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ABSTRACT

Background and Aims The associations between low educational attainment and substance use disorders (SUDs) may
be related to a common genetic vulnerability. We aimed to elucidate the associations between polygenic scores for
educational attainment and clinical criterion counts for three SUDs (alcohol, nicotine and cannabis). Design Polygenic
association and sibling comparison methods. The latter strengthens inferences in observational research by controlling for
confounding factors that differ between families. Setting Six sites in the United States. Participants European ancestry
participants aged 25 years and older from the Collaborative Study on the Genetics of Alcoholism (COGA). Polygenic
association analyses included 5582 (54% female) participants. Sibling comparisons included 3098 (52% female)
participants from 1226 sibling groups nested within the overall sample. Measurements Outcomes included criterion
counts for DSM-5 alcohol use disorder (AUDSX), Fagerström nicotine dependence (NDSX) and DSM-5 cannabis use
disorder (CUDSX). We derived polygenic scores for educational attainment (EduYears-GPS) using summary statistics from
a large (> 1 million) genome-wide association study of educational attainment. Findings In polygenic association
analyses, higher EduYears-GPS predicted lower AUDSX, NDSX and CUDSX [P < 0.01, effect sizes (R2) ranging from
0.30 to 1.84%]. These effects were robust in sibling comparisons, where sibling differences in EduYears-GPS predicted all
three SUDs (P< 0.05, R2 0.13–0.20%). Conclusions Individuals who carry more alleles associated with educational at-
tainment tend to meet fewer clinical criteria for alcohol, nicotine and cannabis use disorders, and these effects are robust to
rigorous controls for potentially confounding factors that differ between families (e.g. socio-economic status, urban–rural
residency and parental education).
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INTRODUCTION

Researchers have studied the associations between edu-
cational attainment and substance use disorders (SUDs)
for more than a century [1,2]. Cross-sectional studies
consistently link use of tobacco, alcohol and cannabis
with high school dropout [2] and greater educational at-
tainment with lower rates of SUD diagnoses [3–5]. There
is a substantial body of work exploring the hypotheses
that SUDs influence early termination of education and
that early termination of education influences SUDs
[6], with evidence supporting both temporal orderings
[5,7–10]. A third hypothesis is also plausible: that the

associations between low educational attainment and
SUDs are attributable, at least in part, to a common gen-
eral vulnerability. Genetic factors represent one type of
general vulnerability. Consistent with this possibility, ge-
netic epidemiological data indicate that there is a set of
genetic factors that influence both low educational at-
tainment and a higher likelihood of developing SUDs
[11–14]. There is also evidence that familial factors con-
found the associations between educational attainment
and multiple forms of substance use and dependence
[6,15], although the specific source of this familial con-
founding (i.e. genes or the rearing environment) was
not specified in those studies.
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Recent advances in characterizing the molecular
genetic basis of complex traits and behaviors have
stimulated interest in translating findings from genetic
epidemiological studies, which use patterns of resem-
blance among individuals of known genetic relatedness
to make inferences about latent genetic influences on
traits and behaviors, into a molecular genetic framework
[16,17]. This is typically accomplished using a polygenic
scoring approach, where researchers leverage genome-
wide association results from large, well-powered discov-
ery samples to calculate personalized indices of the
weighted number of trait-associated alleles carried by
each participant in an independent sample [18,19]. In
polygenic analyses, the associations between these poly-
genic scores and other traits and behaviors are examined
to determine their shared genetic etiology.

In this study, we combined polygenic association and
sibling comparison methods to elucidate the associations
between polygenic scores for educational attainment
[20] and clinical criterion counts for three common
SUDs (alcohol, nicotine and cannabis) in a sample of
adults of European ancestry. Sibling comparisons [21–
24] provide a complementary tool to clarify the nature
of associations observed in polygenic analyses. Biological
full siblings reared together share the same home envi-
ronment and a substantial portion of their genetic varia-
tion (50% on average), allowing for control of measured
and unmeasured familial factors such as socio-economic
status, religious upbringing, urban–rural residency, pa-
rental education and familial polygenic load, that are
also known to influence SUD outcomes. Controlling for
these potential confounders shared by siblings is impor-
tant because too often polygenic associations are over-
interpreted as evidence that a particular set of alleles
has pleiotropic effects across traits or disorders. For this
reason, testing the alternative explanation that polygenic
associations are attributable to familial confounding is
important for understanding the molecular genetic basis
underlying the links between low educational attainment
and SUDs. This is particularly critical in view of the en-
thusiasm to incorporate polygenic scores as part of preci-
sion medicine efforts to identify and intervene with
individuals deemed genetically at risk.

Significant associations between an educational at-
tainment polygenic score and SUD criterion counts
within a sibling comparison design would be consistent
with the interpretation that carrying more alleles associ-
ated with educational attainment is associated with a
lower likelihood of developing SUD problems. In contrast,
if sibling differences in educational attainment polygenic
scores do not predict SUD criterion counts it suggests
that polygenic associations are confounded by other
shared familial factors. This difference is important, con-
sidering that social advantage is related to both

educational attainment polygenic scores [25–27] and
rates of SUDs [28].

MATERIALS AND METHODS

Participants

Participants came from the Collaborative Study on the
Genetics of Alcoholism (COGA) [29–31], whose objective
is to identify genes involved in alcohol dependence and
related disorders. Probands (i.e. index individuals) were
identified through alcohol treatment programs at six US
sites. Probands and their families were invited to participate
if the familywas sufficiently large (usually sibships> 3with
parents available), with two or more members in the COGA
catchment area. Comparison families were recruited from
the same communities. The Institutional Review Boards
at all data-gathering sites approved this study and written
consent was obtained from all participants. COGA data
are available via dbGaP (phs000763.v1.p1, phs000125.
v1.p1) or through the National Institute on Alcohol Abuse
and Alcoholism.

We defined two study samples within COGA. The first
sample included all participants of European ancestry aged
25 years or older with both genome-wide association data
and relevant SUD phenotypic information [n = 5582 indi-
viduals from 1093 extended families; 3009 (54%) female;
meanage = 42.29 years, age range = 25–91 years]. We lim-
ited the sample to those of European ancestry to avoid pop-
ulation stratification [32] because the educational
attainment genome-wide association study (GWAS)
weights come from a European ancestry discovery sample.
SNPrelate [33] was implemented to estimate principal
components from GWAS data and subsequently used to de-
termine European ancestry. We implemented the age min-
imum to balance the needs to ensure that the majority of
participants had passed through the period of highest risk
for onset of the SUDs without unduly limiting sample
size. Epidemiological data regarding age of onset for SUDs
[34–36] guided our decision to select age 25 as the
cut-off, which also mirrors the cut-off used in analyses of
educational attainment in US Census data [37].

The second sample was a subset of the first sample, lim-
ited to groups of European-ancestry biological full siblings
(confirmed by genotyping) nested within the larger COGA
sample. This process identified 4733 individuals nested
within 1655 sibling groups (two to 12 siblings per group).
As detailed below, the 4733 sibling GWAS samples were
used to calculate the educational attainment polygenic
scores used for the sibling comparison analyses. The sample
was subsequently filtered by age at phenotypic assessment
for the linear mixed-model analyses. In total, the sibling
comparison analyses included 3098 individuals [1616
(52%) female] who were 25 years of age or older
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(meanage = 37.89 years) from 1226 sibling groups nested
within 773 extended families.

Measures

Genotyping

Genotyping for the COGA European ancestry participants
was performed using the Illumina 1 M, Illumina
OmniExpress (Illumina, San Diego, CA, USA) and
Smokescreen (BioRealm,Walnut, CA, USA) arrays. Quality
control and imputation procedures are described in Lai et
al. [31] and in the Supporting information, section S1.

Substance use disorder clinical criterion counts

Clinical criterion counts for alcohol (AUDSX), nicotine
(NDSX) and cannabis (CUDSX) were obtained from the reli-
able and valid Semi-Structured Assessment for the Genetics
of Alcoholism (SSAGA) [38,39]. Criterion counts for alco-
hol and cannabis use disorder were made according to
DSM-5 [40], and thus each had a possible range of 0–11.
The criterion count for NDSX came from the Fagerström
Test for Nicotine Dependence [41] and had a possible range
of 0–10. The criterion count distributions showed right
skews; to address this in inferential analyses, we applied a
logarithmic transformation (left anchored at 1).

Covariates and measures for robustness and sensitivity
analyses

We included sex, age at last interview, cohort [indexed
using three dummy-coded variables derived from partici-
pant year of birth: (1896–1930) set as reference; (1930–
50); (1950–70); (1970–2010)] and the first two principal
components for genetic ancestry in all analyses.

We conducted a series of robustness and sensitivity
analyses to probe and interpret the effects from our
primary analyses. For robustness analyses, we used partic-
ipants’ educational attainment, assessed as highest level of
education completed. Potential responses ranged from 0 to
17 years (primary or secondary school = actual year;
technical school/1 year college = 13 years; 2 years
college = 14 years; 3 years college = 15 years; 4 years
college = 16 years; any graduate degree = 17 years). In
sensitivity analyses of the sibling data, we used partici-
pants’ reports of their living arrangements while growing
up from a set of 13 options (see Supporting information,
section S2) to evaluate whether the pattern of effects
changed when the sample was limited to siblings who re-
ported the same living arrangements (and thus probably
shared the same rearing environment). An early version
of the SSAGA did not query living arrangements; accord-
ingly, we were only able to confirm that siblings grew up

together for a subset of the sample (see Supporting
information, section S2).

STATISTICAL METHODS

Educational attainment genome-wide polygenic scores
(EduYears-GPS)

We used results from the Social Science Genetic
Association Consortium (SSGAC) GWAS of educational
attainment [20] to construct educational attainment ge-
nome-wide polygenic scores (EduYears-GPS) in the COGA
sample. Although polygenic scores are often described as
polygenic risk scores, we prefer the term ‘genome-wide
polygenic score’ for this study. This is because ‘risk’ con-
notes a negative outcome, whereas educational attain-
ment is typically valued. After removing palindromic
single nucleotide polymorphisms (SNPs) (which can be
ambiguous with respect to the reference allele in differ-
ent samples), we used the clump and score procedures
in PLINK [42] to sum each individual’s total number
of minor alleles from the score SNPs, with each SNP
weighted by the negative log of the GWAS association
P-value and sign of the association (beta) statistic.
Clumping was performed with respect to the linkage
disequilibrium (LD) pattern in the COGA EA sample
(founders only) using a 500-kb physical distance and
an LD threshold of r2 ≥ 0.25. Following conventions
for polygenic scoring using the pruning-and-thresholding
approach [18], we calculated a series of GPS in COGA
that included SNPs meeting increasingly stringent
P-value thresholds in the discovery GWAS (P < 0.50,
P < 0.40, P < 0.30, P < 0.20, P < 0.10, P < 0.01,
P < 0.001, P < 0.0001).

Association of EduYears-GPS and SUDs

We examined associations between EduYears-GPS and the
SUD criterion counts in separate linear mixedmodels using
the nlme package version 3.1–128 [43] for R version 3.2.3
[44]. We conducted preliminary analyses to identify the
EduYears-GPS most strongly associated with criterion
counts for each SUD (see Supporting information, Table
S1), and present results using the threshold with the stron-
gest association. We conducted these preliminary analyses
separately for polygenic scores meeting increasingly strin-
gent P-value thresholds using linear mixed models, which
allowed us to account for the nested structure of the COGA
family-based data; other methods for optimizing the
P-value threshold, e.g. PRSice [45], do not allow for nested
data. In addition to the covariates described above, we also
included a count measure of the number of SNPs available
for scoring for each participant. Marginal effect sizes for
fixed effects were calculated using the MuMIn package
version 1.15.6 [46].
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Sibling comparisons of EduYears-GPS and SUDs

We used the 4733 sibling GWAS sample to calculate the
EduYears-GPS-mean (for each sibling group) and
EduYears-GPS-deviation scores (for each individual within
that sibling group). We then filtered the sample based on
participants’ age at last interview to retain those who were
aged 25 years or older (age cut-off selected to ensure that
participants had passed through the period of highest risk
for onset of the SUDs) for our primary sibling comparisons
sample; additional information regarding this process can
be found in Supporting information, section S3. Using all
available GWAS data from a sibling group to calculate the
EduYears-GPS-mean and EduYears-GPS-deviation scores
has the advantage of providing a more precise estimate
for these variables (as genotype does not change with
age) versus limiting calculation of EduYears-GPS-mean to
those siblings who also met the phenotypic age threshold.
In separate linear mixed models, we then examined
whether EduYears-GPS-deviation predicted SUDs after con-
trolling for EduYears-GPS-mean. The sibling comparison is
captured by the EduYears-GPS-deviation parameter, and
indicates whether sibling differences in EduYears-GPS pre-
dict SUDs; this parameter captures the within-family effect.
The EduYears-GPS-mean parameter captures whether fam-
ily-level differences in EduYears-GPS predict SUDs,
reflecting the between-family effect.

Robustness and sensitivity analyses

We conducted robustness analyses to examine whether
findings changed when statistically controlling for educa-
tional attainment in both the association and sibling
comparison analyses. Sibling differences and family means
for phenotypic educational attainment (i.e. EduYears-
deviation and EduYears-mean) were calculated using the
same procedure described above for EduYears-GPS-devia-
tion and EduYears-GPS-mean.

We conducted sensitivity analyses to see whether ef-
fects changed when using a more conservatively defined
subsample of siblings who were known to have the same
living arrangements while growing up or who were born
within 3 years of the eldest. These more conservative def-
initions assume that siblings who report the same living
arrangements growing up and who are born in closer
proximity to one another are likely to share more features
of their home environment than siblings who report differ-
ent living arrangements or who are born further apart. In
total, 1702 individuals (54% female) from 739 sibling
groups were available for this analysis. We also examined
whether the effects were robust when sibships that in-
cluded monozygotic twins (eight sibling groups) were re-
moved from the analysis. Monozygotic twins share 100%
of their genetic variation, and we wanted to ensure that
our results were not driven by genotyping errors or

PLINK’s handling of SNPs set to missing (as part of
cleaning for Mendelian errors) during polygenic score
calculation. Sample size as a function of the filters
employed for these sensitivity analyses are shown in
Supporting information, Fig. S1.

RESULTS

Descriptive statistics

Descriptive statistics for the SUD criterion counts and
educational attainment for the full sample (n = 5582)
and the sibling subsample (n = 3098) are summarized in
Table 1. Representativeness analyses of the sibling subsam-
ple are summarized in Supporting information, section S4.

Polygenic association for EduYears-GPS and SUDs

We identified the P< 0.30 threshold for AUDSX, P< 0.20
for NDSX and P < 0.01 for CUDSX as the EduYears-GPS
thresholds most strongly associated with each SUD
criterion count. As shown in Table 2, higher EduYears-
GPS was associated with lower SUD criteria. The
EduYears-GPS accounted for 0.79, 1.84 and 0.30% of the
variance in AUDSX, NDSX and CUDSX, respectively.

Sibling comparisons of EduYears-GPS and SUDs

We carried forward the substance-specific thresholds that
were most strongly associated with each criterion count
from above into the sibling comparisons to examine

Table 1 Descriptive statistics.

Full sample (n = 5582; 54% female)

Measure n Mean SD Min Max

Age (years) 5582 42.29 13.26 25 91
AUDSX 5582 3.77 3.83 0 11
NDSX 4754 2.61 3.00 0 10
CUDSX 5578 1.56 2.81 0 11
Educational Attainment
(years)

5578 13.43 2.33 2 17

Sibling subsample (n = 3098; 52% female)

Measure n Mean SD Min Max

Age (years) 3098 37.89 10.85 25 81
AUDSX 3098 4.39 3.90 0 11
NDSX 2752 2.58 3.00 0 10
CUDSX 3097 1.94 3.04 0 11
Educational
Attainment (years)

3095 13.55 2.29 5 17

SD = standard deviation; AUSDX = DSM-5 alcohol use disorder;
NDSX = Fagerström nicotine dependence; CUDSX = DSM-5 cannabis use
disorder.
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whether EduYears-GPS-deviation predicted each SUD
criterion count after controlling for EduYears-GPS-mean.

The results of the sibling comparisons are shown in
Table 3. Individuals with higher EduYears-GPS compared
to their siblings had lower alcohol, nicotine and cannabis
criterion counts. Sibling differences in EduYears-GPS
accounted for 0.17, 0.20 and 0.13% of the variance in
AUDSX, NDSX and CUDSX, respectively. There were also
family-level effects, whereby those in sibling groups with
higher EduYears-GPS-mean had lower alcohol, nicotine
and cannabis criterion counts. These family-level effects
accounted for 0.29, 1.89 and 0.22% of the variance in
AUDSX, NDSX and CUDSX, respectively.

Robustness analyses

After controlling for participants’ measured (phenotypic)
educational attainment in the polygenic analyses,
EduYears-GPS continued to be associated with AUDSX
and NDSX (but not CUDSX) (Supporting information,
Table S2). After controlling for sibling and family
differences in educational attainment in the sibling
comparison analyses, the effects of sibling differences in
EduYears-GPS on SUD criterion counts were attenuated
for NDSX and CUDSX (P = 0.09–0.13), but remained
significant for AUDSX (P = 0.01) (Supporting information,
Table S3). Sibling and family differences in educational
attainment were also significantly associated with SUD
criterion counts. Individuals with higher educational
attainment compared to their siblings and individuals from
sibling groups with higher educational attainment had
lower AUDSX, NDSX and CUDSX.

Sensitivity analyses

In the first set of sensitivity analyses, we examined whether
effects held when the sample was limited to the groups of
siblings who were known to have grown up together
(n = 739 sibling groups). In the second set of sensitivity
analyses, we examined whether the effects held when the
sample was limited to those who were born within 3 years
of the first-born in a sibling group. In the third set of
sensitivity analyses, we examined whether the effects were
also robust when sibships that included monozygotic twins
(eight sibling groups) were removed from the analysis.
Across all three sets of sensitivity analyses in smaller, more
conservative test samples, we continued to find that
individuals with higher EduYears-GPS than their siblings
had lower SUD criterion counts (Supporting information,
Tables S4–S6). The only exception to this was that the
effect of sibling differences in EduYears-GPS on CUDSX
was attenuated (P = 0.08) in the sensitivity analyses lim-
ited to those bornwithin 3 years of the first born in a sibling
group.

DISCUSSION

The present study illustrates how sibling comparisons
can improve our understanding of the shared genetic eti-
ology underlying educational attainment and substance
use problems. Consistent with previous findings that
educational attainment has a negative genetic correla-
tion with alcohol problems [11,13], cannabis use disor-
der [14] and smoking [12], we found that individuals
met fewer SUD criteria when they carried more alleles
associated with educational attainment. We replicated
these effects within a sibling comparisons design, where
we found that individuals met fewer clinically significant
substance use criteria when they carried more alleles
associated with higher educational attainment than their
siblings. Sibling comparisons are uniquely powerful
because they control for unmeasured confounding fac-
tors shared by siblings that could otherwise explain the
association between educational attainment polygenic
scores and substance use disorder criteria: factors such
as socio-economic status, urban–rural residency and pa-
rental education. Thus, our findings suggest that the as-
sociation between educational attainment polygenic
scores and SUDs is not completely explained by con-
founders that differ between families.

These findings add important nuance to discussions
regarding the nature of associations between educational
attainment and problematic substance use. First, our
findings are consistent with previous findings that
educational outcomes reflect many genetically influenced
traits and behaviors, including SUD-associated factors
such as behavior problems, attention-deficit hyperactivity
disorder, and personality [25,26,47–50], not simply in-
telligence or cognitive ability. Interestingly, in our robust-
ness analyses, the educational attainment polygenic
scores predicted alcohol use disorder and nicotine depen-
dence criterion counts above and beyond participants’
observed (phenotypic) educational attainment. This
highlights that these polygenic scores index factors
linked to educational persistence and SUDs that are not
fully captured by educational attainment itself. In con-
trast, for cannabis, the educational attainment polygenic
score did not have unique predictive power above and
beyond the educational attainment phenotype.

Secondly, our sibling comparison analyses demon-
strated that polygenic scores were significant predictors of
SUD criteria even within families. For outcomes such as
SUDs, which have considerable influences that vary among
families, ruling out familial confounding is particularly
important. In addition to significant sibling differences,
we also found that between-family differences in
EduYears-GPS predicted SUDs. This suggests that both the
overall polygenic loading of one’s family and one’s relative
polygenic loading within that family are important
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predictors of risk for SUDs. The associations between sibling
differences in polygenic scores and SUDs were attenuated
somewhat after controlling for sibling differences in
phenotypic educational attainment. This attenuation may
reflect the relative statistical power of polygenic scores com-
pared to the phenotypes from which they are derived, as
well the likelihood that some of the effect of sibling differ-
ences in educational attainment polygenic scores is likely
to be mediated through sibling differences in educational
persistence, as has been documented previously [26].

These results should be considered in the context of
several limitations. First, the COGA sample is enrichedwith
individuals with SUDs, and the results may not generalize
to lower-risk samples. Secondly, the sibling comparison
design assumes that siblings are reared together. Not all
COGA participants were asked about their living arrange-
ments while growing up, so we could not test whether this
assumption was met for all sibling groups. However, to
address this concern, we restricted the analyses to the
sibling groups where it was possible to determine that they
grew up together, and to siblings who were born close
together in time (and thus more likely to share aspects of
their rearing environment compared to siblings born
further apart). The pattern of effects remained significant
and in the same direction in these sensitivity analyses,
suggesting that the effects observed in our sibling compar-
isons of polygenic scores were not driven by differences in
siblings’ rearing environments.

Thirdly, because genetic associations can differ across
ancestral groups, we focused here on the European
ancestry subset of COGA because the discovery GWAS for
educational attainment used a European ancestry sample.
It is unknown whether the same pattern of effects would
be observed in samples of non-European ancestry.

Fourthly, polygenic scores by design only capture
common genetic variation. Fifthly, despite evidence for
polygenic association even after controlling for family-level
confounders, the polygenic scores accounted for a relatively
small amount of variance. This limited predictive power
cautions against incorporating polygenic scores into clini-
cal screening or intervention efforts for substance use
disorders.

As efforts to characterize how polygenic predispositions
influence complex behavioral outcomes increase in popu-
larity [16], we believe that environmentally informed
designs such as sibling comparisons will become a particu-
larly useful tool to illuminate the ‘chains of risk’ from
genotype to phenotype. For example, sibling differences
can be elaborated upon to include examination of how
subtle differences in polygenic loading between siblings
impact individual differences or selection into particular
environments. In turn, these mediating phenotypes may
be particularly actionable targets for prevention and
intervention efforts.

Declaration of interests

None.

Acknowledgements

The Collaborative Study on the Genetics of Alcoholism
(COGA), Principal Investigators (PI) B. Porjesz, V.
Hesselbrock, H. Edenberg and L. Bierut, includes 11 differ-
ent centers: University of Connecticut (V. Hesselbrock);
Indiana University (H. J. Edenberg, J. Nurnberger Jr, T.
Foroud); University of Iowa (S. Kuperman, J. Kramer);
SUNY Downstate (B. Porjesz); Washington University in
St Louis (L. Bierut, J. Rice, K. Bucholz, A. Agrawal);
University of California at San Diego (M. Schuckit); Rutgers
University (J. Tischfield, A. Brooks); Department of
Biomedical andHealth Informatics, The Children’s Hospital
of Philadelphia; Department of Genetics, Perelman School
of Medicine, University of Pennsylvania, Philadelphia PA
(L. Almasy), Virginia Commonwealth University (D. Dick),
Icahn School of Medicine at Mount Sinai (A. Goate) and
Howard University (R. Taylor). Other COGA collaborators
include: L. Bauer (University of Connecticut); J. McClintick,
L. Wetherill, X. Xuei, Y. Liu, D. Lai, S. O’Connor, M.
Plawecki, S. Lourens (Indiana University); G. Chan
(University of Iowa; University of Connecticut); J. Meyers,
D. Chorlian, C. Kamarajan, A. Pandey, J. Zhang (SUNY
Downstate); J.-C. Wang, M. Kapoor, S. Bertelsen (Icahn
School of Medicine at Mount Sinai); A. Anokhin, V.
McCutcheon, S. Saccone (Washington University); J.
Salvatore, F. Aliev, B. Cho (Virginia Commonwealth
University); and Mark Kos (University of Texas Rio Grande
Valley). A. Parsian and M. Reilly are the NIAAA Staff
Collaborators. We continue to be inspired by our memories
of Henri Begleiter and Theodore Reich, founding PI and
Co-PI of COGA, and also owe a debt of gratitude to other
past organizers of COGA, including Ting-Kai Li, P. Michael
Conneally, Raymond Crowe and Wendy Reich for their
critical contributions. This national collaborative study is
supported by NIH Grant U10AA008401 from the National
Institute on Alcohol Abuse and Alcoholism (NIAAA) and
the National Institute on Drug Abuse (NIDA). Additional
support for this project comes from K01AA024152 (J.E.
S.); K02DA032573 (A.A.); and R01DA040411 (E.C.J.).
Funding support for GWAS genotyping performed at the
Johns Hopkins University Center for Inherited Disease
Researchwas provided by theNational Institute onAlcohol
Abuse and Alcoholism, the NIH GEI (U01HG004438), and
the NIH contract ‘High throughput genotyping for
studying the genetic contributions to human disease’
(HHSN268200782096C). GWAS genotyping was also
performed at the Genome Technology Access Center in
the Department of Genetics at Washington University
School of Medicine, which is partially supported by NCI
Cancer Center Support Grant no. P30 CA91842 to the

8 Jessica E. Salvatore et al.

© 2019 Society for the Study of Addiction Addiction



Siteman Cancer Center and by ICTS/CTSA Grant#
UL1RR024992 from the National Center for Research
Resources (NCRR), a component of the National Institutes
of Health (NIH), and NIH Roadmap for Medical Research.

Author’s affiliations

Department of Psychology, Virginia Commonwealth University, Richmond, VA,
USA,1 Virginia Institute for Psychiatric and Behavioral Genetics, Virginia
Commonwealth University, Richmond, VA, USA,2 Department of Business
Administration, Karabuk University, Karabuk, Turkey,3 Department of Psychology,
Arizona State University, Tempe, AZ, USA,4 Department of Psychiatry,
Washington University, St Louis, MO, USA,5 Department of Genetics, University
of Pennsylvania, Philadelphia, PA, USA,6 Department of Biomedical and Health
Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA, USA,7

Department of Psychiatry, University of Connecticut School of Medicine,
Farmington, CT, USA,8 Department of Biochemistry and Molecular Biology,
Indiana University, Indianapolis, IN, USA,9 Department of Psychiatry, SUNY
Downstate Medical Center, Brooklyn, NY, USA,10 Department of Psychiatry,
University of California–San Diego, La Jolla, CA, USA,11 Department of Genetics
and the Human Genetics Institute of New Jersey, Piscataway, NJ, USA,12

Department of Medical and Molecular Genetics, Indiana University, Indianapolis,
IN, USA,13 Department of Human and Molecular Genetics, Virginia
Commonwealth University, Richmond, VA, USA14 and College Behavioral and
Emotional Health Institute, Virginia Commonwealth University, Richmond, VA,
USA15

References

1. Esch P., Bocquet V., Pull C., Couffignal S., Lehnert T., Graas M.,
et al. The downward spiral of mental disorders and educa-
tional attainment: a systematic review on early school
leaving. BMC Psychiatry 2014; 14: 237.

2. Townsend L., Flisher A. J., King G. A systematic review of the
relationship between high school dropout and substance use.
Clin Child Fam Psychol Rev 2007; 10: 295–317.

3. Kessler R. C., Foster C. L., Saunders W. B., Stang P. E. Social
consequences of psychiatric disorders, I: Educational attain-
ment. Am J Psychiatry 1995; 152: 1026–32.

4. Stinson F. S., RuanW. J., Pickering R., Grant B. F. Cannabis use
disorders in the USA: prevalence, correlates and co-morbidity.
Psychol Med 2006; 36: 1447–60.

5. Breslau J., LaneM., Sampson N., Kessler R. C. Mental disorders
and subsequent educational attainment in a US national sam-
ple. J Psychiatr Res 2008; 42: 708–16.

6. Verweij K. J., Huizink A. C., Agrawal A., Martin N. G., Lynskey
M. T. Is the relationship between early-onset cannabis use and
educational attainment causal or due to common liability?
Drug Alcohol Depend 2013; 133: 580–6.

7. Breslau J., Miller E., Chung W. J., Schweitzer J. B. Childhood
and adolescent onset psychiatric disorders, substance use,
and failure to graduate high school on time. J Psychiatr Res
2011; 45: 295–301.

8. MartinM. J., Conger R. D., Sitnick S. L., Masarik A. S., Forbes E.
E., ShawD. S. Reducing risk for substance use by economically
disadvantaged young men: positive family environments and
pathways to educational attainment. Child Dev 2015; 86:
1719–37.

9. Fothergill K. E., Ensminger M. E., Green K. M., Crum R. M.,
Robertson J., Juon H. S. The impact of early school behavior
and educational achievement on adult drug use disorders: a
prospective study. Drug Alcohol Depend 2008; 91: 191–9.

10. Green K. M., Zebrak K. A., Fothergill K. E., Robertson J. A.,
Ensminger M. E. Childhood and adolescent risk factors for

comorbid depression and substance use disorders in adult-
hood. Addict Behav 2012; 37: 1240–7.

11. Latvala A., Dick D. M., Tuulio-Henriksson A., Suvisaari J.,
Viken R. J., Rose R. J., et al. Genetic correlation and gene–en-
vironment interaction between alcohol problems and
educational level in young adulthood. J Stud Alcohol Drugs
2011; 72: 210–20.

12. Bulik-Sullivan B., Finucane H. K., Anttila V., Gusev A., Day F.
R., Loh P. R., et al. An atlas of genetic correlations across hu-
man diseases and traits. Nat Genet 2015; 47: 1236–41.

13. Walters R. K., Polimanti R., Johnson E. C., Mcclintick J. N., Ad-
amsM. J., Adkins A. E., et al. Trans-ancestral GWAS of alcohol
dependence reveals common genetic underpinnings with psy-
chiatric disorders. Nat Neurosci 2018; 21: 1656–69.

14. Bergen S. E., Gardner C. O., Aggen S. H., Kendler K. S. Socio-
economic status and social support following illicit drug use:
causal pathways or common liability? Twin Res Hum Genet
2008; 11: 266–74.

15. Grant J. D., Scherrer J. F., Lynskey M. T., Agrawal A., Duncan
A. E., Haber J. R., et al. Associations of alcohol, nicotine, can-
nabis, and drug use/dependence with educational
attainment: evidence from cotwin-control analyses. Alcohol
Clin Exp Res 2012; 36: 1412–20.

16. Martin A. R., Daly M. J., Robinson E. B., Hyman S. E., Neale B.
M. Predicting polygenic risk of psychiatric disorders. Biol Psy-
chiatry 2019; 86: 97–109.

17. Maier R. M., Visscher P. M., Robinson M. R., Wray N. R. Em-
bracing polygenicity: a review of methods and tools for
psychiatric genetics research. Psychol Med 2017; 48:
1055–67.

18. Bogdan R., Baranger D. A. A., Agrawal A. Polygenic risk
scores in clinical psychology: bridging genomic risk to individ-
ual differences. Annu Rev Clin Psychol 2018; 14: 119–57.

19. Dudbridge F. Polygenic epidemiology. Genet Epidemiol 2016;
40: 268–72.

20. Lee J. J., Wedow R., Okbay A., Kong E., Maghzian O., Zacher
M., et al. Gene discovery and polygenic prediction from a ge-
nome-wide association study of educational attainment in
1.1 million individuals. Nat Genet 2018; 50: 1112–21.

21. D’Onofrio B. M., Lahey B. B., Turkheimer E., Lichtenstein P.
Critical need for family-based, quasi-experimental designs in
integrating genetic and social science research. Am J Public
Health 2013; 103: 46–55.

22. Lahey B. B., D’Onofrio B. M. All in the family: comparing sib-
lings to test causal hypotheses regarding environmental
influences on behavior. Curr Dir Psychol Sci 2010; 19:
319–23.

23. Rutter M. Proceeding from observed correlation to causal in-
ference: the use of natural experiments. Perspect Psychol Sci
2007; 2: 377–95.

24. Donovan S. J., Susser E. Commentary: advent of sibling de-
signs. Int J Epidemiol 2011; 40: 345–9.

25. Belsky D. W., Moffitt T. E., Corcoran D. L., Domingue B., Har-
rington H., Hogan S., et al. The genetics of success: how
single-nucleotide polymorphisms associated with educational
attainment relate to life-course development. Psychol Sci
2016; 27: 957–72.

26. Domingue B.W., Belsky D., Conley D., Harris K.M., Boardman
J. D. Polygenic influence on educational attainment: new evi-
dence from the National Longitudinal Study of adolescent to
adult health. AERA Open 2015; 1: 1–13.

27. Selzam S., Krapohl E., Von Stumm S., O’Reilly P. F., Rimfeld K.,
Kovas Y., et al. Predicting educational achievement from
DNA.Mol Psychiatry 2017; 22: 267–72.

Educational attainment and SUDS 9

© 2019 Society for the Study of Addiction Addiction



28. Galea S., Nandi A., Vlahov D. The social epidemiology of sub-
stance use. Epidemiol Rev 2004; 26: 36–52.

29. Begleiter H., Reich T., Hesselbrock V., Porjesz B., Li T. K.,
Schuckit M. A., et al. The collaborative Study on the genetics
of alcoholism. Alcohol Health Res W 1995; 19: 228–36.

30. Bucholz K. K., McCutcheon V. V., Agrawal A., Dick D. M.,
Hesselbrock V. M., Kramer J. R., et al. Comparison of parent,
peer, psychiatric, and cannabis use influences across stages
of offspring alcohol involvement: evidence from the COGApro-
spective study. Alcohol Clin Exp Res 2017; 41: 359–68.

31. Lai D., Wetherill L., Bertelsen S., Carey C. E., Kamarajan C.,
Kapoor M., et al. Genome-wide association studies of alcohol
dependence, DSM-IV criterion count and individual criteria.
Genes Brain Behav 2019; 18: e12579.

32. Cardon L. R., Palmer L. J. Population stratification and spuri-
ous allelic association. Lancet 2003; 361: 598–604.

33. Zheng X., Levine D., Shen J., Gogarten S. M., Laurie C.,Weir B.
S. A high-performance computing toolset for relatedness and
principal component analysis of SNP data. Bioinformatics
2012; 28: 3326–8.

34. Grant B. F., Goldstein R. B., Saha T. D., Chou S. P., Jung J.,
Zhang H., et al. Epidemiology of DSM-5 alcohol use disorder:
results from the National Epidemiologic Survey on alcohol
and related conditions III. JAMA Psychiatry 2015; 72:
757–66.

35. Hasin D. S., Kerridge B. T., Saha T. D., Huang B., Pickering R.,
Smith S. M., et al. Prevalence and correlates of DSM-5 canna-
bis use disorder, 2012–2013: findings from the National
Epidemiologic Survey on alcohol and related conditions–III.
Am J Psychiatry 2016; 173: 588–99.

36. Breslau N., Johnson E. O., Hiripi E., Kessler R. Nicotine depen-
dence in the United States: prevalence, trends and smoking
persistence. Arch Gen Psychiatry 2001; 58: 810–6.

37. US Census Bureau. Current Population Survey, 2018 Annual
Social and Economic Supplement. Suitland, MD; 2018.

38. Hesselbrock M., Easton C., Bucholz K. K., Schuckit M.,
Hesselbrock V. A validity study of the SSAGA—a comparison
with the SCAN. Addiction 1999; 94: 1361–70.

39. Bucholz K. K., Cadoret R., Cloninger C. R., Dinwiddie S. H.,
Hesselbrock V. M., Nurnberger J. L., et al. A new, semi-struc-
tured psychiatric interview for use in genetic linkage studies:
a report on the reliability of the SSAGA. J Stud Alcohol 1994;
55: 149–58.

40. American Psychiatric Association Diagnostic and Statistical
Manual of Mental Disorders, 5th edn. Arlington, VA: American
Psychiatric Publishing; 2013.

41. Heatherton T. F., Kozlowski L. T., Frecker R. C., Fagerstrom K.
O. The Fagerstrom test for nicotine dependence: a revision of
the Fagerstrom tolerance questionnaire. Br J Addict 1991; 86:
1119–27.

42. Purcell S., Neale B., Todd-Brown K., Thomas L., Ferreira M.,
Bender D., et al. PLINK: a tool set for whole-genome associa-
tion and population-based linkage analyses. Am J Hum Genet
2007; 81: 559–75.

43. Pinheiro J., EISPACK, Heisterkamp S., Van Willigen B., R Core
Team. Linear and nonlinear mixed effects models. 2018.
https://CRAN.R-project.org/package=nlme

44. R Development Core Team. R: A Language and Environment
for Statistical Computing. Vienna, Austria; 2014.

45. Euesden J., Lewis C. M., O’Reilly P. F. PRSice: polygenic risk
score software. Bioinformatics 2015; 31: 1466–8.

46. Barton K. MuMIn: Multi-Model Inference. R package version
1.15.6; 2016. https://cran.r-project.org/web/packages/
MuMIn/index.html

47. Krapohl E., Rimfeld K., Shakeshaft N. G., Trzaskowski M., Mc-
millan A., Pingault J. B., et al. The high heritability of
educational achievement reflects many genetically influenced
traits, not just intelligence. Proc Natl Acad Sci USA 2014; 111:
15273–8.

48. Okbay A., Beauchamp J. P., Fontana M. A., Lee J. J., Pers T. H.,
Rietveld C. A., et al. Genome-wide association study identifies
74 loci associated with educational attainment. Nature 2016;
533: 539–42.

49. Hagenaars S. P., Harris S. E., Davies G., Hill W. D., Liewald D.
C., Ritchie S. J., et al. Shared genetic aetiology between cogni-
tive functions and physical and mental health in UK biobank
(N=112 151) and 24 GWAS consortia. Mol Psychiatry
2016; 21: 1624–32.

50. De Zeeuw E. L., Van Beijsterveldt C. E., Glasner T. J., Bartels M.,
Ehli E. A., Davies G. E., et al. Polygenic scores associated with
educational attainment in adults predict educational achieve-
ment and ADHD symptoms in children. Am J Med Genet B
Neuropsychiatr Genet 2014; 165B: 510–20.

Supporting Information

Additional supporting information may be found online in
the Supporting Information section at the end of the article.

Table S1
Associations between EduYears-GPS genome-wide poly-
genic scores across multiple thresholds and substance use
disorder criterion counts (presented as t-values)
Table S2Associations between EduYears-GPS genome-wide
polygenic scores and substance use disorder criterion
counts, controlling for educational attainment
Table S3 Sibling comparisons of substance use disorder cri-
terion counts as a function of EduYears-GPS genome-wide
polygenic scores, controlling for sibling and family differ-
ences in educational attainment.
Table S4 Sibling comparisons of substance use disorder cri-
terion counts as a function of EduYears-GPS genome-wide
polygenic scores for siblings known to have same
childhood/adolescent household structure.
Table S5 Sibling comparisons of substance use disorder cri-
terion counts as a function of EduYears-GPS genome-wide
polygenic scores for siblings born within 3 years of one an-
other.
Table S6 Sibling comparisons of substance use disorder cri-
terion counts as a function of EduYears-GPS genome-wide
polygenic scores, excluding sibling groups that included
monozygotic twins.
Figure S1 Illustration of sibling comparison sample sizes as
a function of filtering criteria employed for the primary
sample and the sensitivity analyses.
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