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Over the last decade, there have been substativiahees in the identification and
characterization of DNA sequence variants assatiatth individual predisposition to type 1
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and type 2 diabetes. As well as providing insights the molecular, cellular and
physiological mechanisms involved in disease pahegis, these risk variants, when
combined into a polygenic score, capture informratia individual patterns of disease
predisposition that have the potential to influeakeical management. In this review, we
describe the various opportunities that polygeoaras provide: to predict diabetes risk, to
support differential diagnosis, and to understamehptypic and clinical heterogeneity. We
also describe the challenges that will need toveeamme if this potential is to be fully
realized.

SEARCH STRATEGY

The literature referenced in this article was delk¢or inclusion on the basis of the authors’
expertise in this area of research, based on a@érat of publications sourced from
PubMed and other repositories using relevant searafs, including, but not limited to,

“polygenic scores”, “risk scores”, “precision meidie’, “diabetes” and combinations thereof.

ESSENTIAL POINTS

* Over the last decade, there have been major advémoair understanding of the genetic basis of the
most common subtypes of type 1 (T1D) and type Betiss (T2D), with over 500 robust associations
identified.

» Although individual variants typically have onlyr@odest effect on risk, when combined into a
polygenic score, they offer increasing power totegegpinformation on individual patterns of disease
predisposition with the potential to influence aal management.

» The generation of polygenic scores based on ovER&N predisposition can identify individuals with a
high future risk of diabetes who may benefit frargeted interventions.

» The generation of polygenic scores based on ovEt&l risk can identify individuals who may benefit
from early interventions to forestall the risk df[¥, and also supports the identification of thosth fater-
onset diabetes who have an autoimmune etiologyyfimm early recourse to insulin therapy may be
advantageous.

* The generation of partitioned polygenic scores Witiapture aspects of the etiological and clinical
heterogeneity that contributes to variable clinmaicomes in those with T2D has potential to delive
clinical benefit through enhanced capacity to predisease progression, complication risk, andaesp to
pharmacological and behavioral interventions.

» Polygenic scores have predominantly been derivad fyenetic studies performed in European
populations and have suboptimal ability to captigk in individuals of non-European origin.

« Though there are a number of technical and logiktssues to be addressed before the clinicatyutili
of polygenic scores can be fully enumerated, irgirgautilization of polygenic scores within diakete
clinical practice is likely to be an important cooment of efforts to deliver precision medicine fioose
who have, or are at risk of, diabetes.

1. Introduction

Diabetes is already one of the major contributordeath and ill-health globally, and its
prevalence continues to rise. Current projectictisnate almost 500M affected by diabetes
as of 2017 (and almost 700M by 2045), most ofithihie form of type 2 diabetes (T2D) [1].
Escalating rates of T2D speak to the limits of entrstrategies for prevention, whether they
involve lifestyle interventions (for example thrdudietary modification and increased
physical activity) or pharmacotherapy. At the sdime, the burden of disease arising from
the complications of inadequately controlled diakdimanifest as renal failure, vision loss,
amputation, and accelerated vascular disease)ggblithe urgent need for major
improvements regarding both the timely diagnosidiabetes (since much damage is
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initiated whilst the disease is subclinical) and thanagement of those with established
disease.

The condition that we currently label as “type algites” represents a convenient, but
likely suboptimal, construct for the application2df* century medicine. Though individuals
with established T2D have a generalized metabeliartgement (typically associated with
hyperlipidemia, adiposity, disturbed hepatic melishbo and the like), formal diagnosis rests
entirely upon a single metabolic component (glugaseelf the end-result of multiple
metabolic processes. The diagnosis of diabetesndspen numeric thresholds placed within
continuous distributions of (fasting, random ortposndial) glucose and/or glycated
hemoglobin levels. These thresholds were initinged around the observed relationships
between levels of hyperglycemia and the incideriapecific diabetic complications, such as
retinopathy, but they may not be equally discrimimgfor the macrovascular complications
[2]. Crucially, T2D remains effectively a diagnosisexclusion, made after those with
hyperglycemia attributable to more defined causatgluding islet autoimmunity (type 1
diabetes [T1D]), highly penetrant genetic effeetg( maturity onset diabetes of the young
[MODY]) and certain specified exposures (sterosjcreatitis, pregnancy) have been
excluded. Those left with the diagnosis of T2D dasimte considerable heterogeneity with
respect to presentation, clinical course, and respto available therapies, yet clinical
pathways tend to be based around universally-applgorithms that take little, if any,
account of that heterogeneity [3-5].

Human genetics provides a powerful set of appraaédreaddressing some of these
challenges, delivering both an improved understamdi the mechanisms contributing to the
development of diabetes, and opportunities foratlir@nslational benefit [6]. Both common
major subtypes of diabetes (T1D, T2D) are compi@xitifactorial traits: that is, an
individual’s risk of developing either of these daions is influenced by the combination of
genetic variation at multiple sites across the gamaacting in concert with factors within the
external (e.g. nutritional availability, socio-e@onic status) and internal (e.g. microbiome,
metabolic memory) environment [7,8]. Over the pistade, large-scale genetic studies
(typically in the form of genome-wide associatidndies [GWAS]) have identified over 400
distinct genetic signals influencing T2D risk [9jcaover 50 with impact on T1D
predisposition [10]Most of these DNA sequence variants are widelyesharithin and
between populations, in contrast to the more peigdleles that drive some rarer subtypes of
diabetes [11,12]. With the notable exception ofté\ region (which has the major impact
on T1D risk), most of these common variants haug modest effects on individual
predisposition: the biggest effects for T2D modeiliask by no more than 40% per allele and
most have much smaller effects [9,10].

However, in combination, the impact of this vaoatcan be more profound [9,13]. In the
most recent GWAS for T2D, the entire set of asgediaariants so far detected explains
around 20% of the overall variation in disease jgkin Europeans at least (comparable
analyses in non-European populations are limitethbysample sizes available for study).
Estimates of the heritability of T2D vary widely415] around a median of 40%, suggesting
that around half the genetic contribution to theateon in risk can be quantified for each
individual. Estimates of the heritability of T1Deanigher [16] and a greater proportion of
that genetic risk can be captured using existimy@gches. Ongoing efforts to further
characterize the genetic basis of both major s@styyp diabetes — through detecting
significant associations at variants that have pstaetection because they are too rare, or
have small effects — will increase the proportibmdividual genetic predisposition that can
be directly measured.

The steadily expanding list of genetic variantsveeed by these successive waves of
genetic discovery has delivered novel mechanissghts into disease pathophysiology.
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Some of these have led to an understanding of #jermrocesses contributing to disease
risk, such as the role of islet-specific as welinsunological processes with respect to T1D
risk [17,18] or the relative impact of defectsmsulin secretion and action for T2D [19].
Other studies have attempted to dissect the detaitdecular, genomic and physiological
events that mediate risk at individual loci [9,28)-2These efforts can have direct
translational impact, for example through the id@sition of novel therapeutic targets, or
biomarkers that track disease progression.

In this review, however, we focus on a differeniteofrom human genetics to translation,
one that derives estimates of an individual’s mposition to diabetes and its subtypes (in the
form of polygenic scores) from the patterns of wdlial genetic variation at sites known to
influence diabetes predisposition.

2. The concept of polygenic scores

The idea of grouping genetic variants to captueedtygregate genetic risk for a given disease
is not new. An early promise of genetic discovergomplex (polygenic) conditions was to
predict clinical outcomes. It was recognized tiratontrast to classical Mendelian diseases,
where the presence of a specific mutation deta ministic and typically heralded the
eventual onset of disease (contingent on penetfratheegenetic risk for complex,
multifactorial diseases @ obabilistic and most appropriately used as a predictor that
guantified a discrete increment in overall risk][ZPhis is because for complex human traits,
the overwhelming majority of associated geneticardas exert modest effects, and the ability
of any individual variant to influence clinical @aimes is small. The obvious approach is to
sum the effects of risk alleles associated withvargcondition, to generate an aggregate
estimate of genetic risk. This approach was jestifiy the observation that early genetic
associations seemed to work in an additive fashuah, little or no evidence of epistasis.
This concept was pioneered for age-related madelgeneration, the first disease for which
GWAS proved successful [25] and had also been graglom T2D for the three reproducible
genetic associations that had emerged from th&pvAS era [26].

This concept can be easily expanded from the disaana to quantitative traits. Here,
rather than expressing “risk” (which connotes teketérious burden of iliness), the aim is to
capture the overall variance in a trait conferrgdhe set of genetic variants grouped into a
composite score. Examples include circulating keweéla specific metabolite or the inherited
predisposition toward a behavioral pattern, whibeedeleterious connotations ascribed to the
term “risk” no longer apply. In this review, theoeé¢, we favor the use of the termdlygenic
scor€ as a more inclusive general descriptor.

The initial uses of polygenic scores deliberatelyuised on the inclusion of individual
genetic variants for which the evidence for asgariavas robust. This occurred as a “route
correction” to the historical trend whereby thelieoation of candidate gene studies and the
adoption of liberal statistical significance threkls had led to the publication of many
genetic associations which later proved irreprdoleciand likely represented false positive
findings [27]. In the GWAS era, such high-likelirdbwariants had to achieyenome-wide
significance, based on a widely-accepted thresholg<gx10°, established to account for the
estimated 1,000,000 independent tests that exishgroommon variants in the European
genome) [28]. Thus, polygenic scores began to bstoacted through the compilation of
genome-wide significant variants emerging from sgso/e and ever larger GWAS, each
with increased statistical power [29].

In the literature to date, scores which only incogpe variants that are individually
significant (typically weighted to reflect theirsgective effect sizes on the trait of interest),
have often been described as “genetic [risk] s¢psesnetimes in contrast to use of the term
“polygenic scores” to reflect those which buildadditional sub-significant variants.
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However, these terms have been applied incondigtami sometimes interchangeably, and
in this review we take the opportunity to (re)defihese concepts with labels that are easier
to interpret. Because the former are composedridmns at the top or extreme of the
statistical distribution, we propose the temastricted-to-significant polygenic scores

(rsPS). BOX; FIGURE 1)

In T2D, the use of rsPS was pioneered in a sefipaldications in 2008, each of which
constructed an rsPS from the 16-18 T2D risk vasi&nbwn at the time [30-32] and
compared its predictive performance to that ofichihT2D-risk factors. In Framingham
samples, for instance, individuals with a “highP&(score-21, ~11% of the cohort) had 2.6
higher odds of developing T2D, than those withaa/1rsPS (scorel5, ~25% of the
cohort) [31]. We discuss these rsPS studies irldater in this review.

While compiling variants that achieve genome-widmisicance ensures that the variants
included in the score represent real associatiatisdisease, such a stringent threshold
ignores many other variants which, though trulyoasged with the phenotype, have escaped
detection at genome-wide significance due to lichgemple sizes. However, an estimate of
their likely contribution is available in GWAS dats, even if they fail to achieve genome-
wide significance. Therefore, under the assumptan the effects of variants that have no
association with disease will tend to cancel edbkrdoy random fluctuations around the null
distribution, there is an opportunity to extend plodygenic score beyond the set of
individually-significant variants (including poteally, all the variants from the GWAS
dataset) in the expectation that the small cunudagffects of many hundreds or thousands of
truly associated variants can contribute to theall/ecore, and improve power. In practice,
the scores derived in this way do not typicallylue all variants. Typically, the full set of
variants is pruned to selectively remove highlyretated variants:this pruning is combined
with an optimization step that evaluates the distrative performance of different sets of
variants (defined using a range of progressivelyetiberal associatiop-value cutoffs), to
establish which cutoff maximizes the predictivensilg33]. We propose the termglbbal
extended polygenic scoréqgePS) to describe these extended polygenic scive prefer
“global” over “total” in this context, because cemnt approaches do not capture all aspects of
genetic risk: private variants, many structuralais and variants whose effect is modified
by environmental factors are not optimally consadein these analysis.

The use of these global scores has been populagezedtly with the assembly of large
GWAS meta-analyses for multiple traits [13]. Thierrease in content allows for a steeper
and more granular estimation of risk along the gnatdof genetic burden. These scores can
include many tens of thousands, even millions,asiants. For example, one such gePS for
T2D-risk, comprising 7M variants, was able to destaate that, in the UK Biobank,
individuals in the top 3.5% of a T2D gePS (genetdtem and optimized in a subset of
independent UK Biobank sample) had an odds k8i6 when compared to the mean of the
population [13].

The clinical manifestation of disease often refiebie confluence of multiple
pathophysiological processes. In T2D, hyperglyceypécally requires the concomitant
presence of insulin resistance and inadequatedaditunction. Each of these may in turn be
caused by various mechanisms, such as incretifficisncy and/or resistance, fatty acid
accumulation, glucolipotoxicity, diet, inflammatiam the microbiome. To the extent that
endophenotypes which reflect these processes ceapdagred in populations, one can
estimate which of these processes is likely to atedhe T2D impact of each T2D-associated
variant. Once these associations are establisigxtete polygenic scores can be constructed
with variants which share mediation of T2D-riskaihgh a specific intermediary process. For
example, early efforts to group variants in thishian revealed that one of the processes
contributing to T2D risk involves insulin resistanihat is characterized by lower levels of

6102 AN ¥z uo Jesn 0y 252z 18 Aq G255£55/88000-610Z 48/0 L2101 /I0PA0BIISAE-S]OIE-80UBADE/AIPS/WOD"dNO"DlWSPEdE//:SdY W4 pepEOjUMO(Q



Endocrine Reviews; Copyright 2019 DOI: 10.1210/er.2019-00088

adiposity [34-36]. This paradoxical combinationpbienotypes, which reflects the pattern
seen in more extreme form in inherited lipodystieph37], likely reflects the consequences
of an inherited defect in adipocyte developmentolvhimits the storage of excess lipid in
“metabolically safe” fat depots.

One systematic approach to group variants in thig mvolves the use of clustering
methods (described in more detail below). Heregstigators use orthogonal lines of
evidence (e.g. association with physiological measof insulin secretion or resistance,
pattern of expression of tagged genes, or opemwdtin regions) to group genetic variants
associated with T2D into specific clusters infornigtbiology [20,38]. We term these
“partitioned” (or “process-specific”) polygenic scaes (pPS), and explain below how these
may help to define specific pathways that illumédisease pathogenesis or highlight
opportunities for potential pharmacological modolat These partitioned scores may also,
by capturing the endophenotypic profile drivingiadividual's progression from health to
disease, provide a framework for tailored prevenav therapeutic interventions.

It is worth emphasizing a critical point that i¢esf neglected in the enthusiastic embrace
of the burgeoning power of human genetics. Becdosepmplex traits such as T1D and
T2D, inherited sequence variation is only one congoo of predisposition, even the best
possible distillation of genetic potential will revprovide a complete description of
individual risk. A fuller assessment of present &utdre disease state for an individual
requires the integration of genetic informationhaaiccurate and robust measures of other
contributions to individual predisposition (inclagi diet, lifestyle and microbiome), and an
assessment of current clinical state (includingsuesment of biomarkers such as glucose,
lipids, islet autoantibodies, and clinical phen@ysuch as BMI and WHR). The relative
contributions of these various domains of inform@tare likely to shift during life with
measures of clinical state becoming ever more itfilaio later life as disease becomes
overt. However, as we will show, genetic variati@s a critical part to play. The long-term
stability of genetic variation, which is easily agained in peripheral blood, offers the
potential for risk stratification throughout théelicourse; unlike other risk factors, it is also
not subject to the confounding effects of diseasésdreatment.

3. Polygenic scores in action

3.1 Predicting T2D onset
The slow onset of T2D, coupled to evidence thati®maging consequences often predate
the clinical diagnosis by some years [2], emphasilze clinical value of early diagnosis. The
capacity for drugs and lifestyle interventionsead to substantial reductions in progression
to diabetes [39,40] motivates efforts to identlipge at the greatest future risk of developing
T2D. As discussed above, genetic predictors haa@dnticular advantage of offering
predictive information that is stable throughois.li

Prior to the first GWAS for T2D, three genetic \aanris had been associated with T2D
with high confidence: identified either through datate gene analyses, or the follow up of
linkage signals, these implicat&@€NJ11 p.E23K,PPARG p.P12A, and’CF7L2 rs7903146.
In 2006, Weedost al. [26] assessed the combined risk of carrying thasants. As well as
observing that the variants influenced T2D riskiadely, the authors assessed the predictive
value of the genetic tests using a standard apbpribat uses the trade-off between the
sensitivity and specificity of the test to generateceiver operator characteristics (ROC)
curve. The area under this curve (the AUROC, otdfistic) provides a measure of the
proportion of times such a test will correctly gssdisease state between a pair of
individuals, one who has the disease of interasd@pending on the study design, will
would go on to develop it), and another who is (oot who remains disease-free on follow-
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up). The estimated AUROC was 0.58, exceeding th@ @alue that indicates no
discriminative capacity, but well short of the veduseen for most clinically useful tests.

Publication of the first few rounds of T2D GWAS emted the number of significantly
associated variants into the teens, enabling betteered studies (involving between 16 and
18 risk alleles) that sought to compare the vafenasPS to predict incident diabetes to that
of clinical factors alone [30-32]. Lyssenko andleagjues examined a 16-SNP rsPS in 16,061
Swedish and 2,770 Finnish subjects followed ovaedian of 23.5 years [30]. The rsPS
alone (adjusted for age and sex) predicted dialmtetence with an AUROC of 0.62, but
this compared poorly to a mix of baseline clini@adtors (age, sex, a family history of
diabetes, BMI, blood pressure, triglycerides, fagplasma glucose) that claimed an AUROC
of 0.74. Adding the rsPS to these clinical factoad only a modest impact on performance,
pushing the AUROC to 0.75. Adding genetic factorslinical factors reclassified 9% and
20% of subjects from the Swedish and Finnish saubjects, respectively, to a higher risk
category.

In a similar study, Meigst al. [31] assessed an 18-SNP rsPS in 2,377 particijpérie
Framingham Offspring Study over 28 years of follop-The AUROC for incident diabetes
with the rsPS alone (adjusted for age and sex)0is&whereas an enhanced clinical model
incorporating age, sex, family history, BMI, fagfiglucose, systolic blood pressure, HDL
cholesterol, and triglyceride levels reached 0/Afiling genetic data to such a well
performing clinical model left the AUROC unchangeadd resulted in risk reclassification of,
at most, 4% of the subjects. A study of the powern18-SNP rsPS to capture T2D case-
control status in 4,907 participants from Dundes{fand), reached similar conclusions: the
AUROC for genetics alone was 0.60, whereas thevatgnt metric for age, BMI, and sex
was a vastly superior 0.78, with only a slight amaent (to 0.80) for the combined analysis
[32].

In the decade since, waves of successively largBrGWAS efforts have brought the
number of significant loci discovered into the hredks. Concomitant improvements in the
performance of rsPS have been more modest. An eghdaalysis of a 62-SNP rsPS
performed in the Framingham Offspring Study [4lh@®&ted a much-improved AUROC for
T2D prediction (combined with age and sex) of 00&,as before, the addition of genetic
information provided negligible improvement in parhance over the equivalent clinical
predictor (AUROC for clinical factors alone, 0.96r the combined clinical and genetic
score 0.91). Predictive performance in a seconsipaative study (CARDIA) was
uniformally worse, particularly in participants African descent [41].

The studies so far described employed rsPS, rastyithe score to variants that
demonstrated genome-wide significant associationgtinciple, the expansion of the score
to accommodate additional information from subthodd variants should improve
performance. Indeed, in a model-based analysisadfigtive performance for T2D and other
traits that extrapolated from estimates of GWA®@fsize distribution and heritability (as
available in 2012), Chatterjee and colleagues dsdititat a ten-fold increase in effective
GWAS sample size for T2D (to ~220,000) would regublt boost in rsPS performance from
0.57 to 0.74, with a further increment in performamo 0.79 if a more liberal cut-off for
variant inclusion was adopted [42].

Sample sizes on that kind of scale are now witeath for T2D, but as yet, those
theoretical estimates have not been realized, hike$y because some of the assumptions of
the model, such as heritability, were overestimdtednalyses that update those reported in
the original manuscript [9], we include here a ggeBerated by Mahajas al. from a T2D
GWAS meta-analysis of almost 460,000 European iddals (effective sample size
~158,000) which captured around 20% of the variamdedividual predisposition to T2D
(about half the total estimated heritability) [8x optimized gePS comprising 171,249
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variants was constructed using 5,639 cases an@d22pntrols from the UK Biobank and
then used to predict T2D case-control status (@sxy for prospective T2D incidence) in a
separate set of 13,480 cases and 311,390 corglsisfrom the UK Biobank. The AUROC
generated was 0.66 without adjustment for age aerdiscreasing to 0.73 if age and sex were
added Table 1; Figure 2. Kheraet al. [13] used a similar approach with a deeper gePS of
almost 7M variants that, after factoring in age aex, generated a similar AUROC (0.72).
Both studies found that individuals from the UK Bamk (who were aged between 40 and 69
at recruitment, and tended to be relatively healimyhe top 2.5-5% of the gePS distribution
were at approximately 3-fold-increased risk (casetio| prevalence of ~11%) compared

with the mean of the rest of the sample and at stirh@-fold-increased risk compared with
the bottom 2.5% (prevalence~1%) [9,13]. The forows ratio could be expanded>®.0 in
individuals with the very highest gePS, though thgh-risk group constituted only the ~150
individuals in the 0.05% extreme of the distribat{d3].

One interesting feature to emerge from the re-amalyf the T2D polygenic scores shown
in Figure 2 (based on the data from [9]) is the limited incesnin performance seen
between the rsPS (which was based on 199 genoneesigdificant SNPs) and the gePS
(built from ~170K SNPs). A second observatiorhis teassuring concordance in the
estimates of predictive performance obtained isah®o studies [9,13], despite differences
in the methods, though it is worth noting substdrmiverlap in the data sets used for training
and testingTable 1). Furthermore, these risk estimates are almosticig to those
generated by the direct-to-consumer company 23arfdMetheir data set of ~1M
individuals (mean age <50y) [43]. 23andMe have mdgestarted sharing results from their
1244-SNP T2D gePS with their customers, with ameoendation that those deemed at high
risk consider lifestyle interventions to mitigaket risk. A T2D-risk score generated by
Genomics PLC had similar performance [45].

3.2 Predicting T1D onset

Whilst clinical management strategies exist to preévhe development of T2D in those
determined to be at high risk [39,40], there igently no known effective strategy to prevent
T1D. Nevertheless, genetic profiling could haveueah defining individuals at the highest
future risk of T1D for enhanced surveillance ofirs@on in trials of early immunologic
interventions, and, in turn, when those trialssarecessful, could prove instrumental in
stratifying those most likely to benefit from thasew preventative approaches.

Like T2D, T1D has a substantial heritable componestimated to be between 65 to 88%
[46,47,48]. Genetic variation in the HLA region cmomosome 6p21 accounts for ~50% of
that heritability [49]. The DR and DQ loci conféet strongest association with odds ratios as
high as 16 for the DR4-DQ8/DR3-DQ2 genotype [5QibSquent GWAS have identified
over 50 non-HLA genetic loci contributing to T1B3kj including SNPs near theS
PTPN22 andCTLA4 genes with substantial impact on T1D risk [10,51-53

Over the past 15 years, genetic prediction for Tiab evolved from the use of HLA
alleles alone [54], to incorporation of over 40 #dibA variants [55-58]. Two rsPS for T1D
developed independently by Winkler and Oram antkaglies [56,57] were recently merged
into a single rsPS including 41 HLA and non-HLA SN\B9]. This 41-SNP rsPS was
deployed within the TEDDY (T1D in the EnvironmenBgterminants of Diabetes in the
Young) study which followed several thousand claildwith high T1D-risk HLA genotypes
from birth, using the development of islet autdamdiies and diabetes as outcomes indicating
disease progression. The 41-SNP T1D rsPS sucdgsstattified risk: children with a score
>14.4 had 11.0% risk of developing multiple isletaantibodies by age 6 and 7.6% risk of
diabetes by age 10, compared with those with sdmksv this who had rates of 4.1% and
2.7% respectively [59].
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Leveraging advances in density of SNP arrays akasdarger reference panels, the most
recently updated T1D rsPS includes 67 SNPs anduatséor interactions between 18 HLA
DR-DQ combinations [60]. When applied to the UK Bamk, this enhanced T1D rsPS
significantly outperformed previous scores, idgmti§) individuals with T1D with AUROC
of 0.92. These figures are close to the maximurfopaance figures predicted for T1D,
based on the modelling analyses described eanlittiei context of T2D [42].

3.3 Refining the diagnosis of major diabetes subtys

As well as predicting future disease risk, polygestores are emerging as powerful tools to
support diagnosis of major diabetes subtypes. Beténg whether a particular patient has
T1D, T2D, or one of the other specified forms aflubtes is not always straightforward. A
clinical diagnosis of T1D can often, but not always substantiated by the presence of one
or more islet autoantibodies (GAD, IA2, IAA, ZnT&)s these are found in >90% of newly
diagnosed patients [61]. However, these antibaaliesot always measured in clinical
practice, and do not provide perfect determinatibmlD diagnosis due to a combination of
(i) background presence in some individuals withblD, (ii) lower rates of positivity for
T1D individuals diagnosed in adulthood, and (iigming titers over time from initial
diagnosis [57]. The measurement of C-peptide levgidasma or urine can also help
distinguish T1D from other forms of diabetes, bsg wf this test is not routine, not least
because it has reduced value at the time of diagwkere it can be suppressed even in T2D
or monogenic diabetes) or during the “honeymooiopéf T1D, given residual beta-cell
function in the early years following presentat|68]. The consequence is relatively high
rates of both under- and over-diagnosis of T1D wingng to differentiate it from both T2D
and less common forms of diabetes, such as MODY e stable nature of a polygenic
score, unchanged throughout life, offers a usefil to aid in diagnostic characterization of
individuals with established diabetes.

An early application of the initial T1D rsPS devgtal by Oram and colleagues was in
discriminating between T1D and T2D. The authordiag@oth a 69-SNP T2D rsPS and a
30-SNP T1D rsPS to a sample of well-defined caé@4.b and T2D from the Wellcome
Trust Case Control Consortium GWAS [64]. They fotinel T1D rsPS was highly
discriminative (AUROC 0.88), whereas the T2D EPS \eas so (AUROC 0.64), and that
combining the two offered little improvement beydhe T1D score alone (AUROC 0.89)
[57].

Application of the 30-SNP T1D rsPS alone to a cobb223 adults, aged between 20
and 40 diagnosed with diabetes at least 3 yeavsopisdy, predicted progression to insulin
deficiency (AUROC 0.87) and offered information #mushal to that provided by antibody
status [57]. In 8,608 individuals with a clinicahgnosis of T2D after 35 years of age, treated
without insulin for at least 6 months following di#sis, the same T1D rsPS predicted
progression to insulin use at five years, but amlthe small subset of GAD antibody-positive
participants: the probability of insulin use randeaim 17.6% in those in the lowest tertile of
T1D-risk to 47.9% in the highest [65].

T1D polygenic scores have also provided a cleaeses of the extent of T1D prevalence
across the age spectrum. Using a 29-SNP T1D rdir8nds and colleagues demonstrated
that, amongst individuals participating in the UkoBank, 42% of genetically-defined T1D
was observed in those diagnosed with diabetes bet®& and 60 years, pointing to a far
higher proportion of overall T1D presenting in @tdabd than is commonly appreciated [66].
It can be challenging to detect these individuafsaally since, in this age range, they
represent only a small minority (~4%) of patientthvany form of diabetes. Compared to
those with T2D, individuals with T1D defined on thasis of a high T1D rsPS had lower
BMI, were more likely to use insulin in the firségr of diagnosis, and were at higher risk of
diabetic ketoacidosis [66].
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T1D polygenic scores have also shown utility ircdiainating early-onset T1D from
monogenic forms of diabetes including MODY [67]pnatal diabetes [67], and monogenic
autoimmune diabetes [68], that typically presentraduchildhood. In these settings, a T1D
score can prioritize patients who are most likelpénefit from sequence-based testing for
rare causal variants, and support correct intempoet of novel variants of uncertain
functional significance that emerge from such sequmg. Prioritization of patients in this
way is important both for providing a cost-effeetistrategy to increase diagnosis rates for
known forms of monogenic diabetes and for faciliginew gene discovery by reducing
study subject heterogeneity. A related applicatibpolygenic scores may be to explain some
of the variable presentation of monogenic formdiabetes, with respect to age of diagnosis
for example [69]. The same variant within tHEIF1A gene may segregate with early onset
diabetes in some pedigrees, but also be obseniadiinduals who retain normal glucose
tolerance into late adulthood and beyond [70]. $ingl410 individuals from 20BINF1A-
MODY families, Lango Allen and colleagues foundttaa5-SNP T2D rsPS was
significantly associated with earlier age of diasatiagnosis, with each additional risk allele
accelerating diagnosis by around four months [71].

3.4 Clinical application of predictive scores

These data provide a sound basis for the use pf@oic scores to support discrimination of
major diabetes subtypes and lend credence towviaar clinical value. Given analogous
applications of the polygenic score approach fbepmultifactorial disease traits [13,72,73],
these findings have collectively bolstered excitetrabout their potential to deliver clinical
benefit across a wide range of common diseases.

One major focus of current research activity lresxploring the value of polygenic
scores to predict individuals at the highest risk2D so as to enable early targeting of
intervention strategies. If the estimates of rekatisk seen in UK Biobank participants in
recent studies generalize to the population lesadi the current data indicate that
performance seems to be sustained throughout theaages studied [9,43]), then there are
likely to be in excess of one million individualsthe UK, who, on the basis of their
polygenic score alone, have a ~50% lifetime risk2D [9]. With the price of whole-
genome sequencing falling, and the potential taeaehnear-perfect imputation by
harnessing the combination of large-scale wholegensequencing (in a subset of the
population) and dense GWAS arrays (in the restgrsé countries are starting to plan for a
future of universal genetic screening. The ratiensithat “one-time” measurement of
genome-wide genetic variation (achievable for th&t similar to that of a single outpatient
appointment or a chest X-ray), would support a watege of clinical applications throughout
a person’s lifetime, including, but not limited tbe optimization of therapies (based on
pharmacogenetic insights) and the prediction afrkitliness using polygenic scores for a
range of diseases.

However, there are clearly multiple obstacles to be overcome before this becomes the

standard of care.

Firstly, there are technical issues. The mostoaiitimongst these involves ensuring that
polygenic scores are appropriately calibrated ¢éoettinicity of the individual being tested.
An rsPS or gePS generated using data solely defiiwedEuropeans will have suboptimal
ability to capture risk in individuals of non-Euegm origin. The T2D gePS recently released
by 23andMe demonstrates a marked fall-off in pagdgperformance in individuals of Asian
and African-American origin [43]. In some settingsgse issues with the transethnic
portability of polygenic scores go beyond a singiilation of performance: unpredictable
biases and the consequences of genetic drift cait ra entirely misleading results [74,75].
Recent studies have also emphasized the impaesiofual population stratification effects
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on the performance of these scores [76,77]. Rs@8katy to be more robust to these biases
than gePS.

The second question to be addressed concerns whegihan polygenic score adds
clinical value to the predictions that are possising existing risk factors. In the case of
coronary artery disease, there is evidence thabstantial proportion of those at highest
polygenic risk would not have been detected usiagstcal risk factors [13]n contrast, and
as described earlier, the incremental benefitdlggenic score over easily-accessible
clinical parameters seems more limited for T20east when applied at older agbsfact,
the non-genetic risk factors we already colleatlinic (family history, ethnicity, BMI, fat
distribution) perform quite well in predicting T2particularly in the near term, especially
when supported by direct biomarkers of the undegyisease process such as measures of
glycemia [30-32,41]There is an intrinsic limitation to the added vatie polygenic score
arising from the fact that trait heritability proMs a ceiling for the performance of any
purely-genetic measure.

Third, there is the issue as to whether early dagncan be shown to result in beneficial
outcomes, for example by motivating improvementis@style or treatment that reduce the
risk of diseaseln the case of T2D, the potential for lifestyle nimétion and/or
pharmaceutical intervention (for example with metim) to reduce diabetes progression is
clear [39,40], and these benefits seem to accrespective of genetic risk. In the Diabetes
Prevention Program, for example, lifestyle inteti@mwas effective at reducing diabetes
incidence compared to placebo even among thosethgthighest quartile of T2D rsPS [78].
However, there is limited evidence to date thatdbmunication of genetic risk is sufficient
to motivate most individuals to undertake the kifidong-term behavioral modification
required for sustained benefit [79-81]. There saome (at least theoretical) risk of harm if
the communication of risk information is mishandl&dis could arise through failure to use
ethnically appropriate scores, or to incorporateptelevant health information. For
example, an overweight person with a low T2D poilygescore may be at far greater risk of
disease than the polygenic score alone would suggesie individuals may be liable to
interpret high genetic risk in a deterministic dathlistic way, failing to appreciate that
remediation of risk through lifestyle modificatigno less likely to be effective in their case.

Finally, there are questions related to implemésmatSeveral countries (Finland,
Estonia, UK, Taiwan, amongst others) are expantfiaglinical roll-out of genome-wide
genetic data, with plans to deliver genetic progjlio the population scale through a
combination of sequence- and array-based strateges universal availability of genomic
data would open up much wider use of polygenicescdhe costs of acquiring such data
(which only needs to be done once in the life efitidividual) could be amortized across
multiple applications (rather than needing to Istified based on any single indication) and
the marginal costs of any specific use of thosa deuld be minimal. Having said that, any
valid assessment of clinical utility needs to cdasithe full costs of any given application: if
the consequence of the unregulated use of genéticriation is to identify a large proportion
of the population as at high risk, there may bestauitiial financial and health costs to be
incurred in follow-up screening, unnecessary treampatient stress, and the unproductive
use of medical resources. A rigorous pipeline lierinterpretation of these findings and their
translation into evidence-based clinical intervemsi at the point of care will need to be
created and deployed for multiple phenotypes adreatth care systems.

4) Partitioned polygenic risk scores

So far, in this review, we have focused on theaisestricted (rsPS) and expanded (gePS)
polygenic scores, both of which aim to capturegéeetic contribution to predisposition for
the major disease phenotypes conventionally usddfioe morbid states — such as T1D and
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T2D. These scores are designed to enable prediftian individual's risk of developing of
one of these forms of diabetes, or, as describedealto support differential diagnosis in
those who have recently been diagnosed with diabEte these indications, it makes sense
to combine as many risk variants as possible,paetive of the mechanisms through which
they influence that risk.

However, these are not the only clinical questibias polygenic scores are equipped to
address. Many of the most difficult problems in tiaical management of T2D, in
particular, arise out of the clinical and phenotyipeterogeneity that is an obvious feature of
this condition. Clinical management of someone \aitfiagnosis of T2D would be
substantially improved if it were possible to sehew fast their diabetes is likely to progress,
their propensity for developing macrovascular ancrovascular complications, and their
likely response to the range of treatments (therapesurgical, and behavioral) that could be
deployed to improve outcomes. Since these areigusghat relate to clinical and etiological
heterogeneity in those with established T2D, patygecores based on overall disease risk
are unlikely to offer discriminatory value.

As discussed earlier, one promising route to captlements of this clinical
heterogeneity is through the use of “partitiones#t scores” (pPS). These seek to
“deconstruct” the overall (restricted or extendpdlygenic score along biological axes that
represent contributory etiological pathways, arete¢by provide a framework upon which to
map the variable response to clinical outcomes.

One way of conceptualizing these pPS is in ternth@fpalette” model of diabetes
predisposition, which seeks to focus attentionamof 2D itself, but on the various
intermediary processes that collectively contriltoté 2D-risk [3,38]. These include well-
studied processes such as obesity, fat distribugét development and function, and insulin
sensitivity, though there are likely to be othédrattare, as yet, less clearly described. Each of
these processes is itself under multifactorial égerand non-genetic) control, and a given
individual may be positioned at any point on thectpum from “low-T2D-risk” to “high-
T2D-risk” for each of these. Whilst the overall doaf T2D-risk across the set of processes is
likely to be a useful measure of the overall T28kmf an individual, the disposition of that
risk across the various axes is likely to be mofermative regarding disease presentation
and clinical course. In accordance with the “paledinalogy, each of these processes can be
considered to be represented by a particular b@se (ced, blue, yellow etc): for any given
individual, risk along each axis would be captubgdhe saturation of the relevant base
color, and their overall profile of T2D-predispasit visualized in terms of the mix of those
colors which results when they are combined.

This “palette” model is consistent with current argtanding of the pathogenesis and the
genetic architecture of T2D. Over the past decd@B-associated variants have been shown
to modulate T2D risk through diverse mechanismsiesmcrease T2D risk through an
impact on obesity (e.dg=TO), others reduce insulin sensitivity (eRPARG, IRS1) whilst
others compromise insulin secretion, either throdigéct effects on islet function (e.g.
KCNJ11) or development (e.¢gdNF1A), or indirectly through impact on incretin signad
(e.g.GLP1R) [82]. The various classes of T2D therapeutics dparaough the same range
of mechanisms to reverse the diabetic phenotygemrol its glycemic consequences. The
weight of evidence indicating that the genetic dbation to T2D predisposition mostly
arises from common variants of limited individuéfeet [11,12] emphasizes the need to think
in terms of a gradation of polygenic risk acrosfividuals, rather than a classification based
around rigid, discrete subtypes [3]. As well asviding a framework for capturing the
mechanistic basis of T2D heterogeneity, this matk offers an approach to understanding
how an individual’s particular genetic profile cohtites to their progression from normal
metabolic health towards the diabetic state.
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In 2010, Voightet al. were first to demonstrate that patterns of gerstsociation across
diabetes-related quantitative traits could beaddito annotate T2D-risk loci with respect to
their physiological impact, analyses which highteghthe predominant role played by
variants influencing insulin secretion [19]. Thigpaoach was further developed by Dimas
and colleagues [83] to perform a systematic armalykthe relationships between 36 T2D-
risk alleles and a range of glycemic measures dnctpindices of insulin secretion and
insulin resistance gathered in nondiabetic indiglduScott and colleagues extended this
approach to a larger set of 93 T2D-risk alleles iantlided BMI and lipid measures in their
clustering in addition to glycemic traits [44]. Barmain patterns of multi-trait association
emerged from this analysis, two of them reflectiedects in insulin secretion and insulin
action respectively, and a third characterized sty and dyslipidemia. One major
limitation of the unsupervised hierarchical “hadftistering approach used in these papers
[44,83] is that it requires each variant to begrssd to a single cluster, based on the
guestionable assumption that each variant cantmnipvolved in one pathophysiological
pathway.

Access to an expanded range of large-scale quardgitaait association data (from large-
scale GWAS efforts within global consortia suctGA8NT [anthropometric traits], MAGIC
[continuous glycemic traits] and GLGC [lipids]) gladvancements in clustering algorithms
have enabled a new wave of variant clustering aealy20,38]. These described efforts to
aggregate GWAS data from more diverse sets of Te&ted quantitative traits and
employed more sophisticated “soft” clustering teghes [84,85] to pick out clusters of T2D-
associated variants with similar patterns of imgarbss the suite of phenotypes. These soft
clustering approaches explicitly allow for the pb#gy that a variant influences more than
one process. Mahajahal. [20] deployed a C-means clustering approach aca84S data
from 10 T2D-related quantitative traits for a se94 T2D association signals that emerged
from a T2D-GWAS of ~450K individuals, identifyingu@&riant clusters (based on a threshold
of 80% for cluster membership). Udlgtral. [38] employed a complementary soft clustering
approach - Bayesian nonnegative matrix factorizatito a partly overlapping set of 94 T2D-
risk variants, gathering GWAS data from 47 diabe&dated traits, and identifying five
clusters. Reassuringly, despite these differentbes;lusters identified by both were broadly
similar (Table 2).

The variants within each of the genetic clusterslmaused to generate “partitioned”
polygenic scores that capture the genetic contabub each intermediary process. Each of
these clusters (and the pPS generated therefranfjecassigned mechanistic labels based on
the observed patterns of GWAS effects: for examplduster which features T2D risk
alleles most clearly associated with decreaseaastsulin, can, on the basis of known
pathophysiological relationships, be attributedetduced insulin secretion. On this basis, two
of the clusters were associated with an adversadimm beta-cell function, three were
characterized by insulin sensitivity (differing Witespect to their relationship to obesity, fat
distribution, and lipid metabolism), and a sixthster (designated only in the Mahagral.
paper) had less clearcut phenotypic features [2072®le 2).

The T2D-risk variants assigned to the three inssainsitivity clusters displayed the most
obvious overlap across the two approaches. Variadag=TO, MC4R, andNRXNS, all loci
known to have substantial impact on variation inIBiMapped to a cluster of T2D-risk
variants thereby assumed to be driven primarilplgsity. Variants diRS1, PPARG, and
KLF14 implicated in effects on adipocyte differentiatiamd body fat distribution, were co-
located to a cluster of T2D-risk variants featuriipgdystrophy-like effects on insulin
sensitivity, partly overlapping with the set of Vfarable adiposity” loci identified by others
[34-36]. Finally, variants &CKR andTM6SF2, known for their profound impact on ectopic
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fat accumulation in liver and altered circulatingd levels [86,87] were members of a
cluster which seems to be driven by alteratiorfseipatic metabolism.

Though there was broad agreement concerning thenwsideemed to influence beta-cell
function, disposition across the pair of beta-ckisters was less consistent, particularly for
variants with less dramatic effects on the contirsuglycemic traits that distinguished them.
T2D-risk variants aBLC30A8, TCF7L2, ADCY5, HNF1A, andMTNRI1B consistently
mapped to a cluster characterized by an associagitmeen T2D-risk, reduced insulin levels
but elevated proinsulin levels, whilst thoseARAP1, |GFBP2, DGKB, andCCND?2,
combined T2D-risk and reduced beta-cell functiothweduced proinsulin levels. Some of
the variation in the assignment of other variact®ss these two clusters reflects differences
in the traits included in the respective analyses)pounded by substantial differences in the
size of the GWAS data sets available across ffahgch has an impact on discriminatory
power). Nevertheless, the replicated subdivisiohat&-cell function variants into two
clusters distinguished by the direction of the asgmn to proinsulin speaks to two
distinctive mechanisms whereby T2D-associated tranaesults in beta-cell dysfunction
[88].

Despite some of the differences in the assignmieinidovidual variants across clusters,
the mechanistic basis of these clusters appeaust,ainapping as it does to current
understanding concerning the major pathophysioddgioocesses influencing T2D
development. Allocation of variants to these phiggjeally-defined clusters is also broadly
supported by orthogonal analyses of tissue-spquditerns of chromatin accessibility,
histone modification, and transcriptional regulati®he various subsets of T2D-risk variants
identified by clustering of GWAS data demonstrdéacevidence of genome-wide
enrichment with respect to tissue-specific actiweamcers and promoters [9,38,44,89-91],
cis-eQTL signals [90,92], and enhanced connectivitifssue-specific protein-protein
interaction networks [93]. As anticipated, thesé Wariants in the insulin secretion clusters
to altered transcriptional regulation in the isketd those in insulin action clusters to events
in liver, fat and muscle.

Beyond the ability of these efforts to identify elise pathways, a critical question in
terms of clinical translation is whether or not g#eS generated from these clusters show
associations with clinically relevant outcomesiyeegsults are encouraging. For example,
differential cluster associations have been obskefwecoronary artery disease, stroke, and
the renal complications of diabetes [38,94,95]hemmphasizing enhanced risk associated
with T2D predisposition mediated through insulisistgance. In the case of macrovascular
disease, of course, this is likely to reflect tiheqiropic impact of these variants on non-
glycemic risk factors such as lipids. A specifitertor pPS-captured defects in insulin
secretion and altered gut microbiome has also beggorted: those microbiome changes
include an effect on butyrate-producing pathwaysashto play a causal role with respect to
diabetic and obesity phenotypes [8].

These findings support the notion that whilst, Bfirmtion, all cluster-defined pPS
associate with T2D risk, differential effects candetected with respect to aspects of
mechanism, phenotype, and clinical outcomes. Howéweher effort is needed to validate
and extend these findings, and to define the dmution that these can make to the delivery
of more personalized management in diabetes. Soléemtering analyses have been restricted
to a subset of the most robust genome-wide sigmifid 2D-associated variants, primarily
those discovered in Europeans, and for which aggouistatistics are available across
multiple related traits. More complete analyse$vidg deeper into the list of T2D-
associated variants, and embracing a wider rangaitf) capable of generating more
powerful pPS will become possible as GWAS effooisthose other traits scale up. Inclusion
of additional phenotypes should provide more granclustering, attributing mechanism to

14

6102 AN ¥z uo Jesn 0y 252z 18 Aq G255£55/88000-610Z 48/0 L2101 /I0PA0BIISAE-S]OIE-80UBADE/AIPS/WOD"dNO"DlWSPEdE//:SdY W4 pepEOjUMO(Q



Endocrine Reviews; Copyright 2019 DOI: 10.1210/er.2019-00088

variants which currently show only weak phenotyfiatures, and bringing to light new
pathways involved in T2D development. Integratidthwissue- and cell-type-specific
regulatory annotation maps will continue to suppoechanistic inference [38,44]. Greater
access to association data on T2D and other fraitsnon-European ethnicities will enable
broader exploration of ethnic-specific variants #mel heterogeneity of clinical presentation
and course across major ethnic groups. As confelgnaws in the mechanistic basis of these
variant clusters, it will become possible to usatispecific GWAS data to “build out”
cognate pPSs and generate more powerful genetianmsnts. For example, the pPS formed
from the handful of genome-wide significant T2Digats in the “obesity” cluster could be
superseded by using a polygenic score constructedthe BMI GWAS efforts themselves,
and a pPS capturing islet autoimmunity generateah fexisting polygenic scores for T1D.

For diseases such as T2D, the characterizatiolinafal phenotype using genetic
measures alone is constrained by the fact thatigwdil variation within each of the
endophenotypic axes is also influenced by non-gefattors. Diagnostic and predictive
accuracy would be much improved, and the abilitirack an individual’s journey from
health to disease much enhanced, if the genetitilootion to phenotypic variation (as
captured by the pPS) can be integrated with rdbuagitudinal measures of relevant features
of the external environment (e.g. related to diet physical activity) and internal milieu (e.g.
metabolic memory and microbiome). Integration af tipredictive” information with
evolving measures of the individual’s clinical statould add another dimensidn.the
context of T2D, the latter would involve capturiagthropometric data, and glycemic and
metabolic state, forming an integrated profilehattindividual that can be tracked over time.

It would be particularly valuable in this regarddevelop process-specific biomarkers
that provide clinical readouts for each of the gridmotypic axes that corresponds to a
particular pPS. The best illustration of this cqutde the use of LDL-cholesterol as an
integrated biomarker for that component of cardsowdar risk attributable to genetic and
environmental influences on lipoprotein metabolidilne growing availability of large,
publicly-available metabolomic and proteomic datsiseakes it possible to use pPS as
instruments to identify biomarkers correlated t&pfefined risk as candidates for further
prospective testing [96,97]

A key focus of ongoing research relates to undedstgy how these pPS might be
deployed in clinical practice. One interesting ploisisy is that pPS profiling will allow
identification of individuals whose diabetes is thpattributable to defects in a single
process. In the analysis by Ud&tral. [38], one third of individuals fell within the podecile
of T2D-risk for at least one cluster and, of the&# were not placed at the top decile of any
other cluster. These individuals would be obviemuits for the testing of targeted
interventions. An alternative, possibly complementapproach would make use of the full
range of scores for a given individual to assigk,rand optimize management. In either case,
much will depend on the extent to which these wariways of representing etiological
heterogeneity (with or without additional envirormted and clinical state information) can be
shown to optimize clinical management (for examtsie,selection of therapeutic agents).

One important corollary is that, by conceptualizandisease such as T2D as arising from
the coming together of diverse, largely-orthoganalerlying processes, these models
guestion some of the tacit concepts underlyingipi@t medicine. One of these is the notion
that characterization of the specific defect cdmiting to an individual’'s disease invites
therapeutic approaches that are designed to sgahifcorrect it. This model has proven
effective in monogenic diabetes — where one motealgfect is largely responsible for the
phenotype — but it is less clear this can be impleied in polygenic disease. In people in
whom the disease is caused by multiple procedsed| be unlikely that modulating a single
pathway will be sufficient to correct metabolic @egements; whereas in those in whom the
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contributions of specific genetic defects are mgdeguivalent reductions in disease risk and
progression may be possible through interventibashoost the performance of other
processes contributing to overall T2D risk, evessththat are already performing at healthy
levels. Indeed, because the effects of commonniarian the hyperglycemic phenotype are
modest, current T2D drugs that target specific\waifs (e.g. sulfonylureas and
thiazolidinediones) appear to be effective in baalriers and non-carriers of T2D-associated
alleles in the respective target-encoding gene®f8Nevertheless, it is possible that some
individuals will be identified whose pathophysiojog predominantly driven by one process,
and in whom the monogenic paradigm of a drug targehat very process could be applied
effectively. Whether, and in whom, such approachayg prove successful will require the
conduct of appropriately designed precision clinigals.

These pPS approaches to analysing phenotypic geteedy, which build out from
genetic risk, offer a complementary perspectivéhéresults emerging from the analysis of
real world data [100, 101]. These real-world methbdve focused on efforts to classify T2D
into distinct subtypes, analogous to the categbozaf monogenic forms of disease. Such
an objective, if successful, would offer clinicapediency.

However, these efforts to sift individuals intodiste subtypes of disease would appear
to run counter to the evidence that points to apier, graded, architecture of risk, one that
is consistent with a multifactorial etiology, congeal of genetic predisposition dominated by
multiple common variants of modest effect, and psiwe exposures contributing to risk.
one recent study, Ahlgvist al. used basic clinical information from patients wiwly-
diagnosed adult-onset diabetes, to define fiveypast of T2D: an autoimmune form
(covering T1D and other related clinical entitigs)o severe forms (one dominated by
insulin deficiency, the other by insulin resistan@nd two milder forms (termed “obesity-
related” and “age-related” diabetes) [101]. Whettbasgenetic clusters that form the basis of
pPS are defined at the level of the variants, tieésieal subtypes are defined at the level of
the individual, and based on biomarkers and clirdeta gathered at a specific point in the
progression of an individual from health diseadee Ttter is likely to limit their relevance to
those who have not yet developed disease, and/se tivho are on treatment.

It is worth emphasizing the different, but complenaey, nature of these two approaches:
the partitioned risk approach involves first clustg genetic signals by mechanism to derive
pPS, and then exploring how the quantitative pR$escperform across individuals. In
contrast, the phenotypic clustering approach attenagphard cluster individuals on the basis
of their physiology. Further work is required tadenstand how these two approaches to
capturing clinical heterogeneity relate to eactenthnd to objective measures of clinical
utility. One of the fundamental issues — which peies diverse aspects of precision medicine
— relates to the relative merits of retaining asimguantitative information on an individual
as possible until the point when a substantivei¢glfy binary) clinical decision needs to be
made, as opposed to early diagnostic categorizafitime individual in a way that bases
subsequent clinical decision-making on the optichiaatcomes of the group to which they
have been assigned. While further investigatioreisded, a recent analysis by Dereatial.
in the ADOPT and RECORD clinical trials indicatéat the former approach — considering
phenotypic traits as continuous measures — provieéé@r predictive value of treatment
response, than an approach that binned individisatgy the phenotypic clustering approach
of Ahlgvistet al [101, 102]

5) Summary and further discussion

After many years of frustration at the slow progrésat had been made in the translation of
recent discoveries in human genetics — notablyrtaey risk variants for common,
multifactorial forms of diabetes identified throuGiWAS and sequencing — there is now
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growing optimism that the use of polygenic scordkoffer substantial clinical benefit and
contribute to efforts to forestall the growing miolity and mortality associated with these
conditions. Some early clinical applications hareeeged — mostly related to positive
identification of those who have developed, orighst imminent risk of developing, T1D
[57,65-68].

It is inevitable that clinical applications of thelygenic score approach will roll out at a
different pace across disease conditions, witrcad@n different clinical questions, dictated
by the additional clinical benefit that they progjcnd the extent of the unmet clinical need.
One size certainly does not fit all, and the re&atnerits of the different types of polygenic
score described in this review (gePS, rsPS, pPiSilfer according to the specific clinical
situation. It also remains to be determined howloether pPS and phenotypic trait
clustering will impact clinical care and be depldye practice.

Recent developments in relation to the potentialadl use of polygenic scores have led
to heated debate between those who are enthusaasiit the potential, and those who are of
the view that the clinical value of human genetitscovery has been consistently hyped, and
who feel that polygenic scores represent justdbest chapter in that story of scientific over-
selling [103,104]. As in other similar situatiotise outcome of this debate will become
clearer as theoretical and basic knowledge develodghe collection of real-world data
expands. However, it is already possible to idgratiberies of obstacles that need to be
overcome before the full potential of this approaah be realized.

The most critical is the need to ensure that theefiks of accurate, robust polygenic score
determination are equally available to all. As otheave pointed out, most GWAS and
sequence data have been derived from the Europesaesot individuals who live in the
developed nations of Europe and North America,thagolygenic scores generated from
these data perform best when applied to the samégtmns [74,75]. There is a critical need
to generate equivalent data and polygenic scorether populations, to explore and
characterize the extent to which transethnic pditlof polygenic scores can be tolerated,
and to define strategies for their deployment iecsd situations such as recently-admixed
and isolate populations. Concerns about the impfgabpulation stratification and the limits
of transethnic portability provide arguments foe thse of rsPS over gePS [74-77]. This may
be particularly true for T1D and T2D given the lied increment in performance available
with more extended scores.

Wider recognition needs to be given that, for nfaudtiorial traits with an appreciable non-
genetic component, a wholly genetic explanatiodiséase prediction and state will never
provide a perfect clinical instrument. In someisgt, the information from genetics may
simply recapitulate measures already available ftmer risk factors. The clinical use of
cholesterol measures as a biomarker for CAD riskigdes a counterexample, reflecting the
benefits it offers as an integrator of both genatid environmental risk. At the same time,
some of those who are less enthusiastic aboutitheat value of polygenic scores often fail
to acknowledge that many established clinical t¢fmsexample the use of BMI to predict
T2D risk, or the use of islet cell antibodies foe Wifferential diagnosis of T1D in late-onset
diabetes) are likely to have performance metrias lilmit their discriminative power. As the
costs associated with the generation and intejwataf individual genomic information
decline, there will be a growing roster of cliniegplications where polygenic scores can add
value.

There is clearly a need to develop novel approatthestablish the clinical validity and
utility of polygenic scores in medical practicettkeke account not just of the marginal cost
of acquiring the data, but the full costs of imp&tation. Randomized clinical trials are
unlikely to be the answer here, not least becawseynamic nature of the underpinning
genetic databases means that polygenic scorekelsetb evolve, rapidly rendering
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redundant any precise quantification of cost amefiebased around a historical set of
scores [106]. There will need to be concomitantré$fto document the provenance, content
and performance of polygenic scores using starmegdnetrics and conventions which do
not currently exist.

There will need to be education of citizens andgssionals to appreciate the benefits
and limitations of polygenic scores [105]. It shibbk clear that genetics represents only one
contributor to individual disease risk and profileat genetically-defined risk should not, for
multifactorial traits at least, be considered deiarstic, and that most of the evidence
indicates that behavioral modifications are judikedy to succeed (and in fact to be even
more beneficial) in those at highest genetic ri& [ The ease with which polygenic score
information can be integrated with conventionalragghes to risk profiling that are already
widely used in clinical practice (e.g. to estimattire risk of CAD) should facilitate
widespread introduction, and minimize the needtierhealth care professionals involved to
develop an intimate knowledge of human genetiaggodts without saying that any clinical
application of genetic data will need to fully adsis issues related to privacy and informed
consent [107].

At the heart of precision medicine is the notioatthn improved specification of disease
risk or subtype will allow better targeted intertiens to prevent or treat disease. Such efforts
must compete for resources with population-bastahiantions that seek to achieve the same
ends through non-targeted means [108]. In manyiegislinical settings (e.g. related to
reducing rates of cardiovascular disease, melarwrbeeast cancer), these two strategies are
seen to be complementary and are pursued in paidiie development of polygenic score-
based approaches to support targeting of highinikiduals will not alter these
assessments. As now, the balance of effort betteggated and non-targeted approaches to
the reduction of disease and disability will, foryaclinical indication, continue to be
dependent on the relative impact, cost, acceptyhifid sustainability of these
complementary strategies.

Box: Polygenic Score Terminology used in this artle

BOX: Polygenic score terminology

1. Restricted-to-significant Polygenic Scores (rsPS): scores composed of variants at the extreme
of a statistical distribution, most usually those that pass the genome-wide significant threshold
for the trait concerned.

2. Global extended Polygenic Scores (gePS): scores generated from a deeper set of variants
generated from genome-wide analyses, typically involving large numbers of sub-threshold
significant variants.

3. Partitioned or Process-specific Polygenic Scores (pPS): scores composed of variants
grouped according to some common biological process (e.g. association with a related
endophenotype, tissue expression of related genes, chromatin state)
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Figure 1: How polygenic scores are derived-or full explanation see text.

Figure 2. Comparison of rsPS and gePS for T2Dsing data from Mahajan et al, 2018b [9]
rsPS and gePS were generated using a T2D GWASanatgsis of 455,313 European
individuals and used to predict incident T2D in488) cases and 311,390 controls from the
UK Biobank.a) AUROC curves for models predicting incident TZ2ach model was
adjusted for genotyping array and the first sixipipal components of ancesthb).

Prevalence of T2D according to 40 groups binnedraiag to the polygenic scores, with
each grouping representing 2.5% of the populatip®istribution of rsPS and gePS in the
cases and controls. The x-axis represents polygeoie, with values scaled to a mean of O
and standard deviation of 1. Both rsPS and geR&iBiobank individuals is normally
distributed with a shift towards right, observed 7@D cases.

Table 1. Comparison of three published global exteted polygenic scores for T20xor
the LDPred algorithm, the tuning parameteeflects the proportion of polymorphisms
assumed to be causal for the disease. For thengranid thresholding strategy,reflects the
degree of independence from other variants inittk@ge disequilibrium, anB value reflects
the P value threshold used for a selecting variants ftioendiscovery GWAS. * Discovery
GWAS from Mahajan et al. 2018b after removing UKIEBank samples [9]. Note the
difference in testing dataset sample size fronptii@ished results in Mahajan et al. 2018b
[9]. Results presented here are based on re-apalydata after splitting UK Biobank
samples into optimization and testing set. ** Laigisnodel adjusted for other technical
covariates such as principal componehBubset of GWAS samplesObtained through
private communication with authors. LD: Linkage &gsiilibrium.

Study
Mahajan et al. 2018b [9] 23andMe [43]

Khera et al. 2018
[13]
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Number of case 26,676 55,005 80,792
Discovery GWAS Number of controls 132,532 400,308 1,479,116
Reference Scott et al. 2017 [44] Mahajan et al. 2018b* [9] Multhau[zgtje]t al. 2019
Methods LDPred Pruning and thresholding Predetermined fist p
Number of case 2,785 5,639 48,028
Number of controls 120,280 112,307 893,692
Optimisation dataset P value threshold - 20'1 1ch.f
LD pruning threshold - r°>0.6 50 kb window
Tuning parameter p =0.01 - -
Polymorphisms in risk score 6,917,436 171,249 1,244
Reference UK Biobank UK Biobank 23andMe
Number of case 5,853 13,480 9,008
Testing dataset Number of controls 288,978 311,390 167,622
Reference UK Biobank UK Biobank 23andMe
SN;);jdjusted for age anc 0.64 0.66 0.65
AUROC in testing Adjusted for age and se 0.73 ' 0.73 -
dataset (Europeans) ) . 2.75 Wlth.out age and sex|
Odds_ ratio of top 5% bin vs 275 af_JJustment 2 7¢
remainder population ’ 4.52 with age and sex ’
adjustment

Table 2. Partitioned polygenic score clusters capting etiological heterogeneity in T2D.
Comparison of pPS clusters identified by Mahageal. [20] and Udleret al. [38]. TG:

Triglycerides; BMI: Body mass index; WHR: waist higttio

Cluster name Examples of T2D loc
Physiological impact Phenotypic features Udler et al. Mahajan et
2018 [38] al. 2018a [20]
o . . ABO, ADCY5, HNF1A
Adverse : - Low fasting insulin (+ High Insulin y ' ’
impact on High proinsulin proinsulin) Beta-Cell Secretion 1 ?CNFF71|_82 MTNRI1B, SLC30A8,
B-cell — - -
- . . Low fasting insulin (+ Low ) ) Insulin IGF2BP2, CENTD2/ARAPL,
function Low proinsulin proinsulin) Proinsulin Secretion 2 CCND2
) . MACF1, GRB14, IRSL,
Mediation via obesity | High TG + High WHR + Lipodystrophy | Insulin Action | PPARG, ANKRDSS, KLF14,
Low BMI
Reduced LPL, CMIP
insulin Mediation via fat . . . L
sensitivity | distribution High BMI + High WHR Obesity Adiposity NRXN3, FTO, MC4R
Mediation via lipid . - - .
metabolism Low TG Liver/Lipid Dyslipidaemia | GCKR, TM6SF2/CILP2
. No striking phenotype No . BCL11A, TLEL, PLEKHAL,
Undetermined association assignment Mixed features HMGA2, MTMR3
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