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ABSTRACT The genetics and evolution of complex traits, including quantitative traits and disease, have been hotly debated ever since
Darwin. A century ago, a paper from R.A. Fisher reconciled Mendelian and biometrical genetics in a landmark contribution that is now
accepted as the main foundation stone of the field of quantitative genetics. Here, we give our perspective on Fisher’s 1918 paper in the
context of how and why it is relevant in today’s genome era. We mostly focus on human trait variation, in part because Fisher did so
too, but the conclusions are general and extend to other natural populations, and to populations undergoing artificial selection.
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T has been a century since the landmark paper “The Cor-
relation between Relatives on the Supposition of Men-
delian Inheritance” by R.A. Fisher was published in the
Transactions of the Royal Society of Edinburgh (Fisher
1918). Much has been written about the paper in the last
50 years in the context of the historical background
(Provine 1971), relevant statistical theory, and the genetic
models [e.g., (Lynch and Walsh 1998)]. The paper is also
frequently cited and discussed in the recent outstanding syn-
thesis of our knowledge of the selection and evolution of
quantitative traits (Walsh and Lynch 2018). Fisher also sum-
marized it in a much easier article a year later (Fisher 1919).
After Mendel’s laws were rediscovered in 1900, there was
avigorous debate between the “Biometricians,” led by Pearson,
and the “Mendelians,” led by Bateson. The Biometricians
argued that the inheritance of continuous traits, such as hu-
man height, could not be explained by Mendelian principles.
For instance, they argued that the “law of ancestral heredity,”
which states that the mean trait value of offspring is better
predicted the more knowledge of ancestral trait values one
has, could not be reconciled with single genes with discrete,
large effects, such as Mendel inferred for several traits in peas
(Yule 1902; Provine 1971). The purpose of this Perspective is
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not to give a detailed historical account of that era (in addi-
tion to Provine’s book, there are a number of very good Wiki-
pedia pages on the topic). However, a quotation from 1902,
in which G. Udny Yule defends (Raphael) Weldon against
criticism from William Bateson, illustrates the strength of
feelings at that time: “Mr. Bateson devotes many words to
these questions, but one cannot help feeling that his specula-
tions would have had more value had he kept his emotions
under better control; the style and method of the religious
revivalist are ill-suited to scientific controversy. It is difficult
to speak with patience either of the turgid and bombastic
preface to ‘Mendel’s Principles,” with its reference to Scribes
and Pharisees, and its Carlylean inversions of sentence, or
of the grossly and gratuitously offensive reply to Professor
Weldon and the almost equally offensive adulation of Mr. Galton
and Professor Pearson” (Yule 1902). So much for Victorian
gentlemanly and scholarly behavior. Nevertheless, attempts
to reconcile the observed results with Mendelian inheritance
had been made before 1918 by Pearson, Yule, and Weinberg,
but it was Fisher’s 1918 paper that formed the basis for quan-
titative genetics in the future.

The 1918 Paper

In his paper, Fisher showed that this “pea vs. height debate”
could be reconciled by postulating that multiple genes con-
tribute to variation in the population, each of them obeying
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Box 1: Main Concepts with Relevance to GWAS

For a lucid and thorough description, and derivation of single- and multi-locus models on quantitative traits, we refer to
text books (Falconer and Mackay 1996; Lynch and Walsh 1998). Here, we provide the definitions and derivations from a
single-locus model. Let AA, AT, and TT be the three genotypes at a single locus with two alleles segregating in the
population, the frequency of T be p, and the mean phenotypes of those genotypes be w—a, i + d, and . + a, respectively.
Assuming that the genotypes are in Hardy-Weinberg equilibrium, their frequencies are (1—p)2, 2p(1—p), and p?,
respectively. A linear regression of the genotype means, weighted by their frequency, on the number of T alleles (0, 1,
or 2) has an intercept of p—a + 2p3d and a slope of @ = a + (1—2p)d.

Fisher modeled and partitioned the variance generated by this model. The variance of the genotypes can be written as o2 =
2p(1—p)a? + (2p(1—p)d)2. The first term is the variance in the genotypes that is explained by the regression on allele
dosage (0, 1, or 2) and is what we now called the additive genetic variance. The second term is the residual variance from
that regression and is termed dominance variance. Hence, the genetic variance can be partitioned as 0g2 = 052 + op2.

In GWAS, the individual phenotype y; is regressed on x;, the number of minor (or major) alleles at a locus. Including an
error term, y; = p + Bx; + e;. The regression slope B is the average effect, hence B = «, and the residual variance includes
additive genetic variation due to other loci in the genome, dominance variance at the locus under consideration and
elsewhere in the genome, and environmental variance. In GWAS, the statistical power to detect a variant depends on the
variance it generates, which is 20,2 = 2p(1—p)[a + (1 — 2p)d]?. Therefore, statistical power depends on how common
an allele is and its average effect, which includes a dominance term.

Fisher showed that, ignoring epistasis, the genetic covariance between relatives depends on only the additive genetic and
dominance variance components, the expected proportion of the genome that they share identical-by-descent (IBD), and

the expected proportion of the genome where relatives share both alleles IBD.

Mendelian rules and segregation ratios. Fisher’s 1918 paper
is notoriously hard to read, not least because he introduced
new concepts, new genetic models, and new statistical meth-
ods. It also contains a number of typos (Moran and Smith
1966). However, its purpose was clearly set out in the intro-
ductory paragraph, namely, to interpret empirical results
from biometry, in particular the correlations between rela-
tives, in accordance with Mendelian inheritance, to provide
a more precise analysis of the causes of variation in human
complex traits. Fisher built upon previous work by Yule and
Pearson. The main findings can be readily summarized.

1. If there are many genes contributing to trait variation then
total (phenotypic) variance in a trait (such as height) can
be partitioned into variance components due to genetic
factors and environmental factors, and genetic variance
itself can be partitioned into variance due to the average
effects of alleles and variance due to dominance devia-
tions. The average effect of alleles is the regression coef-
ficient of the genotype mean on allelic dosage (0, 1, and
2), and dominance deviations are the residuals from this
regression (Box 1). The now ubiquitous term variance was
first introduced in this paper, as was the method of the
ANOVA (Charlesworth and Edwards 2018).

2. Knowledge of the genetic variance components for aver-
age effects across loci, dominance deviations, and epistatic
interaction deviations is sufficient to predict the resem-
blances between relatives, without knowing anything
about what we now call “genetic architecture” of a trait
(the number of genes affecting the trait, and the joint
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distribution of allelic effects and frequencies). Conversely,
the observed phenotypic correlation between relatives can
be used to estimate genetic variance components.

. Assortative mating changes the population genetic vari-

ance relative to a randomly mating population, and affects
the correlation between relatives. Interestingly, much of
Fisher’s 1918 paper was about how to model the effects of
assortative mating on genetic variation and the resem-
blance between relatives, and Fisher commented later
that for him this was the most difficult aspect of the theory
(Fisher 1919). As shown by Fisher, and by Sewall Wright a
few years later (Wright 1921), assortative mating creates
a correlation between the effect of trait alleles at different
loci. This changes the genetic variance in the population
because, in addition to the variation contributed by indi-
vidual trait loci (the genic variance), a covariance is induced.
Specifically, for positive assortative mating (like-with-
like), individuals carrying alleles with a positive effect
on the trait at one locus tend to carry positive alleles at
other loci as well. Thus for positive assortative mating, this
covariance is positive and it can be nontrivial. The within-
gamete correlation of the effect of trait loci is a form of
linkage disequilibrium (strictly speaking gametic phase
disequilibrium, since loci do not have to be genetically
linked). When the number of loci affecting a trait is small,
positive assortative mating also increases the variance at
individual loci. However, for polygenic traits, the contri-
bution of this increased variance is negligible compared to
the contribution from covariances between loci (Lynch
and Walsh 1998).



The theory built in Fisher’s 1918 paper has proved to be
extremely useful. It correctly predicts the consequences, in
the short-term at least, of artificial or natural selection. A
strength of the theory is that these predictions rely on esti-
mable parameters, such as the “heritability” (the ratio of ge-
netic variance to total variance), but not on the details of the
individual loci affecting the trait. Although the phrase heri-
tability was not used by Fisher, he defined variance compo-
nents due to “essential genotypes” and “genotypes,” and the
ratios of these variances to total phenotypic variance are
what we now call narrow- and broad-sense heritability, re-
spectively. If the number of loci influencing a quantitative
trait in the model is increased toward infinity, each locus
having an infinitesimally small effect, then the distribution
of genetic values approaches a normal distribution, as is ob-
served for many traits. However, only a modest number of
loci is needed for the distribution to become close to normal,
so that the resulting theoretical distributions are, in practice,
indistinguishable from those observed. Consequently, it is
impossible to determine the genetic architecture underlying
quantitative traits by studying the resemblance between rel-
atives. This limitation ended with the availability of genomic
tools such as high-throughput single-nucleotide polymor-
phism (SNP) genotyping or sequencing.

Fisher 1918 and the Genome Era

Since 2007, there has been a remarkable pace of discovery in
complex trait genetics in human populations and also in other
species. Discoveries have been facilitated by advances in
genomic technologies, in particular the ability to cheaply
genotype hundreds of thousands of common SNP markers.
The availability of SNP arrays allowed the experimental de-
sign of genome-wide association studies (GWAS), in which
individual SNPs are tested for statistical association with one
or more complex traits. A decade later, tens of thousands of
robust SNP-trait associations have been reported for human
traits and diseases [see, for example, Visscher et al. (2017)].
Fisher’'s 1918 theory has survived empirical observations
from GWAS with flying colors. The assumptions underlying
Fisher’s models can now be tested empirically and the param-
eters in his models can now be estimated directly from geno-
mic data. Despite the continual misunderstanding of Fisher’s
definition of (what we now call) the average effect of allele
substitution and of additive genetic variation (see below), the
standard way to analyze data from GWAS is by performing a
linear regression of the trait on SNP dosage (a count of 0, 1,
or 2 of one of the two alleles at a locus). This is exactly the
regression model that underlies Fisher’s derivation of addi-
tive genetic variation in 1918 (Box 1). Hence, the effect sizes
that are reported from GWAS should be interpreted as aver-
age effects.

GWAS have shown that Fisher’s assumptions about mul-
tiple loci affecting a trait (i.e., polygenicity) and the resulting
additive genetic variation were well justified. First, it has

been shown that there is genetic variation for nearly any trait
that varies in a population, and that polygenicity is the norm
for such traits (Visscher et al. 2012). Indeed, it is remarkable
just how polygenic traits are. For example, the latest publi-
cation on human height reports > 3000 loci that are statisti-
cally significantly associated with the trait, although these
loci together still only explain about one-third of additive
genetic variation (Yengo et al. 2018b). Polygenicity is not
restricted to traits like human height. Interestingly, many
common diseases are also polygenic. For example, a ran-
domly chosen 1-Mb region of the human genome contains
at least one locus contributing to variation in liability to
schizophrenia (Loh et al. 2015). It is also clear that traits with
a major causative gene are also affected by many genes of
small effect that contribute to individual differences in the
population. Even Mendelian traits can show such polygenic-
ity. For example, the age of onset of the single-gene disorder
Huntington’s Disease shows polygenic effects (Lee et al.
2015).

Fisher modeled variation due to average effect and dom-
inance deviations, and also covered what he called epistacy.
He reasoned that higher-order epistasis would contribute
little nonadditive genetic variance, though this was shown
theoretically only very recently (Maki-Tanila and Hill 2014),
but considered dominance variance possible. Indeed, his con-
clusion from the analysis of human height was that the ratio
of dominance to additive variance was about one-third,
which we would now consider to be a rather large estimate
of dominance variance. It is interesting to speculate about
why Fisher did not question this inference on dominance
variance, although he noted the large SE of the estimates of
the variance components. Perhaps the rediscovery of Mendel’s
segregation ratios, with all factors showing dominance, led
to an assumption that polygenic traits would show sub-
stantial dominance variance. In addition, earlier results on
human traits (mainly stature) showed a somewhat larger
correlation between full siblings than between parent and
offspring, consistent with dominance variance (Pearson and
Lee 1903), but also consistent with sibs sharing a common
environment. Empirical evidence from many traits across
multiple species has since shown that, although dominance
and epistasis occur, most of the genetic variation is additive
(Hill et al. 2008). This empirical evidence spans selection
experiments, estimation of variance components from pedi-
grees, and GWAS across a range of species [e.g., (Bloom et al.
2015)].

Complex disease phenotypes are often recorded as “af-
fected” or “unaffected.” Data of this form are commonly an-
alyzed by an extension of Fisher’s model that assumes an
underlying scale of liability to the disease showing continu-
ous variation, similar to that of quantitative traits (Wright
1920; Falconer 1965; Edwards 1969). The liability model is
flexible and can include dominance and epistatic interac-
tions. At one extreme is a model with purely additive effects
on the scale of liability, and at the other extreme a model
where each case of disease is caused by a single recessive
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mutation. Although the latter type of inheritance can occur,
most of the genetic variance for complex diseases is explained
by a model closer to the additive model with a large number
of loci.

In human populations, there is strong evidence for assor-
tative mating, which cannot be explained by shared ancestry
between mates (Tenesa et al. 2016; Robinson et al. 2017).
Remarkably, the phenotypic correlation between spouse pairs
for human height has changed little over the last century
(and is ~0.2—0.3). If phenotypes are indeed important in
mate choice, assortative mating should generate a correlation
between the genetic values of mates. Recently, with data from
GWAS, this expectation has been confirmed in that the (es-
timated) breeding values of mates have been found to be
correlated (Tenesa et al. 2016; Robinson et al. 2017). The
traits in human populations that show the strongest effects of
assortative mating are height and traits that are genetically
correlated with intelligence (e.g., educational attainment).
Positive assortative mating on liability to disease, as sug-
gested by observational data for liability to psychiatric disor-
ders (Nordsletten et al. 2016), increases the disease’s
prevalence in the population, relative to a random mating
possibility, assuming a liability threshold model, e.g.,
(Peyrot et al. 2016). The linkage disequilibrium at trait loci
generated by assortative mating can now be estimated di-
rectly from a sample of genomes in the population by exploit-
ing information on the effect sizes at trait-associated loci,
which can be estimated from large GWAS (Yengo et al.
2018a).

Persistent Misunderstandings

Despite the fact that the theory has stood the test of time, a
surprising number of fundamental misunderstandings persist
about assumptions, models, and implications. For example,
Fisher’s model implies that both genetic and environmental
factors contribute to variation in each trait, yet one is still
asked if a certain trait is “genetic or environmental.” A more
subtle error is to assume that individual cases of a complex
disease are due either to genetic or to environmental causes;
in human disease epidemiology, attempts are made to sum-
marize the proportion of cases into mutually distinct cate-
gories, using, for example, a pie-chart that includes the
category “genetic.” In his 1919 paper, Fisher commented that
even a high heritability of 0.95 (his estimate for height) is
consistent with large effects of environmental factors (Fisher
1919). Subsequent research has shown that the heritability
of human height is ~0.8. Even with this large value, if the
phenotypic SD of human height is 7 c¢m, then the SD of
the environmental component is 74/(1—0.8) = 3.1 cm. Thus,
the high heritability is not incompatible with the large increase
over time in human height due to improvements in the en-
vironment, such as better nutrition. Nor does a high herita-
bility of human traits and diseases imply that nongenetic
interventions will not work.
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The definition of the average effect at a locusisa = a + d
(1 — 2p), where 2a is the difference between the genotypic
values of the homozygotes, d the genotypic value of the het-
erozygote, and p and (1 — p) are the frequencies of the two
alleles at the locus (Box 1). As noted above, this is the quan-
tity being estimated in GWAS. The average effect depends on
the interaction (d) between the two alleles and on the allele
frequencies (p), and so does its variance, the additive genetic
variance (or variance of breeding values). The definition of
the average effect shows why it is incorrect to say that it
assumes the absence of dominance (a frequent misunder-
standing) and why, if dominance deviations exist, the effect
sizes of loci associated with a trait are not expected to be the
same across populations that differ appreciably in allele
frequency.

Mendel’s rules imply that a parent does not pass on the
same combination of alleles to all its offspring. Similarly, by
using regression theory, Fisher showed that the regression of
offspring phenotype on parental phenotype contains a resid-
ual genetic term, which is the deviation of the offspring’s
breeding value from the parental average. The resulting seg-
regation variance is essential for natural or artificial selection
to work, and understanding it solved the problem of “blend-
ing inheritance,” which implies a depletion of genetic vari-
ance over generations (Jenkin 1867). However, it is still
widely unappreciated (at least among human geneticists)
that 50% of additive genetic variation in the population is
segregation variance within families. For instance, even if
the heritability of liability to a rare disease is high, the ma-
jority of cases have no family members suffering from the
same disease (Smith 1970; Yang et al. 2010).

A century after Fisher 1918, it is still common to read in the
popular press that “Dr. X has discovered the gene for trait Y,”
when we know or expect that there are thousands of genes
contributing to the variation in each complex trait. An un-
appreciated corollary of this is that each case of type 2 diabe-
tes or schizophrenia is due to a different combination of
alleles, and that it is the cumulative effect of risk variants in
an individual that determine their liability to disease.

Fisher’s models assume a large number of variants segre-
gating in the population that, together, account for the stand-
ing genetic variation in the population. Research shows that
there are polymorphisms affecting almost any trait one cares
to study and that the frequency of rare alleles is only a little
more than expected under neutrality. It is inconceivable that
polymorphisms affecting height in humans or milk yield in
cows are neutral in the sense that they have no fitness con-
sequences. These polymorphisms continue to segregate de-
spite natural selection, presumably because their effects are
so small and/or because neither allele is consistently more fit
than the other (Simons et al. 2018; Walsh and Lynch 2018). If
polymorphisms affecting complex traits were neutral, genetic
variance would build up until a mutation-drift equilibrium
was reached. In large populations, this would create unreal-
istically large heritability. Therefore, observed heritability
values suggest that selection operates mainly to eliminate



variation, not to maintain it, consistent with many studies of
DNA sequence evolution. Recent results from GWAS of hu-
man traits also provides evidence for widespread selection
acting to reduce diversity (Gazal et al. 2017; Simons et al.
2018)

Intense artificial selection, for instance in maize and poul-
try, has led to enormous changes in phenotypes, which con-
tinue approximately linearly over time (Walsh and Lynch
2018). If there were only a few important loci, then these
should have reached fixation. On the other hand, if response
to selection were due to new mutations of large effect, we
should observe bursts of selection response. The observed
linear response can most readily be explained by small allele
frequency changes at many segregating loci. Therefore, em-
pirical data from selection experiments are consistent with
the idea that adaptation in natural populations is largely due
to small allele frequency changes at many loci (Pritchard
et al. 2010). Similarly, some methods to detect signatures
of selection assume that selection operates by increasing
the frequency of a new mutation (Walsh and Lynch 2018).
This does occur but, more commonly, selection experiments
show a response typical of small changes in allele frequency.

Conclusion

For 100 years, Fisher (1918) has been the basis for our un-
derstanding of the inheritance of quantitative or complex
traits, and the resemblance between relatives. In the last
10 years, the tools of genomics have allowed us to see the
details of genes that underlie this variation and the emerging
empirical data are fully consistent with the assumptions un-
derlying quantitative genetics theory. The common miscon-
ceptions we outline here should disappear when genetic
variation for complex traits is fully dissected using modern
genomic data and analysis tools.
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