heritability estimated by a twin study

ðh2twinsÞ and the GWAS heritability ðh2gwasÞ.

Under a full additive model, the estimates h2twins and h2gwas

are equal, as expected. In contrast, under a recessive-epistatic

model, twin heritability can be substantially biased with re-

spect to h2gwas. Note, however, that the difference tMZ – 2tDZ is

relatively small (, .1), which could suggest that there is no

substantial deviation from a full additivemodel. Note that tMZ

is expected to be equal to H2, as it is, and that the difference

4tDZ – tMZ is expected to be very close to the narrow-sense

heritability, which agrees with the value of h2gwas.

Discussion

By extracting the relevant data from the GWAS Catalog we

have been able to infer the number and distribution of locus

effects that could potentially explain the missing heritability

assuming the cumulative contribution of average effects of

single loci. Within the limitations of the data and the pro-

cedure followed, we found that, for 10 out of the 16 studied

Figure 2 Increase of heritability explained

by loci found ðh2gwasÞ as the number of

these increases. The points represent the

observed values, while the lines are the

fit to an exponential model (average

R2 = 0.97). Traits are colored depending

on the functional domain they belong:

cancer (green), dermatological (pink), en-

docrine (orange), gastrointestinal (brown),

hematological (red), immunological (yel-

low), metabolic (beige), skeletal (gray).

The final set of data corresponding to

the last (right-hand side) points for each

line are given in Table S3.
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traits, this additive explanation appears, at least, feasible,

whereas for the remainder is not.

Nature of the variation detected by GWAS

Our results show strong evidence indicating that the distri-

bution of locus effects for different human traits fits better to a

log-normal distribution than to other commonly used distri-

butions, including the gammadistribution,widely assumed in

population genetic studies (Pérez-Figueroa et al. 2009; Jiang

et al. 2010; Schneider et al. 2011; Caballero et al. 2015;

Keightley et al. 2016). In the field of genetics, the log-normal

distribution has been previously suggested for Drosophila

DNA polymorphism data (Loewe and Charlesworth 2006),

and is usually assumed in models and natural processes aris-

ing not only in biology (Nei and Imaizumi 1966) but also in

very different scientific disciplines (Limpert et al. 2001;

Grönholm and Annila 2007).

We have also shown (Figure 1) that the average effect size

tends to decrease for all traits studied as the number of dis-

covered GWAS Catalog associated genes increases, the de-

crease fitting an exponential model. This supports the idea

that higher-effect loci were discovered in the first GWAS

(with lower sample sizes), while posterior analyses involving

larger sample sizes allowed lower-effect loci to be discovered

(Park et al. 2010; Simons et al. 2018).

We also observed a negative linear relationship (average

across traits b = 20.263 6 0.033) between the effect of

loci and the minor allele frequency. This could be explained

by a more likely detection by GWAS of loci of small effect

when they are common than when they are rare. It could also

(or in addition) be due to the action of purifying selection

acting more strongly on large-effect than low-effect sizes.

This is in agreement with previous evidence provided by

Zeng et al. (2018), who detected signatures of negative (pu-

rifying) selection in multiple traits. It has been further de-

scribed that nonsynonymous variants on core (coding)

genes, as well as conserved regions, play an important role

particularly for high effect mutations that segregate at lower

frequencies (Gazal et al. 2018). If loci of large effect are

maintained at low frequencies because of negative selection,

they could contribute proportionately less to heritability than

loci of small effect. Contrary to this, the results of Figure 3

show that there is a disproportionately larger contribution

from loci of large effect to heritability, with those of small

effect contributing generally little (Figure 3). This is in agree-

ment with previous predictions (e.g., Caballero et al. 2015),

and contradicts models suggesting that most of the heritabil-

ity for complex traits in humans must be due to loci of small

effect (Eyre-Walker 2010).

Expected distribution of locus effects and
missing heritability

With the Catalog data, we could infer the expected distribu-

tion of locus effect sizes for a number of complex traits. This

allowedus to investigatewhether the cumulative contribution

of the average effect of single loci would make it possible to

explain familial heritability estimates, thus inferring themiss-

ing number of loci yet to be potentially found and their nature.

In a pioneering work, Park et al. (2010) used information

from the first round of GWA studies and an approach based

Figure 3 Percentage of loci for differ-

ent classes of effect sizes and their con-

tributions to heritability (in %). (A) Three

arbitrary classes of locus effect sizes

(high, medium, and low effects) are as-

sumed such that �50% of loci are

within the low-effect class (high trans-

parency), �36% within the medium-

effect class (low transparency), and

�14% within the large-effect class

(solid colors). (B) Contribution (in per-

centage) of the three classes to herita-

bility. Traits are ordered and colored by

functional domain: Cancer (green), der-

matological (pink), endocrine (orange),

gastrointestinal (brown), hematological

(red), immunological (yellow), metabolic

(beige), skeletal (gray).
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on the power of detection of variants, to make predictions of

the total number of loci needed to explain up to 20% of the

genetic variance for height, Crohn’s disease and cancers

(breast, prostate, and colorectal). With the limited informa-

tion at that time it was not possible, however, to make pre-

dictions of whether genetic variance could ever be fully

explained or not with additional findings. Currently, many

more data are available, and we could base our approach

on this cumulative data in a different way.

Our results concur with those of Park et al. (2010) in

pointing to lower effect sizes discovered with higher sample

sizes, and an increasingly lower contribution of these loci to

heritability. We could additionally give evidence on the para-

metric nature of the distribution of effects (log-normal), and

thus predict the expected number of loci needed to explain or

not the estimates of familial heritability. Our results indicate

that, for 10 out of 16 traits, the familial heritability could

potentially be completely explained by the cumulative con-

tribution of average effects of single loci found by GWAS

(Figure 4). The number of loci required for this is , 1000

for Prostate cancer, Neutrophil traits, HDL, Triglycerides, and

Waist-to-hip-related traits, or around a few thousand for

Testicular germ cell tumor, Systemic lupus erythematosus,

Cholesterol, Height, andWaist-related traits. Thus, according

to our results, a few hundred or a few thousand loci would be

able to explain the missing heritability for this set of traits,

assuming an additive contribution of locus average effects to

heritability, in line with previous predictions (Visscher et al.

2017). For example, for human height, we infer that �1800

loci would be necessary to explain the estimates of familial

heritability (Figure 4). Yengo et al. (2018) have recently

found 3290 SNPs for Height clustered to 712 genomic loci,

which could account for �25% of the variation in Height.

Our predictions thus suggest that a further 1000 loci would

be necessary to explain the full familial heritability. This

prediction should, however, be taken with reservations

from a quantitative perspective, as the definitions of locus

in both studies are different, the estimate of familial heri-

tability for height could be overestimated (Yang et al.

2015), and because of the limitations of our approach

(see below).

For 6 out of 16 traits, however, our results indicate that

the additive contribution of effects of single loci, even in large

numbers, cannot explain the familial heritability. For these

traits, the expected heritability is close to, or slightly above,

that already explain by GWAS (Figure 4). One anomalous

result occurs with body mass index, for which the expected

value of heritability was slightly below the currently observed

value. The reason for this maladjustment is likely to be the

bias generated when inferring the expected distribution for

this trait. The observation that, for some traits, the expected

heritability cannot reach the familial one, relies on the fact

that, for these traits, the expected change in the shape of

the distribution of locus effects predicts effect sizes too small

to contribute significantly to heritability as the number of

loci increases. In fact, the reason why some estimates of the

missing number of loci to reach the familial heritability are

rather high in Figure 4 (e.g., for waist-related-traits, requiring

�3000 loci), is that the approach of the expected heritabil-

ity to the familial one is rather slow as the number of loci

Figure 4 Observed and expected val-

ues of heritability. The full length of bars

indicate the mean familial heritability

ðh2famÞ for the studied traits (average val-

ues are shown when there is a range of

estimates from the Literature, Table S2).

In solid color it is shown the heritability

explained by the loci already found and

available from the Catalog ðh2gwasÞ. The

blue error bar gives the inferred value of

heritability (the dot corresponds to the

median value) that approaches most to

the familial heritability with a 95% con-

fidence interval, using data from the

expected distribution of locus effects.

The expected number of loci for each

trait required to explain the familial her-

itabilities within the error bars assuming

an additive contribution of single loci

are given over the bars. Traits are colored

depending on the functional domain

they belong: Cancer (green), dermato-

logical (pink), endocrine (orange), gastro-

intestinal (brown), hematological (red),

immunological (yellow), metabolic (beige),

skeletal (gray).
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found increases because these have lower and lower effect

sizes.

Our inference that, for some traits, the familial heritability

could not be retrieved by the accumulation of the contribution

of averageeffects of single loci canalsobededuced fromFigure

2. If the increase in heritability with the accumulated number

of loci is predicted from the figure for future numbers of loci to

be found (regression parameters shown in Table S5C), it

seems that, for some traits, such as Psoriasis, Type 2 diabetes,

Digestive disease, Ulcerative colitis, and Rheumatoid arthri-

tis, the heritability will reach an asymptotic value below h2fam;

even when up to thousands of loci are considered. It may

be noted, however, that, for some traits, such as Psoriasis, the

number of loci found so far is small, and predictions can

be less accurate than for traits for which many data are

available.

Our predictions should be taken with caution, and consid-

ered asmere approximations, given the assumptions onwhich

are basedand thepossible sources of bias involved.Wemadea

selectionof themost informativeSNPsavailable in theCatalog

for each trait, i.e., those with P-value # 53 1028. The reason

was to consider only those for which the evidence of associ-

ation with the trait is strong. This means that the number of

loci assumed to be found is generally lower than that pro-

vided by the GWAS Catalog. With this assumption, we would

expect our predictions of number of loci and heritability from

their effects ðh2gwasÞ to be underestimations. We made a re-

analysis without filtering by P-value (Table S7). For a few

traits h2gwas was increased significantly, even .1, probably

due to the presence of many false positives or overestimation

because of linkage disequilibrium between loci (see below).

However, the average predicted heritability across all traits

was very similar when the restrictive filtered data were used

(0.352) or not (0.358).

Anotherpossible sourceofbias is thatwe took theSNPmost

significantly associated (with the lowest P-value) to a given

GWAS-Catalog gene or intergenic sequence, and assumed

that the estimated effect and frequency of that SNP is the

same as for the corresponding associated gene (locus). Thus,

we assumed that the selected SNPs were at complete LD with

the associated locus. Therefore, the average effect size of the

considered loci, and their contribution to heritability, would

be expected to be overestimations. An additional source of

overestimation of average effects could arise from the fact

that, even though we considered different gene Catalog

names as units of analysis (with a single associated SNP to

each), different SNPs in high LD could be associated to dif-

ferent Catalog genes. These sources of overestimation can, in

fact, be taking place in our analysis for some traits. For ex-

ample, for Height, the 346 loci considered in our final set of

analysis explain h2gwas = 0.26, which is very close to that

obtained by Yengo et al. (2018) (h2gwas = 0.25) but ascribed

to 712 associated genomic loci (although the definitions of

locus differ between both studies; see below). Nevertheless,

the average h2gwas obtained for the set of 16 traits analyzed is

0.16 on average (ranging from 0.05 to 0.35; Table S7), which

is within the majority of estimates of h2gwas observed for the

analyzed traits (Speliotes et al. 2010; McAllister et al. 2011;

Reiner et al. 2011; Jostins et al. 2012; Tsoi et al. 2012; Hara

et al. 2014; Tada et al. 2014; Litchfield et al. 2015; Mancuso

Figure 5 Decline of the average locus

effect (upper graph), and increase of

the heritability explained ðh2gwasÞ (lower

graph) as the number of loci found is

increasing. The small points represent

the observed values of the previous

analyses (Figure 1 and Figure 2) and

the large points those of a more re-

cently collected set. Lines are the fit to

an exponential model. Traits are col-

ored depending on the functional do-

main they belong: Cancer (green),

dermatological (pink), endocrine (or-

ange), immunological (yellow), skeletal

(gray).
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et al. 2015). In addition, the average h2gwas from the loci con-

sidered in this study for all traits is, on average, 25% of fa-

milial heritability (Table S2), a proportion of the order of

those found in the literature (Zuk et al. 2012).

In order to consider the possibility of an overestimation of

loci effects because linkage disequilibrium can correlate effect

sizes between close loci, we performed an additional filtering

following the definition of locus by Wood et al. (2014) and

Yengo et al. (2018), as one or multiple jointly associated

SNPs located within 1-Mb window. This definition of locus

does not coincide with that followed in our analysis, where a

locus refers to a single gene or intergenic sequence referred to

in the Catalog with attached estimates from the single most

associated SNP. However, to apply the former definition, we

removed from all our analyses all loci that were within 1 Mb

distance of another one. With this approach, 24% of the loci

were removed, and the final number of traits available for

prediction was reduced from 16 to 11. The results of this

analysis are given in Figure S5. As mentioned above, with

the original analysis the average h2gwas for the 16 traits was

0.16. After the 1-Mb pruning, the average h2gwas was reduced

down to 0.10 (Table S7). Our main predictions, however, did

not change qualitatively from the previous ones for the

11 remaining traits, except for 1 trait. In the new analysis,

the familial heritability for Prostate cancer could not be

reached by adding more loci (Figure S5) whereas in the

former analysis it could (Figure 4). For the other 10 traits,

however, the same conclusion held regarding the possibility,

or not, of explaining familial heritability, although there were

substantial differences in the number of loci predicted to

reach the familial heritability (e.g., .6000 missing loci for

Height), always assuming an additive contribution of loci.

Our results could also be affected by Winner’s curse

(Lohmueller et al. 2003), which causes estimates of genetic

effects to be upwardly biased because only variants with

highly significant evidence of association are considered.

Xiao and Boehnke (2009) showed that the bias incurred by

Winner’s curse in the estimation of average effects decreases

with the power of the analysis, and that, for a fixed power, the

bias is reduced as the cut-off significance level is more

restrictive. In this respect, we used a rather restrictive ge-

nome-wide significance level in our analyses (5 3 1028).

It is, however, possible that the estimated effects in the earlier

studies (with lower sample sizes and, therefore, lower

power) were more upwardly biased by Winner’s curse than

the estimates obtained in later studies (with higher statistical

power). But, as explained in the methods section, we

replaced the estimated effects of the loci in the earlier studies

by the estimated effects in the later ones. In fact, 87% of the

loci effects were obtained, or their effects were updated, in

studies with the largest samples sizes. Therefore, we would

expect a low impact of Winner’s curse on our results.

Another source of uncertainty could be the distribution of

locus effects assumed. We fitted the locus effect sizes to a log-

normal distribution, which was that fitting best to 90% of the

traits studied (Table S4). We repeated the inferences of

expected heritabilities assuming other distributions (beta,

gamma and exponential; Table S7). These analyses result

on inferences of h2 that sometimes fit in appearance the

expected h2fam. However, the apparent fit is likely to be the

result of an upward bias due to overestimation of the average

effects, as very often the estimates of heritability are well

above 1. Thus, our inferences based on the log-normal distri-

bution seem to be justified.

Finally, the estimates of familial heritability for the differ-

ent traits vary between studies and populations. We used

values available in the literature and averaged them when

there was a range of values, but these are subject to some

variation, and are lacking for some traits, so that values for

analogous traits need to be used. In summary, the different

possible sources of over and underestimations attached to the

analysis, the scarcity of data available for some traits, the

uncertainty of some estimates and the limitations of the data

provided by the Catalog, require treating our results with

caution.

Gap between the expected GWAS and
familial heritabilities

Our results emphasize that, for 6 out of 16 traits, the expected

decrease in effect size for new loci is such that it seems not

feasible to explain the observed h2fam by h2gwas, even if the

contribution of thousands of loci were assumed. For 10 traits,

however, it appears that the additive contribution of hun-

dreds to thousands of further loci could potentially explain

the familial heritabilities. This does not imply, however, that

this will be the case. It is possible that the actual number of

missing loci is lower than that predicted and, therefore, that

the familial heritability will not ever be reached either. What

we conclude here is that, according to the GWAS Catalog and

its limitations, this appears to be possible.

The expected distributions of effects inferred in this study

(Figure 4, Figures S2 and S3, and Table S7), show amain lack

Table 1 Simulation results assuming the distribution of locus

effects predicted for the Digestive disease trait

Within-locus Additive Additive h = 0.2 h = 0.2 h = 0

Between-locus Additive Epistatic Additive Epistatic Epistatic

Parameters

h2g 0.103 0.102 0.068 0.068 0.050

d2
g 0.000 0.000 0.016 0.016 0.043

H2 0.103 0.332 0.084 0.347 0.370

Estimations

h2gwas 0.104 0.282 0.069 0.234 0.196

tMZ 0.104 0.332 0.084 0.347 0.370

tDZ 0.052 0.155 0.039 0.146 0.143

h2twins = 2(tMZ – tDZ) 0.103 0.355 0.091 0.403 0.455

h2twins – h2gwas 20.001 0.073 0.022 0.169 0.259

tMZ – 2tDZ 20.000 0.022 0.007 0.055 0.085

h2g; genic narrow-sense heritability; d2
g ; genic contribution of dominance to pheno-

typic variance; H2, broad-sense heritability; h2gwas; GWAS estimate of heritability;

tMZ, intraclass phenotypic correlation among monozygotic twins; tDZ, intraclass phe-

notypic correlation among dizygotic twins; h2twins; estimate of heritability from

twins. The phenotypic variance is one in all cases and no common environmental

effects are assumed.
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of loci of small effects to be found. This is in line with the

observation that the mean effect size monotonically de-

creases asmore loci are being discovered (Figure 1), in agree-

ment with Park et al. (2010). Therefore, it is expected that

the missing heritability gap will be reduced very slowly

with higher sample sizes and statistic power (Kim et al.

2017). However, we find that not only loci of small effect

are missing, and it is also expected to continue finding loci

of moderate effect that have passed undetected so far, and

that could still explain a substantial part of the missing

heritability.

It has been suggested that our inability to find the remain-

ing loci by GWAS may be explained on technical grounds

(Manolio et al. 2009). Rare SNPs (say with MAF, 5%) have

low coverage in current genotyping technology and are usu-

ally missing. Whole genome sequencing then could provide

the clue to find the proportion of missing heritability attribut-

able to moderate or high effect loci, but it is expected that

SNPs with extremely low frequencies contribute little to her-

itability, which has been already reported for diseases as

Type 2 diabetes (Fuchsberger et al. 2016). In fact, simulation

studies (Thornton et al. 2013; Caballero et al. 2015) predict

that full sequencing data accounting for SNP variation will

not be able to increase substantially the estimates of herita-

bility. However, it is possible that copy number variation, such

as insertions and deletions that could be found by whole

genome sequencing could make a substantial contribution

to missing heritability (Locke et al. 2006; McCarroll 2008;

Bassett et al. 2017). Furthermore, genome-wide markers

may overcome other statistical limitations for SNPs of com-

plex traits, as inconsistent estimations of the locus effects due

to SNPs in LDwithmore than oneQTL aswell as imperfect LD

(de los Campos et al. 2010, 2015).

For some traits, an asymptotic value of h2gwas is expected to

be substantially lower than h2fam, and other phenomena ad-

ditional to the additive contribution of single average effect

loci may be involved. In fact, most estimates of h2fam have been

obtained with twin data designs, which are known to give

estimates of broad-sense heritability that include contribu-

tions from dominance and epistasis. In a large meta-analysis

of the heritability of human traits based on 50 years of twin

studies including nearly 18,000 traits, Polderman et al.

(2015) found that genetic variation for a majority of traits

is inconsistent with a substantial influence from shared envi-

ronment or nonadditive genetic sources. This conclusion was

reached by testing the difference between the correlations of

monozygotic twins (tMZ) and twice the correlation of dizy-

gotic twins (tDZ). A positive value of this difference would

imply a contribution from nonadditive (dominance and epis-

tasis) variance whereas a negative difference would imply a

substantial contribution of shared environment (Hill et al.

2008). Polderman et al. (2015) found that the difference

was not significantly different from zero for �69% of the

traits (they actually rather tested the ratio tMZ/tDZ = 2).

Yet, in the remaining 31% there was a significant deviation,

what would imply some contributions from nonadditive or

environmental effects in twin heritability estimates. In addi-

tion, Zhu et al. (2015) analyzed the contribution of domi-

nance to genetic variation for 79 human traits, concluding

that the contribution of dominance variance is only about a

fifth of the additive variance on average, suggesting a rela-

tively low contribution from dominance to genetic variation,

although for some traits this contribution could be very sub-

stantial. These theoretical studies and empirical analyses

thus suggest that most variation for human traits is of addi-

tive nature. However, the contribution from nongenetic fac-

tors may be non-negligible for some traits.

Estimating the contribution of epistasis to genetic variation

is elusive given the difficulties to evaluate it properly, and the

empirical test carried out by Polderman et al. (2015) using the

correlations between monozygotic and dizygotic twins may

not fully consider the possibility that epistatic effects contrib-

ute substantially to variation. Therefore, it is possible that, for

at least some traits, the difference between the additive con-

tributions from average locus effects found from GWAS can-

not reach the familial heritability estimates because these are

broad-sense heritabilities inflated by nonadditive genetic

components. In fact, our computing simulations assuming

dominance and epistasis show that theremay be a substantial

gap (. 0.2) between the heritability obtained from GWAS

and the estimate of heritability obtained from twin studies

ðh2twinsÞ, even though the difference between the correlations

of monozygotic twins and twice the correlation of dizygotic

twins is, 0.1 (Table 1). The epistatic model assumed in our

simulations, involving a doubling of the effect of homozygous

loci is, of course, an arbitrary one, but allows for illustrating

this issue.

There is increasing evidence that epistasis is a major de-

terminant of additive variance (Bloom et al. 2013; Brookfield

2013; Mackay 2013; Monnahan and Kelly 2015; Huang and

Mackay 2016; Csilléry et al. 2018). In fact, epistasis has al-

ready been described playing an important role in psoriasis

through the interaction of the HLA–ERAP1 loci (Strange et al.

2010) and other immunity disorders (Cortes et al. 2015).

Dominance could also take a place in biasing the familial

estimates of heritability for some traits, including height

and BMI (Chen et al. 2015; Zhu et al. 2015), and the contri-

bution from dominance variance for life-history traits is of the

same order as that from additive variance, according to the

meta-analyses of Mousseau and Roff (1987) and Crnokrak

and Roff (1995). In addition, estimates of familial heritability

for some traits, such as human height, can also be overesti-

mated if assortative mating is not properly modeled (Lynch

and Walsh 1998; Yang et al. 2015). Finally, any source of

genotype-covariate interaction is likely to have an effect on

the estimates of SNP-heritability (Evans and Keller 2018; Ni

et al. 2018). For example, genotype-environment interac-

tions have also been proposed to explain part of the genetic

variance of complex traits (Zheng et al. 2013; Robinson et al.

2017) and, thus, their heritability.

Concluding, GWA analyses are a powerful tool to discover

variants associated to complex diseases, and the success in
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finding the missing heritability may depend, in many in-

stances, on our ability to detect low variant effects with

accuracy. For some traits, however, the contribution of single

loci found by GWAS does not appear enough to explain the

familial heritability, and other sources of genetic or environ-

mental variation contributing to this may be involved.
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