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ABSTRACT

The genetic contribution to psychiatric disorders is observed through the increased rates of disorders in the relatives
of those diagnosed with disorders. These increased rates are observed to be nonspecific; for example, children of
those with schizophrenia have increased rates of schizophrenia but also a broad range of other psychiatric diagnoses.
While many factors contribute to risk, epidemiological evidence suggests that the genetic contribution carries the
highest risk burden. The patterns of inheritance are consistent with a polygenic architecture of many contributing risk
loci. The genetic studies of the past decade have provided empirical evidence identifying thousands of DNA variants
associated with psychiatric disorders. Here, we describe how these latest results are consistent with observations
from epidemiology. We provide an R tool (CHARRGe) to calculate genetic parameters from epidemiological pa-
rameters and vice versa. We discuss how the single nucleotide polymorphism–based estimates of heritability and
genetic correlation relate to those estimated from family records.
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It has long been known that psychiatric disorders run in fam-

ilies [(1); cited in (2)] and that there is increased risk of the same

disorder, and also of other psychiatric disorders, in relatives of

those with a psychiatric diagnosis [(3); cited in (4)]. Epidemio-

logical studies (5–7) continue to provide evidence-based re-

ports of the genetic contribution to psychiatric disorders

(8–11). However, genome-wide association studies (GWASs)

of the past decade have allowed a whole new approach to

understanding the genetic contribution to, and similarities be-

tween, psychiatric disorders (12–17). Here, we bring together

evidence for the genetic contribution to risk of psychiatric

disorders and the shared genetic contribution between them.

We focus on the classical methods from genetic epidemiology

and the new methods of the past decade that use single

nucleotide polymorphism (SNP) GWAS data, and the rela-

tionship between these approaches. We emphasize the con-

cepts in the main text but provide more detail (and analysis

tools) in Supplement 1, which we hope will be useful as an aid

to teaching and learning.

RISK IN RELATIVES, HERITABILITY, AND

SNP-BASED HERITABILITY

Risk in Relatives

Genetic epidemiology is the study of disease patterns in

families that are observed in population samples of many

families. These studies provide direct measurements of dis-

ease rates in family members of those diagnosed with a dis-

ease, which can be compared with the rate of disease in the

population as a whole. Across the full range of psychiatric

disorders, increased rates are observed in family members of

those diagnosed with a disorder (5–11,18–20) (Figure 1;

Table S1 in Supplement 2).

Genetic epidemiological studies are easy to conceptualize

but can be difficult to conduct. Consider a disease that affects

one in a hundred individuals in the population in their lifetime—

very large samples of families are needed to detect whether

children or siblings of those affected by the disease have

increased rates of disease above this baseline rate (8). An

efficient study design is to select individuals with psychiatric

disorders as probands and then track only family members of

these probands, comparing rates of disease with those in a

general population sample. As in any study design, ascer-

tainment biases can occur. For example, age at onset of dis-

ease can lead to censorship of lifetime disease prevalence.

This bias can be overcome in a study design that follows risk of

disease in family members of both case probands and age-

and sex-matched controls, to allow comparison of risk rates in

samples ascertained under the same protocols. Notably, there

are some large studies using national registry data (5,20)

reporting risk in relatives, as well as reviews that provide meta-

analyses of smaller studies (19,21) (Tables S2–S5 in

Supplement 2).

Risk in First-Degree Relatives and Heritability

If population lifetime risk of disease (K) and the risk of disease

in first-degree relatives (K1) are directly measured, then the risk

ratio (RR) for disease is RR1 = K1/K (sometimes l is used to
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denote RR). While all K1 values are greater than K values, for

psychiatric disorders (Figure 1A), they are much lower than

those seen for “simple” Mendelian diseases such as Hun-

tington disease, where on average 50% of individuals with a

parent with the disease are also diagnosed with the disease,

because a single dominant mutation is causal for disease (22).

Note that these Mendelian disorders are generally less com-

mon [e.g., for Huntington disease K = 2.7 3 1025 (24)] than

psychiatric disorders, where K typically falls in the range of

0.005 to 0.15 (Figure 1; Table S1 in Supplement 2).

The observed inheritance patterns of psychiatric disorders

can be resolved as being consistent with the laws of genetic

segregation if there are many DNA variants associated with

risk of disease (i.e., polygenic), and if other risk factors also

play a role (23). Other risk factors could include stress (25–27)

or trauma (28,29); however, they also include de novo genetic

events (30–32) (i.e., genetic mutations new in a child not pre-

sent in their parents). Moreover, since each individual’s life

experience is different, nongenetic risk factors are also likely

made up of many events. Therefore, psychiatric diseases are

often termed “complex,” in contrast to “simple” Mendelian

diseases [although the latest results suggest that even Men-

delian diseases are complex (33)]. When many factors

contribute to the risk of disease, it can be helpful to consider a

model of disease that describes a latent distribution of liability

to disease (23,34). Since this latent liability is a sum of many

genetic and other risks, it is reasonable to assume that the li-

ability distribution is approximately normal (since many things

added together will make a bell-shaped distribution in a pop-

ulation sample, the central limit theorem). Hence, those with

disease have disease liability above a threshold that is required

for disease to occur, and therefore this model is sometimes

called the liability threshold model (Figures 2 and 3). On one

hand, this description of disease is simplistic. On the other hand,

this representation has proven to be useful, and no empirical

data have demonstrated a reason to abandon this model. In

other branches of medicine, the liability to disease, such as

blood pressure, body mass index, hemoglobin levels, and bone

mineral density, can be directly measured, where individuals at

one end of the distribution (as appropriate) are labeled as having

hypertension, obesity, anemia, or osteoporosis, respectively.

The liability model can be viewed in different ways (Figure 3).

There is a binary relationship between phenotypic liability and

probability of disease (Figure 3A, B), and while the many

genetic and other risks effects work additively to generate the

approximately normal distribution of liability to disease in the

population (Figure 2), the relationship between genetic lia-

bility and disease risk is very nonlinear (Figure 3C–G).

For children of those with disease, it is logical to assume

that the threshold in liability associated with disease has the

same value. As a result, the liability distribution in first-degree

members must be shifted (in the direction of increased liability)

compared with the population, to be consistent with the

observed higher risk (Figure 2B, C). It is hard to appreciate the

importance of the genetic contribution to disease from the

measurable risk parameters K and K1 directly (Figure 1A).

Instead, the concept of heritability (Figure 2) is used, which

describes how much of the variation between people in the

normally distributed liability to disease must be attributed to

genetic factors in order to be consistent with the observed risk

rates of K and K1. This concept takes into account the laws of

segregation, where each parent passes exactly half of their

DNA variants to a child and where each child receives a

different sampled half from each of two parents, so that full

siblings share, on average, half of their DNA variants, ranging

from approximately 40% to approximately 60% (35). The

theory and the equations used to calculate heritability from risk

to relatives are presented in Supplement 1.

Risk in Other Relatives and Heritability

When epidemiological data are available on only one type of

relative (e.g., exclusively parent–offspring pairs or exclusively
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Figure 1. Different ways to express the genetic contribution to psychiatric

disorders. (A) Lifetime risk of major psychiatric disorders in the population

(K) and in those who have a first-degree relative affected (K1). Also, the risk

ratio (RR) for those with a first-degree relative affected (RR1 = K1/K) is shown

under each disorder (x-axis). Note that part of the increased risk in relatives

may reflect nongenetic factors shared by relatives. (B) Heritability (h2), the

proportion of variance in liability attributable to genetic factors, and single

nucleotide polymorphism (SNP)–based heritability (h2SNP), the proportion of

variance in liability associated with common SNPs genome-wide. Here,

the h2 values are consistent with the K and RR1 reported in panel (A),

assuming the increased risk in relatives is attributable only to shared genetic

factors. The parameter estimates used in this figure are composites justified

from references cited in Table S1 in Supplement 2. SNP-based heritability

was estimated from the genome-wide association study summary statistics

using SBayesS and linkage disequilibrium score regression (LDSC) (46,48).

Percentages under each label represent the ratio h2SNP/h
2. ADHD, attention-

deficit/hyperactivity disorder; AN, anorexia nervosa; ASD, autism spectrum

disorder; BIP, bipolar disorder; MDD, major depressive disorder; SCZ,

schizophrenia.
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full-sibling pairs), it is possible that the estimates of heritability

made from the two measurable pieces of information (i.e., K

and K1) could be inflated if some of the increased risk in rel-

atives is attributable to nongenetic factors (such as family

household, economic factors, stress) associated with having a

close relative with a disorder. If epidemiological data are

available on different types of family members, then these data

points can be used to disentangle the contributions to variation

in liability that might be attributed to genetic factors or to

common environmental factors. This is a motivation for twin

studies where probands are selected because they have a

twin, who could be a monozygotic (MZ) or dizygotic (DZ) twin,

from whom the risk rates (KMZ and KDZ) can be measured and

compared to the baseline risk (K) calculated from a population

sample. Since both types of twins likely grew up together in

their shared households, and since MZ twins share all their

DNA variants while DZ twins share only (on average) half of

their DNA variants, in principle, the contribution from the

shared genetic and household factors can be separated. In

practice, it is difficult to achieve large enough samples of twins

to make accurate estimates of heritability for disease traits

(36,37) (Figure S1 in Supplement 2).

For schizophrenia and bipolar disorder, data sets have

been collected that provide estimates of risk rates from

different types of relative pairs (Figure 4). A Swedish registry

(7) study (9 million individuals, 2 million nuclear families,

approximately 36,000 individuals with schizophrenia,

approximately 40,000 individuals with bipolar disorder) could

identify parent–offspring, full and half siblings, and adoptees.

Resulting estimates of the proportion of variance in liability

attributable to shared environment of nuclear families were

significant for both schizophrenia (4.5%, 95% confidence

interval [CI] 4.4%–7.4%) and bipolar disorder (3.4%, 95% CI

2.3%–5.5%) but small relative to the genetic contribution,

with heritabilities of 64% (95% CI 62%–68%) and 59% (95%

CI 56%–62%), respectively (20). A greatly increased risk of a

psychiatric disorder is reported for persons who have both

parents affected by the disorder (38). Although environmental

factors may contribute to the risk, very high rates of disease

are expected, predicted from the liability threshold model. So,

for a disease of lifetime risk 1% and heritability 70%, under a

polygenic liability model of disease, while only 7% of the

individuals who have one parent with the disease are ex-

pected to have the disease, 30% of the individuals who have

two parents with the disease are expected to have the dis-

ease themselves (Figure 2B, C).

We have described the estimation of heritability through the

measurable risk in relatives. Lichtenstein et al. estimated her-

itability in a linear mixed model framework directly using the

disease-status observations (20). However, the methods can

be shown to give similar estimates (39). We note that we focus

on the narrow-sense heritability, which considers only additive

genetic factors on the liability scale, which as discussed do act

nonadditively for disease risk (i.e., observed scale) (Figure 3).

Since the empirical evidence is that psychiatric disorders are

highly polygenic, with individual variants having small effects,

nonadditive genetic effects on the liability scale are unlikely

[see (40,41) for further discussion].

Figure 2. Risk, risk in relatives, and the liability

threshold model of common polygenic disease. (A)

Consider a population where 1 in 100 people are

affected by disease (K = 0.01). If the liability of dis-

ease is normally distributed, the top 1% of the

distribution (colored blue, bisected by the liability

threshold) represents individuals with disease. (B)

Consider the lifetime risk of disease in individuals

who have one affected parent (K1). In this example,

7 in 100 are affected. Hence, under the same

diagnosis criteria, the liability distribution has shifted

to the right. The top 7% of the distribution is colored

blue. (C) Consider the lifetime risk of disease in in-

dividuals who have two affected parents (K2PAR). In

this example, 30 in 100 are affected. Hence, under

the same diagnostic criteria as in the general pop-

ulation, the liability distribution has shifted far to the

right. The top 30% of the distribution is colored

blue. The risk ratio values for those with one parent

affected (RR1) and for those with two parents

affected (RR2PAR) were selected to be consistent

with a heritability (h2) of 0.7, so they are approxi-

mately representative of schizophrenia, bipolar dis-

order, and autism spectrum disorder. To generate

similar graphs for other disorders, use the

CHARRGe Shiny application (shiny.cnsgeno-

mics.com/CHARRGe).
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SNP-Based Heritability

Heritability is the proportion of the variation in liability to a

disease that can be attributed to genetic factors and is

calculated based on inference of genetic factors shared be-

tween relatives. Hence, genetic factors that are unique to an

individual but that affect disease status for that individual (i.e.,

de novo mutations) would be partitioned into the residual

(difference between total and genetic) variance and do not

contribute to heritability. Other than these unique genetic

factors, the genetic factors shared between relatives represent

DNA variants that are both common and rare in the population.

In contrast, SNP-based heritability (h2SNP) represents only the

proportion of variance attributable to common DNA variants of

frequency, typically $ 1%. Hence, h2SNP is, by definition, lower

than heritability estimated from family and twin study designs.

The ratio of SNP-based to total heritability provides a

description of the relative importance of common variants to

the genetic architecture, which could differ between disorders

(42) (Figure 1B). For quantitative traits such as height, there is

good evidence (43) that the difference between SNP-based

heritability and heritability reflects contributions from rare and

less common variants not assessed in or poorly correlated with

(i.e., in low linkage disequilibrium [LD]) the common DNA var-

iants used. For disease traits, additional factors such as

phenotype definition or technical artifacts that are more likely

to correlate with a binary trait, compared with a quantitative

trait, may also play a role.

h2SNP is estimated from GWAS data, either directly from

individual-level genotype data (44,45) or from GWAS sum-

mary statistics (46–48). In the approach that uses individual-

level data, such as genomic relatedness–based restricted

maximum-likelihood (GREML) (44,45), GWAS samples are

selected so that there are no close family members either

within or between the cases and controls (as including

these could inflate the estimate of the contribution from

common DNA variants). Hence, compared with genetic

epidemiology studies (which have to focus on collection of
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Figure 3. Different views of the liability threshold distribution. Although

the liability threshold model is usually portrayed as a normal distribution of

liability, with liability comprising many genetic and nongenetic risks

(Figure 2), here the model is described by the relationship between liability

(x-axis, standard deviation units) and probability of disease (y-axis) for dis-

order of lifetime risk of (A, C, E) K = 0.25 and (B, D, F) K = 0.01. Panels (A, B)

show the relationship between phenotypic liability (x-axis) and risk/proba-

bility of disease. Individuals either have (probability of disease = 1) or do not

have (probability of disease = 0) disease, and the vertical line corresponds to

the threshold that bisects the x-axis at a point that corresponds to the

normal distribution threshold of the risk of disease (as in Figure 2A) defined

by K. Panels (C–G) show that the relationship between genetic liability (x-

axis) and risk/probability of disease is very nonlinear. The gradient of the

relationship is steeper when the heritability (h2) is higher, as in panels (E, F)

vs. panels (C, D). A nonzero probability of disease is seen at a lower genetic

liability for more common diseases (higher K), as in panels (C, E) vs. panels

(D, F). Hence, the liability threshold model describes risk distributions

relative to genetic burden (liability) in only two parameters, K and h2, and the

normal distribution is mathematically very tractable to use for making pre-

dictions, hence its utility as a model. Panel (G) depicts risk curves using the

estimates of K and h2 (Figure 1, and Table S1 in Supplement 2) for six

psychiatric disorders. ADHD, attention-deficit/hyperactivity disorder; AN,

anorexia nervosa; ASD, autism spectrum disorder; BIP, bipolar disorder;

MDD, major depressive disorder; SCZ, schizophrenia.
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Figure 4. Estimate of risk to relatives for different types of family mem-

bers. Results based on Gottesman (74). A disorder with lifetime risk of 1%
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However, increased risks are observed in relatives (of different degrees) of

those affected. Risk is highest if a person has an identical twin with a dis-

order (indicated in red) and lowest in those with third-degree relatives with a

disorder (indicated in green).
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data from families), SNP-based heritability estimates are

easy to obtain, given that they are a by-product of GWASs

that have already collected large samples. In practice, owing

to privacy concerns, it can be difficult to access individual-

level genotype data; moreover, the computational burden of

the methods is high and increases nonlinearly with the

sample size. In order to maximize sample sizes for GWASs,

most disease GWASs, including those for psychiatric dis-

orders, are based on meta-analyses of GWAS summary

statistics, as the summary statistics can be shared easily

across sites. LD score regression (LDSC) (46) was the first

[of now many methods (45,49–53)] to estimate h2SNP from

GWAS summary statistics. The methods are described in

more detail in Supplement 1. The methods for estimation of

SNP-based heritability can differ in underlying assumptions

made, and a comprehensive evaluation of methods (54)

provides some guidelines. However, simulations show that

the best choice of method depends on the simulated ge-

netic architecture (54), which in real analyses is specific to a

trait and often remains unknown. Notably, the simulations

show that LDSC estimates of SNP-based heritability are

generally biased downward; we recognize that the primary

LDSC article (46) did not dwell on the estimation of SNP-

based heritability (focusing instead on issues of residual

population stratification), likely because bias in estimates

was recognized. Nonetheless, it is an intensely applied

method because of its light computational burden and the

widespread availability of GWAS summary statistic data (55)

and software (LDHub). Bayesian framework methods

SBayesR (47) and SBayesS (48) [applied to GWAS summary

statistics and published after, and hence not included in,

the Evans et al. (54) comparison of methods] make fewer

assumptions about the distribution of SNP effects. Instead,

they use the GWAS results to infer the genetic architecture

and so are optimized for a broader range of underlying

genetic architectures. These methods applied to GWAS

summary statistics provided estimates that agreed well with

GREML estimates and had small standard errors (14,47,48).

Since these methods are relatively new, we estimated the

SNP-based heritability of all major psychiatric disorders

using publicly available GWAS summary statistics (https://

www.med.unc.edu/pgc/download-results/) using both LDSC

and SBayesS (Figure 1; Table S6 in Supplement 2). As re-

ported from simulated data, we found that for most traits

SBayesS provided higher estimates, and for all traits the

standard errors were lower, compared with those of LDSC.

In theory, SNP-based heritability estimates should be unbi-

ased, such that increases in sample size impact only the

precision (i.e., the standard error of the estimates decrease

with increasing sample size). However, a noteworthy

empirical observation is that SNP-based heritability esti-

mates tend to decrease as sample sizes increase, because

of the inclusion of multiple cohorts (Figure S2 in

Supplement 2). Careful consideration of the scale of esti-

mates is required in genetic studies of disease traits, since

transformations must be applied to the estimates made

directly from data to achieve estimates on the liability scale

(56–59), which is a scale that is interpretable across studies

(see Supplements 1 and 2 for more details).

CROSS-DISORDER RISK IN RELATIVES, GENETIC

CORRELATION, AND SNP-BASED CORRELATION

Genetic Relationships Between Psychiatric

Disorders

Just as epidemiological studies can investigate the increased

risk of disorder A in relatives of those with disorder A, they also

collect the data to estimate the increased risk of disorder B in

relatives of those with disorder A. However, since studies of a

single disorder are difficult to conduct, those collecting data on

two diseases in the same families are even more difficult to

achieve. Bivariate extensions of the methods used to estimate

heritability [see (23,39) and Supplement 1 for details] can be

used to estimate genetic correlation (rg) between traits. Given

the complexities of collecting genetically informative epidemi-

ological data, estimates of genetic correlations between psy-

chiatric disorders are not commonly presented, although there

are more estimates presented of cross-disorder risk in rela-

tives. These cross-disorder risks can be difficult to benchmark.

For example, the increased risk of major depressive disorder in

first-degree relatives of those with schizophrenia estimated

from a meta-analysis of 11 family studies seems modest at 1.5

(95% CI 1.2–1.8) (17), which is perceived as low. However, it

can be shown (Supplement 1 and Figure 5) that this risk ratio

implies a sizeable genetic correlation of about 0.34 (13). The

national registry data of Sweden (20) and Denmark (38,39)

provide cross-disorder risk rates between schizophrenia and

bipolar disorder. Since genetic correlations require the esti-

mation of three parameters, the standard errors of estimates

are larger for the same sample size than estimates of herita-

bility, i.e., the numerator is the estimate of the genetic

covariance (bsgx ;gy
Þ between the traits x and y, while the de-

nominator includes estimates of the genetic variances

(bs2
gx
and bs2

gy
Þ of the two traits, rg ¼ bsgx ;gy

=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bs2
gx
bs2
gy

q
; equivalently

using the liability distribution (where phenotypic variances of

both traits are 1) rg ¼ hxy=
ffiffiffiffiffiffiffiffiffiffi
h2xh

2
y

q
, where h2x and h2y are heri-

tability estimates and hxy the co-heritability. It can be infor-

mative to benchmark genetic correlation together with the trait

heritabilities. For example, a high genetic correlation in the

context of high heritabilities may be more meaningful than a

high genetic correlation in the context of low heritabilities.

SNP-Based Genetic Correlation

Bivariate extensions of both the GREML (60) and LDSC (61)

methods allow estimation of a SNP-based genetic correlation

from GWAS data sets that have been collected independently

for the two traits (62). To estimate rg from independently

collected data sets, and as a by-product of GWASs, has been

an important advance of the past decade. In essence, bivariate

GREML detects whether cases of the two diseases are

significantly more similar genetically than they are to controls

(or significantly less similar in the case of negative correlation),

and LDSC detects whether SNP associations from the two

GWAS are nonrandom. Notably, genetic correlation estimates

are scale independent (no transformations are needed) and are

more robust to the assumptions made in different methods

compared with heritability estimates (61,62). The first
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estimates of SNP-based genetic correlations between

diseases was applied to psychiatric disorders (17). With the

ever-increasing availability of GWAS data sets, rg has now

been reported for many trait-pair combinations, which would

have been deemed impossible from traditional genetic epide-

miology (63). It is open to debate whether the rg estimated from

the common SNPs in GWAS data is the same as the rg when

estimated across the full allele frequency spectrum. In the

absence of contradicting data, it seems like a reasonable first

assumption. Where rg has been estimated from both family

studies and GWAS data in the context of psychiatric disorders,

estimates agree well. For example, a large-scale Swedish

family and adoption study (20) estimated the genetic correla-

tion between schizophrenia and bipolar disorder to be 0.6,

which is in high concordance with what is found using

genome-wide SNP data (13,17).

An important question is the impact of disease misdiagnosis

on estimates of genetic correlation. This is particularly impor-

tant in psychiatry, where the stable diagnosis of a person may

differ from the diagnosis at first presentation. These concerns

impact equally on genetic epidemiology studies estimates as

on SNP-based estimates, but it is only in the GWAS era that

estimation of genetic correlation has become commonplace.

This question was studied prior to the publication of the first rg
estimates for psychiatric disorders and showed that misdiag-

nosis can indeed generate upwardly biased estimates of rg

(64). However, reported rates of change in diagnosis (e.g.,

approximately 15% of subjects initially diagnosed with bipolar

disorder may later receive a stable diagnosis of schizophrenia)

were found to inflate the genetic correlation by approximately

0.1 only and could not alone explain the higher genetic cor-

relation that is generally observed (64). Moreover, in the

context of a true high genetic correlation, people may be ex-

pected to present with symptoms consistent with both disor-

ders. Other ascertainment biases are discussed in our genetic

correlation review (62), but as a rule of thumb, ascertainment

impacts both the genetic covariance (numerator) and genetic

variances (denominator) of the rg calculation, which makes

them relatively robust to these type of biases.

SNP-Based Genetic Correlations Between Data

Sets of the Same Disorder Including Across

Ancestry

SNP-based rg can be calculated between two independently

collected data sets for the same disorder. In this case, the rg is

expected to be 1 because the expected values of the two

SNP-based heritability estimates, as well as those of the SNP-

based co-heritability, are the same. In practice, the rg esti-

mates are usually found to be less than 1, and the SNP-based

heritability estimates are observed to differ more than ex-

pected by the standard error estimates. Together these results

Figure 5. Genetic correlations and cross-disorder risk in relatives. (A) The genetic correlations (rg) between two disorders, disorder x (row) and disorder y

(column), are estimated from linkage disequilibrium score regression using genome-wide association study summary statistics (see Table S1 in Supplement 2

for references). We assume that genetic correlations are the same across the allelic spectrum. The diagonal elements are entered as 1, because this is the

expectation for samples drawn from the same population. In real data analyses, these correlations have been estimated as,1 (see Figure S2 in Supplement 2).

(B) We use lifetime risk (Kx and Ky) and total heritabilities (h2x and h2y ) as reported in Table S1 in Supplement 2. We back-calculate the expected risks in first-

degree relatives, within and between disorders from Kx, Ky, h
2
x , h

2
y ; and rg (see Supplement 1). Red represents lifetime risk of disorder x (Kx), yellow represents

lifetime risk of disorder y (Ky), green represents lifetime risk of disorder x in first-degree relatives of those with disorder x, light blue represents lifetime risk of

disorder y in first-degree relatives of those with disorder y, dark blue represents lifetime risk of disorder y in first-degree relatives of those with disorder x, and

purple represents lifetime risk of disorder x in first-degree relatives of those with disorder y. ADHD, attention-deficit/hyperactivity disorder; AN, anorexia

nervosa; ASD, autism spectrum disorder; BIP, bipolar disorder; MDD, major depressive disorder; SCZ, schizophrenia.
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imply that the nature of the GWAS data does not meet the

assumptions of random samples from the same population.

This finding could reflect differences in phenotype definition,

population differences, or differences in technical factors. This

is important to note since estimation of rg has been used as a

strategy to investigate the genetic relationship between

different phenotype definitions, a topic of importance in psy-

chiatry (65). While appealing in principle, such approaches

need to be benchmarked against genetic correlations esti-

mated between different data sets that have measured the

same phenotype (Figure S2 in Supplement 2).

SNP-based correlations can also be estimated from the

same disorder but from samples collected from different an-

cestries. The Popcorn method (66) is an extension of LDSC

that attempts to model the differences in allele frequency and

LD between ancestries to estimate cross-ancestry rg. For

instance, the genetic correlation for schizophrenia between

East Asian and European ancestries was estimated as rg = .98,

SE .03 (67). When estimates of rg between ancestries are

estimated to be less than 1, it is important that the estimate is

benchmarked against that calculated from two data sets of the

same disorder from the same ancestry to ensure that rg values

are interpreted with recognition that factors other than

ancestry can generate rg values less than 1.

CONCLUSIONS

In this capstone narrative, we bring together the methods and

results that summarize the genetic contribution to psychiatric

disorders and the genetic relationship between them. We note

that we use the common assumption that psychiatric disorder

diagnosis definitions are underpinned by a consistent poly-

genic biology. If this is not true—for example, if a single clinical

diagnosis is allocated to one or more independent or corre-

lated biological diseases—then further thought is needed to

interpret the estimates of heritability and genetic correlation.

Such a scenario could explain (41), in part, the large difference

between heritability and SNP-based heritability (Figure 1) in

addition to contributions from rare variants and low LD be-

tween genotyped and causal variants. Previously, we

concluded that only with large GWAS sample sizes and

extensive clinical data (40,41) would we have the information

needed to examine this interesting question. Despite this

caveat, multiple results from GWAS data confirm that in-

dividuals allocated a specific diagnosis are genetically more

similar, on average, than those allocated other diagnoses (i.e.,

heritabilities of individual disorders are greater than co-

heritabilities between disorders) (Figure S2 in Supplement 2).

Understanding the genetic contribution to common disease is

a foundation for many other research directions. It is outside the

scope of this review to focus on the utility of the estimates of

heritability and genetic correlation in detail. Estimates of SNP-

based heritability help to guide whether efforts to increase

GWAS sample sizes should continue, as they provide an upper

limit on the combined effects of individual associated loci. Esti-

mates of heritability and SNP-based heritability provide guidelines

of maximum future accuracy of risk prediction applied to people

whose disease status is not yet known. Genetic correlations can

be used to determine how much the accuracy of the risk pre-

diction can be improved by drawing on information from

correlated traits, which perhaps are available in much larger

samples than for the primary disorder itself (68). Here, we have

focused on genetic correlations between psychiatric disorders, an

approach that is likely to reflect pleiotropy (same causal variants

affecting more than one disorder). However, genetic correlations

can also be estimated between psychiatric disorders and other

common diseases, or between psychiatric disorders and traits

measurable in the population (such as educational attainment or

smoking status), and these estimates could reflect causal re-

lationships, which have been long-discussed in the psychiatric

epidemiology literature (69). In the past 5 years, results from

GWASs have allowed causal relationships using putative expo-

sure traits and psychiatric disorders to be explored, as well as

those between psychiatric disorders and subsequent metabolic

disease, using the Mendelian randomization approach. The

application of Mendelian randomization to psychiatric disorders

has been discussed elsewhere (70) and is an exciting tool in

psychiatry (as long as studies are well powered) to investigate

putative causal relationships that are impossible or unethical to

address through clinical trials. As an example, we recently showed

that although there is considerable pleiotropy between genetic

variants for vitamin D and psychiatric disorders, there is no evi-

dence of a causal relationship (71). Such analyses contribute hard

data to a long discussion in psychiatric epidemiology (72,73).

Finally, we hope that our Supplementary materials, including

Rmarkdown script and CHARRGe Shiny application (https://shiny.

cnsgenomics.com/CHARRGe/), are useful to others both in

research and as teaching and learning aids.
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