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Abstract

It is 100 years since R. A. Fisher proposed that a Mendelian model of genetic

variant effects, additive over loci, could explain the patterns of observed

phenotypic correlations between relatives. His loci were hypothetical and his

model theoretical. It is only about 50 years since the first genetic markers

allowed the detection of even variants with major effects on phenotype, and

only 20 years since the development of single‐nucleotide polymorphism

technology provided dense markers over the genome. Then both mappings in

defined pedigrees and population‐based genome‐wide association studies

samples allowed the detection of multiple contributing variants of smaller

effect. Finally, with methods based on genotypic correlations between

individuals, or on allelic associations between loci, the additive heritability

contributions of the genome can be estimated from large population samples. In

this review we trace, from 1918 to 2018, the analysis of observed phenotypic

correlations between relatives to estimate underlying genetic components of

traits in human populations. As with studies from 1918 onward, we use height

as the example trait where not only data are readily available, but where

Fisher's model of large numbers of variants of infinitesimal effect appears to

provide a good approximation to reality. However, we also trace the use of

phenotypic and genotypic correlations between relatives in mapping causal

variants and resolving genetic contributions to more complex human traits.

With the availability of DNA sequence data, we can hope to not only estimate

the total genetic contribution to a trait, but to resolve effects of individual

genetic variants on biological function.
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1 | INTRODUCTION

In the 100 years since Fisher (1918) (hereafter F18) was
published, knowledge of genomes has changed out of all
recognition, but explaining quantitative trait variation
remains a challenge. Fisher's critical contribution was in

showing that, under a Mendelian model, genetic variance
would be maintained over generations. Fisher's approach
was explicit modeling of multiple causal variants, which,
in principle, leads to the identification of these variants
and estimation of their effects on a trait. The model also
leads to expressions for the genotypic correlations
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between individuals in terms of their realized or expected
pedigree or population relationships. Working directly
with these expected correlations is the basis of the
method of path coefficients initiated by Wright (1921),
also almost a century ago.

1.1 | Fisher's Mendelian model for a
quantitative trait

Fisher's model is of multiple variants each of small effect,
distributed at loci across the genome. The effects are
assumed additive over loci, but with general values for
the three genotypes at any locus. Thus the phenotype yi of
individual i with genotypic effect ℓGi at locus ℓ is

∑
ℓ

ℓy G e= + ,i i i (1)

where ei is an independent environmental effect, with
variance Ve. Using more modern terminology and
notation, the genotype of an individual i at a diallelic
locus ℓ may be coded as x = 0, 1il or 2, the number
copies of the reference allele. The phenotypic means Gil
for the three genotypes are ℓ ℓμ a μ d( − ), ( + )and

ℓμ a( + ). A linear regression of the genetic contribution
of locus ℓ is

ℓ ℓ ℓ ℓG μ β x δ= + + ,i i i (2)

where ℓδi is a zero‐mean residual effect.
In a random‐mating population under Hardy–

Weinberg equilibrium, in which the reference allele
has frequency ℓp x, = 0, 1, 2il with probabilities

ℓ ℓ ℓp p p p(1 − ) , 2 (1 − ),l
2 2, and the variance of xil is

ℓ ℓp p2 (1 − ). From the linear regression (2), the mean
and regression slope for the genetic effect of locus ℓ are

ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ ℓ

μ a p d p p

β a p d

= (2 − 1) + 2 (1 − ) and

= ( + (1 − 2 ) ). (3)

Here ℓβ is the expected increase in phenotype for unit
increase in xil, or the substitution of a reference allele for
an alternate. This additive component of the genotypic
values of Equation (2) was referred to by F18 as the
“essential genotype.” It is also known as the genic value or
breeding value.

The variance of the genetic contribution of locus ℓ to
phenotype is the sum of additive and dominance
variances, or equivalently the sum of the variance due
to the regression, and the residual variance due to
dominance:

ℓ ℓ ℓ

ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ ℓ ℓ

ℓ ℓ ℓ ℓ ℓ

G a μ p

d μ p p a μ p

p p a p d

p p d v v

var( ) = (− − ) (1 − )

+ ( − ) 2 (1 − ) + ( − )

= 2 (1 − )( + (1 − 2 ) )

+ (2 (1 − ) ) = +

i

g d

2 2

2 2 2

2

2

(4)

(see Crow & Kimura, 1970 pp. 117–119). These variances
sum over the multiple loci contributing to the trait:

∑ ∑
ℓ ℓ ℓ ℓV v V v= , =g g d d . The total phenotypic variance

V y= var( )t i is the sum of additive, dominance, and
environmental variances: V V V V= + +t g d e.

1.2 | Correlations due to relatedness in
a random‐mating population

Beyond the fundamental demonstration that a model of
Mendelian variants maintains genetic variance in a
population, the stated purpose in F18 was to explain
correlations between relatives of different kinds, using
this same model of Mendelian variants with causal
effects. Under random mating, and allowing for dom-
inance Fisher derived the correlations in genetic effects,
using the joint distribution of genotypes at a diallelic
locus in a pair of relatives. He considered first a parent
and offspring, then an ancestor and descendant. He
extended this to any unilateral relationship, where only
one pair of homologous alleles is correlated between the
two individuals. In this case, only the additive component
of genetic variance enters the expression. Finally, he
considered bilateral relatives, such as siblings and
double‐first‐cousins, where the individuals are related
through both parents so there is an additional dimension
of genotypic dependence which involves the dominance
variance. Later in the paper, F18 extended these results to
the case of multiple alleles at a locus.

Finally, in this first part of the paper, Fisher extends
the results to include additive epistatic interactions
between pairs of loci. As he comments. “there is no
biological reason for supposing that the [joint genotypic
effects] should be exactly represented by the deviations
formed by adding [the single‐locus effects].” Interestingly,
he comments that although more complex interactions
may exist, these are unlikely to produce any statistically
detectable effect. The same view has been taken in much
of the more recent literature. On the one hand, biological
systems are often nonlinear, and interest in using
epistasis in models for complex traits or for disease
prediction continues. It is also argued that, even if
epistatic contributions are individually small, the collec-
tive contribution may be large, resulting in heritability
estimates that are higher in closer relatives (Falconer &
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MacKay, 1996). On the other hand, in analyses of data,
estimates of the contribution of epistatic variance to the
total genetic variance are typically small. Mäki‐Tanila
and Hill (2014) show that while multilocus epistatic
effects make substantial contributions to the additive
variance, they do not lead to substantial contributions to
the nonadditive component of genetic variance.

Often trait values are transformed, and adjusted for
covariates, with the goal of improving Normality and
linearity. The height and other human stature measure-
ments considered by Pearson and Lee (1903) and
analyzed by F18 do not require transformation: Adjusted
for sex within a homogeneous population, height has a
close to Normal distribution. Sverdlov and Thompson
(2018) show that complex traits that satisfy certain
conditions in their genetic and environmental compo-
nents can be well represented by a linear genetic model
after appropriate transformation, despite underlying
biological complexity. They determine conditions which
together define a boundary between systems suitable and
unsuitable for linear modeling.

The focus of F18 was on the genetic effects on a
quantitative trait, but in analyses of observed correla-
tions between relatives, the denominator is total
phenotypic variance. Hence a major impact on the
observed correlation is the contribution of the envir-
onment, or in Fisher's words “arbitrary external causes
independent of heredity”. F18 modeled the effect of the
environment as a constant addition Ve to phenotypic
variance, but in reality, closer relatives share not only
more genetic effects but also more of their environ-
ment. For many traits, this is likely to be a major
contribution to the observation that the similarity of
close relatives, as compared with remote relatives, is
greater than can be explained by genetic effects alone.
Additionally, gene–environment interactions are an-
other source of nonlinearity in modeling the observable
value of a quantitative trait.

2 | QUANTITATIVE TRAIT
VARIATION UNDER ASSORTATIVE
MATING

2.1 | Variances and covariances:
Overview

Fisher recognized that under his model the high
correlations sometimes observed for traits such as body
size and height could not be met under the assumption of
random mating, and thus the major focus of his paper is
then on the effects of assortative mating. He stated as
“obvious,” the increase in variance and the gametic phase

disequilibrium (LD) that characterize such a mating
structure, and derived the appropriate equations.

Fisher's paper is notoriously difficult to follow,
although the annotated version of Moran and Smith
(1966) clarifies many points. In F18, Fisher works directly
with the joint genotypic arrays of relatives, which are
significantly simplified by considering gene identity by
descent (IBD). Given the pedigree‐based probabilities
k k k( , , )0 1 2 of relatives sharing 0, 1 or 2 genes IBD
(Cotterman, 1940), Fisher's complicated genotypic prob-
ability arrays for the random‐mating case are easily
derived.

Wright (1921), in an early version of his path analysis
methods, was the first to use IBD probabilities directly in
analyzing quantitative trait variation. In his approach,
only additive effects are considered: Dominance and
epistasis are absent, and environmental effects are
independent. Path analysis leads to much simpler
derivations of Fisher's results for equilibrium correlations
between relatives under assortative mating, but is not a
generative model in the sense of Fisher's explicit gene
effects.

Crow and Felsenstein (1968) use the basic IBD
concept and parameters of Wright (1921) to rederive
Fisher's results. However, their variance components are,
as for Fisher, explicit functions of additive effects and
dominance deviations for genetic variants at multiple
loci. In this paper, hereafter denoted CF68, rather than
considering genotypic arrays, they study the allelic
correlations between homologous genes within indivi-
duals and between mates, and between nonhomologous
genes on a single haplotype, on the two haplotypes
within an individual, and on haplotypes in mates. CF68
consider first the case where the trait is the additive result
of effects at a large number of possibly linked loci, with
multiple alleles, of varying effect, and varying allele
frequencies. Under this model, and assuming positive
assortative mating based on mate phenotypes, they derive
expressions for the increase in phenotypic variance in the
population, for the buildup in LD, and for the increase in
homozygosity. Extending to situations with dominance,
and adding in the effects of environment, CF68 further
confirm Fisher's results that assortative mating increases
additive genetic variance, but not environmental var-
iance. They note that, contrary to the claim of F18 the
dominance variance does increase due to the increase in
homozygosity, but that this effect is minimal when there
are causal variants at many loci.

A very clear exposition that follows the IBD approach
of CF68 is given by Nagylaki (1982), who gives also a
clear introductory summary with very useful references
to the relevant literature at that time. His formulation
is closer to Wright's in that he considers regression
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equations and conditional expectations rather than
specific gene effects, and considers only additive effects
without dominance. He shows that to derive the
equilibrium correlations between relatives, it suffices to
suppose that the regression of individual phenotype on
genotype is linear and that the regression of individual
phenotype on mate phenotype is linear. However, for the
population phenotypic variance, it is also required that
the regression of allelic effects on individual phenotype is
linear. Together, these requirements effectively restrict
distributions of allelic and environmental effects to the
multivariate Normal case. Using conditional expectation
arguments, Nagylaki provides clear derivations of Fish-
er's results for several types of relatives. A particular
point of emphasis made by Nagylaki (1982) is that all the
equilibrium correlations are independent of the genetic
linkage map, as stated by F18 and shown also by CF68.

2.2 | Equilibrium variance and
covariances under assortative mating

We here present some of the main results of F18
following the re‐derivation by CF68, where details may
be found. In a random‐mating population, the total trait
variance may be written as the sum of the genic
(additive), dominance, and environmental variances:

V V V V= + +t g d e

assuming independence of environmental and genetic
factors. As argued by F18, assortative mating will
increase Vg, but, with a large number of contributing
causal variants, the effect on Vd is negligible. Eventually,
after many generations of assortative mating, the
population reaches an equilibrium. Denoting this popu-
lation at equilibrium under assortative mating by EAM,
the corresponding variances are σg

2, σd
2, and σe

2, and the
total phenotypic variance in the EAM is

σ σ σ σ= + + .t g d e
2 2 2 2 (5)

Here ≈σ Vd d
2 and σ V=e e

2 , but we use the notation σ2 to
distinguish more clearly the equilibrium under assorta-
tive mating from the initial random‐mating population.

For the EAM population, the narrow‐sense (additive/
genic) heritability is ∕h σ σ= g t

2 2 2, and the broad‐sense
(genetic/genotypic) heritability is ∕H σ σ σ= ( + )g d t

2 2 2 2.
Focusing on direct assortative mating for phenotype,
suppose the correlation between mates is ρm. Then the
correlation in genotypic trait contributions between
mates is ρ Hm

2 and between their genic values is
A ρ h= m

2. Note that the A of F18 is the Â of CF68, and

that, in contrast to F18 and CF68, we work in terms of
heritability in the EAM population. As assortative mating
proceeds, there is a buildup in gametic phase LD, and an
increase in trait variance. At equilibrium,
≈ ∕ ∕σ V ρ h V A(1 − ) = (1 − )g g m g

2 2 (Wright, 1921). As-
suming σ V=d d

2 and σ V=e e
2 , the total phenotypic

variance increases:

≈

∕

σ σ σ σ σ V V

V A A V V Aσ

= + + + ( − )

= ( (1 − )) + = +

t g d e g t g

g t t g

2 2 2 2 2

2

CF68 rederive Fisher's formulae for correlations
between pairs in a variety of pedigree relationships, both
unilateral and bilateral. Because of the direct phenotypic
correlation ρm between mates, an individual who deviates
by a unit amount from the mean will have a mate who
deviates (on average) by an amount ρm. The mean
parental phenotypic deviation is ρ(1 + )m

1

2
. The mean

deviation of genic values in the offspring is thus
h ρ(1 + )m

1

2
2 and this is then also the phenotypic

correlation ρp between parent and offspring:

ρ h ρ=
1

2
(1 + ).p m

2 (6)

The mean deviation of the genic value of the offspring's
mate is then h ρ A(1 + )m

1

2
2 , so the mean for this couple is

h ρ A(1 + ) (1 + )m
1

2
2 1

2
, and this is also the mean deviation

for their offspring. That is, the correlation between
grandparent and grandchild is h ρ A( ) (1 + )(1 + )m

1

2
2 2 .

Likewise, each additional generation, with a correlation
A between the genic values of mates, given an inflation

A(1 + ) over the random‐mating Mendelian 1

2
. The

correlation between an individual and nth generation
descendant is h ρ A( (1 + ))( (1 + ))m

n1

2
2 1

2
−1. As F18 notes,

the relative effect of assortative mating increases for more
distant relatives.

Considering only the additive effects, each relevant
mating in a collateral relationship gives also an inflation

A(1 + ) over the random‐mating formula. For example,
for an aunt–niece pair there are two relevant matings,
and the correlation is h A(1 + )

1

4
2 2. However, unlike in

the random‐mating case, the dominance contribution
∕D σ σ= d t

2 2 also enters into the formulae, because
assortative mating reduces the variance within a sibship
in a way that affects more distant collateral relatives.
Accepting F18 that the dominance variance is little
affected by assortative mating, the correlation ρs between
sibs is

∕ ∕ ∕ρ D h A H h A= 4 + (1 + ) 2 = (1 4)( + (1 + 2 ))s
2 2 2

(7)
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because H D h= +2 2. (The first form is that given by
CF68 while F18 uses the latter.) This transmits to the
aunt–niece pair as ∕h A(1 + ) + DA 4

1

4
2 2 , and to (uni-

lateral) first cousins as ∕h A(1 + ) + DA 16
1

8
2 3 2 . Bilateral

relatives such as double‐first‐cousins provide not only
terms in D, but also additional terms in A even if D = 0.
Nagylaki (1982) also considers other examples such as
step‐parents and step‐sibs, who are have no common
ancestors, but whose phenotypes are correlated through
the mating correlations of parents.

2.3 | The inheritance of height

In this paper, we use height to trace history of application
of quantitative genetic theory. Height is one of the most
studied human quantitative traits, and has been the
canonical example of a quantitative genetic trait from
Pearson and Lee (1903) to Lello et al. (2018). It is easily
measured, and is probably a trait for which a model of a
very large number of contributing loci each of very small
effect is most applicable. Within a homogeneous popula-
tion, and adjusted for age and sex, it has a Normal
distribution. However, it is also subject to substantial
environmental effects, apparent population differences,
and assortative mating within populations.

F18 used the data of Pearson and Lee (1903) to
exemplify his theory. Based on these data, he gives values
ρ = 0.2804m and ρ = 0.5066p , for the phenotypic correla-
tion ρm between mates and ρp between parent and
offspring. From Equation (6),

∕ρ ρ h= (1 2)(1 + ) ,p m
2

where ∕h σ σ= g t
2 2 2 is the (narrow‐sense) heritability in the

equilibrium population. This provides an estimated
h = 0.79132 . The correlation in additive genetic values
of mates, A ρ h= m

2, is estimated as 0.2219.
The observed correlation between siblings reported by

Fisher (1918) is ρ = 0.5433s . So from Equation (7) the
proportion of total variance due to genetic factors is
estimated as

H = 4 × 0.5433 − 0.7913(1 + 2 × 0.2219) = 1.03.2

Because ≈H 12 , this indicates that the proportion of total
variance due to genetic effects is essentially 100%. Fisher
concluded that height is minimally affected by environ-
mental effects shared and not shared by relatives.
However, as noted by CF68 this assumes that environ-
mental correlations for sibs are no greater than for parent
and offspring. This is unlikely to be true, and shared
environment may play a greater role, and dominance a

lesser one, than Fisher concluded.
Following CF68 we have also an analysis of the

variance in height for the EAM population, based on
these data. In terms of the values in a random‐mating
population. We have V σ A= (1 − )g g

2 and V σ Aσ= −t t g
2 2.

Thus the heritability in the random‐mating population
would be

V

V

σ A

σ Aσ

h A

Ah
=

(1 − )

( − )
=

(1 − )

(1 − )

g

t

g

t g

2

2 2

2

2

Assortative mating has increased additive genetic var-
iance by a factor ∕ A1 (1 − ) = 1.285. The heritability in
the random‐mating population would be 0.747, rather
than the 0.791 observed in the EAM population. Then
also V σ Ah σ= (1 − ) = 0.824t t t

2 2 2. The total variance is
increased by a factor ∕1 0.824 = 1.21.

2.4 | Assortment due to population
structure

Also established in the early population genetics litera-
ture is that genetic differences across subpopulations
cause an increased genotypic variance, increased homo-
zygosity, and LD relative to a random‐mating homo-
geneous population (Wahlund, 1928). CF68 draw
analogies between phenotypic assortative mating and
inbreeding, whether due to population subdivision or
consanguineous marriages. Gimelfarb (1981) shows that
not only does assortative mating affect correlations
between relatives, but that it also itself affects the
frequencies of certain types of consanguineous marriages.
Relative to inbreeding, assortative mating for a trait with
multiple contributing variants causes a smaller increase
in homozygosity but a larger increase in phenotypic
variance. Inbreeding per se does not cause a systematic
change in haplotype frequencies, unlike assortative
mating which creates associations favoring haplotypes
contributing to extreme trait values. Of course, while
inbreeding affects the genotypic structure at all segregat-
ing loci, at equilibrium under assortative mating only
causal loci are affected. However, for a trait such as
height, this difference is moot.

In general, there are many potential causes of
apparent assortative mating as evidenced by a positive
correlation between the trait values of mates. The
environment may produce effects on traits that are
subject to assortment, while shared environment
throughout marriage can also result in correlations
between mates. Assortment may not be directly on the
trait phenotype of interest, but on an associated trait, and
F18 comments that if the assortment is not directly on the
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phenotype, the association will appear “somewhat
masked by environmental effects in the observed [mate]
correlation.” Population subdivision itself creates appar-
ent assortative mating, in that individuals within
subdivisions are more genetically similar than individuals
in different subdivisions. In this case, the causes of
correlations between mates are more directly related to
allelic or genotypic values than to phenotype.

In fact, F18 develops three “theories” of assortative
mating, corresponding to assortment on the basis of
phenotype, on the basis of genotypic values, and on the
basis of the genic (additive genetic) values ℓ ℓμ β x+ i of
Equation (2). Under the three cases, the correlations in
phenotypic, genotypic, and genic values of mates,
required to produce an observable mate phenotypic
correlation ρm are, respectively, ∕ρ ρ H,m m

2, and ∕ρ hm
2.

Here again ∕h σ σ= g t
2 2 2 is the narrow‐sense heritability at

equilibrium in the assortative mating population, and
∕H σ σ σ= ( + )g d t

2 2 2 2. The correlations between relatives
differ in the three cases. As derived by F18, the parent–
offspring correlations are respectively:

∕ ∕ ∕ ∕h ρ h ρ H h ρ(1 + ) 2, (1 + ) 2 and ( + ) 2m m m
2 2 2 2

F18 comments that the third case leads to “results in
some respects more intelligible and in accordance with
existing knowledge.” In this case, using again the same
data as before, ρ ρ= 0.2804, = 0.5066m p , F18 calculates
h ρ ρ= (2 − ) = 0.7328p m
2 , ∕A ρ h= = 0.3826m

2 , and
∕A(1 + ) 2 = 0.691. The sib correlation is again given by

Equation (7), but in terms of ρp and ρm this now takes the
form

∕ρ H ρ ρ ρ

H ρ ρ ρ

= (1 4)( + ((2 − ) + 2 )

= 4 − 2 −

s p m m

s o m

2

2

Substituting ρ = 0.5433s and the other two correlations as
before, H = 0.87962 . The value of broad‐sense heritability
is reduced from the earlier value of 100% but is still high,
leaving only a small portion for the environment.

Even in the classic data of Pearson and Lee (1903), the
effects of population subdivision and differential envir-
onments were probably greater than Fisher realized.
Cultural and socioeconomic differences, resulting in
differences in childhood nutrition, have a significant
impact on traits such as height (Cole, 2003). In current
large‐scale studies of heterogeneous populations, the
differences are likely no less. Unless population structure
is corrected for, genetic and environmental differentia-
tion will contribute to apparent high correlations
between closer relatives as compared with their more
distant kin.

3 | FROM GENETIC MARKERS
TO GENOME ‐WIDE SNPs

3.1 | Variance component models for
heritability

From F18 onwards, correlations between relatives have
informed heritability studies. However, the goals and
methods for the analysis of quantitative genetic traits
diverged between human genetic studies and livestock
breeding and agriculture. In animal and plant breeding,
the primary goal of heritability studies was to assess
selection potential and to design optimal selection
programs. The variance component and path analysis
approaches initiated by Wright (1921) were widely used
from Kempthorne (1957) to Falconer and MacKay (1996).

In human genetics also, correlations between relatives
were used to estimate the components of genetic
variation and the relative contributions of genes and
environment. However, in natural populations, environ-
mental effects are harder to control or measure. Twin
studies offered a way forward (Hopper, Foley, White, &
Pollaers, 2013), and have been widely used especially in
behavioral genetics (Plomin, DeFries, Knopik, & Neider-
hiser, 2014). In the absence of other relatives, or of twins
reared apart, a necessary assumption is that the effect of
the shared environment is the same for dizygous (DZ)
and monozygous (MZ) twin pairs. With more types of
relatives available, more components are identifiable,
but, for example, if the only bilateral relatives in the
sample are sibs, dominance variance cannot be distin-
guished from the shared sib environment. Hopper (1993)
gives a thorough discussion of both of the flexibility and
limitations of these models as applied in medical genetic
studies, while Wang, Guo, He, and Zhang (2011) have
given a more recent analysis of both identifiability of
effects and the properties of likelihood‐based statistics
that are used to test for effects.

A pedigree provides a variety of relationship types,
and Lange, Westlake, and Spence (1976) first developed
methods for likelihood‐based segregation analysis of data
on small pedigrees using variance component models.
Across individuals, the trait data are multivariate
Normal, so that these models can be applied to data on
large and complex pedigrees, and it is also possible to fit
models of shared environment and allow covariances to
depend on measured covariate factors (Hopper, 1993).
However, here we consider only additive genetic effects.
In this case, following the notation of Section 2.2, the
total phenotypic variance is σt

2, the additive genetic
(heritable) variance is σg

2, and ∕h σ σ= g t
2 2 2. The environ-

mental contribution to variance σe
2 is often assumed

uncorrelated between individuals. Then, disregarding
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inbreeding and shared environment, under the simple
additive model, and on a known pedigree, the variance of
the vector of trait values on a set of N relatives is

Φσ σ σ Φh hI I2 + = (2 + (1 − ) ),g e t
2 2 2 2 2 (8)

where Φ2 is the matrix of pedigree‐based expected
pairwise genome‐wide IBD proportions.

For Normal data with the covariance structure (8), the
expected log‐likelihood is most conveniently analyzed
through the eigenvalues λ N, 1 = 1, …i of Φ2 . This was
used by Thompson and Shaw (1990) to develop an EM
algorithm for the estimation of h2. More recently,
Blangero et al. (2012) have used the same approach to
give the noncentrality of the χ1

2 test statistic for testing for

nonzero h2 as ∑ h λ− log(1 + ( − 1))
N

i1
2 . Raffa and

Thompson (2016) have given more general results
enabling confidence interval estimates for h2 by inverting
the χ1

2 test statistic for testing a hypothesized null value
h0
2. They approximate the noncentrality parameter for the
χ1
2 test statistic in terms of the variance of the log‐

eigenvalues of Φ2 . If the geometric mean ν of the
eigenvalues is close to 1, their approximation can be
simplified to

∑ λ ν h h
1

2
(log( ) − log( )) ( − ) .

i

N

i

=1

2 2
0
2 2 (9)

Hence accuracy of estimation of h2 is very sensitive to
multiple small eigenvalues of Φ2 , for which the absolute
values of λlog( )i are large.

3.2 | Mapping quantitative trait loci

In human genetics, once a trait was shown to have a
genetic component, a goal was often to use linkage
studies to map the quantitative trait loci (QTL) q at which
there are variants of major effect. One approach to the
mapping of these QTL is to relate the estimated
probabilities of IBD at specific marker loci j to
correlations or differences in trait values of relatives.
Haseman and Elston (1972) regressed the squared
difference between sib phenotypes on the proportion of
marker alleles shared IBD at a marker locus. Under an
additive genetic model, the expectation of the slope of the
regression line is

θ σ− 2(1 − 2 ) ,qj q
2 2 (10)

where θqj is the recombination fraction between marker
locus j and trait locus q, and σq

2 is the additive genetic
variance attributable to variants at the trait locus q. An

important feature of the Haseman‐Elston approach is
that, by modeling a statistic quadratic in the phenotypic
values, the variance σq

2 becomes embedded in the
regression coefficient (10), a mean measure, rather than
in the covariance matrix (for example, Equation (8)).
There have been many newer versions of Haseman‐
Elston regression over the years, to increase power or to
deal with ascertainment (Sinha & Gray‐McGuire, 2007;
Wang & Elston, 2004), but we do not pursue these here.

With the advent of genome‐wide genetic marker maps
in the 1980s and 1990s, methods of pedigree‐based
mapping advanced, but only with the methods of Almasy
and Blangero (May 1998) did the explicit QTL effects of
F18 and the variance model of Wright (1921) become
fully combined in the human gene mapping literature.
Their models allow for not only additive and dominance
effects, but also interactions, and other variance compo-
nents such as those due to shared environment. However,
in practice, analysis is usually restricted to local and
genome‐wide additive effects. Equation (8) for the
covariance matrix for the vector of trait observations
now includes also a locus‐specific term. On a set of
relatives, the covariance matrix for their trait values
becomes

∑ Π σ Φσ σI+ 2 + ,
q

Q

q q g e

=1

2 2 2 (11)

whereΠq is the matrix of estimated pairwise proportions
of IBD at locus q with additive genetic variance
contribution σq

2, and the remaining terms of the
covariance are as in Equation (8). Since trait values are
directly modeled, in (11) σq

2 enters into the covariance
matrix, rather than into the regression coefficient of (10).
As genetic marker data became increasingly available,
the estimatesΠq were also readily obtained, for example
by use of programs such as Merlin (Abecasis, Cherny,
Cookson, & Cardon, 2002).

3.3 | Finding Fisher's causal variants
with genome‐wide association studies

As it became possible to identify increasing millions of
single‐nucleotide polymorphisms (SNPs) in human gen-
omes, it became possible, in theory, to identify the
multiple causal variants postulated by F18, or at least
variants that are in strong association (LD) with causal
variants. This is the goal of genome‐wide association
studies (GWAS). The basic GWAS approach takes no
account of either relationships between sample members,
nor among loci across the genome. Each SNP is tested for
association with a phenotype of interest.
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Considering only the effect on phenotype yi of variants
at a single locus ℓ, and in the absence of dominance, the
model of F18 in Equations (1) and (2), becomes

ℓ ℓ ℓy G e μ β x e= + = + + ,i i i i i (12)

where ℓGi is the genetic effect at locus ℓ in individual i,
and ei is an independent environmental effect,

e σvar( ) =i e
2. The variance of xil is p p2 (1 − )l l , so under

the fitted linear model the regression slope estimate is
Normal with mean ℓβ and variance ∕ ℓ ℓσ Np p(2 (1 − ))e

2 . In
testing the null hypothesis of zero effect at locus ℓ the
noncentrality of the χ1

2 statistic is

∕ ∕ ≈ ∕

∕

ℓ ℓ ℓ ℓ ℓ ℓ

ℓ ℓ

Np p β σ Nσ σ Nσ σ σ

Nh h

2 (1 − ) = ( − )

= (1 − ).

e e t
2 2 2 2 2 2 2

2 2 (13)

because ℓ ℓ ℓ ℓσ p p β= 2 (1 − )2 2 (Equation (4)). Because we
disregard dominance, the total phenotypic variance of
Equation (5) is ≈ ℓσ σ σ+t e

2 2 2, and heritability
∕ℓ ℓh σ σ= t

2 2 2. In a GWAS study for a trait such as height,
the genetic variance attributable to any one QTL will be
small, so then ≈ℓh(1 − ) 12 , and (13) becomes ℓNh2.

If the marker j tested is not itself the QTL ℓ but is in
association with it, the power to detect the QTL is
reduced, as in Equation (10). In the context of LD and
population samples, the linkage term θ(1 − 2 )qj 2 of (10) is
replaced by the LD measure of allelic association ℓr j

2

between the QTL ℓ and marker locus j. The expected
regression slope in regressing phenotype on marker j is

ℓ ℓr βj . The proportion of phenotypic variance explained by
the SNP marker j is ℓ ℓr hj

2 2, so the noncentrality of the χ1
2

test statistic becomes ℓ ℓNh r j
2 2 (Chen, 2014). As in the

comparison of Equations (10) and (11), there is a key
difference between the regression of Haseman and Elston
(1972) and the GWAS regression (12). The first models
squared phenotypic differences so that σq

2 enters into the
expectation of the regression coefficient (10), while (12)
models phenotype so that σl

2 enters the standard
deviation of the regression coefficient and the noncen-
trality (13) of the χ1

2 distribution. Chen (2014) provides a
much fuller exposition and comparison.

Early GWAS suffered from small sample sizes and
inadequate power. Larger ones, using data from multiple
or inhomogeneous populations, suffer from genetic
heterogeneity. In both case, the testing of large numbers
of SNPs causes problems of multiple testing. Determining
an appropriate level of genome‐wide significance and
methods of genomic control to account for population
heterogeneity were much‐discussed issues (Devlin &
Roeder, 1999). There is, of course, a huge literature in
this area, but that is not the topic here. While many

significant and replicable associations were detected by
GWAS, the proportion of trait heritability accounted for
by these genes was often very low (Manolio et al., 2009).

Low GWAS‐based estimates of heritability are parti-
cularly apparent for human height. Although the analysis
of F18 may overestimate heritability, other studies of
close relatives have also provided estimates of the order
of 80%. Even allowing for inflation by effects of shared
environment or epigenetic factors that also contribute to
correlations in close relatives, this is far higher than
detected GWAS effects can account for. Lango et al.
(2012) undertook a meta‐analysis of 46 earlier studies,
with a combined total of data on over 183,000 individuals.
Their approach selected SNPs representing 180 loci each
showing a robust significant signal of association with
human height. In their analysis, these SNPs explain only
10% of the phenotypic variation in height, while they
estimate that unidentified common variants of similar
effect size would increase this to 16%. However, this
would still be only 20% of the presumed heritable
variation. The larger more recent meta‐analysis of Yengo
et al. (2018) of 700,000 individuals finds almost 3,300
“near‐independent” SNP variants with statistically sig-
nificant effects on height. However, these GWAS SNPs
still explain less than 25% of the phenotypic variance in
an independent sample of similar ethnicity.

4 | FROM GENETIC MAPS TO
GENOMES

4.1 | Realized relatedness

As denser marker data became increasingly available, it
became possible to estimate proportions of genome
shared IBD both at specific hypothesized causal loci,
and also genome‐wide. While pedigree relationships
provide location‐specific probabilities and genome‐wide
expectations, meiosis is highly variable and human
genomes are short (Thompson, 2013), so that realized
proportions of genome shared IBD by relatives will differ
from pedigree expectations. Genetic marker data can be
used to estimate IBD either in conjunction with the
pedigree relationship, or in the absence of any known
relationships. In an analysis of the heritability of height
from sib‐pair data, Visscher et al. (2006) proposed
replacing pedigree‐based kinship coefficients with an
estimate of the realized proportions of genome shared
IBD, potentially gaining information from the variation
in IBD across sib pairs.

In the animal‐breeding area, versions of the genomic
relatedness matrix or (GRM) have been widely used for
breeding value prediction replacing the pedigree‐based
matrix of Equations (8) and (11) (Hayes, Visscher, &
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Goddard, 2009; van Raden, 2008). The GRM measures
the pairwise genotypic similarity between individuals.
Given genotype data at M SNPs, and population
reference allele frequencies ℓp , (ℓ M= 1,…, ), let ℓxi be
the allelic dosage (0, 1 or 2 copies) of the reference SNP
allele for individual i at locus ℓ. Then the expectation of

ℓxi is ℓp2 and, in the absence of inbreeding and under
random mating, the variance is ℓ ℓp p2 (1 − 2 ). The general
GRM form is

∑ ∑
ℓ

ℓ
ℓ ℓ ℓ ℓ

ℓ ℓ ℓ

ℓ ℓ ℓw
x p x p

p p
w S SΩ =

( − 2 )( − 2 )

2 (1 − )
= ,ik

M
i k

M

i k

=1 =1

(14)

where ℓw are a set of nonnegative weights summing to 1,
and ∕ℓ ℓ ℓ ℓ ℓS x p p p= ( − 2 ) 2 (1 − 2 )i i is the standardized
genotype of individual i at locus ℓ.

In an infinite idealized population, the expected value
of ℓ ℓS Si k is Φ2 ik, so any weights ℓw in (14) provide an
unbiased estimate of relatedness relative to the current
population. While the most usual form has ∕ℓw M= 1 for
all ℓ, other forms have been used for robustness against
extreme ℓp ‐values (van Raden, 2008), for greater statis-
tical efficiency, and/or to accommodate LD (Speed,
Hemani, Johnson, & Balding, 2012; Wang, Sverdlov, &
Thompson, 2017). Methods to estimate location‐specific
IBD probabilities between individuals from population
data have also been established (Brown, Glazner, Zheng,
& Thompson, 2012). If local IBD is estimated across the
genome, then clearly a genome‐wide estimate also
follows. Wang et al. (2017) compare the results of several
approaches to the estimation of genome‐wide relatedness
in the absence of pedigree information.

4.2 | Using all SNPs: Total additive
genetic variance

Trait‐associated SNPs identified by GWAS (Section 3.3)
usually explain only a small fraction of heritable
variation. Variants that are either rare or of small effect
will not be identified. In their development of the GCTA
approach, Yang, Lee, Goddard, and Visscher (2011) use
large population samples of individuals each genotyped
at a large number of SNPs, genome‐wide. To accom-
modate all SNPs, a random effects model is used, with
each SNP's additive effect ℓa having mean 0 and variance
σ2. The model is the linear mixed model for the
phenotype vector y :

γ

σ σ

y Z Sa e

y SS I

= + +

var( ) = ′ + ,e
2 2 (15)

where S is the N M× matrix of ℓS( )i in (14) and γ is a set
of fixed effects coded in Z, such as age, sex, or
components of population structure.

Then from Equation (14) with ∕ℓw M= 1 for all ℓ,
∕MSSΩ = ′ and the total variance explained by all SNPs

is σ Mσ=g
2 2, so that (15) becomes

σ σy Ivar( ) = Ω + .g e
2 2

The model is then directly analogous to the classical
pedigree‐based quantitative trait analysis (eEquation (8)),
and can be fit using REML methods (Falconer & MacKay,
1996). The only difference is that the pedigree‐based
matrix Φ2 is replaced by the marker‐based estimate Ω.
The form ofΩ as an average over SNPs ℓ, allows the SNPs
to be subdivided. Thus the total genetic variance σg

2 may
be partitioned into the contributions from different
regions of the genome, simply by partitioning Ω. For
example, the heritable variance may be partitioned by
chromosome (Yang et al., 2011) or by functionally
defined categories of SNPs (Gusev et al., 2014).

In the GCTA approach, Ω is regarded as the realized
relatedness in a population sample of remotely related
individuals. The model in principle admits the use of
close relatives, but these would dominate the phenotypic
correlations, and would be more subject to effects of
shared environment which are not included in the model.
Whether the pedigree relatedness (Equation (11)) or the
GRM (Equation (15)) is used to model the covariances,
any additive effects shared by close relatives will
contribute to the estimate of heritability. In practice,
therefore, the method is applied to large population
samples of N individuals not known to be related. While
GCTA aims to exploit the structure of remote relatedness
within a population, it must also guard against hetero-
geneity among subpopulations. Typically, therefore,
several leading eigenvectors of a Principal Components
Analysis (PCA) of the genotypic variation are included in
the fixed effects γ (Yang et al., 2011).

Using a variance matrix based on 294,831 SNPs in 3,925
remotely related individuals, Yang et al. (2010) explain 45%
of the phenotypic variance in height, so some heritability
remains “missing.” Yang et al. (2010) suggest that the
remaining heritability is due to incomplete linkage
disequilibrium between causal variants and genotyped
SNPs, including multiple rare alleles of small effect.
However, there are many other possible causes of low
levels of correlation between remote relatives as compared
with the parent–offspring, fraternal, avuncular, and cousin
relationships of F18 and pedigree studies. In addition to
shared environment and other familial effects, potential
genetic causes include epistasis between causal variants
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(Zuk, Hechter, Sunyaev, & Lander, 2012). Increasing the
number of SNPs included in the GRM (14) may not capture
all relevant heritable variation. Even if based on whole‐
genome sequence, it may not capture possible functional
genetic similarities of segments of genome shared by
descent: In remote relatives, such segments are few, but
often quite large (Thompson, 2013). Epigenetic factors and
chromosomal structural variants may also have effects that
decay faster with decreasing relatedness than is predicted
for Mendelian factors.

As numbers of individuals and numbers of SNPs
included in analyses are increased, the issues with PCA
adjustments for population structure in the model (15)
become greater. Conomos, Reiner, Weir, and Thornton
(2016) develop a more flexible approach to consider samples
from individuals with diverse and more complex ancestry,
including admixture. Their adjustment for population and
relatedness structure partitions the genotypic correlations
between individuals into separate components representing
more distant and more recent common ancestry. Hecker-
man et al. (2016) show that including additional random
effects in the model (15) using spatial location as a
surrogate for unmeasured environmental factors reduces
estimates of additive genetic heritability. However, there are
also issues in adjusting for population heterogeneity, since
this heterogeneity may be itself a reflection of population‐
level relatedness between individuals and indistinguishable
from effects of gene–environment interaction.

Increasing the numbers of individuals increases the
number of variants in the sample, including rare variants,
and hence captures more of the genetic variance.
However, it also brings greater heterogeneity of both
genes and environment, and also computational chal-
lenges in the dimension of the matrix Ω. Whether
pedigree‐based (8) or genotype‐based (15), estimates of
heritability are sensitive to the structure of the covariance
matrix. Precision of estimation is dependent on the
eigenvalues of this matrix and especially on the small
eigenvalues (Equation (9)). As the number of individuals
becomes large, the eigenvalues of the GRM will typically
have a highly skewed distribution, with many small
values Kumar, Feldman, Rehkopf, and Tuljapurkar
(2016). Uncertainties in the estimation of these eigenva-
lues leads to uncertainty in the resulting estimates of h2.

4.3 | Using all SNPs: LD‐score
regression

The method of LD‐score regression (Bulik‐Sullivan, Loh,
Finucane, Ripke, & Yang, 2015) takes a different approach to
estimate the total additive genetic variance σg

2 or
∕h σ σ= g t

2 2 2, using genotype data for large numbers of SNPs

in a large number of individuals. The method does not
require individual phenotypes, but instead uses the values of
the GWAS χ1

2 test statistics testing for an effect of each SNP
variant (Equation (13)). The method also does not require
inversion or even computation of the realized relatedness
matrix Ω (Equation (14)). As population sample size N and
numbers of SNPs M become ever larger this is a significant
computational advantage. The model for the vector of
phenotypic observations y on the observed individuals is
the original model of F18 (Equations (1) and (2)):

βy S e= + , (16)

where again S is the N M× matrix of ℓS( )i , the
standardized genotype of individual i at SNP marker ℓ
(Equation (14)). The phenotypic values are also standar-
dized: The elements yi have mean 0 and variance 1. The
terms βS, , and e in (16) are all considered random, with
mean 0. The variance of e is h I(1 − )2 (Equation (8)). The
total heritable variance explained by M SNPs is h2 so the
variance of β is ∕h M I( )2 .

In LD‐score regression, the view of S is orthogonal to
that of GCTA, in that ℓSi are considered independent over
individuals i, but the dependence of ℓSi among SNPs ℓ is at
the core of the approach. The LD correlation measure ℓr j is
the expected value of ℓS Si ij, and the LD‐score of variant ℓ is
defined as ∑ℓ ℓL r=

j

M
j=1
2 . The regression slope estimate is

∕ℓ ℓb N S y= (1 ) ′ , where ℓS is the N × 1 vector of elements

ℓSi . With the centered variables, the expected value of ℓb is
0, and the expected value of the GWAS test statistic for SNP
ℓ is ℓN bvar( ). Given S, the expected value of ℓb is again 0 so
that the variance of ℓb becomes the expected conditional
variance give S. Then as shown in Bulik‐Sullivan et al.
(2015) (Supporting Information Note),

∣ ∣ ∣

∕

∕

ℓ ℓ ℓ ℓ

ℓ ℓ

ℓ ℓ

N b S S y S y S

S h M SS h S

h M S S S S N h

S Svar( ) = var( ′ ) = ′ var( )

= ′ (( ) ′ + (1 − ))

= ( )( ′ )′( ′ ) + (1 − ).

2

2 2

2 2

The M × 1 vector ℓS S( ′ ) has components
∑ℓ ℓNr S Sˆ =j i

N
ij i=1

, where ℓr̂ j is the genotypic LD correla-
tion between loci ℓ and j. Then

∑∣ ∕ℓ ℓN b S Nh M r hvar( ) = ( ) ˆ + (1 − ).
j

M

j
2

=1

2 2

Note that just as Equation (16) is a multivariate form of
Equations (2) and (12), this variance derivation is a
multivariate form of Equation (13).

The sample squared correlation ℓr̂ j
2 will overestimate

the population ℓr j
2 : ≈ ∕ℓ ℓ ℓr r r NE(ˆ ) + (1 − )j j j

2 2 2 . Summing
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over SNPs j, we obtain the expected GWAS test statistic
for effects at locus ℓ:

∣ ∕ ∕

∕

ℓ ℓ

ℓ

N b S Nh M L M N h

Nh M L

E(var( )) = ( )( + ) + (1 − )

= ( ) + 1

2 2

2 (17)

In practice the summation over SNPs j in computing ℓL

is restricted to M SNPs within (say) 1 cM of SNP ℓ. It is
assumed that beyond this range any sample LD is the
result of sampling variation, population heterogeneity, or
factors such as selection.

As for the original GWAS analyses, population
heterogeneity inflates the expected value of the χ1

2 test
statistic. Heterogeneity adds a term which depends on
both the phenotypic and the allelic frequency differences
among subpopulations, but the term ∕Nh L M( )j

2 in (17)
remains unchanged (Bulik‐Sullivan et al., 2015). Thus
regressing GWAS summary test statistics on LD scores
provides an estimate of h2 that is robust to population
structure.

As for GCTA, partitioning of heritability by functional
annotation is possible using a stratified version of LD‐
score regression (Finucane et al., 2015). In this case, the
partitioning of SNPs is within the LD‐score ℓL . The term
∕ ∑ ℓh M r( )

j j
2 2 is replaced by ∑ ∑

∈ ℓτ r
C C j C j

2 , where τC is
the per‐SNP heritability in category C. Rather than a
regression on ℓL to estimate the single h2, there is then a
multiple regression of the the GWAS χ1

2 test statistics on
the∑

∈ ℓrj C j
2 for categories C.

The method of LD‐score regression produces higher
estimates of heritability than earlier analyses using only
GWAS SNPs that meet genome‐wide significance, but
still less than those of the variance component methods.
Evans et al. (2018) provides an overview of many current
methods for estimation of h2, and comparisons of
performance under different types of genotypic data,
different causal variant frequencies, and different popu-
lation structure models. These are of interest, but the
focus here is the continuing difference of perspective
between Fisher's models of effects (including LD effects)
associated with individual genetic variants, as compared
with Wright's variance component approach in which
these are subsumed.

4.4 | IBD, state, or function?

Whether phrased in terms of genic effects of multiple
variants as in F18 or via the path coefficients of Wright
(1921), the idea of an underlying population in which
alleles descend to relatives, thereby creating genotypic
and phenotypic correlations is fundamental to almost all
methods of genetic analysis of quantitative traits. For

defined relationships, or within a defined pedigree, this
model is explicit in the assumed pedigree or relationship
structure.

With recent population‐based methods, in the absence
of a defined pedigree, the interpretation of models of
phenotypic variation are less clear. While the GRM Ω may
be considered an estimate of the relatedness by descent
relative to the current population, it is in fact simply a
measure of genotypic or allelic correlation. Powell, Visscher,
and Goddard (2010) propose that, rather than considering
IBD relative to some past time‐point, IBD should be defined
via these correlations in allelic type between gametes or
between individuals. Nonetheless, these correlations are
still viewed as deriving from the within‐population
structure of descent from common ancestors to descen-
dants. More recent discussions of the relationship between
IBD as defined by the ancestral coalescent of genome and
the SNP‐based measured of relatedness based on extant
population data are given by Thompson (2013) and by
Speed and Balding (2015).

In the case of GWAS and related methods, there is no
explicit dependence on a model of gene descent in the
population. However, although the individuals are
considered independent, the LD associations that are
the basis of the methods again arise from descent. In the
case of local LD, variants arising on a given genetic
background remain in association over many genera-
tions, due to the generation‐to‐generation descent of
genome in very large blocks. GWAS methods are based
on this local LD between causal variants and SNP
genotypes. Differentiation among populations results in
long‐range LD, which must be accounted for. The
method of LD‐score regression uses only local SNPs in
computing an LD score, because, as for the GWAS
statistics that it uses, it depends on the LD maintained by
the shared descent of variants over many generations.

Only approaches that measure identity by state (IBS),
without modeling the source of this identity, avoid this
population‐dependence. Prediction takes this view, in
that it is not only irrelevant what is the source of genetic
and phenotypic variation, but also whether the predicting
variants are causal. Relatives may show covariance for
many reasons, both genetic and nongenetic. There may
be multiple multi‐allelic associated or linked causal loci,
which may exhibit dominance and epistasis. Addition-
ally, there may be environmental effects, and correlated
environments, gene–environment interaction, population
structure, and epigenetic effects. Nonetheless, a simple
additive model, fit to such a trait, can reflect the
relationship between genic and phenotypic values and
provide effective phenotypic predictions. While the
predictive weights attributed to specific markers may
have little biological relevance, the model may have high
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out‐of‐sample predictive accuracy. This is the approach
taken in the genomic analyses of livestock and developed
by de los Campos, Gianola, and Allison (2010).

Predictive accuracy is assessed by the predictive R2, the
proportion of phenotypic variance explained in the regres-
sion of observed values on the prediction. Heritability
provides an upper bound on predictive R2. As sample size
tends to infinity, the bound is theoretically attainable.
Where, as for height, there are large numbers of genes of
small effect, then the accuracy of predictions from
population samples is low. Samples containing a significant
proportion of close relatives provide much higher whole‐
genome predictive accuracy (Makowsky et al., 2011), just as
they provide much higher estimates of heritability.

Recent developments in prediction methods from
population samples show improved predictive accuracy
(Lello et al., 2018). On a large sample of 453,000 training‐set
individuals, from an initial set of 645,000 SNPs, their final
height predictor contains about 20,000 active SNPs, and
achieves a predictive R2 of about 40%. Because this is close
to the common‐SNP heritability estimate of Yang et al.
(2011), they suggest that their methods bring prediction for
height close to the asymptotic bound, closing the gap
between heritability estimates and predictive accuracy in
large population samples. However, prediction, like GCTA
and LD‐score regression, is population‐dependent. A
predictor assigns no biological interpretation to the effects
of the active SNPs, and out‐of‐sample accuracy provides no
basis for across‐population performance.

Sverdlov and Thompson (2013) develop an alternative
approach that seeks to avoid this population dependence.
Rather than asking: What is the correlation between the
phenotypes in these individuals given they are uncle and
nephew? They ask: What is the correlation between the
phenotypes in these individuals given they both carry this
collection of genetic variants. In this approach of identity by
function, it is the sharing of functional variants that underlies
phenotypic similarity. Unlike the variance component
models, the model is generative in having a joint distribution
of genotypes and effects, given a mutation process for the
creation of variants and a trait model of the phenotypic
contributions of variant effects. In this sense, it reflects
directly back to F18, but the randomness is no longer in the
process of meiosis, but in the effects of particular variants.

5 | SUMMARY: FROM THE PAST
TO THE FUTURE

One hundred years ago, Fisher (1918) postulated that
quantitative phenotypic variation could be explained by
the additive effects of a very large number of Mendelian
factors, each of very small effect. He obtained formulae

for the heritable components of this variation that affect
observable phenotypic correlations between related
individuals. At that time, few genes were known, genetic
linkage was barely established, and there were no genetic
maps. Although Fisher's analysis was general in con-
sidering dominance and epistasis, it was limited by
considering only equilibrium in an idealized infinite
population in which genetic linkage does not affect
results.

An alternate methodology was developed by Wright
(1921), using what would later become his theory of path
coefficients. Fisher's postulated distinct causal variants
are subsumed into a single heritable variance component,
the additive genetic variance. Regression modeling using
Wright's approach was the foundation of much develop-
ment of quantitative genetic modeling in plant and
animal breeding, where the goals were the prediction of
breeding values, estimation of selection potential, and
design of selection programs.

Human statistical genetics took a different route,
using data on related individuals to map Mendelian genes
of large effect. As genetic markers and genetic maps were
developed, so also was QTL mapping in human
pedigrees. Although causal genes were determined for
many disease traits, and some major QTL were mapped,
it was only with the advent of more widely available SNP
data around 2000 that the potential to find Fisher's
postulated causal variants of small effect emerged. GWAS
undertook this challenge, but early GWAS sample sizes
and analysis methods were insufficient for the task. As
numbers of individuals N , and number of markers M
because larger, and as methods to account for population
structure were developed, GWAS had much greater
success. However, the proportion of total heritable
variation that could be explained by SNP variants of
significant effect remained low.

The goal of Fisher (1918) was to show that his
Mendelian model could explain observed phenotypic
correlations for biometric traits in humans. To explain
high sib correlations in height, he developed three
theories of assortative mating in parents: by phenotype,
by genotype, and by genic value, the latter two being
equivalent under a purely additive model. While there is
some assortative mating for height, the apparent high sib
correlations are likely due to shared environmental
effects, as aspect not considered by Fisher. Subsequent
modeling of quantitative traits in related individuals
(whether of humans, plants or animals) have placed
much greater emphasis on environmental effects.

Fisher's third theory, that parental correlations are at
the genic level are more directly relevant today. Popula-
tion substructure inflates phenotypic variance and results
in genotypic correlations in remote relatives. It is these
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genotypic correlations between individuals not known to
be related that are exploited in the GCTA approach (Yang
et al., 2011), although the broader population‐level
structure is accounted for by, for example, PCA adjust-
ments. In contrast to the GCTA approach in which the
focus is on correlations between individuals, the initial
development of GWAS methodology took a different
view. Correlations between individuals are not modeled:
individuals are considered independent. Instead, the LD
correlations between SNP variants resulting from popula-
tion‐level remote ancestry is the focus, and population‐
level structure is a concern addressed, for example, by
methods of genomic control. This view carries over to
methods of LD‐score regression, which uses GWAS
summary statistics, and in which population‐level
structure does not impact the regression slope.

Rather than detecting individual variants, both GCTA
and LD‐score regression share the goal of explaining the
total additive genetic heritability of a quantitative trait. To
do so, they model the combined effects of all SNPs or even
ultimately all variations in the genome sequence. While the
contribution of individual variants will seldom be detect-
able, there are multiple variants within a functional gene;
genes having significant causal effects may be detected.
However, genomes are finite. New variants arise with every
meiosis, most never to achieve polymorphic frequencies. A
variant present in only a single member of the sample
occurs on a single genetic background with reference to
other local variants and is not shared by any other
individual. Populations are also finite. The models of
population genetics relate to probabilities in a hypotheti-
cally infinite population, or to probabilities over the process
of evolution in a population. Evolution happened once only,
all populations are related, and as sample size approaches
population size, even the meaning of many population
parameters becomes unclear. Above all, neither populations
nor genomes are in equilibrium.

For 100 years, the equilibrium, infinite‐population
model of Fisher (1918), with quantitative traits
resulting from an infinite number of variants each of
infinitesimal effect, has been a powerful theoretical
model in the analysis of the total heritable variation in
quantitative traits in many species. However, Fisher's
ultimate goal was the discovery of biological knowledge
by quantitative methods (Fisher, 1948). With not only
the availability of whole‐genome sequence, but also
increasing data on structural variants, epigenetic
factors, and variation in DNA transcription, there
are new opportunities for quantitative analysis of
heritable quantitative variation. Even though quanti-
tative traits can often be represented by a linear
genetic model, at least on a transformed phenotypic
scale (Sverdlov & Thompson, 2018), the underlying

biological system is often highly nonlinear. In addi-
tion to environmental and social effects, trait values of
closer relatives may be more highly correlated for
many biological reasons, The larger segments of DNA
shared IBD by closer relatives may lead to the much
greater similarity of function than the same amount of
sequence identity at a population level. Resolving
these issues remain exciting challenges for the future.
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