
Genome-​wide association studies (GWAS), in which 
hundreds of thousands to millions of genetic variants 
across the genomes of many individuals are tested to 
identify genotype–phenotype associations (Fig. 1), have 
revolutionized the field of complex disease genetics over 
the past decade1,2. Since the first GWAS for age-​related 
macular degeneration (AMD) was published in 2005 
(ref.3), more than 50,000 associations of genome-​wide 
significance (P < 5 × 10−8) have been reported between 
genetic variants and common diseases and traits4. These 
associations have led to insights into the architecture of 
disease susceptibility (through the identification of novel 
disease-​causing genes and mechanisms) and to advances 
in clinical care (for example, the identification of new 
drug targets and disease biomarkers) and personalized 
medicine (for example, risk prediction and optimization 
of therapies based on genotype).

However, despite the clear successes of GWAS5–7, this 
study design has not been without controversy8–11. Critics 
of GWAS have contended that single-​nucleotide variants 
(SNVs) identified in GWAS explain only a small frac-
tion of the heritability of complex traits8, may represent 
spurious associations9 and do not necessarily pinpoint 
causal variants and genes10, and that GWAS will yield too 
many loci (if SNVs in all genes are implicated, then this 
would be uninformative)10,11. It has therefore been pro-
posed to focus efforts on the analysis of ultra-​rare variants 
and on post-​GWAS experiments (for example, func-
tional studies, gene network analysis and translational 
medicine)9–11. Unsurprisingly, these criticisms have led 
to scepticism among non-​geneticists about the bene
fits of GWAS and hesitancy among national funding 

organizations to fund new GWAS12. In this context, it 
is timely for the scientific community, funding agen-
cies and other stakeholders to consider the relevance of  
initiating more GWAS.

In this Review, we assess the benefits and limitations 
of performing GWAS in human populations. We draw 
primarily on lessons learned from the field of cardio
metabolic diseases, given our expertise in this area, 
although we provide examples from other areas where 
applicable to highlight major advances and limitations 
of GWAS that might not have been observed promi-
nently for cardiometabolic traits. Although a GWAS 
is a genome-​wide analysis of genotypes that can be 
measured using numerous technologies — for exam-
ple, whole-​genome sequencing (WGS) or genome-​wide 
single-​nucleotide polymorphism (SNP) arrays plus 
imputation (Box 1) — most GWAS are still performed 
using data from SNP arrays. Therefore, benefits and con-
cerns that are relevant to GWAS as a genetic association 
study design in general and those that are unique to SNP 
array-​based GWAS are discussed.

Benefits of GWAS
General benefits
GWAS have been very successful in identifying novel 
variant–trait associations. As of 11 January 2019, 3,730 
GWAS have been published, with a total of 37,730 SNVs 
and 52,415 unique SNV–trait associations at a genome-​
wide significance threshold4. GWAS have successfully 
identified risk loci for a vast number of diseases and 
traits, including anorexia nervosa13, major depressive 
disorder14, cancers and subtypes of cancers15,16, type 2  
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diabetes mellitus (T2DM)17, coronary artery dis-
ease18, schizophrenia19, inflammatory bowel disease20, 
insomnia21, body mass index (BMI)22 and educational 
attainment23, among others. This surge of replicable 
associations is in stark contrast to the pre-​GWAS era, 

in which only a handful of robustly associated loci were 
identified24.

Initial excitement was somewhat tempered by 
the realization that GWAS loci typically have small 
effect sizes and explain only a modest proportion of trait 
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heritability8. However, the gap between the amount 
of heritability explained and the amount estimated by 
twin and family studies is now better understood. For 
many traits, SNPs are suggested to account for a major-
ity of the ‘missing’ heritability, such that the ‘missing’ 
heritability is small, especially if heritability estimates 
are biased upwards25–28. Thus, even if GWAS cannot 
explain all the heritability of complex traits, they repre-
sent a practical means by which bona fide associations 
can be discovered, and increasing the sample size of 
GWAS should continue to yield new loci. In fact, empiri
cal evidence demonstrates that for each complex trait 
there is a threshold sample size above which the rate of 
locus discovery accelerates in GWAS1,29 (Fig. 2), and, to 
date, the identification of risk loci has yet to plateau for  
any trait1,30.

GWAS can lead to the discovery of novel biological 
mechanisms. GWAS loci often implicate genes of 
unknown function or of previously unsuspected rele
vance5, and experimental follow-​up of such loci can 
lead to the discovery of novel biological mechanisms 
underlying disease2,5. For example, the role of autophagy 
in Crohn’s disease was not known before the discov-
ery of SNPs associated with disease risk in the genes 
ATG16L1 (rs2241880)31 and IRGM (rs1000113)32 in 
GWAS. The rs2241880 SNP leads to a missense muta-
tion (p.Thr300Ala) that results in enhanced caspase-3- 
mediated cleavage of ATG16L1 and diminished auto-
phagy under cellular stress33; in turn, this reduction 
impairs intracellular bacterial clearance and increases 
inflammatory cytokine production, thereby establish-
ing a chronic inflammatory state33. A similar effect on 
autophagy at the IRGM locus, mediated by a causal 
SNP in strong linkage disequilibrium with rs1000113, has 
also been reported34. Another example involves a risk 
haplotype spanning SLC16A11 on chromosome 17p13 
that was associated with T2DM in a GWAS of Mexican 
adults35. Genetic variants at this locus were shown to 
independently reduce SLC16A11 function in two ways: 
first, by decreasing SLC16A11 expression in the liver in 

a gene dose-​dependent manner; and second, by disrupt-
ing a key interaction with a chaperone protein, thereby 
reducing cell-​surface localization of SLC16A11 (ref.36). 
Additional experiments demonstrated that SLC16A11 
is a proton-​coupled monocarboxylate transporter and 
that decreased SLC16A11 induces changes in cellular 
fatty acid and lipid metabolism that are associated with 
increased risk of T2DM35,36. Other well-​known illus-
trations of quick translation from GWAS to biology 
include an association between the CFH gene and AMD, 
which implicates the complement system of innate 
immunity3, and between the major histocompatibility 
complex locus and schizophrenia, which points to a role 
for complement component 4 activity37,38.

Of note, the value of biological insights gained from 
GWAS is not proportional to the strength of associa-
tion. For example, many genes that represent molecular 
targets of US Food and Drug Administration-​approved 
drugs harbour common variants of modest effect that 
have been identified by GWAS5. This finding provides 
a strong argument for continuing to identify subtle 
associations using GWAS in even larger sample sizes39.

GWAS findings have diverse clinical applications.  
A central objective of genetic research is to translate bio-
logical insights into medical advancements. Despite the 
considerable amount of time required to bring scientific 
discoveries from bench to bedside40, a growing number 
of examples highlight the diverse areas in which GWAS 
findings can have clinical applications.

Genetic variants discovered by GWAS can be used 
to identify individuals at high risk of certain diseases, 
thereby improving patient outcomes through early 
detection, prevention or treatment. For example, a 
coding non-​synonymous variant in the CFH gene 
(rs1061170) explains 50% of the population-​attributable 
risk of AMD3,41. Multi-​locus analysis of AMD suscepti-
bility loci showed that 99% of the individuals with the 
highest-​risk genotypes (including at CFH) had AMD; of 
these, 85% had advanced AMD42. Similarly, a GWAS for 
exfoliation glaucoma identified two non-​synonymous 
SNPs in the gene LOXL1 that explain 99% of the 
population-​attributable risk of this disease43.

GWAS findings can be applied to disease classifi-
cation and subtyping. Maturity-​onset diabetes of the 
young (MODY) accounts for 1–2% of all patients  
with diabetes but is commonly misdiagnosed as type 1  
diabetes mellitus (T1DM) or T2DM44. Rare loss-​of- 
function mutations in HNF1A are known to cause a 
common form of MODY45. In 2008, two independent 
GWAS identified SNPs near the HNF1A gene asso-
ciated with serum C-​reactive protein (CRP) levels, 
a marker of inflammation46,47. On the basis of these 
findings, it was hypothesized that serum levels of 
high-​sensitivity CRP could represent a clinically use-
ful biomarker to identify HNF1A mutations that cause 
MODY48. Patients with HNF1A-​MODY were observed 
to have lower CRP levels than individuals without dia-
betes as well as individuals with T1DM, T2DM or non-​
HNF1A MODY, validating the use of high-​sensitivity 
CRP as a clinical biomarker for diagnosing certain  
diabetes subtypes48,49.

Fig. 1 | GWAs study design. a | The aim of a genome-​wide association study (GWAS) is 
to detect associations between allele or genotype frequency and trait status. The first 
step of a GWAS involves identifying the disease or trait to be studied and selecting  
an appropriate study population (for example, cases and controls for a disease, or an 
unselected population sample for a trait). Genotyping can be performed using single-​
nucleotide polymorphism (SNP) arrays combined with imputation or whole-​genome 
sequencing (WGS). Association tests are used to identify regions of the genome 
associated with the phenotype of interest at genome-​wide significance, and meta-​
analysis is a common step to increase the statistical power to detect associations. 
Causal variants are usually not directly genotyped but are in linkage disequilibrium 
with the genotyped SNPs. b | Functional characterization of genetic variants is often 
required to move from statistical association to causal variants and genes, especially  
in the non-​coding genome. Computational methods are used to predict the regulatory 
effect of non-​coding variants on the basis of functional annotations. c | Target genes 
can be identified or confirmed using chromatin immunoprecipitation and chromosome 
conformation capture methods, and experimentally validated using cell-​based systems 
and model organisms. d | Genetic variants exist along a spectrum of allele frequencies and 
effect sizes. Most risk variants identified by GWAS lie within the two diagonal lines. 
Rare variants with small effect sizes are difficult to identify using GWAS, and common 
variants with large effects are unusual for common complex diseases. eQTL, expression 
quantitative trait locus.
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GWAS can inform drug development and repurpos-
ing. Although GWAS are not usually directly inform-
ative with respect to the causal genes or the disease 
mechanisms, post-​GWAS functional experiments can 
illuminate new targets and pathways for therapeutic 
intervention. Because the percentage of drug mecha-
nisms with direct support from human genetic studies 
increases across the drug development pipeline, select-
ing genetically supported drug targets could improve 
the success rate of drug development, reducing the time 
and costs of developing new drugs50. GWAS for several 
diseases (including T2DM, rheumatoid arthritis, anky-
losing spondylitis, psoriasis, osteoporosis, schizophrenia 
and dyslipidaemia) have led to the identification of new 
and candidate drugs that are now being used in clinics 
or evaluated in clinical trials2.

GWAS have identified genetic variants that can be 
used to inform drug selection and dosage and prevent 
adverse drug reactions51. Notable examples include SNPs 
near the IL28B gene (also known as IFNL3) that pre-
dict the likelihood of a positive response to pegylated 
interferon-​α and ribavirin therapy for hepatitis C virus 
infection52–54 and genetic variants in SLCO1B1 that are 
associated with simvastatin-​induced myopathy55. The 
Clinical Pharmacogenetics Implementation Consortium 

(CPIC) has established a scientifically rigorous approach 
to determining the clinical value and interpretation 
of genetic variants associated with drug response, 
aiding physicians in making prescription decisions.  
For example, CPIC guidelines have been published for  
pegylated interferon-​α-based treatment regimens 
based on the IL28B genotype56 and for managing the 
risk of simvastatin-​induced myopathy in the context of 
SLCO1B1 genotyping57.

GWAS can provide insight into ethnic variation of com-
plex traits. Although common variants are expected 
to be evolutionarily old and shared across ethnicities, 
some risk loci show considerable ethnic differences 
in frequency and/or effect size2,58. Performing GWAS in 
diverse ethnic groups can therefore reveal heterogeneity 
in genetic susceptibility to disease. For instance, GWAS 
have identified different genetic loci as having the 
strongest effect on T2DM risk in European (TCF7L2)59, 
East Asian (KCNQ1)60,61, Mexican (SLC16A11)35 and 
Greenlandic (TBC1D4)62 populations. A locus that is 
associated with disease in one ethnic group but not in 
another may indicate ethnic differences in risk allele 
frequency. For example, risk alleles in KCNQ1 confer 
increased susceptibility to T2DM in both East Asians 

Box 1 | GWAs using snP arrays versus WGs

the genome-​wide association study (Gwas) is a study design used to detect associations between genetic variants and 
common diseases or traits in a population. Genetic variants can be genotyped using numerous technologies, including 
genome-​wide single-​nucleotide polymorphism (sNP) arrays (combined with statistical imputation of unobserved 
genotypes from population reference panels) and whole-​genome sequencing (wGs). sNP arrays are the most widely used 
genotyping technology in Gwas, primarily owing to their lower costs, and performing wGs in very large sample sizes is 
currently cost-​prohibitive. although the switch to wGs is likely to be inevitable with declining sequencing costs, the 
choice to use sNP arrays or wGs in Gwas should be made taking into consideration other factors, such as the reliability  
of the technology, desired coverage of genetic variants, available resources and the study design and research objectives 
(see the table).

Factor snP arrays WGs

Cost Relatively inexpensive (~US$40 per sample) Expensive (>US$1,000 per sample)

Reliability Reliable, highly accurate technology Less mature and less accurate 
technology

Genomic coverage • Mainly restricted to common and low-​frequency 
variants, although imputation of rare variants 
is increasingly accurate (ultra-​rare variants, 
however, can never be identified)

• Biased towards variants discovered in well-​
studied or sequenced populations

From low-​frequency, common 
variants to nearly all genetic variation 
in the genome, depending on the 
depth of sequencing

GWAS analysis Well-​established analytical pipeline and tools for 
data analysis

• Higher computational costs and 
greater analytical complexity

• Eventually, larger multiple testing 
burden when conducting single-​
variant tests

Other considerations Custom genotyping arrays can be extremely 
cost-​effective

• As all variation is ascertained, 
fine-mapping is easier

• Greater costs to store, process, 
analyse and interpret the resulting 
data

Suitable research 
objectives

• Analysing known or candidate associations in 
large cohorts

• Detecting low-​frequency, common variant 
associations in extremely large sample sizes

• Detecting and fine-​mapping rare 
variants

• Detecting ultra-​rare risk variants 
when it becomes economically 
viable to perform WGS at a very 
large scale
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and Europeans, but because the minor alleles are less 
common in Europeans, much larger sample sizes are 
needed to detect the association61. Similarly, the 15q25 
locus has been unequivocally associated with lung 
cancer in European populations, but the association 
has not been replicated in Asian populations because 
of very low risk allele frequencies63. In more extreme 
cases, risk variants can be common in one population 
but virtually absent in others (founder mutations), 
as observed in the Greenlandic and Samoan isolated 
populations62,64. Ethnic differences in the effect size of 
a risk variant65–67 can also affect the likelihood of its 
discovery and its contribution to disease burden across 
populations68–70.

GWAS are relevant to the study of low-​frequency and 
rare variants. Currently, most GWAS are performed 
using data obtained by SNP arrays. Genome-​wide SNP 
arrays were originally designed to interrogate common 
genetic variation, but they have improved markedly 
over time to include a greater density of variants and a 
wider range of allele frequencies. Content on SNP arrays 
is now informed by data from large reference panels 
(Table 1), such as the Haplotype Reference Consortium 
panel71, enabling many low-​frequency and rare variants 
to be directly genotyped. Low-​frequency and rare var-
iants can also be genotyped using exome-​centred cus-
tom arrays, which target ~240,000 rare, low-​frequency 
and common coding variants observed in sequencing 
data from ~12,000 individuals72. These exonic vari-
ants can be added to larger arrays with a genome-​wide 
scaffold of common and rare variants. Studies using 

exome-​centred custom arrays have identified rare and 
low-​frequency coding variants associated with various 
complex traits, including blood lipid levels73, haemato-
logical traits74–76, blood pressure level77, height78, BMI70 
and T2DM79.

Genotype imputation is commonly done in array-​
based GWAS to increase the number of variants that 
can be tested for association, including low-​frequency 
and rare variants that were not originally genotyped. 
It predicts the genotypes of untyped variants from a 
dense panel of reference haplotypes, derived ideally 
from sequencing a subset of the study population or a 
closely related one80. The size of a reference panel (that 
is, the number of haplotypes) is directly and inversely 
related to the imputable allele frequency. Therefore, with 
the availability of larger and more ethnically diverse ref-
erence panels (for example, from the 1000 Genomes 
Project)81 and the generation of population-​specific and 
study-​specific reference panels82–84, untyped variants 
can be accurately imputed at low minor allele frequencies 
(MAFs), provided that they are first observed in the ref-
erence population. Recently, the Haplotype Reference 
Consortium created a unified reference panel of 64,976 
haplotypes by amalgamating WGS data from 20 studies 
of individuals of primarily European ancestry71. This 
reference panel claims accurate imputation down to a 
MAF of 0.1%71. Ongoing large-​scale projects, such as 
the Trans-​Omics for Precision Medicine (TOPMed) 
programme, are expected to produce reference panels 
of more than 100,000 individuals85.

As WGS becomes cheaper and more widespread, 
the study of rare variants should become more tractable 
using the GWAS approach. GWAS based on high-​depth 
WGS permit the full frequency spectrum of variants to  
be studied, including rare variants that are difficult  
to capture using SNP arrays and imputation.

GWAS can be used to identify novel monogenic and 
oligogenic disease genes. Up to one-​fifth of loci identi-
fied by GWAS include a gene that is mutated in a cor-
responding single-​gene disorder5. This phenomenon is 
usually due to the accumulation of independent rare and 
common causal variants in the same gene, although, in 
rare cases, partial linkage disequilibrium between rare 
pathogenic mutations and common non-​causal SNPs 
can create a synthetic GWAS hit86,87. This observation 
led scientists to hypothesize that genes identified by 
GWAS may be relevant candidates for discovering rare 
disease-​causing mutations7,39. Studies re-​sequencing  
GWAS-​implicated genes have since validated this 
hypothesis, identifying many novel monogenic or oligo
genic genes for complex diseases, including for obesity 
(SH2B1, NPC1 and ADCY3)88–91, T1DM (IFIH1)92, 
T2DM (MTNR1B, SLC30A8 and PPARG)93–95 and 
inflammatory bowel disease (TNFRSF6B, PRDM1, 
CARD9, IL23R and RNF186)96–98, and confirming the 
value of targeting GWAS loci to efficiently identify genes 
for corresponding monogenic or familial forms of dis-
ease. The main advantages of targeting GWAS-​identified 
genes for re-​sequencing are lower costs and improved 
statistical power to detect associations compared with  
whole-​exome sequencing (WES) or WGS99,100.
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GWAS can study genetic variants other than SNVs. 
GWAS are primarily designed to test SNVs for asso-
ciation with complex diseases and traits. However, 
other types of genetic variants that contribute to dis-
ease susceptibility can also be detected by GWAS. For 
example, GWAS have associated rare101,102 and common 
copy number variants (CNVs)103–105 with BMI and obe-
sity, among several other common traits and diseases. 
However, to date, there has been a paucity of GWAS 
investigating the effects of CNVs on disease risk. This 
area of untapped research has an important impact on 
conditions such as autism, bipolar disorder and schizo-
phrenia, in which CNVs are known to play a particularly 
prominent role106,107.

Furthermore, analyses of SNP array data from GWAS 
have identified clonal mosaicism in autosomes and sex 
chromosomes, which is associated with ageing and 
increased risk of haematological and solid tumours108–110, 
as well as diseases such as T2DM111. These studies have 
revealed that somatic mosaicism is more common 
than initially thought, especially in the ageing genome, 
spurring extensive research into genomic stability and 
clonal haematopoiesis as a predictor of haematological 
cancer112.

Beyond CNVs and mosaic events, other classes 
of genetic variation, including haplotypes113, variable 
number tandem repeats114, retrotransposon insertion 
polymorphisms115, insertions or deletions (indels)116 and 
inversions117, have been associated with risk of disease 
in GWAS.

GWAS data are used for multiple applications beyond 
gene identification. The value of GWAS lies not only in 
their utility in identifying loci influencing disease pre-
disposition but also in numerous applications for which 
GWAS data may be used. Beyond gene identification, 
GWAS data — in the form of either individual-​level 
genotype data or summary-​level association statistics 
— have enabled a wide range of applications, including 
reconstruction of population history118–121, determination 
of ancestry and population substructure122,123, fine-​scale 
estimation of location of birth124, genome-​wide assess-
ment of linkage disequilibrium125, estimation of SNP 
heritability for complex traits26, estimation of genetic 
correlations between traits126, Mendelian randomization 

studies127, polygenic risk scores128, forensic analyses129,130, 
determination of cryptic relatedness131, paternity test-
ing132, direct-​to-consumer genetic testing133, clinical diag-
nostic genetic testing133, prenatal and pre-​implantation 
genetic diagnosis134,135, embryonic DNA fingerprinting136, 
determination of perinatal loss137, loss-​of-heterozygosity 
and CNV analyses in tumours (for example, for disease 
subtyping and classification)138, validation of new ana
lytic methods139 and quality control of next-​generation 
sequencing data (by comparing sequence-​based variant 
calls to array-​based genotyping)140.

A particularly noteworthy area has been in estimat-
ing SNP heritability and modelling disease genetic archi-
tecture. Methods for estimating SNP heritability have 
helped to define the empirical bounds of GWAS26,141, 
whereas modelling the underlying genetic architecture 
of disease has shown that diseases have diverse genetic 
architectures, with consequent effects on rates of loci dis-
covery142. Psychiatric diseases and mental health traits, 
for example, seem to be mostly polygenic, involving a 
continuum of variants with small effects142. By contrast, 
most other diseases involve clusters of SNPs with distinct 
magnitudes of effects142. Sample sizes that are needed 
to explain most of the heritability of these traits range 
accordingly from a few hundred thousand to millions of 
individuals142. Discovery rates based on allele frequen-
cies, effect sizes and accuracy of phenotyping have been 
instrumental in informing the design of future GWAS 
and in predicting the extent of their discovery142,143.

GWAS data generation, management and analysis are 
straightforward. The success of GWAS can be attributed 
in part to technological and methodological advances 
that have facilitated their performance. For data genera-
tion, several algorithms for calling genotypes from SNP 
array data have been developed, with each generation 
heralding improvements in accuracy and call rate32,144,145. 
New algorithms have also been designed specifically for 
calling low-​frequency and rare variants146–149 and for 
inferring haplotypes and structural variants114,150–152. 
With GWAS increasingly relying on WGS data, a cor-
responding host of tools has been developed for vari-
ant discovery and SNP calling from sequencing data153. 
Similarly, improvements have been made in statistical 
imputation of genotypes154. For data management and 

Copy number variants
(CNVs). A class of DNA 
sequence variants (including 
deletions and duplications) that 
lead to a departure from the 
expected diploid representation 
of DNA sequence.

Clonal mosaicism
The presence of clones of cells 
with different karyotypes 
within an individual derived 
from a single zygote.

Table 1 | commonly used population reference panels

Reference panel number of 
reference samples

Ancestry of reference 
samples

number of 
variant sites

indels 
available

Refs

Icelandic reference panel 15,220 European (Icelandic) 31.1 million Yes 345

HapMap Project phase 3 1,011 Multi-​ethnic 1.4 million No 346

1000G phase 1 1,092 Multi-​ethnic 28.9 million Yes 347

1000G phase 3 2,504 Multi-​ethnic 81.7 million Yes 81

UK10K Project 3,781 European 42.0 million Yes 348

HRC 32,470 Predominantly European 
(includes the 1000G 
reference panel samples)

40.4 million No 71

TOPMeda 62,784 Multi-​ethnic 463.0 million Yes 85

1000G, 1000 Genomes; HRC, Haplotype Reference Consortium; indels, insertions or deletions; TOPMed, Trans-​Omics for Precision 
Medicine. aFigures are based on the latest status of the reference panel.
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analysis, software such as PLINK can handle and ana-
lyse whole-​genome SNP array data in a computationally 
efficient manner155,156. Currently, BOLT-​LMM157 and 
SNPTEST158 are popular for GWAS analysis, and Hail, 
a recently developed scalable framework for genomic 
data analysis, is gaining in popularity. In addition, several 
tools are available to visualize GWAS results (for exam-
ple, qqman159 and LocusZoom160) and to conduct GWAS 
meta-​analyses (for example, METAL161).

Consensus among the genetics community to adopt 
a standardized significance threshold (P < 5 × 10−8)162 
has allowed the field to enjoy highly reproducible find-
ings, and this threshold is likely to become more strin-
gent with the increasing number of low MAF SNPs 
being analysed in higher-​density arrays and/or more  
comprehensive imputation reference panels163.

GWAS data are easily shared and publicly available data 
facilitates novel discoveries. GWAS data will continue to 
be useful for identifying novel trait associations for some 
time, as the value of the vast amount of publicly availa-
ble GWAS data that has accumulated has been realized 
only partially. Several initiatives are expected to deliver 
genome-​wide genotype and rich phenotypic information 
on a record number of individuals. These data offer the 
opportunity to aggregate very large sample sizes, from 
which novel associations can be discovered.

The availability of GWAS summary statistics has 
increased dramatically in recent years, and hundreds of 
such data sets are now publicly available2. This wealth 
of data can be analysed in various ways to gain insight 
into the genetic basis of complex traits164. For example, 
publicly available summary statistics have enabled dis-
coveries of novel risk loci22,165–167, estimates of SNP-​based 
heritability168,169, cross-​trait analyses126,170, polygenic risk 
prediction171 and fine-​mapping172, among other applica-
tions. Despite considerable progress, there is still a need 
for improved sharing of summary statistics, including 
summary statistics with linkage disequilibrium informa-
tion, given the importance of these data in providing a  
foundation for a wide range of important analyses164.  
A commitment by researchers to make summary associ-
ation statistics publicly available will have a broad impact 
on genomics research. Funding agencies and journals 
should have a stronger role in enforcing data-​sharing 
requirements.

Growth in resources that link electronic health record 
data to genotype data has also been observed in recent 
years (for example, UK Biobank; Kaiser Permanente’s 
Research Program on Genes, Environment, and Health; 
and the Electronic Medical Records and Genomics 
Network)173. The density and phenotypic diversity of 
longitudinal clinical data afforded by electronic health 
records permit a deeper understanding of genotype–
phenotype associations173,174. Furthermore, large-​
scale initiatives (for example, national biobanks and 
participant-​centric initiatives) in both the private and 
public sectors have collected, and in some cases are 
still collecting, genotype and phenotype information 
on a large number of participants, and such resources 
have been particularly transformative for the discovery 
of novel trait associations. For example, UK Biobank  

recently released genome-​wide genotypes and rich pheno
typic data on ~500,000 individuals175. In the private  
sector, similar successes can be found. The company 
23andMe, which offers direct-​to-consumer genetic 
services, has amassed genotype and phenotype data on 
millions of individuals. These data have been combined 
with other sources of GWAS data in consortium-​led 
studies to identify multiple risk loci for many complex 
diseases and traits, including most recently educational 
attainment23, impulsivity176 and neuroticism177.

Combining different sets of genetic data and more 
open data sharing can provide a new paradigm for 
discovering novel associations. Integrated knowledge 
databases that are accessible through interactive pub-
lic portals, such as one envisioned for T2DM178, might 
allow new types of data (for example, clinical trial data 
on patient drug responses) to be integrated with GWAS 
for the first time. Such databases would enhance the 
value of GWAS by creating a synergistic link between 
data contributors and researchers178.

GWAS findings published to date represent only the tip 
of the iceberg. Complex diseases result from the inter-
play between biological and environmental factors. 
For example, obesity arises from complex interactions 
between genetic predisposition, demographic factors 
(for example, age), medical conditions (for example, 
depression), lifestyle factors (for example, sedentary life-
style, unhealthy dietary patterns, smoking cessation and 
medication or drug use) and environmental exposures 
(for example, pollution and built environment)179,180. 
Such gene–environment interactions have support at 
the molecular level. For example, studies have shown 
that environmental factors can alter methylation pat-
terns of obesity genes, and the plasticity of the methy-
lome supports the notion that different subsets of genes 
predispose individuals to obesity in response to specific 
environmental exposures181.

Despite unequivocal evidence of the interplay 
between environment and genetics in mediating dis-
ease risk, most GWAS performed to date have focused 
only on easy-​to-measure phenotypes, such as BMI, for 
example, without accounting for relevant biological and 
environmental exposures182. Existing GWAS findings 
therefore represent the low-​hanging fruit of GWAS dis-
coveries183, and exploring a wider range of phenotypes 
in GWAS is likely to lead to additional discoveries. For 
obesity, these include BMI in different age groups184,185, 
BMI changes over time (that is, longitudinal data)186, 
BMI changes in response to obesity risk187,188 or obesity-​
protective exposures189,190, BMI variance191, the extreme 
tails of BMI distribution192–194, deep obesity pheno-
types183,195,196, obesity intermediate traits197–199 and bio-
markers200–202, and obesity composite traits203. A similar 
extension of the phenotypes studied in GWAS of other 
diseases and traits is likely to result in the identification 
of corresponding novel loci.

To this end, large prospective cohort studies with 
longitudinally measured clinical, demographic, life-
style and environmental exposure data are needed, 
as are electronic health records and other sources of 
real-​world evidence that provide a treasure trove of 

Fine-​mapping
The process of localizing 
association signals to causal 
variants using statistical, 
bioinformatic or functional 
methods.
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additional information (for example, laboratory test 
results, physician notes and health administrative data). 
In particular, integrating behavioural health-​tracking 
data with genetic data could contribute enormously to 
our understanding of neuropsychiatric disorders, which 
currently lack large cohorts phenotyped for quantitative 
behavioural traits204. Longitudinal data might also enable 
the discovery of prognostic loci, which are valuable for 
understanding the progression of diseases such as cancer 
and Parkinson disease.

In addition to extending the phenotypes studied in 
GWAS, a similar expansion in scale at multiple levels 
(sample size, populations studied, methods and study 
design used)205 can help to reveal more of the ‘GWAS 
discoveries’ iceberg (Fig. 3). First, as sample size is the 
primary limiting factor in risk variant discovery, larger 
sample sizes will necessarily result in the identifica-
tion of additional loci. Sample sizes of over 1 million 
individuals are now becoming a reality for some traits, 
especially with the increasing public availability of 
summary statistics from large-​consortia GWAS and the 

establishment of large-​scale initiatives collecting gen-
otype or sequencing data and clinical information21,23. 
For rare diseases and conditions, for example, T1DM or 
suicidal behaviours, the use of electronic health records 
to identify affected individuals at a national level might 
be promising.

Second, performing large GWAS in understudied 
ethnic groups will be informative, especially to uncover 
ethnic-​specific risk variants. Several ethnic groups 
have been neglected or disproportionately under-​
represented in genetic association studies to date; these 
groups include Latin Americans, Native Americans, 
Indigenous Australians, Arabs, South Asians, Roma 
and Pacific Islanders205. The study of isolated, that is, 
founder64 and highly consanguineous populations206, 
as well as multi-​ethnic and admixed groups will also 
be valuable207–209.

The rest of the ‘iceberg’ may be uncovered by using 
innovative GWAS methods and study designs. GWAS 
analyses are usually performed under an autosomal 
additive model, which is quite restrictive. The routine 
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Larger, more ethnically
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Fig. 3 | GWAs performed to date represent the tip of the iceberg. The discoveries that can be made using genome-​
wide association studies (GWAS) are represented by an iceberg. The portion of the iceberg above water represents the 
discoveries that have been made by GWAS to date, using easy-​to-measure phenotypes, predominantly European 
populations, and an additive genetic model. Most of the iceberg is submerged under water. The submerged portion 
represents the vast number of discoveries that can potentially be made by expanding the current paradigm of GWAS to 
include a wider range of phenotypes, substantially larger sample sizes, more diverse populations and ethnic groups, and 
different study designs and analyses. GxG, gene–gene; GxE, gene–environment.
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use of recessive210, dominant192, overdominant211, multi
plicative212, parent-​of-origin-​specific213 and X-​linked 
inheritance214 models in GWAS can improve the statis-
tical power to detect additional variants215. In addition, 
GWAS accounting for gene–gene and gene–environment 
 interactions216,217, GWAS using genomic region-​based 
or gene-​based association tests218,219, GWAS using 
Bayesian analyses220, GWAS using machine learning 
approaches221, GWAS in different study designs (for 
example, family-​based, case–control–case, case-​only, 
intervention and hypothesis-​driven study designs)222 and  
GWAS using methods to improve power to analyse hetero
geneous traits (and investigate overlap between traits, 
such as cancer and cancer subtypes), such as ASSET223, 
for example, can also lead to the discovery of previously 
undetected associations.

Benefits specific to SNP array-​based GWAS
GWAS based on SNP arrays use reliable genotyping 
technology. Accurate genotyping is crucial to the suc-
cess of any large-​scale genetic association study, as sys-
temic biases induced by even small sources of error may 
inflate the number of false-​positive and false-​negative 
associations224. Genotyping using SNP arrays has 
become extremely efficient and reliable with the exten-
sive number of GWAS performed over the past decade. 
According to company specifications, contemporary 
genome-​wide SNP arrays achieve call rates, HapMap 
concordance, Mendelian consistency and reproducibi
lity of >99.7%. In addition, best practices for SNP quality 
control have been developed for GWAS224 and meta-​
analyses of GWAS225. SNPs that fail to meet acceptable 
quality control thresholds, which are usually set inde-
pendently for each study (for example, a SNP call rate of 
>97%, a duplicate concordance rate of >99%, Mendelian 
consistency of >99% and Hardy–Weinberg equilibrium 
test P > 1 × 10−6), are removed before data analysis, thus 
ensuring confidence in GWAS results.

GWAS based on SNP arrays are cost-​effective for identi
fying risk loci. GWAS are a cost-​effective approach for 
identifying risk loci, given that SNP array analysis fol-
lowed by imputation of variants down to a MAF of 0.1% 
is now very affordable, allowing for much of the genetic 
variation in the genome to be explored at a reasona-
ble cost even in very large sample sizes. At the time of 
writing, genome-​wide SNP arrays, such as the Illumina 
Infinium Global Screening Array and the Thermo 
Fisher Axiom Precision Medicine Research Array, cost 
approximately US$40 per sample. As the cost of WGS 
continues to decline, GWAS using SNP arrays will even-
tually be replaced by GWAS using WGS2. Currently, the 
price differential between the two technologies is at least 
30-fold, and ancillary costs for performing GWAS using 
WGS, such as those required for data storage and pro-
cessing, computational infrastructure and research staff, 
remain prohibitively high226–228. Until then, however, we 
are optimistic that the majority of the common variants 
and a substantial fraction of the low-​frequency and rare 
variants that contribute to disease risk can be identified 
using affordable SNP arrays combined with imputation 
to increasingly large WGS reference panels.

Limitations of GWAS
General limitations
GWAS are penalized by an important multiple testing 
burden. A major limitation of genome-​wide approaches 
is the need to adopt a high level of significance to 
account for the multiple tests. This is commonly done 
in GWAS by using a Bonferroni correction to maintain 
the genome-​wide false-​positive rate at 5%, based on the 
assumption of 1 million independent tests for common 
genetic variation. As a result, conventional GWAS are 
underpowered to detect all the heritability explained by 
SNPs, because association signals must reach a thresh-
old of P < 5 × 10−8 to be considered significant8,229. The 
limitation of multiple testing is likely to be exacerbated 
in the future, as genomic coverage of GWAS increases 
in parallel with the use of WGS data and the number of 
independent tests becomes much larger163.

One strategy to overcome the limitation of multiple 
testing in GWAS is to increase the sample size. This 
approach has been successfully used by large interna-
tional consortia to study traits that are available in mul-
tiple cohorts and are relatively inexpensive to measure7. 
However, assembling large sample sizes is not always 
possible. For example, certain ‘deep’ phenotypes (for 
example, weight/body-​composition change phenotypes) 
are costly and difficult to measure, and only a limited 
number of suitably characterized individuals may be 
gathered for such traits7. A similar challenge arises for 
GWAS in small isolated populations230.

A second strategy is to reduce the number of tests 
performed. This can be achieved by using gene-​based231 
or pathway-​based association tests232, or by restricting 
analyses to candidate genomic regions, such as linkage 
regions233, genes specifically expressed in an important 
tissue234, genes showing differential expression patterns 
related to the disease235, prioritized candidate genes192, 
potentially damaging SNPs70 or SNPs harbouring evolu-
tionary signatures236. Combining supporting biological 
evidence with statistical significance also increases the 
probability that the result is a true positive237. However, 
caution should be exercised when interpreting find-
ings from underpowered studies that do not account 
for all explicit and implicit hypothesis testing. A more 
rigorous approach to dealing with multiple hypothesis 
testing is to use Bayesian methods220. Unlike frequentist 
methods, such as the Bonferroni correction, Bayesian 
methods consider the universe of possible hypotheses in 
the human genome220. A statistical advantage is offered 
when the number of possible tests is reduced, for exam-
ple, by assaying biological units such as genes instead of 
single variants.

GWAS explain only a modest fraction of the missing heri
tability. GWAS have identified an unprecedented num-
ber of genetic variants associated with common diseases 
and traits, but, apart from a few notable exceptions (for 
example, AMD, exfoliation glaucoma and T1DM), these 
variants account for only a modest proportion of the 
estimated heritability of most complex traits8,238. Several 
reasons for the missing heritability have been pro-
posed8,239,240. One probable explanation is that SNPs of 
modest effect are missed because they do not reach the 
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stringent significance threshold8,25,239. In line with this 
hypothesis, recent genome-​wide complex trait analyses 
suggest that SNPs may explain one-​third to two-​thirds of 
the heritability of most complex traits25–28. With increas-
ingly large sample sizes2,22, as well as the adoption of new 
methods and study designs220–222,241, GWAS findings may 
soon account for a substantial fraction of the heritability 
for many complex diseases.

Some have used the argument of missing heritabil-
ity to suggest a failure of GWAS to explain the genetic 
underpinnings of disease. However, it must be noted that 
genetic susceptibility to disease should be studied in the 
context of environmental risk factors, with which it is 
inextricably linked. Gene–gene and gene–environment 
interactions are expected to explain some of the miss-
ing heritability242,243. This might be especially true of 
diseases for which susceptibility is highly influenced by 
the environment. For example, different subsets of genes 
are expected to play a role in obesity depending on the 
risk environment (for example, nicotine withdrawal, 
pregnancy and antidepressant medication)181,244. In addi-
tion, heritability estimates may be inflated as a result of 
shared environmental effects, especially in classical twin 
studies245–247.

GWAS do not necessarily pinpoint causal variants and 
genes. Genetic mapping is a double-​edged sword: local 
correlation of multiple genetic variants due to linkage 
disequilibrium facilitates the initial identification of a 
locus but makes it difficult to discern the causal variant 
or variants39. Most association signals map to non-​coding 
regions of the genome, for which biological interpreta-
tion is inherently challenging248,249. Consequently, once 
a GWAS has been performed, additional steps are often 
required to identify the causal variants and their target 
genes, for example, multi-​ethnic or admixed population 
re-​sequencing and fine-​mapping, methodological devel-
opments, functional analyses or evolutionary genetic 
analyses250–256. Although identifying causal variants 
might be easier for GWAS using WGS than for GWAS 
using SNP arrays, in that all genetic variation has been 
ascertained, functional characterization is challenging 
regardless of the technology used — a key reason being 
that hypotheses about the underlying mechanisms are 
typically required.

Another challenge in assigning causality in GWAS 
is that too many hits may be involved. Not long ago, a 
lack of replication plagued genetic association studies257. 
However, akin to a transition from drought to flood, the 
number of discoveries in human genetics has rapidly 
accelerated over the past 13 years4. For example, recent 
simulations have shown that 90,000–100,000 SNPs may 
be needed to explain 80% of the heritability of height10,11. 
This means that a substantial fraction of all genes may 
contribute to variation of complex traits10. In pointing 
at ‘everything’, the danger is that GWAS could point at 
‘nothing’11. The recently proposed ‘omnigenic’ model 
suggests that gene regulatory networks are sufficiently 
interconnected such that all genes expressed in disease-​
relevant cells are liable to affect the functions of core 
disease-​related genes and that most of the heritability 
can be explained by the effects of genes outside core 

pathways10. Genes associated with the continuum from 
monogenic to polygenic forms of disease may be more 
likely to contribute to core biological pathways and can 
be prioritized for functional investigation244.

Despite the difficulties in interpreting GWAS asso-
ciations, much progress has been made in moving from 
association to function and causation. Several advances 
have aided in fine-​mapping and prioritizing variants 
for functional follow-​up, especially in the non-​coding 
genome. First, improvements in the density of SNP 
arrays and imputation reference panels have allowed 
the mapping resolution of common variant associations 
in GWAS to approach that of a fine-​mapping study.  
A caveat is that the association of a common variant may 
be the result of partial linkage disequilibrium with one 
or more rare variants of large effect that happen to seg-
regate on common haplotypes, a phenomenon known 
as synthetic association86. Although synthetic associ-
ations have been reported in the literature (for exam-
ple, NOD2 (ref.258), HBB86, MYH6 (ref.259) or SERPINA1 
(ref.260)), multiple lines of evidence suggest that they are 
rare87,261, and studies have increasingly demonstrated 
support for independent contributions of rare and 
common variants at a single locus262,263. Second, cus-
tom genotyping arrays that provide dense SNP cover-
age in candidate disease-​associated regions, such as the 
MetaboChip, iCOGS array and ImmunoChip, provide 
a cost-​effective strategy for fine-​mapping certain dis-
eases and traits264–269. Third, trans-​ethnic and admixed 
population fine-​mapping can be used to refine regions 
of association by exploiting population differences in 
linkage disequilibrium and can be incorporated into 
the initial GWAS step128,215,253. Assuming the causal var-
iant is associated with the disease across ethnicities and 
linkage disequilibrium varies with ethnicity at the asso-
ciated locus, meta-​analysis of genetic data from differ-
ent ethnic backgrounds can magnify the associations of 
the causal variants and tone down the associations of 
proxies. Fourth, advances in methods for statistical fine-​
mapping, such as Bayesian approaches, have made great 
inroads into narrowing down the possible causal vari-
ants, for example, with credible sets of SNVs270. Last, the 
rapid development of publicly available databases of reg-
ulatory elements across a range of tissues and cells types 
(for example, ENCODE271, Epigenome RoadMap272, 
FANTOM5 (ref.273) and GTEx274), as well as tools for que-
rying such databases (for example, RegulomeDB275 and 
HaploReg276,277), has allowed GWAS findings to be inte-
grated with functional genomics data at multiple levels, 
prioritizing candidate variants for functional follow-​up 
— for example, by testing for colocalization with expres-
sion or methylation quantitative trait loci, or for overlap 
with accessible chromatin, transcription factor binding 
or regulatory histone marks278.

In parallel, progress has also been observed in the 
functional characterization of causal variants and  
the identification of target genes. Several experimental 
approaches are available to test the functions of candi-
date variants and to determine the molecular mecha
nisms278. Chromosome conformation capture and 
its derivatives can be used to visualize the 3D organ-
ization of chromatin and are important methods for 
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determining target genes279; the relationship between 
the regulatory variant and the target gene is complex, 
with functional studies suggesting that only about one-​
third of causal genes are the nearest gene to the GWAS 
hit280,281. An example of this complexity is the FTO locus 
in obesity. Intronic variants in FTO associated with 
obesity in GWAS were initially assumed by many to 
regulate FTO282,283. However, functional studies found 
that the obesity-​associated FTO region interacts with 
the IRX3 promoter, located several hundred kilobases 
away, and that these intronic variants are associated with 
the expression of IRX3 but not FTO in human brains284. 
Additional work using mouse models confirmed IRX3 as  
a likely causal gene284, and an additional target, IRX5, has 
also been identified285.

GWAS cannot identify all genetic determinants of com-
plex traits. It is unlikely that GWAS will ever explain 
100% of the heritability of complex traits. This limitation 
is not exclusive to GWAS, as no method or technology to 
date can identify all the genetic components of complex 
traits. The difficulty in detecting common variants with 
very small effects, rare variants with small effects, genes 
harbouring ultra-​rare variants and complex interactions 
(gene–gene and gene–environment) makes explain-
ing all the heritability of complex traits an impossible  
task39. Another challenge lies in accurately estimating the  
heritability of complex traits245,286,287.

GWAS have been largely unsuccessful in detecting epista-
sis in humans. Although evidence of non-​additive herit-
ability is difficult to assess in humans, model organisms 
(for example, yeast, worm, fly or mouse) have estab-
lished epistasis as a pivotal component of the genetic 
architecture of complex traits288–290. However, the iden-
tification of significant gene–gene interactions has been 
challenging in GWAS and post-​GWAS experiments in 
humans, owing primarily to a lack of statistical power 
and to methodological challenges128,290–292. As there is 
still limited evidence that epistasis contributes to a large 
fraction of the total genetic variation of complex traits 
in humans, very large sample sizes may be needed to 
detect significant gene–gene interactions2. Furthermore, 
the loss of information caused by imperfect linkage dis-
equilibrium between genotyped and causal variants is 
larger for interactions than for main effects2. Recent 
methodological developments (for example, data fil-
tering, Bayesian methods and artificial intelligence 
algorithms) may boost the identification of epistatic 
interactions in humans290. However, epistasis remains 
challenging regardless of whether one uses a GWAS or 
WGS, as it depends on the power of much larger samples 
and wider computing throughput to accommodate the 
exponential increase in statistical tests.

GWAS signals may be due to cryptic population strat-
ification. An important concern in genetic association 
studies is population stratification, which can result in 
spurious associations if not properly accounted for. 
Population stratification is especially a challenge in large 
GWAS, for which perfect matching of cases and con-
trols is virtually impossible9, but is also a concern when 

studying recently admixed populations and variants with 
very small effect sizes1.

Most GWAS signals (OR < 1.5) have been suggested 
to be attributable to cryptic population stratification9. 
However, this view is probably too extreme owing to sev-
eral reasons. First, efficient methods are used in GWAS 
to control for population stratification293,294. Second, 
many GWAS loci are enriched for biologically relevant 
variants10,240 or localize in genes or pathways known or 
postulated to play a role in disease6. Third, GWAS hits 
have been confirmed by family-​based association tests, 
which are robust to population stratification293,295–297. 
Fourth, although population stratification is a greater 
concern in case–control studies than in population-​
based studies, analysing the continuous and binary ver-
sions of a trait in a single data set leads to an almost 
entirely overlapping list of GWAS signals193. Last, iden-
tification of the same disease-​associated GWAS SNPs in 
diverse ethnic groups and association of GWAS SNPs 
with future risk of disease in prediction models suggest 
that the majority of GWAS hits are indeed true signals1.

GWAS have limited clinical predictive value. The mod-
est proportion of heritability explained and the small 
effect sizes of GWAS-​identified SNVs limit their clini-
cal predictive value. For most complex traits, identified 
SNVs in aggregate perform poorly at discriminating 
between individuals with and without the disease298,299. 
Between private, highly penetrant mutations of large 
effect (OR > 10) and common variants of modest effect 
(OR 1.05–1.30) exists an intermediate category of var-
iants with low allele frequencies and modest-​to-strong 
effects on disease. These variants are extremely relevant 
to disease prediction300 and may account for a signifi-
cant fraction of complex trait heritability78. They are also 
likely to be causal variants, owing to low linkage disequi-
librium with other variants. For example, the obesity-​
associated low-​frequency SNV rs6232 (p.Asn221Asp) in 
PCSK1 is not in strong linkage disequilibrium (r2 > 0.8) 
with any other variant68. Such variants will constitute the 
main target of the new generation of GWAS. For obesity, 
these include rs2229616 (p.Val103Ile) and rs52820871 
(p.Ile251Leu) in MC4R (MAF 0.5–1%, OR 0.52–0.80)301, 
rs6232 (p.Asn221Asp) in PCSK1 (MAF 3%, OR 1.34)68, 
rs116454156 (p.Arg270His) in FFAR4 (also known 
as GRP120) (MAF 1%, OR 1.62)302 and rs28932472  
(p.Arg236Gly) in POMC (MAF 0.5%, OR 4)303. Recently, 
a large-​scale exome-​wide meta-​analysis identified 14 rare 
and low-​frequency coding variants that increase weight 
by 0.315–7.05 kg (ref.70). As the number of identified 
disease-​associated variants increases, their cumulative 
predictive value will undoubtedly gain in importance240.

The relevance of using GWAS findings to predict, 
prevent and treat disease remains a subject of intense 
debate. Even for a disease such as T1DM, for which 
most of the heritability can be explained by GWAS loci, 
genetic screening at the population level is not feasible, 
as the number of false positives would greatly exceed 
the number of true positives238. In addition, identify-
ing individuals at risk of disease may not be meaning-
ful if no personalized treatment is available. Instead, 
screening for rare and low-​frequency monogenic and 

Epistasis
Statistical interaction between 
loci in their effect on a trait 
such that the effect of a 
genotype at one locus is 
dependent on the genotypes 
at the other locus (or loci).

Population stratification
Differences in allele frequencies 
between cases and controls 
resulting from systematic 
differences in ancestry rather 
than association of genes  
with disease.
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oligogenic variants is more likely to lead to actionable 
treatments304–308. Clinical prediction might also prove to 
be especially useful in small isolated populations where 
deleterious variants with strong effect have risen to high 
frequency (for example, Inuit in Greenland)309.

For a subset of diseases, however, polygenic risk 
scores (PRSs) — quantitative measures of risk summed 
across multiple risk alleles — have begun to show prom-
ise in their ability to separate a population into catego-
ries with sufficiently distinct risks to affect clinical and 
personal decision-​making310. For example, the value of a 
PRS in cancer as a tool for stratification in public health 
has been exemplified in several studies311, including a 
study of breast cancer that combined a PRS with con-
ventional risk factors to identify 16% of the population 
who could benefit from earlier screening (and 32% who 
could delay screening)312. For coronary artery disease, 
PRSs have identified individuals with risk equivalent to 
rare monogenic mutations313,314; these individuals con-
stitute a substantially larger fraction of the population 
than do individuals with rare monogenic mutations313 
and might derive greater benefit from early lifestyle 
interventions and initiation of statin therapy than indi-
viduals at lower genetic risk315,316. Although knowledge 
of individual genetic risk can improve readiness to 
adopt a healthier lifestyle, human behaviour is complex 
and genetic testing may not necessarily translate into 
improved long-​term clinical outcomes317,318.

Limitations specific to SNP array-​based GWAS
GWAS based on SNP arrays rely on pre-​existing genetic 
variant reference panels. A limitation of SNP array-​
based GWAS is that they depend on the completeness 
of the sequencing studies and resulting reference panels 
that are used to inform genotyping array design and to 
impute untyped variants in GWAS319,320. For example, 
early genome-​wide SNP arrays were designed by select-
ing tag SNPs from reference panels of predominantly 
European populations321. Because linkage disequilib-
rium patterns vary across ethnic groups, these arrays 
often provided poor coverage in non-​European popu-
lations39,321. This problem has since improved with the 
development of a new generation of high-​density arrays 
whose contents are based on sequencing data from 
more diverse populations, as well as the development of 
ethnic-​specific and trans-​ethnic arrays designed specif-
ically to optimize genomic coverage in non-​European 
ethnic groups322. However, although these new arrays 
should collectively enable a large harvest of ethnic-​
specific disease signals, many ethnic groups (for exam-
ple, Indigenous Australians, Native Americans, Pacific 
Islanders, Middle Eastern Arabs and African Pygmies) 
still have not been sequenced. Hence, optimal GWAS 
and genotype imputation cannot yet be performed in 
these populations323,324. Even for populations that have 
been sequenced, larger reference panels are still needed 
to improve genomic coverage, genotype imputation and, 
subsequently, the detection of novel SNV–trait associ-
ations84,325. Moreover, much like the design of early 
genome-​wide SNP arrays, content on the ExomeChip 
and other custom genotyping arrays is based primarily 
on sequencing data from European individuals72.

GWAS based on SNP arrays cannot detect ultra-​rare  
mutations contributing to disease. Whether the remain-
ing heritability is explained by common variants of mod-
est effect or rare variants of large effect is still under 
debate5,8,9,11,39. Although empirical evidence suggests 
that much of the heritability of complex traits can be 
explained by common variants26–28, rare and ultra-​rare 
variants are also expected to contribute326,327. In this  
context, it is important to note that SNP array-based 
GWAS are unable to detect ultra-​rare variants associated  
with disease.

Genotype imputation using reference panels derived 
from WES and WGS projects enables GWAS using 
common SNP arrays to identify associations with rare 
variants, by recovering some of the information lost 
to imperfect linkage disequilibrium. WES and WGS 
efforts are underway in many populations worldwide to 
uncover rare variants that are specific to an ethnic group 
or population83,328. However, these initiatives are far from 
complete, and it will take substantial time and resources 
before imputation of even a subset of rare variants 
representative of the worldwide ethnic and geograph-
ical diversity can be achieved252. At the present time, 
statistical imputation using large reference population 
panels is reasonably accurate for variants as infrequent 
as 1 in 1,000 (ref.71). However, imputation of ultra-​rare 
variants (for example, a frequency of 1 in 100,000) and 
private mutations (for example, those only found in one 
pedigree or individual worldwide) is nearly impossible, 
as these variants are unlikely to be identified in such 
sequencing efforts2.

Although large-​scale WES and WGS initiatives can 
identify at least a subset of ultra-​rare variants, demon-
strating a correlation between these variants and a trait 
or disease will be extremely challenging. For instance, 
GWAS using WGS in more than 1 million individuals 
may be required to detect an association between an 
ultra-​rare variant with a large effect (for example, one 
phenotypic standard deviation unit) and a quantitative 
trait2. Power may be increased by studying extreme 
cases, using family-​based study designs (for example, 
studying families with multiple cases of a rare disease) 
and using rare-​variant burden tests across genes and  
targeted candidate gene strategies2,99,329.

Finally, for GWAS to successfully identify a gene for 
a given pathology, disease-​associated genetic variation 
at the locus must exist. In theory, there could be ultra-​
conserved regions in the genome containing genes with 
important biological roles in disease that do not exhibit 
deleterious variation. Crucially, GWAS will not be able 
to identify these genes.

Conclusions
The emergence of GWAS well over a decade ago has 
caused a remarkable shift in our capacity to understand 
the genetic basis of human disease. The ever-​expanding 
list of replicable associations has extended beyond com-
mon variation to rare variation4, and the value of these 
associations in realizing fundamental goals of human 
genetics is now clear. GWAS loci have generated new 
insights into disease biology that have supported clin-
ical translation2 and are beginning to show promise in 
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population risk stratification310. And still, the full poten-
tial of GWAS has not been unlocked. Research institu-
tions and funding agencies should feel encouraged by 
the numerous arguments that continue to support the 
GWAS design (Fig. 4).

Some researchers have expressed important concerns 
about the value of GWAS, for example, that multiple rare 
variants may induce synthetic associations with com-
mon SNPs86. Although the literature suggests that syn-
thetic associations are likely to be rare100,272, we note that 
the new generation of dense genome-​wide SNP arrays 
and the availability of large WGS reference panels pro-
vide an opportunity to test the synthetic association 
hypothesis more accurately than could be achieved in 
the past330.

Others have suggested that most GWAS signals are 
the result of cryptic population stratification9. Although 
population stratification probably does not account for 
most GWAS signals, we propose several strategies to 
overcome this possibility: first, correct for population 
substructure; second, perform family-​based GWAS or 
at least use family-​based replication designs to vali
date GWAS associations from case–control studies; 
third, compare GWAS associations across ethnic back-
grounds; and fourth, strengthen the results of case–
control studies (for example, on obesity) with those of 
corresponding quantitative trait studies (for example, 
on BMI).

Concerns have also been raised that GWAS will 
implicate too many loci: most disease-​associated vari-
ants will have infinitesimally small effect sizes and will 

not pinpoint core genes with direct effects on disease10,11. 
However, the fact that complex diseases are extremely 
polygenic, involving many variants of small effect sizes, 
does not preclude clinical utility of identified variants. 
For example, statins are effective in lowering cardio
vascular disease risk, yet GWAS loci at the drug-​target 
locus explain only about 1% of the phenotypic variation5. 
The real question therefore is not whether there are too 
many loci, but rather how do they cumulatively explain 
disease, and can they be used for individual prediction 
or population stratification. Although identifying more 
loci might complicate the identification of causal genes, 
this is certainly an advantage when it comes to risk  
prediction — an equally important goal to that of clar-
ifying the causal genes and their complex interactions. 
Already, PRSs comprising hundreds of thousands to mil-
lions of SNPs provide clinical utility for certain diseases 
and are being introduced into therapeutic decision-​
making313. As more powerful GWAS are performed, 
future PRSs, consisting of common, low-​frequency and 
rare variants, as well as incorporating or complement-
ing familial and environmental risk factors, will provide 
even better risk stratification331, with important implica-
tions for future research, screening and primary preven-
tion, personal and therapeutic decision-​making, public 
health and clinical trial enrichment, and for making  
differential diagnoses.

Many of the current limitations of GWAS are not 
insurmountable or can be overcome at least to some 
extent (Fig. 4). For example, larger sample sizes, advances 
in technology, methodology and computing, as well as 

The bright side The dark sideIdentification of novel
SNV–trait associations

Discovery of novel biological
mechanisms

Disease prediction

True signals

Population stratification

Ultra-rare mutations

Epistasis

Causal variants or genes

Missing heritability

Diverse clinical applications

Insight into ethnic variation
of complex traits

Relevant to low-frequency,
rare variants

Identification of novel monogenic 
and oligogenic disease genes

Relevant to the study of 
structural variation

Multiple applications
beyond gene identification

Straightforward GWAS generation,
management and analysis

Easy-to-share and
publicly available data

Fig. 4 | Benefits and limitations of GWAs using snP arrays. A visual depiction of the current benefits (the bright 
side) and limitations (the dark side) of genome-​wide association studies (GWAS). The solid X indicates a permanent 
limitation. The dotted Xs represent limitations that have the potential to be overcome, at least to some extent, in the 
future (for example, with larger sample sizes, technological and methodological advancements, and a shift from  
the use of single-​nucleotide polymorphism (SNP) arrays to whole-​genome sequencing). SNV, single-​nucleotide variant.
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a shift from the use of SNP arrays to WGS have the 
potential to resolve many of the limitations (for exam-
ple, improve risk prediction, identify missed signals, 
account for population stratification, identify ultra-​rare 
mutations, identify gene–gene and gene–environment 
interactions, identify causal variants and genes, and 
explain more of the missing heritability).

WGS is the gold standard in GWAS79,328,330. As the 
price of sequencing falls, GWAS using WGS in large 
samples will become increasingly realistic. In the mean-
time, GWAS based on dense SNP arrays combined 
with imputation to large WGS reference panels will 
be complementary to the study of rare variants and 

will continue to provide major advances in the field of 
complex disease genetics. This view is supported by the 
success of recent GWAS that imputed SNVs using large 
WGS reference panels330,332 and by a recent large-​scale 
WGS study of T2DM, which identified variants that 
were overwhelmingly common and located in regions 
already discovered using SNP arrays79. For a study design 
that is already more than a decade old, the still growing 
number of published GWAS is a testament to the con-
tinued success of this approach in elucidating the genetic 
basis of complex human traits2.
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