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There have been several recent studies addressing the genetic architecture of depression. This review serves
to take stock of what is known now about the genetics of depression, how it has increased our knowledge
and understanding of its mechanisms, and how the information and knowledge can be leveraged to improve
the care of people affected. We identify four priorities for how the field of MD genetics research may move
forward in future years, namely by increasing the sample sizes available for genome-wide association studies
(GWASs), greater inclusion of diverse ancestries and low-income countries, the closer integration of psychi-
atric genetics with electronic medical records, and the development of the neuroscience toolkit for polygenic
disorders.
Introduction
Major depressive disorder is a disabling syndrome characterized

by persistent lowmood and reduced enjoyment along with addi-

tional signs and symptoms including reduced concentration, en-

ergy, and self-esteem and altered appetite and sleep quality.

Although many symptom combinations can lead to a diagnosis

of major depressive disorder, the commonalities are its persis-

tence, pervasiveness, and pathological extent. Depressed

mood is a normal human emotion; in major depressive disorder,

however, depressed mood becomes nearly unremitting, un-

shakable, and associated with other cognitive and physical

symptoms. Thus, major depressive disorder is clinically hetero-

geneous, and individuals vary greatly in their symptom severity,

treatment response, and outcome. Clinical heterogeneity may

also reflect substantial causal heterogeneity, whereby individ-

uals with different etiologies are grouped under the same

diagnosis.

In most single-sample genome-wide association studies

(GWASs), structured diagnostic criteria of major depressive dis-

order have generally been used to define the trait of interest. The

diagnostic criteria for major depressive disorder (Table 1) are

provided in the American Psychiatric Association’s Diagnostic

and Statistical Manual (DSM) (American Psychiatric Association,

2013). These criteria are generally preferred over the very similar

criteria for moderate depressive disorder adopted by the 10th

edition of the World Health Organization’s International Classifi-

cation of Diseases (ICD) (World Health Organization, 1993).

These two diagnostic systems are highly overlapping, and both

require that the symptoms must be present most of the time

for a 2-week period and are not better accounted for by another

condition.

In recent years, several large samples have become available

that include ‘‘case’’ definitions of depression that would notmeet
full DSM or ICD criteria. The company 23andMe recently pro-

vided a sample of more than a million individuals that self-

reported the presence or absence of a depression diagnosis

made by a healthcare professional (Howard et al., 2018a). A pro-

portion of individuals reporting a health professional’s diagnosis

of depression will not simultaneously meet DSM or ICD criteria,

and to reflect this uncertainty, the Psychiatric Genomics Con-

sortium (PGC) have adopted the term ‘‘Major Depression’’

(MD) to include more minimally phenotyped samples. Genetic

analyses of MD may therefore generate association findings

that do not generalize to major depressive disorder, although

this has not yet been demonstrated to the best of our knowledge.

In addition, individuals endorsing 23andMe’s self-declared

depression question would be expected to meet a threshold of

clinical significance, whereas individuals meeting major depres-

sive disorder criteria elicited through a reliable structured clinical

interview (First et al., 2002; Kessler et al., 1998) may not have

sought a health professional’s help for their symptoms of low

mood. The effects of these different definitions on the results

of genetic association studies are currently being explored and

identified. Two recent studies have identified high genetic corre-

lations between amajor depressive disorder diagnosis made us-

ing full (Zeng et al., 2016) or limited (Howard et al., 2018b) DSM

criteria and self-declared depression, while a recent study pre-

print suggests that the genetic correlations of a detailed DSM-

based diagnosis versus minimally phenotyped MD traits may

be more distinct (Cai et al., 2018). MD is defined by the PGC

for genetic research to encompass all individuals with major

depressive disorder as well as participants endorsing self-rated

and other more minimal-phenotyping criteria (Figure 1).

MD is undeniably a leading global cause of disability, affecting

at least 2%–4% of the population at a given point in time, at least

16% over the course of a lifespan (Kessler et al., 2003) and
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Table 1. Diagnostic Criteria for Major Depressive Disorder and Depressive Episode

DSM-5 Major Depressive Disorder ICD-10 Moderate Depressive Episode

Five or more symptoms, at least one of which must come from the

‘‘A’’ criteria:

‘‘A’’ criteria

1. Depressed mood

2. Markedly diminished interest or pleasure in almost all activities

‘‘B’’ criteria

1. Significant weight loss/gain or decrease/increase in appetite

2. Insomnia or excessive sleep

3. Psychomotor agitation or retardation

4. Fatigue or loss of energy

5. Feelings of worthlessness or excessive/inappropriate guilt

6. Diminished concentration or indecisiveness

7. Recurrent thoughts of death, suicidal ideation, plans or an attempt

Six or more symptoms, including two from the following:

1. Depressed mood

2. Loss of interest and enjoyment

3. Reduced energy leading to increased fatigability and

diminished activity

Three or more typical symptoms from the following:

1. Reduced concentration and attention

2. Reduced self-esteem and self-confidence

3. Ideas of guilt and unworthiness (even in mild type of episode)

4. Bleak and pessimistic views of the future

5. Ideas or acts of self-harm or suicide

6. Disturbed sleep

7. Diminished appetite

Table 1 lists the two major sets of criteria used in depression research studies, namely those based on the World Health organization’s International

Classification of Diseases (ICD, version 10) and the 5th edition of Diagnostic and Statistical Manual of the American Psychiatric Association (DSM V).

Both sets of criteria require aminimum symptom duration of 2 weeks, significant functional impairment, and for the disorder not to be better accounted

for by another condition.
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accounting for more than 4% of all years lived with disability (Vos

et al., 2017). MD affects countries irrespective of their gross do-

mestic product, although the highest morbidity burden is borne

by low- and middle-income countries (Patel, 2007). The burden

of MD has increased worldwide since 1990, particularly in low-

and middle-income countries, where the majority of the world’s

population resides and healthcare services are generally less

able to meet patient need. MD is associated with social disad-

vantage, a broad range of physical diseases, and shortened life-

span (Chesney et al., 2014). In contrast to many diseases that

receive greater research funding, it has occupied a higher rank

over time in the global burden of diseases (Woelbert et al.,

2019), and its persistence is a substantial source of individual

and family adversity.

The PGC Major Depressive Disorder Working Group is an in-

ternational consortium in more than 20 countries that was set

up in response to the growing realization that elucidating the ge-

netic underpinnings of MD requires global cooperation (Levin-

son, 2006; Sullivan et al., 2018). Although twin and family studies

have demonstrated a substantial contribution of genetic factors

(Polderman et al., 2015), the lack of replicable molecular genetic

associations, together with need for large sample sizes, and

consistent approaches to quality control and analysis necessi-

tated a global response from the psychiatric genetics commu-

nity. The PGC Major Depressive Disorder Working Group has

published three major meta-analyses of MD (Howard et al.,

2018a; Ripke et al., 2013; Wray et al., 2018) and related traits,

and the results generated have been used in many downstream

studies to characterize the genetics of depression and related

traits. In addition, there have been relatively recent GWASs of

depressive symptoms (Hek et al., 2013) and self-declared

depression (Howard et al., 2018b; Hyde et al., 2016) as well as

both more broadly (Direk et al., 2017) and narrowly defined

(Hall et al., 2018;Milaneschi et al., 2017) traits. This review serves

to take stock of what is known now about the genetic architec-

ture of MD (Figure 2), how it has affected our knowledge and un-

derstanding of depression and its mechanisms, and how the

field of MD genetics research may move forward in future years.
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Genetic Approaches to MD
In the past 40 years, many twin and family studies ofMD have es-

tablished that liability to MD has a non-deterministic genetic

component to its etiology as substantiated by a twin heritability

of 31%–42% (Sullivan et al., 2000). This level of twin heritability

implies the need for large samples for reliable and reproducible

gene identification (Levinson et al., 2014; Wray et al., 2012),

but complex diseases with similar twin heritabilities have had

considerable success (e.g., type 2 diabetes). Twin heritability

provides support for the logic of genetic searches but does not

elucidate the most critical feature, the genetic architecture (the

number of loci underlying liability to a complex disorder along

the effect sizes and frequencies of the loci) (Sullivan et al.,

2012). For instance, a trait with a handful of loci each with strong

effects (genotypic relative risks, GRR > 2) would be more trac-

table to genetic analysis than a trait with hundreds of loci each

with GRR 1.1–1.2.

The genetic study designs applied to MD have mirrored those

used in other common, complex disorders. The three major ge-

netic approaches, besides GWASs, are linkage analysis, candi-

date gene studies, and re-sequencing studies.

Linkage analysis evaluates pedigrees with many affected indi-

viduals to screen the genome to identify regions inherited from a

common ancestor and present in affected individuals. This

approach was sensible given findings for other biomedical dis-

eases (albeit with simpler genetic architectures). At least 12

studies pursued this design from 1998 to 2010 (Camp and Can-

non-Albright, 2005; Cloninger et al., 1998; Fullerton et al., 2003;

Holmans et al., 2007; Kuo et al., 2007; McGuffin et al., 2005; Mid-

deldorp et al., 2009; Nash et al., 2004; Neale et al., 2005; Nurn-

berger et al., 2001; Wray et al., 2008; Zubenko et al., 2003), and

no replicable findings emerged. For this review, we reanalyzed

the reported linkage regions using partitioned linkage disequilib-

rium (LD) score regression and found no significant overlap with

current GWAS results for MD (in fact, the linkage regions tended

to be depleted of MD single nucleotide polymorphism (SNP) her-

itability, enrichment = 0.849, SE=0.078, p = 0.055). Bioinformatic

analysis of the linkage regions identifiednobiological themes. It is



Figure 1. Differences between Major
Depressive Disorder and Major Depression
Individuals with either major depressive disorder or
self-declared depression represent two intersecting
groups of individuals. Studies of individuals meeting
either major depressive disorder criteria or more
minimal phenotypes (such as a self-declared health
care professional’s diagnosis of depression, as in
23andMe) take a broader approach to diagnosis
referred to here as ‘‘major depression,’’ or MD.
Limitations of this approach include (1) failing to
identify specific risk factors for major depressive
disorder and (2) failing to identify specific risk factors
associated with clinical help-seeking behavior in
people who don’t meet full structured diagnostic
criteria but who seek help from healthcare pro-
fessionals for depressed mood.
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very likely that the assumptions of linkage analyses were not

robust (with no rare genetic loci with large effect sizes existing)

and that the sample sizes used were far too small.

Candidate gene association studies (circa 1995–2005)

selected one or a few of the 21,000 genes in the human genome

and compared allele frequencies in MD cases and controls.

Candidate gene selection was based on prior knowledge, often

derived frompharmacology (e.g., to study genetic variation in the

serotonin transporter, the site of action of some antidepres-

sants). The candidate gene approach has long been controver-

sial (reviewed in Sullivan et al., 2001) given its clear propensity

to generate false positive findings (Sullivan, 2007, 2017). For

instance, Farrell et al. (2015) evaluated 25 historical candidate

genes for schizophrenia (e.g., COMT, DISC1, DTNBP1). These

authors conducted a meta-analysis of the candidate gene litera-

ture, added common variant findings from the largest genomic

study of schizophrenia available at the time, included unedited

commentary from proponents of these genes or who introduced

them into the literature, and included ratings from 24 schizo-

phrenia geneticists. From empirical results, the historical candi-

date gene literature was essentially uninformative for the genetic

basis of schizophrenia (in fact, the effect sizes reported by the

initial studies could be excluded by subsequent studies with

�100% power). In many instances, authors who had studied

these genes indicated that they no longer thought that they

were involved. An independent study confirmed these general

conclusions (Johnson et al., 2017).

But, what of candidate genes for MD? Recently, Border et al.

(2019) evaluated 18 major depressive disorder candidate genes

(e.g., SLC6A5, BDNF,COMT, andHTR2A). In an extensive set of

analyses of empirical data, they did not find much support for

any candidate gene. We refer the reader to this paper for full de-

tails, but these authors concluded: ‘‘The study results do not

support previous depression candidate gene findings, in which

large genetic effects are frequently reported in samples orders

of magnitude smaller than those examined here. Instead, the re-

sults suggest that early hypotheses about depression candidate

genes were incorrect and that the large number of associations

reported in the depression candidate gene literature are likely to

be false positives.’’

One candidate gene study deserves particular mention. One

of the most highly cited papers in psychiatry (>4,300 citations)

was in Science in 2003 by Caspi et al. who reported a gene-envi-
ronment association of SLC6A4/HTTLPR and early stress on risk

for MD (Caspi et al., 2003). This paper remains contentious in

some circles—many of the salient issues are discussed at length

in a pre-specified public meta-analysis plan (Culverhouse et al.,

2013) and in the response byMoffitt and Caspi (2014). Themeta-

analysis (n = 38,802) rather robustly did not support the claims in

the original paper (n = 837). For many readers of this literature,

the paper by the late David Fergusson and colleagues tips the

scale (Fergusson et al., 2011). This was an exceptionally similar

study to Caspi et al. (2003): both were longitudinal birth cohort

studies on the south island of New Zealand (Christchurch and

Dunedin) with dense prospective measurement and a focus on

childhood development and risk for subsequent psychiatric dis-

orders. Fergusson et al. (2011) state: ‘‘A series of 104 regression

models were fitted to four mental health outcomes (depressive

symptoms,major depression, anxiety disorder and suicidal idea-

tion) observed at ages 18, 21, 25 and 30 using 13 measures of

life-course stress that spanned childhood and adult stressors.

No evidence was found that would support the hypothesis that

‘s’ alleles of 5-HTTLPR are associated with increased responsiv-

ity to life stressors.’’ The lack of replication in a highly similar

study is notable.

Whether one does or does not ‘‘believe’’ in the candidate

gene approach, we now have better ways to secure replicable

findings. This was a popular design, but in retrospect, the

reproducible yield was negligible. Indeed, a high-level National

Institute of Mental Health genomics panel recommended that

‘‘candidate gene studies of psychopathologic, cognitive, or

behavioral phenotypes should be abandoned in favor of

well powered, unbiased association studies’’ (Gordon, 2018).

The most enduring result of the candidate gene era may be

the current unyielding commitment to statistical rigor and

reproducibility.

There have been few whole-exome or whole-genome re-

sequencing studies of MD and none of notable size and genome

coverage. A study using very low-pass sequencing data sug-

gests a role for genetic variation in mitochondrial DNA, but we

are unaware of external replication (Cai et al., 2015). However,

if experiences with schizophrenia and type 2 diabetes are rele-

vant (i.e., meta-analyses of whole-exome data for �25,000

cases each found <10 confident associations), sequencing

studies are unlikely to yield confident results until the sample

sizes become extremely large (N > 106) (Zuk et al., 2014).
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Figure 2. Recent Progress in Genome-wide
Loci Discovery from GWASs
Figure shows how the number of genome-wide loci
discovered to date has increased from 44 to 102 in
12 months through the inclusion of additional par-
ticipants, most of which have been categorized as
MD cases or controls using criteria that would fall
short of DSM or ICD diagnostic criteria.
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Structural variation plays an important role in schizophrenia,

but in MD, the role of this class of genetic variation has been

underexplored. Current studies suggest that rare copy number

variants play a more minor role in MD than in schizophrenia

and other neuropsychiatric disorders (Kendall et al., 2018) but

are nonetheless more common in cases than controls. A recent

meta-analysis of four cohorts (5,780 cases, 6,626 controls) also

reported a greater burden of short (<100 kb) deletions in MD that

were enriched for likely enhancer elements (Zhang et al., 2019).

These findings suggest that copy number variants play a role

in the etiology of MD through disruption of gene expression.

Insights from MD’s Polygenic Underpinnings
Genetic studies of MD show that the underlying liability to

depression is polygenic. Extensive linkage, candidate gene

and genome-wide association studies have confirmed that no

loci of major effect exist and imply that the heritable component

of MD is due to thousands of loci each having a minor effect on

liability to the disorder (Ripke et al., 2013). GWASs, which test for

SNP associations with depression genome-wide, have now

identified 102 common genetic variants associated with MD

(Howard et al., 2019). These variants account for only a small

proportion of genetic contribution toMD, but our recent progress

indicates that, as in other disorders, expanding our sample sizes

will continue to increase the number of associated variants. For

polygenic disorders such as MD, follow-up studies focused on

any specific variant are of limited value, because each variant

has a modest effect on risk. However, genome-wide methods

assessing the impact of sets of variants can be highly informa-

tive, and extensive computational tool kits are now available to

explore and exploit genome-wide results (Maier et al., 2018).

Here, we describe how genetic results can generate insights to

MD through estimating heritability, assessing individual-level

risk, identifying genes or pathways critical for conferring liability

to the disorder, highlighting links with treatment, and detecting

pleiotropy, where genetic risk is shared with other disorders

(Figure 3).

The heritability of MD captured by genome-wide studies

analyzed in Howard et al. (2018a) is 8.9% (95% confidence inter-
94 Neuron 102, April 3, 2019
val 8.3%–9.5%). This common genetic

variation captures a substantial part of the

twin heritability of �37% and is expected

to increase as GWASs of larger sample

sizes with denser imputation uncover

more of the genetic component of MD.

GWASs test the evidence for association

with each genetic variant, combined

across a set of MD cases and controls.
The genome-wide results can be taken back to an individual-

level risk measure by calculating a polygenic risk score risk

that captures genetic liability to MD. Here, effect sizes from ge-

netic variants from a discovery GWAS are used to calculate poly-

genic risk scores in a set of individuals who were not part of the

original GWAS. For a subset of variants, the polygenic risk score

(PRS) sums the number of risk alleles an individual carries,

weighting each variant by its effect size (log(odds ratio)). Scores

are calculated from a set of independent genetic variants that

meet a pre-specified level of significance. The PRS score can

be restricted to genome-wide significant loci, but experience

shows us that reducing the p value threshold increases predic-

tion and using an independent set of loci genome-wide (�100k

variants) may maximize the level of prediction obtained and

form a true ‘‘polygenic’’ score. Polygenic risk scores have an

approximately normal distribution, and when calculated in a

set of MD cases and controls, scores are expected to be higher

in MD cases than controls, reflecting the higher number of risk

alleles carried by cases. Polygenic risk scores therefore summa-

rize a large genotype matrix into a single variable per individual.

They can be used to predict case-control status (and in MD they

account for 2% of variance in case control status) or to assess

genetic contribution to disease subtypes (MD polygenic risk

scores are higher, for example, in recurrent depression than sin-

gle-episode depression and in early onset cases). Further, they

can be used to test for genetic overlap across disorders, so

that polygenic risk scores for schizophrenia also predict MD

case control status. Although these polygenic risk score ana-

lyses attain statistical significance in research studies, the score

only accounts for a small proportion of disease, or subtype risk.

For example, a polygenic risk score in the top decile of scores

confers a 2.5-fold increased risk of depression compared to a

score in the lowest decile (Wray et al., 2018). The genetic compo-

nent of depression captured by our existing studies is therefore

most valuable for exploring disorder-level characteristics, with

no current utility for determining the level of risk for an individual.

MD is frequently comorbid with disorders of physical health

(Moussavi et al., 2007), and genetic studies allow us to identify

the extent to which this is due to pleiotropy, where genetic



Figure 3. Characterizing the Genetic Component of MD and Understanding Its Biology
Figure shows how the signal generated from a GWAS can be dissected to identify its genetic component (left-hand column) using measures of SNP-based
heritability, polygenic risk profiling of ‘‘unseen’’ individuals, by estimating genetic correlations with other traits and disorders and through techniques, such as
Mendelian randomization, that canmake inferences about whether there is a directional ‘‘causal’’ relationship between depression and other traits/disorders. The
right-hand column shows how the polygenic signal can be used to yield information about specific gene associations (through gene-based and other association
techniques), the biological pathways involved in the etiology of MD, and whether specific gene sets of functional elements are enriched for organ-, tissue-, and
cell-specific gene expression.

Neuron

Review
variants contribute to both disorders. Such studies use summary

statistics for genetic studies—a complete genome-wide listing of

statistical significance and effect size for each variant tested.

Making summary statistics open access for the scientific com-

munity has become standard research practice and enables a

wide range of follow-up studies to be performed. Two methodo-

logical tools, combined with the access to summary statistics,

have further facilitated these studies: LD score regression

(Bulik-Sullivan et al., 2015) to estimate the genetic correlation be-

tween disorders, and Mendelian randomization (Lawlor et al.,

2008) to explore causality.

MD shows strong genetic correlations (rg) with other psychiat-

ric traits, with correlations of between 0.3 and 0.4 with schizo-

phrenia, bipolar disorder, and ADHD and lower values with

anorexia nervosa (0.13) and autism spectrum disorder (ASD,

0.13). These values indicate a common genetic predisposition

across disorders in addition to genetic variants that are specific

to a single diagnostic entity. Significant genetic correlations with

social traits such as educational attainment and completing

college (but not IQ) highlight the importance of environmental

risk factors and the burden of depression, particularly in

adolescence. Genetic correlations with age at menarche and

menopause may point to novel physiological clues, perhaps

implicating hormonal links that are also relevant to postpartum

depression. Although strong phenotypic relationships exist

between immune-mediated disorders and MD, the genetic cor-

relations are modest, with significant results only detected with

inflammatory bowel disease and Crohn’s disease. Further
studies will be needed to assess whether this reflects non-

genetic mechanisms or a lack of power to detect common

genetic contributions.

Using the random assortment of alleles that occurs at meiosis,

Mendelian randomization has been compared to a randomized

controlled trial, allowing stronger causal inferences to be made

between an exposure and an outcome. Mendelian randomiza-

tion studies (Burgess et al., 2013) determine the direction of

causal effects between two traits by comparing the effect sizes

of two GWAS test statistics, using significant variants from the

potentially causal factor. For example, using Mendelian random-

ization, studies have shown that the significant SNPs associated

with years of education can be ranked in terms of their effect

size. When the effect size for MD is estimated at the same vari-

ants, a significant negative association withMD risk was also de-

tected, thus implying a causal effect of longer education on lower

risk of MD. Years of education and body mass index were both

‘‘causal’’ for MD, but not vice versa (Tyrrell et al., 2018; Wray

et al., 2018). Howard et al. (2019), applying Mendelian randomi-

zation, also provided evidence that higher neuroticism is caus-

ally associated with greater liability to MD and also that liability

to MDmay increase an individual’s tendency to smoke tobacco.

Characterization of the genetic associations of MD using gene

expression, functional annotation, and pathway analysis indi-

cates convergent signals for underlying biological mechanisms

and identifies potential routes for follow-up studies. For

example, MD is significantly associated with genes expressed

in brain regions, specifically the cortex. This finding is confirmed
Neuron 102, April 3, 2019 95



Figure 4. Our Changing Concept of
Depression
Two models of depression are shown. Left: a cate-
gorical model of depression is shown existing within
a broader group of individuals with depressive
symptoms.Within the diagnosis of major depressive
disorder, there are hypothesized subgroups of ca-
ses with discrete etiologies and clinical features.
Right: a continuum model of depression proposes
that there is a normal distribution of liability to
depressive symptoms or negative emotions (e.g.,
neuroticism) and that MD and major depressive
disorder represent different thresholds on the lia-
bility distribution at which these diagnoses are
made. The area bounded by the vertical line, the
curve, and the x (liability) axis represents the
prevalence of the disorder, with the prevalence of
MD > the prevalence of major depressive disorder.
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by enrichment in neurons, but not oligodendrocytes or astro-

cytes. Pathway analyses also implicate excitatory synapses

and the modulation of synaptic neurotransmission and activity,

providing further focus for translational studies on relevant as-

pects of human MD etiology.

While there is an increasingly diverse set of tools for the down-

stream investigation of MD-associated genetic risk variants,

including the layering of annotated genomic information from

other databases, there remain significant gaps in understanding

how findings relate to underlyingmechanisms. Current neurosci-

entific methods are well developed for the investigation of single

variants of large effect but have been slow to respond to the real-

ization that all psychiatric disorders are polygenic. Addressing

this issue is a priority for the neurosciences if we are to fully capi-

talize on genetic advances.

Our Changing Concept of Depression
High pairwise genetic correlations between MD and other broad

definitions of depression and related traits, whether ascertained

through detailed clinical interview, self-report, or through quanti-

tative measures of depressive symptoms, has led some to ques-

tion the validity of ‘‘binary’’ or categorical models of MD and its

potential subtypes (Figure 4). Since these interrelated measures

also vary markedly in cost and in the feasibility of their applica-

tion to large datasets, the necessity of detailed clinical assess-

ments for genetic research needs also to be examined and

carefully justified.

For GWASs, high genetic correlations of self-reported and

interview-based depressive definitions suggest that these defini-

tions may be almost exchangeable for common genetic variant

discovery purposes (Howard et al., 2018b; Wray et al., 2018;

Zeng et al., 2016). Very broadly defined depression-like traits,

such as the that provided by the ‘‘Nerves’’ measure in UK Bio-

bank (UK Biobank Fields 2090, 2100), also have substantial

genetic correlations with clinical interview ascertained and

DSM-defined major depressive disorder. Many other traits

(e.g., antidepressant use, abbreviated scales, and others; see

Table 2) could also potentially be used to identify MD cases.

The higher prevalence of more minimally phenotyped depres-
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sion traits is consistent with both traits lying on a continuum of

shared genetic liability (Figure 4). Diagnoses based on full

DSM-based criteria may not be exchangeable with more mini-

mally phenotyped traits for all purposes, however, as each trait

may have a set of specific genetic or environmental risk factor

associations. In a recent study, for example, the pedigree-based

and environmental correlations of self-declared and DSM-based

definitions were substantially less than 1 (Zeng et al., 2016). This

was in marked contrast to the genetic correlation for common

genetic variants, which was indistinguishable from 1 in the

same sample. Broadly defined measures may be expedient for

SNP discovery, as they limit phenotyping to the most frugal,

rapidly applied, and scalable measures, but they may do so at

the expense of future phenotypic stratification, clinical predic-

tion, and translation. While genetic studies using broader defini-

tions, such as MD, may efficiently identify the many variants that

are associated with both MD and more severe phenotypes, they

may do so at the expense of failing to identify the variants specif-

ically associated with more severe forms of illness. Future strat-

ification of patients based on their genotype is likely to be most

readily applied when the biological pathways impacted by these

variants map onto clinical correlates and other individual charac-

teristics. When these details are not provided by the measures

used in genome-wide association discovery studies, identifying

the clinical characteristics and other relevant correlated traits

will require further samples in which there are more severely

affected cases and more detailed clinical information, in which

to test for their actionable associations. Clinical prediction may

also be hampered, as the growing accuracy of MD prediction

in independent studies may slow as the proportion of clinically

ascertained participants in GWAS samples reduces.

Our diagnostic concept of MD was originally based on

attempts to classify distress and mental disorder into distinct

categories that were anticipated to have specific etiologies,

treatments, and outcomes (Kendell, 1987). Our genetic findings

suggest that the discontinuity of major depressive disorder from

more broadly defined pathological mental states (such as MD)

may be unjustified for GWASs that seek to accelerate the discov-

ery of common risk-associated genetic variants. Furthermore,



Table 2. Examples of Different Depths of Depression Phenotyping

Source of information

Self-rated Health record Trained interview

Diagnostic standard CIDI online questionnaire;

Davis et al., 2018a

Diagnostic code

E.g. DSM-5/ICD-10;

Davis et al., 2018b

Structured diagnostic

interview; Hall et al., 2018

Multiple item (sub-diagnostic) Probable depression; Smith et al.,

2013

NLP based text mining;

Smoller, 2018

PHQ-9 depression rating

scale; Thombs et al., 2014

Single item (sub-diagnostic) Single question; Howard et al.,

2018b

Use of ‘‘depression’’ or

‘‘antidepressant’’;

Wigmore et al., 2019

Evoked recollection of

depression; Arroll et al., 2003

In recent years, there has been an increase inminimal-phenotyping approaches toMD, where the phenotype addition falls short of the ‘‘gold standard’’

structured diagnostic instrument applied at interview by a trained clinician. Diagnostic-standard assessments of MD may be administered by touch

screen questionnaire, as they were in UK Biobank (Davis et al., 2018a), using the Composite International Diagnostic Instrument (CIDI, short form) or

using ‘‘diagnostic codes’’ obtained from codified medical records and mapped to International Classification of Diseases headings. Subthreshold,

multi-item, MD assessments include those available from multi-item touchscreen questionnaires such as those devised by Smith et al. (2013) and

applied in UK Biobank. Multi-item measures of MD can also be obtained from the electronic health record (eHR), including the use of natural language

processing (NLP), which has been shown to improve diagnostic accuracy when added to structured, codified eHR data (Smoller, 2018). The applica-

tion of questionnaires, such as the 9-item Patient Health Questionnaire (PHQ-9) by clinical researchers, also provides semi-quantitative information on

depressive symptoms that can be converted to a probable major depressive disorder diagnosis (Thombs et al., 2014). Finally, minimal phenotyping of

MD can be stripped back to a single question, thus providing a maximally efficient, low-cost major depressive disorder-like trait that lacks detailed

symptomatic information and may also lack diagnostic accuracy. Self-rated single-item responses have been applied in UK Biobank, using the

‘‘Nerves’’ measure in which individuals self-rated the prior communication of a depression- or anxiety- related diagnosis by a health professional.

The company 23andMe adopted a single-item approach but took a narrower approach to the self-rated reporting of a depression diagnosis. The

use of antidepressant medication or the presence of the single occurrence of the text ‘‘depression’’ in the eHR also provides alternative single-

item approaches to diagnosis. Finally, a single-item question about depression can also be evoked by an interviewer at face-to-face examination,

as described by Arroll et al. (2003).
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continuousmeasures of non-pathological depressive symptoms

and the personality trait of neuroticism, a tendency to experience

negative emotions, also show substantial genetic correlations

with MD (Luciano et al., 2018; Nagel et al., 2018). These findings

suggest that non-pathological states also share a substantial

proportion of their genetic architecture with MD, and it may be

possible to further leverage their findings for MD gene discovery

in future.

Moving toward a more valid and predictive diagnostic struc-

ture is a major goal of psychiatric taxonomy, and personalized

medicine and stratification based on genetic factors aligns diag-

nosis and disease etiology. Merely broadening the definition of

depression is potentially associated with differences in genetic

architecture andmay also be associated with differences in envi-

ronmental risk factors (Zeng et al., 2016). The first applications of

data-driven machine learning algorithms to genetic data from

other disorders provide an initial proof of concept that GWAS

data may still be leveraged for stratification (Kim and Kim,

2018; Trakadis et al., 2019). Maintaining the development of

new clinical research samples with detailed clinical and rich

phenotyping remains a necessity for the validation of genetic

findings from more broadly defined traits as well as for findings

to be put to eventual clinical use.

How Will Genetics Influence Clinical Practice?
Drug Target Identification

An early motivation of genetic studies was to identify ‘‘druggable

targets’’ through the identification of associated genes, subse-

quently identifying chemical ligands for these targets and then

utilizing these ligands in model systems and clinical trials
(Figure 5). In theory, the same approach may also be used to re-

purpose existing medications with favorable side-effect and

toxicity profiles, for new indications based on their receptor bind-

ing profile or other effects. Studies identifying risk-associated

variation in the D2 receptor pathway for schizophrenia (Ripke

et al., 2014), and in the genetic targets of lipid-lowering therapy

for cardiovascular disease, suggest that this is a clinically valu-

able approach (Visscher et al., 2017).Wray et al. (2018) also iden-

tified enrichment of the targets of antidepressant treatment in the

recent PGCMDmeta-analysis. Basing drug development on the

findings from MD case-control GWASs assumes that the mech-

anisms of effective treatment will be to reverse those leading to

the case definitions adopted in the included studies. Studies of

treatment response as a phenotype in its own right may also

be a profitable approach to drug target discovery and to

providing genomic risk scores that could be used to stratify indi-

viduals with depression by the treatments to which they aremost

likely to respond. These approaches are at an early stage but are

beginning to be applied by the PGC major depressive disorder

and other investigators for both drug (Fabbri et al., 2019; Wig-

more et al., 2019) and psychological therapies (Andersson

et al., 2018).

Risk stratification and early intervention has also been an

explicit aim of GWASs. Initially, this was based on the potentially

mistaken belief that there would be variants of large effect in

depression and other psychiatric disorders. The polygenic archi-

tecture of depression has, however, enabled the use of poly-

genic risk profiling and has shown that individuals in the top

decile of polygenic risk may have an approximately 2.53 odds

increase in lifetime risk compared to those in the lowest decile.
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Table 3. Our Top Four Priorities for Genetic Studies of MD

Priority Opportunity

Increase the sample sizes available for GWASs of MD, including

cases meeting full DSM or ICD criteria for major depressive

disorder

Improved knowledge of genetic architecture, more accurate genetic

prediction, greater numbers of genetic instruments to discover

modifiable environmental factors. Identification of genetic variants

contributing to more severe and persistent clinically defined definitions

Greater inclusion of diverse ancestries and low- and

middle-income countries

Representative inclusion of global ethnicities and cultures; improved

fine-mapping of causal variants; stronger causal inferences based

on consistently identified associations in different contexts

Integration with electronic medical records Ability to examine longitudinal associations with clinical symptoms,

treatment response, and comorbid physical conditions; enables

stratification of depression based on clinical factors; provides a

platform for recruitment to clinical trials and observational studies

Developing the neurosciences of polygenic disorders To identify the intermediate molecular, cellular, and systems biology of

MD through simultaneous modeling of many low-penetrance risk alleles

Table shows our top four priorities to advance research to identify the genetic architecture of major depression.
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The predictive accuracy of polygenic risk scores should gradu-

ally improve as GWAS sample sizes increase, and it is likely

that, at least for those at the extremes of polygenic risk, algo-

rithms to develop interventions andmitigate risk in those at high-

est liability of MD will be warranted.

Genetic risk scores for cardiovascular disease, several can-

cers, and type 2 diabetes can currently be used to stratify individ-

uals recruited from the general population into categories with a

more than5-fold increase in risk (Kheraet al., 2018). A strongcase

for assertively managing those at highest risk of these disorders

in order to reduce theirmortality has beenmade. Since these dis-

orders are twice ascommon inpeoplewithMD than in thegeneral

population, individuals with MDmay have much to gain from risk

stratification along a spectrum of life-shortening comorbidities if

that increases the likelihood of effectivemanagement. Risk score

profiling may also be extended to more mechanistic studies, by

first identifying individuals at high and low polygenic risk and us-

ing participant-derived cell lines andderived tissues tomodelMD

in vitro. Polygenic scores can also be calculated using variants

lying within specific biological pathways or gene sets to test

mechanistic hypotheses using brain imaging and other physio-

logical data. Early examples of this approach have used the

NETRIN1-DCC gene pathway to examine the effect of risk-asso-

ciated variation within this signaling pathway on brain white

matter connectivity (Barbu et al., 2019).

Potentially causal relationships between MD and other quan-

titative traits identified using Mendelian randomization, such as

the directional association between liability to increasing body

mass index and risk of MD in Wray et al. (2018), also implicate

potentially modifiable environmental exposures. These risk fac-

tors have important public health implications that may extend

more broadly to individual behaviors and lifestyle interventions.

Since modifying these exposures may reduce MD risk, these

findings may directly impact the advice given by healthcare pro-

fessionals in the clinic.

Moving Forward
The recent success in genome-wide analysis of depression has

confirmed that the disorder is tractable to standard genetic

dissection tools despite inherent heterogeneity in diagnosis.
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Depression now appears to be on a similar trajectory to other

common, complex disorders, where GWASs in progressively

increasing sample sizes have identified further numbers of signif-

icantly associated loci. What now are the top priorities for future

progress (Table 3)?

The Need for Larger Samples of Participants with Major

Depressive Disorder, MD, and More Severe Forms of

Illness

The higher power acquired with large sample size identifies loci

with lower effect sizes, which still contribute to improved predic-

tion through polygenic risk scores. The most efficient strategy to

detect increasing numbers of common risk-associated SNPs

may be to increase sample sizes. The advantages of this strategy

are perhaps most clearly shown by use of the lightly phenotyped

23andMe and UK Biobank cohorts, which have seen a doubling

in the numbers of replicated risk-associated variants as well as

increases in the accuracy of out-of-sample prediction of major

depressive disorder cases from samples with more detailed

diagnostic clinical phenotyping (Howard et al., 2018a; Wray

et al., 2018). Given the high prevalence of depression and its

widespread assessment in population and health studies, this

strategy should continue to increase the number of novel asso-

ciated variants. Fewer richly phenotyped clinical cohorts are

available to dissect heterogeneity of depression, and our current

understanding is limited to higher polygenic risk scores seen in

early-onset, recurrent, and more severe depression cases.

Given the potential limitations of minimally phenotyped sam-

ples as a sole means of identifying the genetic architecture of

MD and major depressive disorder, samples with more detailed

clinical and DSM-based phenotyping are clearly needed. Inclu-

sion of cases from secondary psychiatric care—those requiring

psychological therapies, drug treatments, or electroconvulsive

therapy—will enable any variants identified in more minimally

phenotyped studies to be tested in clinically relevant samples.

This will help to ensure that any variants identified fromminimally

phenotyped samples remain relevant to those at greatest clinical

need. By comparing GWAS findings fromminimally phenotyped,

community-based, outpatient and inpatient samples, we may

also be able to disambiguate the effects of genetic variation on

the onset, severity, and persistence of MD.



Figure 5. Clinical Translation of Genetic Associations from GWASs
The clinical translation of genetic associations from GWASs starts with a MD-variant association set of test statistics and downstream gene, gene set, pathway,
and other enrichment analyses (top left). These analyses generate candidate mechanisms and drug targets that can be tested in in vitro and in vivo models that
utilize experimental approaches (top right). Risk profiling approaches enable risk stratification of previously unseen samples of cases and controls and the
identification of individuals who are on a high-risk trajectory. High-risk individuals are suitable for clinical trials of early and potentially preventative interventions,
potentially targeted to the underlying etiology of their condition utilizing parallel knowledge obtained from mechanistic and drug target confirmation studies.
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The Need for Greater Geographical, Ethnic, and

Economic Diversity

The substantial economic resources and growing genetic study

sample sizes in countries of European ancestry have led to a

marked global asymmetry in MD genetics. There is a severe

lack, if not absence, of identified genetic risk factors for depres-

sion in almost all low-income countries and in most non-Euro-

pean ancestries. Unaddressed, this will lead to a lack of

information on the genetic architecture of depression in all coun-

tries. Genetic association information from different ancestries

can be combined for greater power, fine-mapping of functional

polymorphisms. Studies using diverse ancestries may also

enable triangulation of findings (e.g., confirming the findings of

Mendelian randomization studies using different methods) in

the presence of different macroeconomic and social environ-

ments. The CONVERGE consortium’s study of depression

in Han Chinese women has so far been the only major pub-

lished study of MD in a non-European ancestry population

(CONVERGE consortium, 2015). There is now an urgent need

to address MD in diverse populations in order to avoid the

growing knowledge gap, enable risk stratification, and enable

the broader clinical benefits of genetics to be realized in the

countries at greatest need but with the lowest resources to

meet those needs.

Mining Rich Clinical Data and the Electronic Health

Record

The growing use of data acquired from non-clinical settings for

genetic studies of depression has comewith substantial benefits

in terms of greater power but may disadvantage phenotypic
stratification, risk profiling, and clinical translation. The goal of

most research has been to obtain actionable insights for individ-

uals affected by severe clinical disorder whereas many of the

individuals in current GWASs have been included on the basis

of traits that are neither necessary nor sufficient for the diagnosis

of major depressive disorder. Whether current variants, genes,

or pathways are associated with dimensions of clinical symp-

toms, or with specific treatment responses or outcomes, cannot

be known without access to appropriately detailed longitudinal

samples. These gaps in our understanding are unlikely to be fully

bridged by adding genetic data to clinical trials, which are expen-

sive and often conducted on small samples by genomic

standards.

An alternative and complementary approach to conducting

large studies and genetically enhanced randomized controlled

trials (RCTs) in individuals with depression is to utilize the

growing database of electronic health records (eHRs) (McIntosh

et al., 2016; Russ et al., 2018; Smoller, 2018). The eHR rarely

contains genetic information but can be augmented by adding

low-cost genetic enhancements. DNA can be obtained by divert-

ing samples obtained from dried heel-prick samples (obtained at

birth for the purpose of diagnosing inborn errors of metabolism)

or surplus blood samples obtained for routine laboratory investi-

gation. DNA can also be obtained at scale and at low cost by

posting simple salivary DNA collection kits to people’s home

address for returning to laboratory facilities. The eHR may also

detail clinical symptoms assessed at interview, data on treat-

ment response, and the results of diagnostic tests and other in-

vestigations (Hafferty et al., 2018; Kerr et al., 2017) obtained blind
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to the patient’s genotype. These data may provide important

clues to the phenome-wide longitudinal effects of genetic risk

for depression and may enable in silico tests of treatment

response stratified by genotype. Extracting this information

from the eHR is challenging, but a growing number of methods

for extracting coded and unstructured information are being

developed and applied for more accurate case identification

(Ford et al., 2016). These include the Clinical Record Information

Search (CRIS) system applied to public healthcare provider data

in the UK (Jackson et al., 2017) and billing records from private

healthcare providers in the US (Pakhomov et al., 2007). Both of

these examples employ natural language processing (NLP) as

a means of extracting knowledge from the eHR in an unbiased

way. The addition of information from unstructured text has

also been shown to increase diagnostic accuracy when added

to codified data from the eHR (Ford et al., 2016).

Summary
A major limitation in our current pipeline of mechanistic discov-

eries are the challenges faced in conducting experimental

studies using variants identified by GWASs. This problem is sur-

prisingly similar for most complex diseases, including cardiovas-

cular disease, type 2 diabetes, and common/non-syndromic

cancers. The optimal path from robust genetic discoveries to a

better mechanistic understanding of MD is currently being

debated and discussed across a number of complex disorders,

and the reader is directed to a number of excellent articles on this

topic (Sestan and State, 2018; Visscher et al., 2017).

Progress is being made on several fronts. As described at

length elsewhere (Sullivan and Geschwind, 2019), integrating

functional genomic data can massively augment the interpret-

ability of GWAS findings (Giusti-Rodriguez and Sullivan, 2018;

Wang et al., 2018). However, perhaps the greatest explanatory

power of GWAS findings for psychiatric disorders, including ma-

jor depressive disorcer, is that the implicated genes in aggregate

identify specific brain cell types (Bryois et al., 2019; Skene et al.,

2018). Neuroscience has a range of tools for the manipulation of

single risk genes for oligogenic disorders, but application of

these methods to hundreds of major depressive disorder risk

genes may be impractical; however, the toolkit for manipulating

specific brain cell types is rapidly improving, and these ap-

proaches may be best for the post-GWAS era.
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