
 

 

Genetic risk scores for diabetes diagnosis and precision medicine 

 

Miriam S. Udler, Mark I McCarthy, Jose C. Florez, Anubha Mahajan 

 

Endocrine Reviews 
Endocrine Society 
 
Submitted: April 26, 2019 
Accepted: July 08, 2019 
First Online: July 19, 2019 

 

Advance Articles are PDF versions of manuscripts that have been peer reviewed and accepted but 

not yet copyedited. The manuscripts are published online as soon as possible after acceptance and 

before the copyedited, typeset articles are published. They are posted "as is" (i.e., as submitted by 

the authors at the modification stage), and do not reflect editorial changes. No 

corrections/changes to the PDF manuscripts are accepted. Accordingly, there likely will be 

differences between the Advance Article manuscripts and the final, typeset articles. The 

manuscripts remain listed on the Advance Article page until the final, typeset articles are posted. 

At that point, the manuscripts are removed from the Advance Article page. 

 

DISCLAIMER: These manuscripts are provided "as is" without warranty of any kind, either express 

or particular purpose, or non-infringement. Changes will be made to these manuscripts before 

publication. Review and/or use or reliance on these materials is at the discretion and risk of the 

reader/user. In no event shall the Endocrine Society be liable for damages of any kind arising 

references to, products or publications do not imply endorsement of that product or publication. 

A
D

V
A

N
C

E
 A

R
T

IC
LE

:
En

d
o

cr
in

e 
R

ev
ie

w
s

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/advance-article-abstract/doi/10.1210/er.2019-00088/5535575 by 81225740 user on 24 July 2019



ADVANCE A
RTIC

LE

Endocrine Reviews; Copyright 2019  DOI: 10.1210/er.2019-00088 
 

 1

Genetic risk scores for diabetes diagnosis and precision medicine 

Genetic risk scores for diabetes 

Miriam S. Udler1-4, Mark I McCarthy5-7, Jose C. Florez1-4, Anubha Mahajan6 

1. Diabetes Unit, Massachusetts General Hospital, 50 Staniford St, Boston, MA 02114 

2. Center for Genomic Medicine, Massachusetts General Hospital, Simches Research Building, 185 
Cambridge St, Boston, MA 02114 

3. Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, 
415 Main St, Cambridge, MA 02142 

4. Department of Medicine, Harvard Medical School, 25 Shattuck Street, Boston MA 02115 

5. Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, 
Old Road, Headington, Oxford, OX3 7LJ UK 

6. Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK 

7. Oxford NIHR Biomedical Research Centre, Oxford University Hospitals NHS Foundation Trust, John 
Radcliffe Hospital, Oxford, OX3 9DU, UK 

ORCiD numbers: 

0000-0003-3824-9162 

Udler 

Miriam S. 

0000-0002-4393-0510 

McCarthy 

Mark I 

0000-0002-1730-9325 

Florez 

Jose C. 

0000-0001-5585-3420 

Mahajan 

Anubha 

Received 26 April 2019. Accepted 08 July 2019. 

ORCID identifiers 

Mark McCarthy ORCID:  0000-0002-4393-0510 

Anubha Mahajan ORCID: 0000-0001-5585-3420 

Jose Florez ORCID: 0000-0002-1730-9325 

Miriam Udler ORCID: 0000-0003-3824-9162 

Over the last decade, there have been substantial advances in the identification and 
characterization of DNA sequence variants associated with individual predisposition to type 1 
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and type 2 diabetes. As well as providing insights into the molecular, cellular and 
physiological mechanisms involved in disease pathogenesis, these risk variants, when 
combined into a polygenic score, capture information on individual patterns of disease 
predisposition that have the potential to influence clinical management. In this review, we 
describe the various opportunities that polygenic scores provide: to predict diabetes risk, to 
support differential diagnosis, and to understand phenotypic and clinical heterogeneity. We 
also describe the challenges that will need to be overcome if this potential is to be fully 
realized.  

SEARCH STRATEGY 

The literature referenced in this article was selected for inclusion on the basis of the authors’ 
expertise in this area of research, based on a broader set of publications sourced from 
PubMed and other repositories using relevant search terms, including, but not limited to, 
“polygenic scores”, “risk scores”, “precision medicine”, “diabetes” and combinations thereof. 

ESSENTIAL POINTS 

• Over the last decade, there have been major advances in our understanding of the genetic basis of the 
most common subtypes of type 1 (T1D) and type 2 diabetes (T2D), with over 500 robust associations 
identified. 

• Although individual variants typically have only a modest effect on risk, when combined into a 
polygenic score, they offer increasing power to capture information on individual patterns of disease 
predisposition with the potential to influence clinical management.  

• The generation of polygenic scores based on overall T2D predisposition can identify individuals with a 
high future risk of diabetes who may benefit from targeted interventions.  

• The generation of polygenic scores based on overall T1D risk can identify individuals who may benefit 
from early interventions to forestall the risk of T1D, and also supports the identification of those with later-
onset diabetes who have an autoimmune etiology, for whom early recourse to insulin therapy may be 
advantageous. 

• The generation of partitioned polygenic scores which capture aspects of the etiological and clinical 
heterogeneity that contributes to variable clinical outcomes in those with T2D has potential to deliver 
clinical benefit through enhanced capacity to predict disease progression, complication risk, and response to 
pharmacological and behavioral interventions.  

• Polygenic scores have predominantly been derived from genetic studies performed in European 
populations and have suboptimal ability to capture risk in individuals of non-European origin. 

• Though there are a number of technical and logistical issues to be addressed before the clinical utility 
of polygenic scores can be fully enumerated, increasing utilization of polygenic scores within diabetes 
clinical practice is likely to be an important component of efforts to deliver precision medicine for those 
who have, or are at risk of, diabetes.  

1. Introduction 

Diabetes is already one of the major contributors to death and ill-health globally, and its 
prevalence continues to rise. Current projections estimate almost 500M affected by diabetes 
as of 2017 (and almost 700M by 2045), most of this in the form of type 2 diabetes (T2D) [1]. 
Escalating rates of T2D speak to the limits of current strategies for prevention, whether they 
involve lifestyle interventions (for example through dietary modification and increased 
physical activity) or pharmacotherapy. At the same time, the burden of disease arising from 
the complications of inadequately controlled diabetes (manifest as renal failure, vision loss, 
amputation, and accelerated vascular disease) highlights the urgent need for major 
improvements regarding both the timely diagnosis of diabetes (since much damage is 
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initiated whilst the disease is subclinical) and the management of those with established 
disease. 

The condition that we currently label as “type 2 diabetes” represents a convenient, but 
likely suboptimal, construct for the application of 21st century medicine. Though individuals 
with established T2D have a generalized metabolic derangement (typically associated with 
hyperlipidemia, adiposity, disturbed hepatic metabolism and the like), formal diagnosis rests 
entirely upon a single metabolic component (glucose), itself the end-result of multiple 
metabolic processes. The diagnosis of diabetes depends on numeric thresholds placed within 
continuous distributions of (fasting, random or postprandial) glucose and/or glycated 
hemoglobin levels. These thresholds were initially based around the observed relationships 
between levels of hyperglycemia and the incidence of specific diabetic complications, such as 
retinopathy, but they may not be equally discriminating for the macrovascular complications 
[2]. Crucially, T2D remains effectively a diagnosis of exclusion, made after those with 
hyperglycemia attributable to more defined causation including islet autoimmunity (type 1 
diabetes [T1D]), highly penetrant genetic effects (e.g. maturity onset diabetes of the young 
[MODY]) and certain specified exposures (steroids, pancreatitis, pregnancy) have been 
excluded. Those left with the diagnosis of T2D demonstrate considerable heterogeneity with 
respect to presentation, clinical course, and response to available therapies, yet clinical 
pathways tend to be based around universally-applied algorithms that take little, if any, 
account of that heterogeneity [3-5]. 

Human genetics provides a powerful set of approaches for addressing some of these 
challenges, delivering both an improved understanding of the mechanisms contributing to the 
development of diabetes, and opportunities for direct translational benefit [6]. Both common 
major subtypes of diabetes (T1D, T2D) are complex, multifactorial traits: that is, an 
individual’s risk of developing either of these conditions is influenced by the combination of 
genetic variation at multiple sites across the genome, acting in concert with factors within the 
external (e.g. nutritional availability, socio-economic status) and internal (e.g. microbiome, 
metabolic memory) environment [7,8]. Over the past decade, large-scale genetic studies 
(typically in the form of genome-wide association studies [GWAS]) have identified over 400 
distinct genetic signals influencing T2D risk [9] and over 50 with impact on T1D 
predisposition [10]. Most of these DNA sequence variants are widely shared within and 
between populations, in contrast to the more private alleles that drive some rarer subtypes of 
diabetes [11,12]. With the notable exception of the HLA region (which has the major impact 
on T1D risk), most of these common variants have only modest effects on individual 
predisposition: the biggest effects for T2D modulate risk by no more than 40% per allele and 
most have much smaller effects [9,10].  

However, in combination, the impact of this variation can be more profound [9,13]. In the 
most recent GWAS for T2D, the entire set of associated variants so far detected explains 
around 20% of the overall variation in disease risk [9], in Europeans at least (comparable 
analyses in non-European populations are limited by the sample sizes available for study). 
Estimates of the heritability of T2D vary widely [14,15] around a median of 40%, suggesting 
that around half the genetic contribution to the variation in risk can be quantified for each 
individual. Estimates of the heritability of T1D are higher [16] and a greater proportion of 
that genetic risk can be captured using existing approaches. Ongoing efforts to further 
characterize the genetic basis of both major subtypes of diabetes – through detecting 
significant associations at variants that have escaped detection because they are too rare, or 
have small effects – will increase the proportion of individual genetic predisposition that can 
be directly measured.  

The steadily expanding list of genetic variants delivered by these successive waves of 
genetic discovery has delivered novel mechanistic insights into disease pathophysiology. 
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Some of these have led to an understanding of the major processes contributing to disease 
risk, such as the role of islet-specific as well as immunological processes with respect to T1D 
risk [17,18] or the relative impact of defects in insulin secretion and action for T2D [19]. 
Other studies have attempted to dissect the detailed molecular, genomic and physiological 
events that mediate risk at individual loci [9,20-23]. These efforts can have direct 
translational impact, for example through the identification of novel therapeutic targets, or 
biomarkers that track disease progression.  

In this review, however, we focus on a different route from human genetics to translation, 
one that derives estimates of an individual’s predisposition to diabetes and its subtypes (in the 
form of polygenic scores) from the patterns of individual genetic variation at sites known to 
influence diabetes predisposition.  

2. The concept of polygenic scores 

The idea of grouping genetic variants to capture the aggregate genetic risk for a given disease 
is not new. An early promise of genetic discovery in complex (polygenic) conditions was to 
predict clinical outcomes. It was recognized that, in contrast to classical Mendelian diseases, 
where the presence of a specific mutation was deterministic and typically heralded the 
eventual onset of disease (contingent on penetrance), the genetic risk for complex, 
multifactorial diseases is probabilistic and most appropriately used as a predictor that 
quantified a discrete increment in overall risk [24]. This is because for complex human traits, 
the overwhelming majority of associated genetic variants exert modest effects, and the ability 
of any individual variant to influence clinical outcomes is small. The obvious approach is to 
sum the effects of risk alleles associated with a given condition, to generate an aggregate 
estimate of genetic risk. This approach was justified by the observation that early genetic 
associations seemed to work in an additive fashion, with little or no evidence of epistasis. 
This concept was pioneered for age-related macular degeneration, the first disease for which 
GWAS proved successful [25] and had also been employed in T2D for the three reproducible 
genetic associations that had emerged from the pre-GWAS era [26]. 

This concept can be easily expanded from the disease arena to quantitative traits. Here, 
rather than expressing “risk” (which connotes the deleterious burden of illness), the aim is to 
capture the overall variance in a trait conferred by the set of genetic variants grouped into a 
composite score. Examples include circulating levels of a specific metabolite or the inherited 
predisposition toward a behavioral pattern, where the deleterious connotations ascribed to the 
term “risk” no longer apply. In this review, therefore, we favor the use of the term “polygenic 
score” as a more inclusive general descriptor.   

The initial uses of polygenic scores deliberately focused on the inclusion of individual 
genetic variants for which the evidence for association was robust. This occurred as a “route 
correction” to the historical trend whereby the proliferation of candidate gene studies and the 
adoption of liberal statistical significance thresholds had led to the publication of many 
genetic associations which later proved irreproducible, and likely represented false positive 
findings [27]. In the GWAS era, such high-likelihood variants had to achieve genome-wide 
significance, based on a widely-accepted threshold of p<5×10-8, established to account for the 
estimated 1,000,000 independent tests that exist among common variants in the European 
genome) [28]. Thus, polygenic scores began to be constructed through the compilation of 
genome-wide significant variants emerging from successive and ever larger GWAS, each 
with increased statistical power [29].  

In the literature to date, scores which only incorporate variants that are individually 
significant (typically weighted to reflect their respective effect sizes on the trait of interest), 
have often been described as “genetic [risk] scores”, sometimes in contrast to use of the term 
“polygenic scores” to reflect those which build in additional sub-significant variants. 
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However, these terms have been applied inconsistently and sometimes interchangeably, and 
in this review we take the opportunity to (re)define these concepts with labels that are easier 
to interpret. Because the former are composed of variants at the top or extreme of the 
statistical distribution, we propose the term “restricted-to-significant polygenic scores” 
(rsPS). (BOX; FIGURE 1 ) 

In T2D, the use of rsPS was pioneered in a series of publications in 2008, each of which 
constructed an rsPS from the 16-18 T2D risk variants known at the time [30-32] and 
compared its predictive performance to that of clinical T2D-risk factors. In Framingham 
samples, for instance, individuals with a “high” rsPS (score ≥21, ~11% of the cohort) had 2.6 
higher odds of developing T2D, than those with a “low” rsPS (score ≤15, ~25% of the 
cohort) [31]. We discuss these rsPS studies in detail later in this review.  

While compiling variants that achieve genome-wide significance ensures that the variants 
included in the score represent real associations with disease, such a stringent threshold 
ignores many other variants which, though truly associated with the phenotype, have escaped 
detection at genome-wide significance due to limited sample sizes. However, an estimate of 
their likely contribution is available in GWAS datasets, even if they fail to achieve genome-
wide significance. Therefore, under the assumption that the effects of variants that have no 
association with disease will tend to cancel each other by random fluctuations around the null 
distribution, there is an opportunity to extend the polygenic score beyond the set of 
individually-significant variants (including potentially, all the variants from the GWAS 
dataset) in the expectation that the small cumulative effects of many hundreds or thousands of 
truly associated variants can contribute to the overall score, and improve power. In practice, 
the scores derived in this way do not typically include all variants. Typically, the full set of 
variants is pruned to selectively remove highly-correlated variants:this pruning is combined 
with an optimization step that evaluates the discriminative performance of different sets of 
variants (defined using a range of progressively more liberal association p-value cutoffs), to 
establish which cutoff maximizes the predictive signal [33]. We propose the term “global 
extended polygenic scores” (gePS) to describe these extended polygenic scores. We prefer 
“global” over “total” in this context, because current approaches do not capture all aspects of 
genetic risk: private variants, many structural variants and variants whose effect is modified 
by environmental factors are not optimally considered in these analysis.  

The use of these global scores has been popularized recently with the assembly of large 
GWAS meta-analyses for multiple traits [13]. Their increase in content allows for a steeper 
and more granular estimation of risk along the gradient of genetic burden. These scores can 
include many tens of thousands, even millions, of variants. For example, one such gePS for 
T2D-risk, comprising 7M variants, was able to demonstrate that, in the UK Biobank, 
individuals in the top 3.5% of a T2D gePS (generated from and optimized in a subset of 
independent UK Biobank sample) had an odds ratio ≥3.0 when compared to the mean of the 
population [13].   

The clinical manifestation of disease often reflects the confluence of multiple 
pathophysiological processes. In T2D, hyperglycemia typically requires the concomitant 
presence of insulin resistance and inadequate beta-cell function. Each of these may in turn be 
caused by various mechanisms, such as incretin insufficiency and/or resistance, fatty acid 
accumulation, glucolipotoxicity, diet, inflammation or the microbiome. To the extent that 
endophenotypes which reflect these processes can be captured in populations, one can 
estimate which of these processes is likely to mediate the T2D impact of each T2D-associated 
variant. Once these associations are established, discrete polygenic scores can be constructed 
with variants which share mediation of T2D-risk through a specific intermediary process. For 
example, early efforts to group variants in this fashion revealed that one of the processes 
contributing to T2D risk involves insulin resistance that is characterized by lower levels of 
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adiposity [34-36]. This paradoxical combination of phenotypes, which reflects the pattern 
seen in more extreme form in inherited lipodystrophies [37], likely reflects the consequences 
of an inherited defect in adipocyte development which limits the storage of excess lipid in 
“metabolically safe” fat depots.  

One systematic approach to group variants in this way involves the use of clustering 
methods (described in more detail below). Here, investigators use orthogonal lines of 
evidence (e.g. association with physiological measures of insulin secretion or resistance, 
pattern of expression of tagged genes, or open chromatin regions) to group genetic variants 
associated with T2D into specific clusters informed by biology [20,38]. We term these 
“partitioned” (or “process-specific”) polygenic scores (pPS), and explain below how these 
may help to define specific pathways that illuminate disease pathogenesis or highlight 
opportunities for potential pharmacological modulation. These partitioned scores may also, 
by capturing the endophenotypic profile driving an individual’s progression from health to 
disease, provide a framework for tailored preventive or therapeutic interventions. 

It is worth emphasizing a critical point that is often neglected in the enthusiastic embrace 
of the burgeoning power of human genetics. Because, for complex traits such as T1D and 
T2D, inherited sequence variation is only one component of predisposition, even the best 
possible distillation of genetic potential will never provide a complete description of 
individual risk. A fuller assessment of present and future disease state for an individual 
requires the integration of genetic information with accurate and robust measures of other 
contributions to individual predisposition (including diet, lifestyle and microbiome), and an 
assessment of current clinical state (including measurement of biomarkers such as glucose, 
lipids, islet autoantibodies, and clinical phenotypes such as BMI and WHR). The relative 
contributions of these various domains of information are likely to shift during life with 
measures of clinical state becoming ever more impactful in later life as disease becomes 
overt. However, as we will show, genetic variation has a critical part to play. The long-term 
stability of genetic variation, which is easily ascertained in peripheral blood, offers the 
potential for risk stratification throughout the life-course; unlike other risk factors, it is also 
not subject to the confounding effects of disease or its treatment.  

3. Polygenic scores in action 

3.1 Predicting T2D onset 
The slow onset of T2D, coupled to evidence that the damaging consequences often predate 
the clinical diagnosis by some years [2], emphasizes the clinical value of early diagnosis. The 
capacity for drugs and lifestyle interventions to lead to substantial reductions in progression 
to diabetes [39,40] motivates efforts to identify those at the greatest future risk of developing 
T2D. As discussed above, genetic predictors have the particular advantage of offering 
predictive information that is stable throughout life. 

Prior to the first GWAS for T2D, three genetic variants had been associated with T2D 
with high confidence: identified either through candidate gene analyses, or the follow up of 
linkage signals, these implicated KCNJ11 p.E23K, PPARG p.P12A, and TCF7L2 rs7903146. 
In 2006, Weedon et al. [26] assessed the combined risk of carrying these variants. As well as 
observing that the variants influenced T2D risk additively, the authors assessed the predictive 
value of the genetic tests using a standard approach that uses the trade-off between the 
sensitivity and specificity of the test to generate a receiver operator characteristics (ROC) 
curve. The area under this curve (the AUROC, or C-statistic) provides a measure of the 
proportion of times such a test will correctly assign disease state between a pair of 
individuals, one who has the disease of interest (or, depending on the study design, will 
would go on to develop it), and another who is not (or, who remains disease-free on follow-
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up). The estimated AUROC was 0.58, exceeding the 0.50 value that indicates no 
discriminative capacity, but well short of the values seen for most clinically useful tests.  

Publication of the first few rounds of T2D GWAS extended the number of significantly 
associated variants into the teens, enabling better powered studies (involving between 16 and 
18 risk alleles) that sought to compare the value of an rsPS to predict incident diabetes to that 
of clinical factors alone [30-32]. Lyssenko and colleagues examined a 16-SNP rsPS in 16,061 
Swedish and 2,770 Finnish subjects followed over a median of 23.5 years [30]. The rsPS 
alone (adjusted for age and sex) predicted diabetes incidence with an AUROC of 0.62, but 
this compared poorly to a mix of baseline clinical factors (age, sex, a family history of 
diabetes, BMI, blood pressure, triglycerides, fasting plasma glucose) that claimed an AUROC 
of 0.74. Adding the rsPS to these clinical factors had only a modest impact on performance, 
pushing the AUROC to 0.75. Adding genetic factors to clinical factors reclassified 9% and 
20% of subjects from the Swedish and Finnish study subjects, respectively, to a higher risk 
category.  

In a similar study, Meigs et al. [31] assessed an 18-SNP rsPS in 2,377 participants of the 
Framingham Offspring Study over 28 years of follow-up. The AUROC for incident diabetes 
with the rsPS alone (adjusted for age and sex) was 0.58 whereas an enhanced clinical model 
incorporating age, sex, family history, BMI, fasting glucose, systolic blood pressure, HDL 
cholesterol, and triglyceride levels reached 0.90. Adding genetic data to such a well 
performing clinical model left the AUROC unchanged, and resulted in risk reclassification of, 
at most, 4% of the subjects. A study of the power of an 18-SNP rsPS to capture T2D case-
control status in 4,907 participants from Dundee (Scotland), reached similar conclusions: the 
AUROC for genetics alone was 0.60, whereas the equivalent metric for age, BMI, and sex 
was a vastly superior 0.78, with only a slight increment (to 0.80) for the combined analysis 
[32]. 

In the decade since, waves of successively larger T2D GWAS efforts have brought the 
number of significant loci discovered into the hundreds. Concomitant improvements in the 
performance of rsPS have been more modest. An updated analysis of a 62-SNP rsPS 
performed in the Framingham Offspring Study [41] generated a much-improved AUROC for 
T2D prediction (combined with age and sex) of 0.72, but as before, the addition of genetic 
information provided negligible improvement in performance over the equivalent clinical 
predictor (AUROC for clinical factors alone, 0.90; for the combined clinical and genetic 
score 0.91). Predictive performance in a second prospective study (CARDIA) was 
uniformally worse, particularly in participants of African descent [41]. 

The studies so far described employed rsPS, restricting the score to variants that 
demonstrated genome-wide significant associations. In principle, the expansion of the score 
to accommodate additional information from subthreshold variants should improve 
performance. Indeed, in a model-based analysis of predictive performance for T2D and other 
traits that extrapolated from estimates of GWAS effect-size distribution and heritability (as 
available in 2012), Chatterjee and colleagues deduced that a ten-fold increase in effective 
GWAS sample size for T2D (to ~220,000) would result in a boost in rsPS performance from 
0.57 to 0.74, with a further increment in performance to 0.79 if a more liberal cut-off for 
variant inclusion was adopted [42].  

Sample sizes on that kind of scale are now within reach for T2D, but as yet, those 
theoretical estimates have not been realized, most likely because some of the assumptions of 
the model, such as heritability, were overestimated. In analyses that update those reported in 
the original manuscript [9], we include here a gePS generated by Mahajan et al. from a T2D 
GWAS meta-analysis of almost 460,000 European individuals (effective sample size 
~158,000) which captured around 20% of the variance in individual predisposition to T2D 
(about half the total estimated heritability) [9]. An optimized gePS comprising 171,249 

A
D

V
A

N
C

E
 A

R
T

IC
LE

:
En

d
o

cr
in

e 
R

ev
ie

w
s

D
ow

nloaded from
 https://academ

ic.oup.com
/edrv/advance-article-abstract/doi/10.1210/er.2019-00088/5535575 by 81225740 user on 24 July 2019



ADVANCE A
RTIC

LE

Endocrine Reviews; Copyright 2019  DOI: 10.1210/er.2019-00088 
 

 8

variants was constructed using 5,639 cases and 112,307 controls from the UK Biobank and 
then used to predict T2D case-control status (as a proxy for prospective T2D incidence) in a 
separate set of 13,480 cases and 311,390 controls, also from the UK Biobank. The AUROC 
generated was 0.66 without adjustment for age and sex, increasing to 0.73 if age and sex were 
added (Table 1; Figure 2). Khera et al. [13] used a similar approach with a deeper gePS of 
almost 7M variants that, after factoring in age and sex, generated a similar AUROC (0.72). 
Both studies found that individuals from the UK Biobank (who were aged between 40 and 69 
at recruitment, and tended to be relatively healthy) in the top 2.5-5% of the gePS distribution 
were at approximately 3-fold-increased risk (case-control prevalence of ~11%) compared 
with the mean of the rest of the sample and at almost 10-fold-increased risk compared with 
the bottom 2.5% (prevalence~1%) [9,13]. The former odds ratio could be expanded to ≥5.0 in 
individuals with the very highest gePS, though this high-risk group constituted only the ~150 
individuals in the 0.05% extreme of the distribution [13].  

One interesting feature to emerge from the re-analysis of the T2D polygenic scores shown 
in Figure 2 (based on the data from [9]) is the limited increment in performance seen 
between the rsPS (which was based on 199 genome-wide significant SNPs) and the gePS 
(built from ~170K SNPs).  A second observation is the reassuring concordance in the 
estimates of predictive performance obtained in these two studies [9,13], despite differences 
in the methods, though it is worth noting substantial overlap in the data sets used for training 
and testing (Table 1). Furthermore, these risk estimates are almost identical to those 
generated by the direct-to-consumer company 23andMe from their data set of ~1M 
individuals (mean age <50y) [43]. 23andMe have recently started sharing results from their 
1244-SNP T2D gePS with their customers, with a recommendation that those deemed at high 
risk consider lifestyle interventions to mitigate that risk. A T2D-risk score generated by 
Genomics PLC had similar performance [45].  

3.2 Predicting T1D onset 
Whilst clinical management strategies exist to prevent the development of T2D in those 
determined to be at high risk [39,40], there is currently no known effective strategy to prevent 
T1D. Nevertheless, genetic profiling could have value in defining individuals at the highest 
future risk of T1D for enhanced surveillance or inclusion in trials of early immunologic 
interventions, and, in turn, when those trials are successful, could prove instrumental in 
stratifying those most likely to benefit from those new preventative approaches.  

Like T2D, T1D has a substantial heritable component, estimated to be between 65 to 88% 
[46,47,48]. Genetic variation in the HLA region on chromosome 6p21 accounts for ~50% of 
that heritability [49]. The DR and DQ loci confer the strongest association with odds ratios as 
high as 16 for the DR4-DQ8/DR3-DQ2 genotype [50]. Subsequent GWAS have identified 
over 50 non-HLA genetic loci contributing to T1D risk, including SNPs near the INS, 
PTPN22 and CTLA4 genes with substantial impact on T1D risk [10,51-53].   

Over the past 15 years, genetic prediction for T1D has evolved from the use of HLA 
alleles alone [54], to incorporation of over 40 non-HLA variants [55-58]. Two rsPS for T1D 
developed independently by Winkler and Oram and colleagues [56,57] were recently merged 
into a single rsPS including 41 HLA and non-HLA SNPs [59]. This 41-SNP rsPS was 
deployed within the TEDDY (T1D in the Environmental Determinants of Diabetes in the 
Young) study which followed several thousand children with high T1D-risk HLA genotypes 
from birth, using the development of islet autoantibodies and diabetes as outcomes indicating 
disease progression. The 41-SNP T1D rsPS successfully stratified risk: children with a score 
>14.4 had 11.0% risk of developing multiple islet autoantibodies by age 6 and 7.6% risk of 
diabetes by age 10, compared with those with scores below this who had rates of 4.1% and 
2.7% respectively [59]. 
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Leveraging advances in density of SNP arrays as well as larger reference panels, the most 
recently updated T1D rsPS includes 67 SNPs and accounts for interactions between 18 HLA 
DR-DQ combinations [60]. When applied to the UK Biobank, this enhanced T1D rsPS 
significantly outperformed previous scores, identifying individuals with T1D with AUROC 
of 0.92. These figures are close to the maximum performance figures predicted for T1D, 
based on the modelling analyses described earlier in the context of T2D [42].  

3.3 Refining the diagnosis of major diabetes subtypes 
As well as predicting future disease risk, polygenic scores are emerging as powerful tools to 
support diagnosis of major diabetes subtypes. Determining whether a particular patient has 
T1D, T2D, or one of the other specified forms of diabetes is not always straightforward. A 
clinical diagnosis of T1D can often, but not always, be substantiated by the presence of one 
or more islet autoantibodies (GAD, IA2, IAA, ZnT8), as these are found in >90% of newly 
diagnosed patients [61]. However, these antibodies are not always measured in clinical 
practice, and do not provide perfect determination of T1D diagnosis due to a combination of 
(i) background presence in some individuals without T1D, (ii) lower rates of positivity for 
T1D individuals diagnosed in adulthood, and (iii) waning titers over time from initial 
diagnosis [57]. The measurement of C-peptide levels in plasma or urine can also help 
distinguish T1D from other forms of diabetes, but use of this test is not routine, not least 
because it has reduced value at the time of diagnosis (where it can be suppressed even in T2D 
or monogenic diabetes) or during the “honeymoon period” of T1D, given residual beta-cell 
function in the early years following presentation [62]. The consequence is relatively high 
rates of both under- and over-diagnosis of T1D when trying to differentiate it from both T2D 
and less common forms of diabetes, such as MODY [63]. The stable nature of a polygenic 
score, unchanged throughout life, offers a useful tool to aid in diagnostic characterization of 
individuals with established diabetes.  

An early application of the initial T1D rsPS developed by Oram and colleagues was in 
discriminating between T1D and T2D. The authors applied both a 69-SNP T2D rsPS and a 
30-SNP T1D rsPS to a sample of well-defined cases of T1D and T2D from the Wellcome 
Trust Case Control Consortium GWAS [64]. They found the T1D rsPS was highly 
discriminative (AUROC 0.88), whereas the T2D EPS was less so (AUROC 0.64), and that 
combining the two offered little improvement beyond the T1D score alone (AUROC 0.89) 
[57].  

Application of the 30-SNP T1D rsPS alone to a cohort of 223 adults, aged between 20 
and 40 diagnosed with diabetes at least 3 years previously, predicted progression to insulin 
deficiency (AUROC 0.87) and offered information additional to that provided by antibody 
status [57]. In 8,608 individuals with a clinical diagnosis of T2D after 35 years of age, treated 
without insulin for at least 6 months following diagnosis, the same T1D rsPS predicted 
progression to insulin use at five years, but only in the small subset of GAD antibody-positive 
participants: the probability of insulin use ranged from 17.6% in those in the lowest tertile of 
T1D-risk to 47.9% in the highest [65].   

T1D polygenic scores have also provided a clearer sense of the extent of T1D prevalence 
across the age spectrum. Using a 29-SNP T1D rsPS, Thomas and colleagues demonstrated 
that, amongst individuals participating in the UK Biobank, 42% of genetically-defined T1D 
was observed in those diagnosed with diabetes between 31 and 60 years, pointing to a far 
higher proportion of overall T1D presenting in adulthood than is commonly appreciated [66]. 
It can be challenging to detect these individuals clinically since, in this age range, they 
represent only a small minority (~4%) of patients with any form of diabetes. Compared to 
those with T2D, individuals with T1D defined on the basis of a high T1D rsPS had lower 
BMI, were more likely to use insulin in the first year of diagnosis, and were at higher risk of 
diabetic ketoacidosis [66]. 
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T1D polygenic scores have also shown utility in discriminating early-onset T1D from 
monogenic forms of diabetes including MODY [67], neonatal diabetes [67], and monogenic 
autoimmune diabetes [68], that typically present during childhood. In these settings, a T1D 
score can prioritize patients who are most likely to benefit from sequence-based testing for 
rare causal variants, and support correct interpretation of novel variants of uncertain 
functional significance that emerge from such sequencing. Prioritization of patients in this 
way is important both for providing a cost-effective strategy to increase diagnosis rates for 
known forms of monogenic diabetes and for facilitating new gene discovery by reducing 
study subject heterogeneity. A related application of polygenic scores may be to explain some 
of the variable presentation of monogenic forms of diabetes, with respect to age of diagnosis 
for example [69]. The same variant within the HNF1A gene may segregate with early onset 
diabetes in some pedigrees, but also be observed in individuals who retain normal glucose 
tolerance into late adulthood and beyond [70]. Studying 410 individuals from 203 HNF1A-
MODY families, Lango Allen and colleagues found that a 15-SNP T2D rsPS was 
significantly associated with earlier age of diabetes diagnosis, with each additional risk allele 
accelerating diagnosis by around four months [71].  

3.4 Clinical application of predictive scores  
These data provide a sound basis for the use of polygenic scores to support discrimination of 
major diabetes subtypes and lend credence to their wider clinical value. Given analogous 
applications of the polygenic score approach for other multifactorial disease traits [13,72,73], 
these findings have collectively bolstered excitement about their potential to deliver clinical 
benefit across a wide range of common diseases.   

One major focus of current research activity lies in exploring the value of polygenic 
scores to predict individuals at the highest risk of T2D so as to enable early targeting of 
intervention strategies. If the estimates of relative risk seen in UK Biobank participants in 
recent studies generalize to the population level (and the current data indicate that 
performance seems to be sustained throughout the age ranges studied [9,43]), then there are 
likely to be in excess of one million individuals in the UK, who, on the basis of their 
polygenic score alone, have a ~50% lifetime risk of T2D [9]. With the price of whole-
genome sequencing falling, and the potential to achieve near-perfect imputation by 
harnessing the combination of large-scale whole-genome sequencing (in a subset of the 
population) and dense GWAS arrays (in the rest), several countries are starting to plan for a 
future of universal genetic screening. The rationale is that “one-time” measurement of 
genome-wide genetic variation (achievable for the cost similar to that of a single outpatient 
appointment or a chest X-ray), would support a wide range of clinical applications throughout 
a person’s lifetime, including, but not limited to, the optimization of therapies (based on 
pharmacogenetic insights) and the prediction of future illness using polygenic scores for a 
range of diseases.  

However, there are clearly multiple obstacles to be overcome before this becomes the 
standard of care.  
Firstly, there are technical issues. The most critical amongst these involves ensuring that 
polygenic scores are appropriately calibrated to the ethnicity of the individual being tested. 
An rsPS or gePS generated using data solely derived from Europeans will have suboptimal 
ability to capture risk in individuals of non-European origin. The T2D gePS recently released 
by 23andMe demonstrates a marked fall-off in predictive performance in individuals of Asian 
and African-American origin [43]. In some settings, these issues with the transethnic 
portability of polygenic scores go beyond a simple dilution of performance: unpredictable 
biases and the consequences of genetic drift can result in entirely misleading results [74,75]. 
Recent studies have also emphasized the impact of residual population stratification effects 
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on the performance of these scores [76,77]. RsPS are likely to be more robust to these biases 
than gePS.  

The second question to be addressed concerns whether a given polygenic score adds 
clinical value to the predictions that are possible using existing risk factors. In the case of 
coronary artery disease, there is evidence that a substantial proportion of those at highest 
polygenic risk would not have been detected using classical risk factors [13]. In contrast, and 
as described earlier, the incremental benefit of a polygenic score over easily-accessible 
clinical parameters seems more limited for T2D, at least when applied at older ages. In fact, 
the non-genetic risk factors we already collect in clinic (family history, ethnicity, BMI, fat 
distribution) perform quite well in predicting T2D, particularly in the near term, especially 
when supported by direct biomarkers of the underlying disease process such as measures of 
glycemia [30-32,41]. There is an intrinsic limitation to the added value of a polygenic score 
arising from the fact that trait heritability provides a ceiling for the performance of any 
purely-genetic measure.  

Third, there is the issue as to whether early diagnosis can be shown to result in beneficial 
outcomes, for example by motivating improvements in lifestyle or treatment that reduce the 
risk of disease. In the case of T2D, the potential for lifestyle modification and/or 
pharmaceutical intervention (for example with metformin) to reduce diabetes progression is 
clear [39,40], and these benefits seem to accrue irrespective of genetic risk. In the Diabetes 
Prevention Program, for example, lifestyle intervention was effective at reducing diabetes 
incidence compared to placebo even among those with the highest quartile of T2D rsPS [78]. 
However, there is limited evidence to date that the communication of genetic risk is sufficient 
to motivate most individuals to undertake the kind of long-term behavioral modification 
required for sustained benefit [79-81]. There is also some (at least theoretical) risk of harm if 
the communication of risk information is mishandled. This could arise through failure to use 
ethnically appropriate scores, or to incorporate other relevant health information. For 
example, an overweight person with a low T2D polygenic score may be at far greater risk of 
disease than the polygenic score alone would suggest. Some individuals may be liable to 
interpret high genetic risk in a deterministic and fatalistic way, failing to appreciate that 
remediation of risk through lifestyle modification is no less likely to be effective in their case.  

Finally, there are questions related to implementation. Several countries (Finland, 
Estonia, UK, Taiwan, amongst others) are expanding the clinical roll-out of genome-wide 
genetic data, with plans to deliver genetic profiling to the population scale through a 
combination of sequence- and array-based strategies. Such universal availability of genomic 
data would open up much wider use of polygenic scores: the costs of acquiring such data 
(which only needs to be done once in the life of the individual) could be amortized across 
multiple applications (rather than needing to be justified based on any single indication) and 
the marginal costs of any specific use of those data would be minimal. Having said that, any 
valid assessment of clinical utility needs to consider the full costs of any given application: if 
the consequence of the unregulated use of genetic information is to identify a large proportion 
of the population as at high risk, there may be substantial financial and health costs to be 
incurred in follow-up screening, unnecessary treatment, patient stress, and the unproductive 
use of medical resources. A rigorous pipeline for the interpretation of these findings and their 
translation into evidence-based clinical interventions at the point of care will need to be 
created and deployed for multiple phenotypes across health care systems. 

4)  Partitioned polygenic risk scores 

So far, in this review, we have focused on the use of restricted (rsPS) and expanded (gePS) 
polygenic scores, both of which aim to capture the genetic contribution to predisposition for 
the major disease phenotypes conventionally used to define morbid states – such as T1D and 
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T2D. These scores are designed to enable prediction of an individual’s risk of developing of 
one of these forms of diabetes, or, as described above, to support differential diagnosis in 
those who have recently been diagnosed with diabetes. For these indications, it makes sense 
to combine as many risk variants as possible, irrespective of the mechanisms through which 
they influence that risk. 

However, these are not the only clinical questions that polygenic scores are equipped to 
address. Many of the most difficult problems in the clinical management of T2D, in 
particular, arise out of the clinical and phenotypic heterogeneity that is an obvious feature of 
this condition. Clinical management of someone with a diagnosis of T2D would be 
substantially improved if it were possible to sense how fast their diabetes is likely to progress, 
their propensity for developing macrovascular and microvascular complications, and their 
likely response to the range of treatments (therapeutic, surgical, and behavioral) that could be 
deployed to improve outcomes. Since these are questions that relate to clinical and etiological 
heterogeneity in those with established T2D, polygenic scores based on overall disease risk 
are unlikely to offer discriminatory value.  

As discussed earlier, one promising route to capture elements of this clinical 
heterogeneity is through the use of “partitioned risk scores” (pPS). These seek to 
“deconstruct” the overall (restricted or extended) polygenic score along biological axes that 
represent contributory etiological pathways, and thereby provide a framework upon which to 
map the variable response to clinical outcomes.  

One way of conceptualizing these pPS is in terms of the “palette” model of diabetes 
predisposition, which seeks to focus attention not on T2D itself, but on the various 
intermediary processes that collectively contribute to T2D-risk [3,38]. These include well-
studied processes such as obesity, fat distribution, islet development and function, and insulin 
sensitivity, though there are likely to be others that are, as yet, less clearly described. Each of 
these processes is itself under multifactorial (genetic and non-genetic) control, and a given 
individual may be positioned at any point on the spectrum from “low-T2D-risk” to “high-
T2D-risk” for each of these. Whilst the overall load of T2D-risk across the set of processes is 
likely to be a useful measure of the overall T2D-risk of an individual, the disposition of that 
risk across the various axes is likely to be more informative regarding disease presentation 
and clinical course. In accordance with the “palette” analogy, each of these processes can be 
considered to be represented by a particular base color (red, blue, yellow etc): for any given 
individual, risk along each axis would be captured by the saturation of the relevant base 
color, and their overall profile of T2D-predisposition visualized in terms of the mix of those 
colors which results when they are combined.  

This “palette” model is consistent with current understanding of the pathogenesis and the 
genetic architecture of T2D. Over the past decade, T2D-associated variants have been shown 
to modulate T2D risk through diverse mechanisms: some increase T2D risk through an 
impact on obesity (e.g. FTO), others reduce insulin sensitivity (e.g. PPARG, IRS1) whilst 
others compromise insulin secretion, either through direct effects on islet function (e.g. 
KCNJ11) or development (e.g. HNF1A), or indirectly through impact on incretin signalling 
(e.g. GLP1R) [82]. The various classes of T2D therapeutics operate through the same range 
of mechanisms to reverse the diabetic phenotype or control its glycemic consequences. The 
weight of evidence indicating that the genetic contribution to T2D predisposition mostly 
arises from common variants of limited individual effect [11,12] emphasizes the need to think 
in terms of a gradation of polygenic risk across individuals, rather than a classification based 
around rigid, discrete subtypes [3]. As well as providing a framework for capturing the 
mechanistic basis of T2D heterogeneity, this model also offers an approach to understanding 
how an individual’s particular genetic profile contributes to their progression from normal 
metabolic health towards the diabetic state.   
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 In 2010, Voight et al. were first to demonstrate that patterns of genetic association across 
diabetes-related quantitative traits could be utilized to annotate T2D-risk loci with respect to 
their physiological impact, analyses which highlighted the predominant role played by 
variants influencing insulin secretion [19]. This approach was further developed by Dimas 
and colleagues [83] to perform a systematic analysis of the relationships between 36 T2D-
risk alleles and a range of glycemic measures including indices of insulin secretion and 
insulin resistance gathered in nondiabetic individuals. Scott and colleagues extended this 
approach to a larger set of 93 T2D-risk alleles and included BMI and lipid measures in their 
clustering in addition to glycemic traits [44]. Three main patterns of multi-trait association 
emerged from this analysis, two of them reflecting defects in insulin secretion and insulin 
action respectively, and a third characterized by obesity and dyslipidemia. One major 
limitation of the unsupervised hierarchical “hard” clustering approach used in these papers 
[44,83] is that it requires each variant to be assigned to a single cluster, based on the 
questionable assumption that each variant can only be involved in one pathophysiological 
pathway. 

Access to an expanded range of large-scale quantitative trait association data (from large-
scale GWAS efforts within global consortia such as GIANT [anthropometric traits], MAGIC 
[continuous glycemic traits] and GLGC [lipids]) plus advancements in clustering algorithms 
have enabled a new wave of variant clustering analyses [20,38]. These described efforts to 
aggregate GWAS data from more diverse sets of T2D-related quantitative traits and 
employed more sophisticated “soft” clustering techniques [84,85] to pick out clusters of T2D-
associated variants with similar patterns of impact across the suite of phenotypes. These soft 
clustering approaches explicitly allow for the possibility that a variant influences more than 
one process. Mahajan et al. [20] deployed a C-means clustering approach across GWAS data 
from 10 T2D-related quantitative traits for a set of 94 T2D association signals that emerged 
from a T2D-GWAS of ~450K individuals, identifying 6 variant clusters (based on a threshold 
of 80% for cluster membership). Udler et al. [38] employed a complementary soft clustering 
approach - Bayesian nonnegative matrix factorization - to a partly overlapping set of 94 T2D-
risk variants, gathering GWAS data from 47 diabetes-related traits, and identifying five 
clusters. Reassuringly, despite these differences, the clusters identified by both were broadly 
similar (Table 2).  

The variants within each of the genetic clusters can be used to generate “partitioned” 
polygenic scores that capture the genetic contribution to each intermediary process. Each of 
these clusters (and the pPS generated therefrom) can be assigned mechanistic labels based on 
the observed patterns of GWAS effects: for example, a cluster which features T2D risk 
alleles most clearly associated with decreased fasting insulin, can, on the basis of known 
pathophysiological relationships, be attributed to reduced insulin secretion. On this basis, two 
of the clusters were associated with an adverse impact on beta-cell function, three were 
characterized by insulin sensitivity (differing with respect to their relationship to obesity, fat 
distribution, and lipid metabolism), and a sixth cluster (designated only in the Mahajan et al. 
paper) had less clearcut phenotypic features [20,38] (Table 2). 

The T2D-risk variants assigned to the three insulin sensitivity clusters displayed the most 
obvious overlap across the two approaches. Variants near FTO, MC4R, and NRXN3, all loci 
known to have substantial impact on variation in BMI, mapped to a cluster of T2D-risk 
variants thereby assumed to be driven primarily by obesity. Variants at IRS1, PPARG, and 
KLF14 implicated in effects on adipocyte differentiation and body fat distribution, were co-
located to a cluster of T2D-risk variants featuring lipodystrophy-like effects on insulin 
sensitivity, partly overlapping with the set of “favorable adiposity” loci identified by others 
[34-36]. Finally, variants at GCKR and TM6SF2, known for their profound impact on ectopic 
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fat accumulation in liver and altered circulating lipid levels [86,87] were members of a 
cluster which seems to be driven by alterations in hepatic metabolism.  

Though there was broad agreement concerning the variants deemed to influence beta-cell 
function, disposition across the pair of beta-cell clusters was less consistent, particularly for 
variants with less dramatic effects on the continuous glycemic traits that distinguished them.  
T2D-risk variants at SLC30A8, TCF7L2, ADCY5, HNF1A, and MTNR1B consistently 
mapped to a cluster characterized by an association between T2D-risk, reduced insulin levels 
but elevated proinsulin levels, whilst those at ARAP1, IGFBP2, DGKB, and CCND2, 
combined T2D-risk and reduced beta-cell function with reduced proinsulin levels. Some of 
the variation in the assignment of other variants across these two clusters reflects differences 
in the traits included in the respective analyses, compounded by substantial differences in the 
size of the GWAS data sets available across traits (which has an impact on discriminatory 
power). Nevertheless, the replicated subdivision of beta-cell function variants into two 
clusters distinguished by the direction of the association to proinsulin speaks to two 
distinctive mechanisms whereby T2D-associated variation results in beta-cell dysfunction 
[88].  

Despite some of the differences in the assignment of individual variants across clusters, 
the mechanistic basis of these clusters appears robust, mapping as it does to current 
understanding concerning the major pathophysiological processes influencing T2D 
development. Allocation of variants to these physiologically-defined clusters is also broadly 
supported by orthogonal analyses of tissue-specific patterns of chromatin accessibility, 
histone modification, and transcriptional regulation. The various subsets of T2D-risk variants 
identified by clustering of GWAS data demonstrate clear evidence of genome-wide 
enrichment with respect to tissue-specific active enhancers and promoters [9,38,44,89-91], 
cis-eQTL signals [90,92], and enhanced connectivity in tissue-specific protein-protein 
interaction networks [93]. As anticipated, these link variants in the insulin secretion clusters 
to altered transcriptional regulation in the islet, and those in insulin action clusters to events 
in liver, fat and muscle.   

Beyond the ability of these efforts to identify disease pathways, a critical question in 
terms of clinical translation is whether or not the pPS generated from these clusters show 
associations with clinically relevant outcomes: early results are encouraging. For example, 
differential cluster associations have been observed for coronary artery disease, stroke, and 
the renal complications of diabetes [38,94,95], each emphasizing enhanced risk associated 
with T2D predisposition mediated through insulin resistance. In the case of macrovascular 
disease, of course, this is likely to reflect the pleiotropic impact of these variants on non-
glycemic risk factors such as lipids. A specific role for pPS-captured defects in insulin 
secretion and altered gut microbiome has also been reported: those microbiome changes 
include an effect on butyrate-producing pathways shown to play a causal role with respect to 
diabetic and obesity phenotypes [8].  

These findings support the notion that whilst, by definition, all cluster-defined pPS 
associate with T2D risk, differential effects can be detected with respect to aspects of 
mechanism, phenotype, and clinical outcomes. However, further effort is needed to validate 
and extend these findings, and to define the contribution that these can make to the delivery 
of more personalized management in diabetes. So far, clustering analyses have been restricted 
to a subset of the most robust genome-wide significant T2D-associated variants, primarily 
those discovered in Europeans, and for which association statistics are available across 
multiple related traits. More complete analyses (delving deeper into the list of T2D-
associated variants, and embracing a wider range of traits) capable of generating more 
powerful pPS will become possible as GWAS efforts for those other traits scale up. Inclusion 
of additional phenotypes should provide more granular clustering, attributing mechanism to 
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variants which currently show only weak phenotypic features, and bringing to light new 
pathways involved in T2D development. Integration with tissue- and cell-type-specific 
regulatory annotation maps will continue to support mechanistic inference [38,44]. Greater 
access to association data on T2D and other traits from non-European ethnicities will enable 
broader exploration of ethnic-specific variants and the heterogeneity of clinical presentation 
and course across major ethnic groups. As confidence grows in the mechanistic basis of these 
variant clusters, it will become possible to use trait-specific GWAS data to “build out” 
cognate pPSs and generate more powerful genetic instruments. For example, the pPS formed 
from the handful of genome-wide significant T2D variants in the “obesity” cluster could be 
superseded by using a polygenic score constructed from the BMI GWAS efforts themselves, 
and a pPS capturing islet autoimmunity generated from existing polygenic scores for T1D. 

For diseases such as T2D, the characterization of clinical phenotype using genetic 
measures alone is constrained by the fact that individual variation within each of the 
endophenotypic axes is also influenced by non-genetic factors. Diagnostic and predictive 
accuracy would be much improved, and the ability to track an individual’s journey from 
health to disease much enhanced, if the genetic contribution to phenotypic variation (as 
captured by the pPS) can be integrated with robust longitudinal measures of relevant features 
of the external environment (e.g. related to diet and physical activity) and internal milieu (e.g. 
metabolic memory and microbiome). Integration of this “predictive” information with 
evolving measures of the individual’s clinical state would add another dimension. In the 
context of T2D, the latter would involve capturing anthropometric data, and glycemic and 
metabolic state, forming an integrated profile of that individual that can be tracked over time.  

It would be particularly valuable in this regard to develop process-specific biomarkers 
that provide clinical readouts for each of the endophenotypic axes that corresponds to a 
particular pPS. The best illustration of this concept is the use of LDL-cholesterol as an 
integrated biomarker for that component of cardiovascular risk attributable to genetic and 
environmental influences on lipoprotein metabolism. The growing availability of large, 
publicly-available metabolomic and proteomic datasets makes it possible to use pPS as 
instruments to identify biomarkers correlated to pPS-defined risk as candidates for further 
prospective testing [96,97]. 

A key focus of ongoing research relates to understanding how these pPS might be 
deployed in clinical practice. One interesting possibility is that pPS profiling will allow 
identification of individuals whose diabetes is mostly attributable to defects in a single 
process. In the analysis by Udler et al. [38], one third of individuals fell within the top decile 
of T2D-risk for at least one cluster and, of these, 75% were not placed at the top decile of any 
other cluster. These individuals would be obvious recruits for the testing of targeted 
interventions. An alternative, possibly complementary, approach would make use of the full 
range of scores for a given individual to assign risk, and optimize management. In either case, 
much will depend on the extent to which these various ways of representing etiological 
heterogeneity (with or without additional environmental and clinical state information) can be 
shown to optimize clinical management (for example, the selection of therapeutic agents).  

One important corollary is that, by conceptualizing a disease such as T2D as arising from 
the coming together of diverse, largely-orthogonal underlying processes, these models 
question some of the tacit concepts underlying precision medicine. One of these is the notion 
that characterization of the specific defect contributing to an individual’s disease invites 
therapeutic approaches that are designed to specifically correct it. This model has proven 
effective in monogenic diabetes – where one molecular defect is largely responsible for the 
phenotype – but it is less clear this can be implemented in polygenic disease. In people in 
whom the disease is caused by multiple processes, it will be unlikely that modulating a single 
pathway will be sufficient to correct metabolic derangements; whereas in those in whom the 
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contributions of specific genetic defects are modest, equivalent reductions in disease risk and 
progression may be possible through interventions that boost the performance of other 
processes contributing to overall T2D risk, even those that are already performing at healthy 
levels. Indeed, because the effects of common variants on the hyperglycemic phenotype are 
modest, current T2D drugs that target specific pathways (e.g. sulfonylureas and 
thiazolidinediones) appear to be effective in both carriers and non-carriers of T2D-associated 
alleles in the respective target-encoding genes [98,99]. Nevertheless, it is possible that some 
individuals will be identified whose pathophysiology is predominantly driven by one process, 
and in whom the monogenic paradigm of a drug targeting that very process could be applied 
effectively. Whether, and in whom, such approaches may prove successful will require the 
conduct of appropriately designed precision clinical trials. 

These pPS approaches to analysing phenotypic heterogeneity, which build out from 
genetic risk, offer a complementary perspective to the results emerging from the analysis of 
real world data [100, 101]. These real-world methods have focused on efforts to classify T2D 
into distinct subtypes, analogous to the categorization of monogenic forms of disease. Such 
an objective, if successful, would offer clinical expediency.  

However, these efforts to sift individuals into discrete subtypes of disease would appear 
to run counter to the evidence that points to a complex, graded, architecture of risk, one that 
is consistent with a multifactorial etiology, composed of genetic predisposition dominated by 
multiple common variants of modest effect, and pervasive exposures contributing to risk. In 
one recent study, Ahlqvist et al. used basic clinical information from patients with newly-
diagnosed adult-onset diabetes, to define five subtypes of T2D: an autoimmune form 
(covering T1D and other related clinical entities), two severe forms (one dominated by 
insulin deficiency, the other by insulin resistance), and two milder forms (termed “obesity-
related“ and “age-related” diabetes) [101]. Whereas the genetic clusters that form the basis of 
pPS are defined at the level of the variants, these clinical subtypes are defined at the level of 
the individual, and based on biomarkers and clinical data gathered at a specific point in the 
progression of an individual from health disease. The latter is likely to limit their relevance to 
those who have not yet developed disease, and/or those who are on treatment. 

It is worth emphasizing the different, but complementary, nature of these two approaches: 
the partitioned risk approach involves first clustering genetic signals by mechanism to derive 
pPS, and then exploring how the quantitative pPS scores perform across individuals. In 
contrast, the phenotypic clustering approach attempts to hard cluster individuals on the basis 
of their physiology. Further work is required to understand how these two approaches to 
capturing clinical heterogeneity relate to each other, and to objective measures of clinical 
utility. One of the fundamental issues – which pervades diverse aspects of precision medicine 
– relates to the relative merits of retaining as much quantitative information on an individual 
as possible until the point when a substantive (typically binary) clinical decision needs to be 
made, as opposed to early diagnostic categorization of the individual in a way that bases 
subsequent clinical decision-making on the optimized outcomes of the group to which they 
have been assigned. While further investigation is needed, a recent analysis by Dennis et al. 
in the ADOPT and RECORD clinical trials indicated that the former approach – considering 
phenotypic traits as continuous measures – provided better predictive value of treatment 
response, than an approach that binned individuals using the phenotypic clustering approach 
of Ahlqvist et al [101, 102].  

5) Summary and further discussion   

After many years of frustration at the slow progress that had been made in the translation of 
recent discoveries in human genetics – notably the many risk variants for common, 
multifactorial forms of diabetes identified through GWAS and sequencing – there is now 
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growing optimism that the use of polygenic scores will offer substantial clinical benefit and 
contribute to efforts to forestall the growing morbidity and mortality associated with these 
conditions. Some early clinical applications have emerged – mostly related to positive 
identification of those who have developed, or at highest imminent risk of developing, T1D 
[57,65-68]. 

It is inevitable that clinical applications of the polygenic score approach will roll out at a 
different pace across disease conditions, with a focus on different clinical questions, dictated 
by the additional clinical benefit that they provide, and the extent of the unmet clinical need. 
One size certainly does not fit all, and the relative merits of the different types of polygenic 
score described in this review (gePS, rsPS, pPS) will differ according to the specific clinical 
situation. It also remains to be determined how or whether pPS and phenotypic trait 
clustering will impact clinical care and be deployed in practice.  

Recent developments in relation to the potential clinical use of polygenic scores have led 
to heated debate between those who are enthusiastic about the potential, and those who are of 
the view that the clinical value of human genetics discovery has been consistently hyped, and 
who feel that polygenic scores represent just the latest chapter in that story of scientific over-
selling [103,104]. As in other similar situations, the outcome of this debate will become 
clearer as theoretical and basic knowledge develops and the collection of real-world data 
expands. However, it is already possible to identify a series of obstacles that need to be 
overcome before the full potential of this approach can be realized.  

The most critical is the need to ensure that the benefits of accurate, robust polygenic score 
determination are equally available to all. As others have pointed out, most GWAS and 
sequence data have been derived from the European-descent individuals who live in the 
developed nations of Europe and North America, and the polygenic scores generated from 
these data perform best when applied to the same populations [74,75]. There is a critical need 
to generate equivalent data and polygenic scores in other populations, to explore and 
characterize the extent to which transethnic portability of polygenic scores can be tolerated, 
and to define strategies for their deployment in special situations such as recently-admixed 
and isolate populations. Concerns about the impact of population stratification and the limits 
of transethnic portability provide arguments for the use of rsPS over gePS [74-77]. This may 
be particularly true for T1D and T2D given the limited increment in performance available 
with more extended scores. 

Wider recognition needs to be given that, for multifactorial traits with an appreciable non-
genetic component, a wholly genetic explanation of disease prediction and state will never 
provide a perfect clinical instrument. In some settings, the information from genetics may 
simply recapitulate measures already available from other risk factors. The clinical use of 
cholesterol measures as a biomarker for CAD risk provides a counterexample, reflecting the 
benefits it offers as an integrator of both genetic and environmental risk. At the same time, 
some of those who are less enthusiastic about the clinical value of polygenic scores often fail 
to acknowledge that many established clinical tools (for example the use of BMI to predict 
T2D risk, or the use of islet cell antibodies for the differential diagnosis of T1D in late-onset 
diabetes) are likely to have performance metrics that limit their discriminative power. As the 
costs associated with the generation and interpretation of individual genomic information 
decline, there will be a growing roster of clinical applications where polygenic scores can add 
value.  

There is clearly a need to develop novel approaches to establish the clinical validity and 
utility of polygenic scores in medical practice that take account not just of the marginal cost 
of acquiring the data, but the full costs of implementation. Randomized clinical trials are 
unlikely to be the answer here, not least because the dynamic nature of the underpinning 
genetic databases means that polygenic scores are likely to evolve, rapidly rendering 
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redundant any precise quantification of cost and benefit based around a historical set of 
scores [106]. There will need to be concomitant efforts to document the provenance, content 
and performance of polygenic scores using standardized metrics and conventions which do 
not currently exist.  

There will need to be education of citizens and professionals to appreciate the benefits 
and limitations of polygenic scores [105]. It should be clear that genetics represents only one 
contributor to individual disease risk and profile, that genetically-defined risk should not, for 
multifactorial traits at least, be considered deterministic, and that most of the evidence 
indicates that behavioral modifications are just as likely to succeed (and in fact to be even 
more beneficial) in those at highest genetic risk [78]. The ease with which polygenic score 
information can be integrated with conventional approaches to risk profiling that are already 
widely used in clinical practice (e.g. to estimate future risk of CAD) should facilitate 
widespread introduction, and minimize the need for the health care professionals involved to 
develop an intimate knowledge of human genetics. It goes without saying that any clinical 
application of genetic data will need to fully address issues related to privacy and informed 
consent [107].  

At the heart of precision medicine is the notion that an improved specification of disease 
risk or subtype will allow better targeted interventions to prevent or treat disease. Such efforts 
must compete for resources with population-based interventions that seek to achieve the same 
ends through non-targeted means [108]. In many existing clinical settings (e.g. related to 
reducing rates of cardiovascular disease, melanoma or breast cancer), these two strategies are 
seen to be complementary and are pursued in parallel. The development of polygenic score-
based approaches to support targeting of high-risk individuals will not alter these 
assessments. As now, the balance of effort between targeted and non-targeted approaches to 
the reduction of disease and disability will, for any clinical indication, continue to be 
dependent on the relative impact, cost, acceptability and sustainability of these 
complementary strategies.  
Box: Polygenic Score Terminology used in this article 

BOX: Polygenic score terminology 
1. Restricted-to-significant Polygenic Scores (rsPS): scores composed of variants at the extreme 

of a statistical distribution, most usually those that pass the genome-wide significant threshold 
for the trait concerned.  

2. Global extended Polygenic Scores (gePS): scores generated from a deeper set of variants 
generated from genome-wide analyses, typically involving large numbers of sub-threshold 
significant variants.  

3. Partitioned or Process-specific Polygenic Scores (pPS): scores composed of variants 
grouped according to some common biological process (e.g. association with a related 
endophenotype, tissue expression of related genes, chromatin state) 
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Figure 1: How polygenic scores are derived. For full explanation see text.  

Figure 2. Comparison of rsPS and gePS for T2D using data from Mahajan et al, 2018b [9] 
rsPS and gePS were generated using a T2D GWAS meta-analysis of 455,313 European 
individuals and used to predict incident T2D in 13,480 cases and 311,390 controls from the 
UK Biobank. a) AUROC curves for models predicting incident T2D: each model was 
adjusted for genotyping array and the first six principal components of ancestry. b) 
Prevalence of T2D according to 40 groups binned according to the polygenic scores, with 
each grouping representing 2.5% of the population. c) Distribution of rsPS and gePS in the 
cases and controls. The x-axis represents polygenic score, with values scaled to a mean of 0 
and standard deviation of 1. Both rsPS and gePS in UK Biobank individuals is normally 
distributed with a shift towards right, observed for T2D cases. 

Table 1. Comparison of three published global extended polygenic scores for T2D.For 
the LDPred algorithm, the tuning parameter ρ reflects the proportion of polymorphisms 
assumed to be causal for the disease. For the pruning and thresholding strategy, r2 reflects the 
degree of independence from other variants in the linkage disequilibrium, and P value reflects 
the P value threshold used for a selecting variants from the discovery GWAS. * Discovery 
GWAS from Mahajan et al. 2018b after removing UK Biobank samples [9]. Note the 
difference in testing dataset sample size from the published results in Mahajan et al. 2018b 
[9]. Results presented here are based on re-analysis of data after splitting UK Biobank 
samples into optimization and testing set. ** Logistic model adjusted for other technical 
covariates such as principal components. $ Subset of GWAS samples. # Obtained through 
private communication with authors. LD: Linkage Disequilibrium. 

 
Study 

Khera et al. 2018 
[13] 

Mahajan et al. 2018b [9] 23andMe [43] 
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Discovery GWAS 

Number of cases 26,676 55,005 80,792 
Number of controls 132,532 400,308 1,479,116 

Reference Scott et al. 2017 [44] Mahajan et al. 2018b* [9] 
Multhaup et al. 2019 

[43] 

Optimisation dataset 

Methods LDPred Pruning and thresholding Predetermined cut offs 
Number of cases 2,785 5,639 48,028 
Number of controls 120,280 112,307 893,692 
P value threshold - 0.1 1x10-5 
LD pruning threshold  - r2>0.6 50 kb window 
Tuning parameter ρ = 0.01 - - 
Polymorphisms in risk score 6,917,436 171,249 1,244 
Reference UK Biobank UK Biobank 23andMe$ 

Testing dataset 
Number of cases 5,853 13,480 9,008 
Number of controls 288,978 311,390 167,622 
Reference UK Biobank UK Biobank 23andMe 

AUROC in testing 
dataset (Europeans) 

Not adjusted for age and 
sex** 

0.64# 0.66 0.65 

Adjusted for age and sex 0.73 0.73 - 

Odds ratio of top 5% bin vs 
remainder population 

2.75 

2.75 without age and sex 
adjustment 

4.52 with age and sex 
adjustment 

2.76# 

Table 2. Partitioned polygenic score clusters capturing etiological heterogeneity in T2D. 
Comparison of pPS clusters identified by Mahajan et al. [20] and Udler et al. [38]. TG: 
Triglycerides; BMI: Body mass index; WHR: waist hip ratio 

Physiological impact Phenotypic features 
Cluster name Examples of T2D loci 

Udler et al. 
2018 [38] 

Mahajan et 
al. 2018a [20]  

Adverse 
impact on 
β-cell 
function 

High proinsulin 
Low fasting insulin (+ High 
proinsulin) Beta-Cell 

Insulin 
Secretion 1 

ABO, ADCY5, HNF1A, 
HNF1B, MTNR1B, SLC30A8, 
TCF7L2 

Low proinsulin 
Low fasting insulin (+ Low 
proinsulin) Proinsulin 

Insulin 
Secretion 2 

IGF2BP2, CENTD2/ARAP1, 
CCND2 

Reduced 
insulin 
sensitivity 

Mediation via obesity 
High TG + High WHR + 
Low BMI Lipodystrophy Insulin Action 

MACF1, GRB14, IRS1, 
PPARG, ANKRD55, KLF14, 
LPL, CMIP 

Mediation via fat 
distribution High BMI + High WHR Obesity Adiposity NRXN3, FTO, MC4R 

Mediation via lipid 
metabolism 

Low TG  Liver/Lipid Dyslipidaemia GCKR, TM6SF2/CILP2 

Undetermined No striking phenotype 
association 

No 
assignment 

Mixed features BCL11A, TLE1, PLEKHA1, 
HMGA2, MTMR3 
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