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E
ffective prevention strategies are required to reduce the immense 
global burden of nutrition-related non-communicable dis-
eases (NCDs)1. Nutritional research and the correspond-

ing guidelines2–4 focus on population averages. However, the high 
inter-person variability in response to foods and weight-loss diets5 
demands development of more personalized approaches. Precision 
nutrition that is based on empirical evidence requires research 
using multidimensional, high-resolution time-series data from ade-
quately powered studies6. The application of technologies to accu-
rately and precisely quantify many postprandial (non-fasting) traits 
in large cohorts and in real-world settings is extending capabilities 
in this field of research.

Although fasting blood assays are used in many clinical diag-
noses, most people are predominantly in the postprandial state 
during waking hours. Postprandial lipid, glucose and insulin dys-
homeostasis are independent risk factors for NCDs and obesity7–9. 
Postprandial hyperglycemia raises the risk of cardiovascular disease 
(CVD), coronary heart disease (CHD)10 and cardiovascular mortal-
ity, even in individuals with normal fasting glucose11, and postpran-
dial triglyceride level is more predictive of CVD than are fasting 
concentrations12,13, highlighting the relevance of diet and its meta-
bolic consequences in cardiovascular risk.

A person’s unique postprandial glycemic and lipidemic responses 
are likely attributable to their biological (for example, microbiome 

and nuclear DNA variation) and lifestyle characteristics2,14, as has 
previously been demonstrated in research using specific meals5. 
Although postprandial glycemic responses are important health 
determinants, glycemic control is just one part of a more complex 
metabolic equation involving triglyceride (the primary alternative 
energy substrate to glucose) and insulin (which regulates glucose 
and triglyceride transport and metabolism)15. Thus, characterizing 
postprandial regulation of lipids and identifying the factors respon-
sible for individual variation could help optimize diet recommen-
dations to target broader improvements in cardiometabolic health.

The personalized responses to dietary composition (PREDICT 1)  
clinical trial (NCT03479866) was designed to quantify and predict 
individual variations in postprandial triglyceride, glucose and insu-
lin responses to standardized meals. PREDICT 1 enrolled twins 
and unrelated adults from the United Kingdom in whom genetic, 
metabolic, microbiome-composition, meal-composition and 
meal-context data were obtained to distinguish predictors of indi-
vidual responses to meals. These predictions were validated in an 
independent cohort of adults from the United States.

Our findings show wide variations in postprandial responses 
between people, even identical twins, attributable in large part to 
modifiable factors. We found that people who experience poor met-
abolic responses to a given meal are likely to respond poorly to other 
meals with the same macronutrient profile, and that the overall  
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correlation between postprandial glucose and triglyceride responses 
is weak. The postprandial prediction models we have developed 
could help optimize personalized diet recommendations.

Results
Baseline clinical measurements were collected from 1,002 healthy 
adults from the United Kingdom. These consisted of postpran-
dial metabolic responses (0–6 h; blood triglyceride, glucose and 
insulin concentrations) to sequential mixed-nutrient dietary chal-
lenges. Findings were validated a US cohort of 100 healthy adults. 
Additional data were collected over the subsequent 13-d period 
at home: postprandial responses to eight meals (seven in dupli-
cate) of differing macronutrient (fat, carbohydrate, protein and 
fiber) content were measured using continuous glucose monitors 
(CGMs) and dried-blood-spot (DBS) analysis. The study design 
is described in detail in the Methods and Fig. 1, and the inclusion  
criteria and descriptive characteristics of study subjects are pre-
sented in Supplementary Table 1. Further information on research 
design is available in the Reporting Summary.

Inter- and intra-individual variation in postprandial responses. 
Inter-individual variability in postprandial responses was exam-
ined in a tightly controlled clinical setting following the sequen-
tial standardized test-meal challenge after fasting (Fig. 2a). The 
inter-individual patterns of response for each outcome were 
assessed using Levene’s test of variance. Heterogeneity across all 
postprandial time points (during fasting for 6 h) varied greatly 
for triglyceride (P = 3.931 × 10–11), glucose (P = 2.91 × 10–194) and 
insulin (P = 2.45 × 10–17) concentrations. In serum, the population 
coefficient of variation was higher for postprandial triglyceride6h-rise  
(6 h–0 h triglyceride concentration) (103%) and glucoseiAUC0–2h  
(0 h–2 h incremental area under the curve) (68%) compared with 
fasting values (50% and 10%, respectively). This was not true for 
insuliniAUC0–2h (59%) compared with the fasting value (69%; Fig. 2a),  

suggesting that these measures of postprandial triglyceride and glu-
cose concentrations, but not of insulin, provide better discrimina-
tion of an individual’s metabolic tolerance than fasting values do.

A key assumption when developing personalized prediction 
algorithms is that an individual’s unique response to the same meal 
is reproducible. Much of the between-person phenotypic variabil-
ity observed in studies examining response to diet interventions 
that include only a single test–response scenario could be a result 
of regression to the mean or other sources of error. Repeated mea-
sures (multiple measures taken within an individual at a single 
time point and across multiple time points) can be used to parti-
tion error from true biological variability, thereby improving the 
precision of the estimate. Accordingly, we administered test meals 
of varying macronutrient composition in duplicate per participant, 
under similar conditions (see Methods and Supplementary Table 2 
for details). We also used CGMs, which provided sequential mea-
sures of blood glucose at 15-min intervals during the study period. 
Intra-individual variability (repeatability) was assessed using 
intra-class correlation coefficients (ICCs) for triglyceride, connect-
ing peptide (C-peptide, a surrogate for insulin secretion) (from DBS 
assays) and glucose (from CGMs) measurements. The ICCs were: 
triglyceride6h-rise = 0.46 (95% confidence interval (CI), 0.37–0.54); 
glucoseiAUC0–2h = 0.74 (95% CI, 0.72–0.75); C-peptide2h-rise = 0.62 
(95% CI 0.54, 0.69) (Supplementary Table 3). The differences in 
ICCs between triglyceride, C-peptide and glucose measurements 
partly reflect the different assays used (DBS and CGM) (Methods).

Predicting individual postprandial responses within a popu-
lation. We assessed the overall extent to which input variables 
(Supplementary Table 3) predict personal postprandial responses 
(Fig. 2b–d), initially using multivariable linear regression.  
Input variables include: (1) baseline characteristics (age, sex,  
clinical biochemistry (lipid, glycemic and other measures), 
anthropometry); (2) genetics (single-nucleotide polymorphisms 
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(SNPs)); (3) gut-microbiome features; (4) habitual diet (from Food 
Frequency Questionnaire (FFQ)); (5) meal context (sleep, previ-
ous meals, physical activity, meal sequence and/or timing); and (6) 
meal composition (energy from carbohydrates, sugar, fat, protein 
and fiber). Postprandial glycemic responses were determined from 
serum and CGM measurements in the clinic and at home (from 
seven standardized meals; Methods). Postprandial C-peptide and 
triglyceride were determined (from two standardized meals) from 
serum and DBS assays on material collected during the clinic and 

home phases. We also tested the correlation between fasting and 
postprandial characteristics and found that the correlation between 
postprandial triglyceride and both postprandial glucose and post-
prandial C-peptide measures was low (Fig. 3a).

Individual baseline characteristics. The proportions of trait vari-
ance explained by individual baseline characteristics are shown in 
Fig. 2b–d for triglyceride6h-rise, glucoseiAUC0–2h and C-peptide1h-rise 
(Supplementary Table 3).
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**P < 0.01, ***P < 0.001 using multivariable linear regression.

NATuRE MEDICINE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


ARTICLES NATURE MEDICINE

Genetic factors. The heritability of postprandial responses in the 
UK cohort was examined using classical twin methods (variance 
components analyses) to establish the upper bound of what might 
be predicted by directly measured genetic variation. Two-thirds of 
the cohort was recruited from the TwinsUK registry16, of which 230 
twin pairs (n = 460; 183 monozygotic and 47 dizygotic) were stud-
ied for heritability. Additive genetic factors explained 48% of the 
variance in glucoseiAUC0–2h, whereas 0% of the variance in triglycer-
ide6h-rise and 9% of the variance in insulin2h-rise were explained in this 
way (Fig. 3b). The estimated genetic variances in insulin1h-rise and 
C-peptide1h-rise were close to 0 (Supplementary Table 4).

SNP-based genetic factors. In a subgroup of participants who 
are part of the TwinsUK cohort, had genome-wide genotyping  

previously done and had available genome-wide association study 
(GWAS) data (n = 241), we tested whether 32 SNPs derived from 
previous genome-wide scans of postprandial glucose, insulin or tri-
glyceride concentrations17–21 were associated with the postprandial 
variables studied here. Several SNPs were significantly (P < 0.05) 
associated with these variables (Fig. 3c and Supplementary Table 4), 
but they collectively explained only ~9% of observed variation in 
glucoseiAUC0–2h (Fig. 2c), and less than 1% of variation for postpran-
dial triglyceride and postprandial C-peptide (Fig. 2b,d).

Gut microbiome (16S ribosomal RNA). We estimated the contri-
bution of gut-microbiome composition using relative bacterial 
taxonomic abundances and measures of community diversity and 
richness, derived from 16S rRNA high-throughput sequencing 
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of baseline stool specimens (Supplementary Table 4). We found 
that, without adjusting for any other individual characteristics, 
gut-microbiome composition explained 7.5% of postprandial tri-
glyceride6h-rise, 6.4% of postprandial glucoseiAUC0-2h and 5.8% of post-
prandial C-peptide1h-rise.

Meal composition, habitual diet and meal context. To determine the 
impact of the macronutrient composition of meals, we measured tri-
glyceride6h-rise and C-peptide1h-rise for two standardized home-phase 
meals (i.e., consumed at home) of differing macronutrient composi-
tions (for triglyceride, meals 1 and 7: 85 versus 28 g of carbohydrate 
and 50 versus 40 g of fat at breakfast, both followed by a lunch of 71 g 
carbohydrate and 22 g fat; for C-peptide, meals 2 and 3: 71 versus 
41 g of carbohydrate and 22 versus 35 g of fat; Supplementary Table 
2) in subsets of participants (n = 712 and n = 186, respectively). 
GlucoseiAUC0–2h was measured for seven standardized meals (com-
parison of meals 1, 2, 4, 5, 6, 7 and 8: 28–95 g carbohydrate and 
0–53 g fat), totaling 9,102 meals in 920 individuals. The proportions 
of variance explained by meal composition, habitual diet and meal 
context are shown for triglyceride6h-rise in Fig. 2b, for glucoseiAUC0-2h 
in Fig. 2c and for C-peptide1h-rise in Fig. 2d. A multivariate regres-
sion model (meals 1, 2, 4, 5, 6, 7 and 8) revealed that glucoseiAUC0–2h 
(mmol per l per s) was significantly (P < 0.001) reduced by 79, 142 
and 185 for every 1 g fat, fiber and protein, respectively, after adjust-
ment for carbohydrate consumption.

Machine-learning model. To estimate the unbiased predictive util-
ity of the analyzed factors, we used a machine-learning approach 
robust to overfitting22. Random forest regression models23 were fit-
ted using all informative features (meal composition, habitual diet, 
meal context, anthropometry, genetics, microbiome, clinical and 
biochemical parameters) to predict triglyceride6h-rise, glucoseiAUC0–2h 
and C-peptide1h-rise in the UK cohort dataset. The predicted values 
were compared with the observed values for each trait using Pearson 
correlation coefficients (r); these correlations were r = 0.47, r = 0.77 
and r = 0.30 for triglyceride6h-rise, glucoseiAUC0–2h and C-peptide1h-rise, 
respectively. Similar correlations were observed in the held-out vali-
dation set (US cohort). The model predictions for triglyceride6h-rise 
and glucoseiAUC0–2h were r = 0.42 and r = 0.75, respectively, but were 
much weaker for C-peptide1h-rise (r = 0.14) (Fig. 4). The features used 
to fit the models are reported in Supplementary Table 5. The repeat-
ability and robustness of the machine-learning model are presented 
in Extended Data Fig. 4.

Postprandial responses in relation to surrogate scores of clinical out-
comes. We compared the extent to which fasting and postprandial 
concentrations for the different biomarkers could be used to pre-
dict impaired glucose tolerance (7.8–11.0 mmol l–1 2 h after an oral 
glucose tolerance test (OGTT)) and atherosclerotic cardiovascular 
disease (ASCVD) 10-year risk score (Methods) by comparing the 
area under the receiver operator characteristics (ROC-AUC) curves 
(Fig. 5). We found that fasting triglyceride and triglyceride6h-rise 
contributed similarly to the ROC-AUC for ASCVD risk, and that 
including both was more informative than including only one of 
them (Fig. 5a). We also found that, although postprandial glucose 
was not as informative as fasting glucose, adding glucoseiAUC0–2h to 
fasting glucose resulted in a slightly higher ROC-AUC (0.72 ver-
sus 0.69) for ASCVD 10-year risk. Fasting C-peptide and fasting 
glucose were as effective (ROC-AUC = 0.69) as fasting triglycer-
ide was in ASCVD prediction, whereas postprandial C-peptide 
(ROC-AUC = 0.63) and postprandial glucose (ROC-AUC = 0.62) 
were weaker than postprandial triglyceride (ROC-AUC = 0.71). 
Fasting and postprandial triglyceride concentrations were weakly 
predictive (ROC-AUC = 0.55 and 0.59, respectively) of impaired 
glucose tolerance (IGT), whereas fasting and postprandial 
C-peptide were moderately predictive (ROC-AUC = 0.64 and 0.65, 

respectively), although with no added predictive value in combina-
tion. We did not include here the prediction of IGT using glucose 
data from CGM. This is because IGT is defined solely on the basis 
of the blood glucose concentration at 2 h during an OGTT, which 
is captured by the CGM glucose recording, and so the derivation 
of the predictor and the clinical-score variables would be heavily 
dependent upon one another. Results were similar in the UK and 
US cohorts (Fig. 5).

Decoding individual responses. Having investigated postprandial 
responses within the population, we next explored the responses at 
the individual level. We examined glycemic responses, as the gran-
ular CGM data collected during the at-home phase enabled us to 
assess real-world effects in detail, which was not possible for tri-
glyceride or C-peptide. We investigated how much of an individual’s 
postprandial response is attributable to a meal’s glycemic properties, 
compared with how the variation results from other modifiable fac-
tors, such as meal timing, exercise and sleep.

We first examined the contribution of the meal. Although it is a 
widely held notion that, for an individual, variations in meal com-
position are primarily responsible for the variation in responses to 
food and that ranking of meal responses should be the same for all 
people24,25, we explored whether meal-specific responses that are 
unique to the individual exist. We ranked the order of each partici-
pant’s glucoseiAUC0–2h for every possible pair of standardized meals 
consumed at home. We then determined how frequently these 
rankings differed for each participant. For most pairs of meals, the 
ranking was the same for all individuals (for example, the glucose 
administered in the OGTT elicits a higher glucoseiAUC0–2h than the 
carbohydrate in the high-fiber muffins, in all participants) (Fig. 6a).  
However, for select pairs of meals, the ranking was reversed in 
up to 48% of participants, such as between the medium-fat and 
-carbohydrate lunch versus the high-carbohydrate breakfast (350 of 
727 participants) (meal 2 versus meal 4; Supplementary Table 2). In 
186 out of 498 (37.3%) participants, discrepancies were also seen 
between the high-fat and the high-protein meals (meals 7 and 8). 
The distribution of how these meals were ranked for the partici-
pants of the PREDICT study is presented in Extended Data Fig. 2.

We note that the reordering of meal rankings could have been 
the result of noise. We therefore used analysis of variance (ANOVA) 
to estimate the effect size for the different factors explaining gly-
cemic response (Fig. 6b), including person-specific effects (effects 
that vary between people, but not between meals). As described in 
the Methods, we considered not only the effect of the meal macro-
nutrient and energy content in the response (meal composition), 
but also how each individual responded on average to all their 
set meals relative to the population (individual glucose scaling), 
as well as the effect of the individual’s meal-specific response, the 
error attributable to the glucose measurement and other sources of  
variation (including modifiable sources of variation, such as sleep, 
circadian rhythm and exercise).

We found that, consistent with the linear models described ear-
lier, the ANOVA models showed that there were three meal-related 
factors explaining individual glycemic responses. Meal macronutri-
ent composition alters iAUC by 16.73% (CI, 15.37%–18.92%), but 
the individual glucose scaling is larger, altering iAUC by roughly 
18.74% (17.96%–19.46%). The individual’s meal-specific response 
is much smaller, affecting the final meal iAUC by 7.63% (6.11%–
8.96%). Other modifiable sources of variation not directly related 
to the meal composition, such as meal timing, exercise and sleep, 
contributed amounts of variance similar to that of the meal’s com-
position (Fig. 6b,c).

To investigate whether modifying the order in which meals 
are consumed and the time of the day affect glycemic responses, 
we looked at participants who ate an identical meal (meal 2) for 
breakfast and lunch. The average glycemic response for the same 
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individuals was on average twofold higher (t = −35.7, 2,721 d.f.;  
P < 0.001) when the meal was ingested for lunch (mean glucoseiAUC0-2h  
= 14,254, s.d.= 6,593) (4 h following the metabolic-challenge 
breakfast) than when ingested for breakfast (mean glucoseiAUC0-2h  
= 7,216, s.d. = 4,157), although with wide inter-individual  
variation (Fig. 6c).

Discussion
Nutrition and health are intimately linked. Each day, people make 
diet-related decisions that are influenced by perceived enjoyment 

and satiation, as well as health benefits and harm attributed to 
specific foods and beverages. Standard nutritional guidelines2–4 
are typically based on population averages. However, it is increas-
ingly evident that one-size nutritional recommendations do 
not fit all, which is exemplified by the variable efficacy of tightly 
controlled lifestyle-intervention trials26–29. To address these chal-
lenges, we undertook a 2-week interventional trial, including a 
tightly controlled in-clinic day and a 2-week at-home phase, in 
which postprandial metabolic responses to a series of standardized  
meals were obtained in more than 1,000 healthy adults from the 
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United Kingdom and United States. The primary aim was to derive 
algorithms that predict an individual’s postprandial metabolic 
responses to specific foods. The core outcomes were variations 
in blood concentrations of triglyceride, glucose and insulin (or 
C-peptide), as these biomarkers work in concert to affect cardio-
metabolic risk8,30.

In many cases, we observed responses that contrast with those 
reported in traditional clinic-based studies, thereby reshaping con-
clusions about the key factors influencing responses to foods. For 
example, genetic influence was lower than expected, especially for 
triglyceride, whereas modifiable factors such as meal timing con-
veyed larger effects than anticipated.

Meal composition has large effects on postprandial insulinemic 
and lipidemic response31. Some small studies have suggested that 
meals with high-fat and/or high-protein content elicit very different 
postprandial responses than lower-fat and/or lower-protein meals 
with identical carbohydrate content (reviewed in ref. 31). The type of 
fat in a meal also alters the lipemic response32. However, measuring 
postprandial triglyceride and C-peptide at home in large cohorts 
is both logistically challenging and places a considerable burden 
on the participants. Thus, for pragmatic reasons, only two pairs of 

meals (high fat and high carbohydrate) were used to calculate post-
prandial triglyceride and C-peptide responses, and the difference in 
macronutrient content of these meals was low. This limited number 
of different meals and their relatively similar macronutrient content 
might explain why the effects seen for postprandial triglyceride and 
C-peptide were lower than expected.

In addition to fasting concentrations of triglyceride and glucose, 
we found that postprandial triglyceride and glucose concentrations 
were informative for determination of IGT and CVD risk. However, 
postprandial C-peptide measurements provided no additional 
information over fasting concentrations. We found that, although 
postprandial triglyceride and glucose responses were highly vari-
able between individuals, a person’s response to the same meals was 
often similar and therefore predictable. Any given individual gener-
ally responds comparably to different meals of the same macronu-
trient profile. Some people experience large postprandial excursions 
across most meals, whereas others consistently experience modest 
responses. This is important for individualized prediction and rec-
ommendations, as it suggests that once an individual’s postprandial 
response to specific foods is known, their response to other foods 
could be inferred.
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We show not only that a person’s glycemic response is the result of 
glucose scaling specific to the individual, which determines whether 
a person is a high or low responder to all meals, but also that there 
are meal-specific responses unique to an individual. Possible expla-
nations include individual genetic differences in the ability to digest 
high-starch meals33. Zeevi et al.5 reported an example in which one 
participant had an exaggerated glycemic response to a banana but 
not to a cookie, whereas the second participant had the opposite 
response. We assessed this phenomenon in our data and found that 
individual glucose scaling and meal-specific responses both exist, 
but individual meal-specific responses are generally much more 
effective than scaling.

People differ greatly in their responses to diet interventions. The 
DIETFITS study, for example, randomized 609 people to either a 
healthy low-fat or a healthy low-carbohydrate diet for 12 months34. 
By the end of the study, average weight loss was similar between 
groups (~5–6 kg), but wide variations were seen within groups  
(−30 kg to +10 kg). Elsewhere, the Diabetes Prevention Program 
showed that, although a standardized intensive lifestyle interven-
tion focusing on changes in diet (tailored only to the energy require-
ments of the individual) lowered diabetes risk substantially28, its 
efficacy varied greatly across the study population26,27 and was deter-
mined to some extent by genetic factors29. Although the response to 
diet interventions will depend partly on adherence, findings from 
the PREDICT trial and elsewhere35,36 suggest that, even in highly 
adherent participants, substantial variations in response exist, 
which might be predictable. In PREDICT, non-food-specific factors 
(for example, meal timing, sleep and activity) were highly informa-
tive of these person-specific responses.

Previous large-scale studies of postprandial responses have 
focused solely on glycemic outcomes because assessing postpran-
dial triglyceride and insulin concentrations in free-living condi-
tions is challenging2,25. Here, we assessed glycemic responses with 
CGMs, and also triglyceride and C-peptide concentrations during 
the at-home period using a validated DBS method and support 
from a specifically designed mobile app (Methods).The low cor-
relation between triglyceride and glucose suggests that prediction 
algorithms relying solely on glucose would be insufficient for the 
detection of dysregulated triglyceride responses.

The prediction algorithms we developed are likely to have been 
strengthened by the use of randomized, mixed meals that contained 
combinations of macronutrients reflecting those seen in real-world 

settings, rather than supraphysiological lipid or carbohydrate chal-
lenges as have been used in previous studies.

In general, genetics, contrary to our expectations, was not a 
predominant determinant of most of these these responses; we 
found that the heritable fraction (the trait variance explained by 
additive genetic factors) was low for postprandial triglyceride (6-h 
rise, 0.0%), as well as C-peptide and/or insulin concentrations at 
1 h (0.3%) and at 2 h (9.1%). The heritable fractions for postpran-
dial glucose (2-h iAUC) responses were considerably higher (48%). 
Despite the wealth of publicly available SNP data (www.type2dia-
betesgenetics.org), there are no robust data for these specific post-
prandial traits, as almost all published GWASs of serological traits 
have focused on fasting values. Nevertheless, in exploratory analy-
ses, we examined the predictive value of loci previously linked to 
post-challenge triglyceride, glucose or insulin concentrations17–21, 
but found that the predictive utility of these variants was poor, par-
ticularly for triglyceride and C-peptide (Fig. 3c). The modest heri-
tability of postprandial traits means that, even in an unrealistically 
optimistic scenario in which most of this trait variance is explained 
by known DNA variants, it is unlikely that prediction algorithms 
using DNA variant data alone, which many direct-to-consumer 
nutrigenomics companies advocate, would succeed.

The lack of a major genetic component to these traits high-
lights the likely involvement of modifiable environmental expo-
sures. Indeed, we found that meal composition and context (for 
example, meal timing, exercise, sleep and circadian rhythm) were 
core determinants of postprandial metabolism. These predictions 
were strengthened using data on gut-microbiome diversity. Using 
machine learning that combined all relevant data, an individual’s 
postprandial triglyceride and glycemic responses could be mean-
ingfully predicted, with similar results in the US validation cohort. 
For C-peptide, the prediction was much weaker in the validation 
cohort (r = 0.30 UK, r = 0.14 US), possibly reflecting the lower num-
ber of test meals relative to the number of input variables, which 
could adversely affect the reliability of the prediction37. The post-
prandial glycemic predictions were similar to those reported by 
Zeevi et al.5, although the analysis methods and input features are 
not directly comparable.

Despite having developed these prediction algorithms, there is 
scope for improvement, such as the inclusion of a more diverse array 
of meal interventions, and more detailed assessments of contextual 
factors than were used in the current study. Technological advances 
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could also help to improve predictions. For example, although glu-
cose can be continuously assessed with CGMs, no commercially 
available devices suitable for free-living assessments of continuous 
insulin and triglyceride concentrations currently exist. Moreover, 
owing to the differences in tolerability and the lower limit of detect-
able responses of dietary carbohydrates compared with fats38, our 
trial suggests that the prediction of postprandial glucose is meth-
odologically superior to that for triglyceride responses (Fig. 2b–d). 
Difficulties in directly comparing changes in triglyceride and glu-
cose were a limitation of our study. Continuous, accurate measures of 
these traits could substantially improve predictions owing to reduc-
tions in model error and the ability to study non-linear patterns of 
response, which may be important. The inclusion of deep ‘-omics’ 
data may further enhance the predictive ability of these algorithms; 
for example, here we used microbiome data derived from 16S rRNA 
sequencing, which were valuable for prediction (explaining 6.4% 
and 7.5% of the variances for glucose and triglyceride responses, 
respectively), but data may be even more informative if derived from 
higher-resolution metagenomic sequencing. The nutritional signa-
tures detectable within the metabolome, both in blood39 and feces40, 
suggest that including a larger metabolomics panel—and, quite 
probably, other -omics data, for example meta-transcriptomics, 
transcriptomics or proteomics—in our algorithms would add costs 
but also enhance predictions. Using FFQs, we found that habitual 
diet explains a small proportion (<2%) of an individual’s postpran-
dial responses. However, FFQs have well-known limitations, and 
other objective approaches may be considerably less biased and less 
error prone27. Pairing this with short-term assessments, such as the 
weighed dietary record included in the PREDICT study app, may 
help mitigate these limitations. More comprehensive challenge tests 
might also reveal new aspects of postprandial metabolism; here, we 
used a 6-h test meal challenge, as this was deemed the maximum 
duration that most participants were likely to accept. Data from 
challenge tests of longer durations (up to 8 h) may provide valuable 
information on both glucose and triglyceride responses.

For postprandial triglyceride and glucose responses, the predic-
tion models derived in the UK cohort performed almost as well in 
the independent US validation cohort, which is reassuring given 
the differences in environmental factors; nevertheless, both cohorts 
comprised younger healthy adults of European ancestry. Thus,  
the generalization of our findings would require validation in  
people of non-European ancestry, older adults and people with 
diseases that affect metabolism, such as diabetes. The clinical 
implications of our predictions will require appropriately powered 
longitudinal studies.

In conclusion, this is the most comprehensive assessment to 
date of metabolic responses to nutritional challenges in a rigorous 
intervention setting. We observed considerable inter-individual dif-
ferences in postprandial metabolic responses to the same meals, 
challenging the logic of standardized diet recommendations. These 
findings, in addition to the scalability of the assessment methods 
and the accuracy of the prediction algorithms described here, 
mean that, at least from a cardiometabolic health perspective, 
population-wide personalized nutrition has potential as a strategy 
for disease prevention.
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Methods
Study population, study design, recruitment criteria, meal challenges and Zoe 
study app. Study population. The PREDICT 1 study was a multinational study 
conducted between 5 June 2018 and 8 May 2019. The primary cohort was recruited 
at St Thomas’ Hospital in London, UK, and a validation cohort (that underwent 
the same profiling as the UK cohort) was assessed at the Massachusetts General 
Hospital (MGH) in Boston, Massachusetts, as described in the online protocol41. 
In the United Kingdom, participants (target enrollment, 1,000 participants) 
were recruited from the TwinsUK cohort, an ongoing research cohort described 
elsewhere16 and through online advertising (Extended Data Fig. 1a). In the United 
States, participants (target enrollment, 100 participants) were recruited through 
online advertising, research-participant databases and Rally for Research (https://
rally.partners.org/), an online recruiting portal for research trials (Extended Data 
Fig. 1b). Ethical approval for the study was obtained in the United Kingdom from 
the Research Ethics Committee and Integrated Research Application System (IRAS 
236407), and in the United States from the institutional review board (Partners 
Healthcare IRB 2018P002078). The trial was registered on ClinicalTrials.gov 
(registration number: NCT03479866) as part of the registration for the PREDICT 
program of research, which also includes two other study protocol cohorts. The trial 
was run in accordance with the Declaration of Helsinki and Good Clinical Practice.

Study participants were healthy individuals aged 18–65 years who were able 
to provide written informed consent. Criteria used to assess eligibility are listed in 
Supplementary Table 1. Exclusion criteria included ongoing inflammatory disease; 
cancer in the last three years (excluding skin cancer); long-term gastrointestinal 
disorders including irritable bowel disease or Celiac disease (gluten allergy), 
but not including irritable bowel syndrome; taking immunosuppressants or 
antibiotics as daily medication within the last three months; capillary glucose level 
of >12 mmol l–1 (or 216 mg dl–1), or type 1 diabetes mellitus, or taking medication 
for type 2 diabetes mellitus; currently experiencing acute clinically diagnosed 
depression; heart attack (myocardial infarction) or stroke in the last 6 months; 
pregnant; and vegan or experiencing an eating disorder or unwilling to consume 
foods that are part of the study.

Study design. For the study, 1,002 generally healthy adults from the United 
Kingdom (including non-twins, monozygotic twins and dizygotic twins) and 100 
healthy adults from the United States (non-twins; validation cohort) were enrolled 
and completed baseline clinic measurements. Key outcomes included postprandial 
metabolic responses (0–6 h; blood triglyceride, glucose and insulin concentrations) 
to sequential mixed-nutrient dietary challenges (containing 86 g carbohydrate 
and 53 g fat at 0 h; 71 g carbohydrate and 22 g fat at 4 h) administered in a tightly 
controlled clinical setting on day 1 (Fig. 1). A second set of outcomes was assessed 
over the subsequent 13 d at-home period. Lipemic and C-peptide responses (as 
a surrogate for insulin) to two standard meals differing in fat and carbohydrate 
composition were assessed at home using DBS assays collected at three 
postprandial time points. Glycemic responses to eight meals (seven in duplicate) of 
different macronutrient (fat, carbohydrate, protein and fiber) content were assessed 
using CGMs. In addition, participants wore physical-activity and sleep monitors 
for the duration of the study and provided stool samples for microbiome profiling.

We selected specific time points and increments to analyze triglyceride, glucose, 
insulin and C-peptide data to reflect the different pathophysiological processes for 
each measure. To monitor compliance, all test meals consumed by participants were 
logged in the Zoe study app (with an accompanying picture) and reviewed in real 
time by the study nutritionists. Only test meals that were consumed according to the 
standardized meal protocol were included in the analysis.

Baseline clinic visit (day 1). Participants in the United Kingdom were mailed 
a pre-visit study pack with a stool-collection kit and a health and lifestyle 
questionnaire (amended Twins Research health and lifestyle questionnaire42) 
and food-frequency questionnaire (European Prospective Investigation into 
Cancer and Nutrition (EPIC) Food-Frequency Questionnaire (FFQ)43). In the 
United States cohort, minor modifications were made to the health and lifestyle 
questionnaires to conform to a US population, and the Harvard Semi-quantitative 
FFQ, a validated US instrument, was substituted for the EPIC FFQ. Stool collection 
and questionnaires were completed at home and returned to study staff at the 
baseline visit. Participants were asked to refrain from exercise and to limit fat, fiber 
and alcohol intake for 24 h beforehand, and to abstain from caffeine from 18:00 
the night before the baseline visit. Participants arrived at 8:30 for their visit, having 
fasted from 21:00 the night before, and were cannulated in the forearm (antecubital 
vein) to collect a fasted blood sample before they were fitted with wearable 
devices (CGM (Freestyle Libre Pro) and wrist-based triaxial accelerometer (AX3, 
Axivity)). Heart rate and blood pressure were measured (in triplicate, with the 
mean of the second and third measurements recorded) using an automated 
blood-pressure monitor while participants were fasted. Participant weight, height 
and hip and waist circumference were measured using standard clinical techniques. 
Fasting blood glucose level was checked using HemoCue Glucose 201 + System 
(Radiometer) or Stat Strip (Nova Biomedical) in the United Kingdom and United 
States, respectively.

Following the baseline blood draw, participants consumed a breakfast (muffins 
and milkshake at 0 min) and lunch (muffins at 240 min) test meal (Supplementary 

Table 2); each was to be consumed within 10 min. Additional venous blood was 
collected via cannula at 15, 30, 60, 120, 180, 240, 270, 300 and 360 min. Participants 
had access to water to sip throughout the visit. Between blood sampling, 
participants were trained in how to complete the study at home, including when 
and how to consume standardized test meals, perform DBS and use the Zoe study 
app. Upon completing their baseline visit, participants received all the components 
necessary to complete the home phase.

Home phase (days 2–14). During the home phase of the study, participants 
consumed multiple standardized test meals for breakfast and lunch over a 9- 
to 11-d period, while wearing the CGM and accelerometer. Meals differed in 
macronutrient composition (carbohydrate, fat, protein and fiber). Participants 
recorded all of their dietary intake and exercise on the Zoe study app throughout 
the study. DBS tests were completed 4 d before and after test meals, as outlined 
in the online protocol41. Following completion of the home phase, participants 
returned all study samples and devices to study staff via standard mail.

Test-meal preparation, nutrient composition and timing, and standardized 
participant test-meal instructions. Upon completion of their baseline visit, 
participants received a home-phase meal pack containing test-meal components 
(for nutrient composition, see Supplementary Table 2), which they consumed 
according to standardized instructions for breakfast and, on some days, lunch. Test 
meals consisted of either an OGTT (on 2 d) or muffins, which were consumed on 
their own or paired with chocolate milk, a protein shake or commercial fiber bars 
and were consumed in a different order depending on which protocol group (1–3) 
they were assigned to, as described in Supplementary Table 2. Meal order for the 
three protocol groups was randomized using Microsoft Access for each participant, 
using a two-block randomization and one non-randomized block.

Participants were instructed to fast for a minimum of 8 h prior to consuming 
a test breakfast meal, and to fast for 3 or 4 h after meal consumption (depending 
on the test meal; in protocol 1, the fasting period was 3 h for meal 5, and 4 h for 
all other meals; in protocols 2 and 3, the fasting period was 3 h for all breakfast 
meals, excluding combinations of breakfast and lunch, for which fasting periods 
were 4 h and 2 h, respectively). They were advised to limit exercise and drink only 
plain, still water during fasting periods. When fasting was completed, participants 
could eat, drink and exercise as they liked for the rest of the day. Participants 
were asked to consume all muffin-based meals within 10 min and the OGTT 
within 5 min, and to notify study staff if this was not achieved, in which case the 
data were excluded from analysis. If the participant chose to accompany their 
home-phase muffin-based test meals with a tea or coffee (with up to 40 ml of 0.1% 
fat cow’s milk, but no sugar or sweeteners), they were instructed to consume this 
drink consistently, in the same strength and amount, alongside all muffin-based 
test meals throughout the study. Participants were instructed to not consume any 
food or drink other than water alongside the OGTT, and to avoid physical activity 
during the 3-h fasting period that followed it.

Participants recorded test meals and any dietary intake consumed within 
fasting periods, including accompanying drinks in the Zoe study app with the exact 
time at consumption and ingredient quantities so that study staff could monitor 
compliance. Only test meals that were completed according to instructions were 
included in analysis.

Test meals were prepared and packaged in the Dietetics Kitchen (Department 
of Nutritional Sciences, King’s College London) using standard ingredients; plain 
flour, sugar, baking powder, vanilla essence, milk, egg, salt, high-oleic sunflower 
oil, whey protein powder, chocolate milkshake powder (Nesquik, Nestle) and 
commercially available fiber bars (Chocolate Fudge Brownie, Fiber One, General 
Mills; Goodness Bar Apple & Walnut, The Food Doctor). Test meals were shipped 
frozen, under temperature-controlled conditions, to the United States to limit 
variability in the intervention. Participants were instructed to freeze their muffins 
at home and defrost each set of muffins in the refrigerator the night before they 
were consumed. Test-meal drinks were prepared by the participant at home by 
mixing pre-portioned powder sachets with long-life milk provided to them (meal 
1, 220 ml 0.1% fat milk; meal 8, 200 ml 1.6% fat milk). Powder sachets and fiber 
bars were stored at room temperature until consumption. The OGTT (meal 5) 
consisted of a pre-portioned powdered glucose sachet, which participants mixed 
with 300 ml water in the United Kingdom. US participants were provided with 
pre-mixed OGTTs ready for consumption (cat. no. 82028-512, VRW).

Zoe study app and dietary-assessment methodology. The Zoe study app was 
developed to support the PREDICT 1 study by serving as an electronic notebook of 
study tasks, a tool for recording all dietary intake and a portal for communication 
with study staff. The app sent participants notifications and reminders to 
complete tasks at certain time points, such as when their test lunch meals and DBS 
assessments were due, and asked participants to report their hunger and alertness 
levels on visual analog scales truncated from Flint et al.44. Participants were asked 
to log in the app any exercise which would not be well captured by a wrist-affixed 
accelerometer, such as cycling. Participants logged their full dietary intake using 
the app over the 14-day study period, including all standardized test meals and 
free-living (i.e., consumed during their free time) foods, beverages (including 
water) and medications. Data logged in the app were uploaded onto a digital 
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dashboard in real time and were reviewed and assessed for logging accuracy and 
study-guideline compliance by study staff.

Study staff trained all participants at their baseline clinic visit on how to 
accurately weigh and record dietary intake through the Zoe study app by using 
photographs, product barcodes, product-specific portion sizes and digital scales. 
Study nutritionists also reviewed food-logging data by comparing the photographs 
uploaded by subjects with the items they logged on the app. Any uncertainties were 
clarified actively with the participant through the app’s messaging system or via 
phone while the participant was on the study.

Protocol versions and amendments. Protocol amendments for the PREDICT 
study, following commencement of the study and participant enrollment, were as 
follows: the first amendment (approved by UK IRAS on 1 August 2018) allowed 
additional test meals to be included in the home phase and participants’ logging 
of transit time through the gut by using a metabolic-challenge breakfast (meal 
1) on the clinic day that was dyed blue with food coloring. The DBS protocol 
was also changed according to physiological peaks in biomarkers (triglyceride or 
C-peptide). Starting on 28 August 2018, triglyceride was measured on days 2–3 
during fasting, 300 and 360 min postprandially, and C-peptide was quantified on 
days 4–5 during fasting, 30 and 120 min postprandially, as described for protocol 
group 2. A second saliva sample collection was added on the clinic day, at 30 min 
after the metabolic-challenge breakfast, to measure salivary amylase production 
postprandially and to provide a comparison to fasted amylase levels. The second 
amendment (approved by UK IRAS on 2 September 2018) was a change to the 
lower body-mass index limit for eligibility to 16.5 kg per m2 (originally 20 kg 
per m2). Minor meal changes were made, not requiring ethical approval, which 
resulted in protocol group 3 (implemented in January 2019). In the US cohort, on 
3 January 2019, the IRB approved an amendment (PREDICT-US v2.0) to address 
meal changes introduced in the United Kingdom for group 3 and to allow the use 
of multiple CGMs on the same participant. No other major amendments to the 
intervention protocol were made during the study period in the United States.

Outcome variables and sample collection, handling and analysis. DBS collection, 
method validation and analysis. DBS collection. Triglyceride and C-peptide were 
quantified from DBS tests completed by participants at the baseline visit (at fasted 
baseline and 300 min post-breakfast; for method validation) and on the first 4 d of 
the home phase while consuming test meals (test timings and associated meals are 
outlined in the online protocol41).

The Zoe app sent participants reminders to complete their DBS tests at due 
times. Participants logged tests in the app by recording the time at testing and a 
photo of the completed card for quality assessment by study staff. Test cards that 
did not meet the quality protocol (multiple small spots, or inadequate coverage) 
were not included in analysis. Test cards were stored in aluminum sachets with 
desiccant once completed, and were placed in the fridge at the end of the study 
day, or until participants mailed them back to the study site. DBS cards were then 
frozen (−80 °C) and shipped for analysis (Vitas Analytical Services).

DBS method validation. DBS C-peptide and triglyceride concentrations were 
validated during PREDICT, against venous serum concentrations collected during 
the baseline clinic visit at 0 and 300 min after breakfast test meals. Correlations 
between the two methods were found to be high: for triglyceride (1,772 pairs), 
Pearson’s r = 0.94; for C-peptide (1,679 pairs), Pearson’s r = 0.91.

Quantification of total triglyceride from DBS. From the DBS sample, 2 punches 
were taken and transferred into a high-performance liquid chromatography 
(HPLC) vial, and lipids were extracted with methanol at 600 r.p.m. and 25 °C 
for 3 h. The resulting extract was processed with a triglyceride kit (FUJIFILM 
Wako Chemicals) at 600 rpm and 37 °C for 2.5 h, and the reaction products 
were subsequently analyzed by HPLC–ultraviolet. HPLC was performed with a 
HP 1260/1290 infinity liquid chromatograph (Agilent Technologies) using UV 
detection. The analyte was separated from matrix components on a 4.6 mm × 
100 mm reversed-phase column at 40 °C. A one-point calibration curve was made 
from analysis of triglyceride standard after enzymatic reaction with the kit. The 
analytical method is linear from 0.5–6 mmol l–1 with a quantification limit of 
0.3 mmol l–1.

Quantification of C-peptide from DBS. C-peptide in DBSs was assayed using a 
Mercodia solid-phase two-site enzyme immunoassay (enzyme-linked immuno-
sorbent assay (ELISA); Mercodia AB). Three spots were punched into the kit 
plate with anti-C-peptide antibodies bound to the well. Assay buffers were 
added, and C-peptide was extracted from the spots at 4 °C. After washing, 
peroxidase-conjugated anti-C-peptide antibodies were added, and after the second 
incubation and a washing step, the bound conjugate was detected by reaction with 
3,3′,5,5′-tetramethylbenzidine (TMB). The reaction was stopped by the addition of 
acid to give a colorimetric endpoint that was read spectrophotometrically at 450 nm.

Stool-sample collection, method validation and microbial analysis. Stool-sample 
collection. Participants collected a stool sample at home prior to their clinical visit. 
Samples were collected using the EasySampler collection kit (ALPCO), and went 

into fecal collection tubes containing DNA/RNA Shield buffer (Zymo Research). 
Upon receipt at the laboratory, samples were homogenized, aliquoted and stored 
at −80 °C in Qiagen PowerBeads 1.5-ml tubes (Qiagen). The sample-collection 
procedure was tested and validated internally, comparing different storage 
conditions (fresh, frozen, buffer), different DNA-extraction kits (PowerSoilPro, 
FastDNA, ProtocolQ, Zymo), and different sequencing technologies (16S rRNA 
and arrays) (data not shown).

Microbiome 16S rRNA gene sequencing and analysis. DNA was isolated by Qiagen 
Genomic Services using DNeasy 96 PowerSoil Pro. Optical density measurement 
was performed using Spectrophotometer Quantification (Tecan Infinite 200). 
The V4 hypervariable region of the 16S rRNA gene was then amplified at 
Genomescan. Libraries were sequenced for 300-bp paired-end reads using the 
Illumina NovaSeq6000 platform. In total, 9.6 Pbp were generated, and raw reads 
were rarefied to 360,000 reads per sample. Rarefied reads were analyzed using 
the DADA2 pipeline45. Quality control of the reads was performed using the 
‘filterAndTrim’ function from the DADA2 package, truncating eight nucleotides 
from each read to remove barcodes, discarding all reads with quality less than 20, 
discarding all reads with at least one N and removing the phiX Illumina spike-in. 
Only paired-end reads with at least 120 bp and with an expected DADA2 error 
less than 4 were retained for downstream analyses. Error rates were inferred 
from the cleaned set of reads (‘learnErrors’ function) and used in the DADA2 
algorithm (‘mergePairs’ function) for merging the reads, after dereplication 
(‘derepFastq’ function). Merged reads were further processed, and only reads 
within 280 and 290 bp were retained, representing the majority of the distribution 
of the lengths. Reads were further processed to remove chimeras using the 
‘removeBimeraDenovo’ function with a consensus method. Finally, taxonomy 
was assigned using the SILVA database (version 132) using the ‘assignTaxonomy’ 
function and requiring a minimum bootstrap value of 80, to obtain a table of 
relative abundances of operational taxonomic units. To address the issue of 
compositionality in the microbiome dataset46, the relative abundance values were 
normalized using the arcsine square-root transformation as described in ref. 47. 
Measures of alpha diversity were computed47. The distributions of the Simpson 
and Shannon indices of alpha diversity on the transformed 16S abundance data are 
presented in Supplementary Table 4.

Collection of venous blood samples. Participants came into the clinical research 
facilities at 8:30 and were cannulated in the forearm antecubital vein. Venous blood 
was collected at 0 min (prior to a test breakfast) and at 9 time points postprandially 
(15, 30, 60, 120, 180, 240, 270, 300 and 360 min). Plasma glucose was analyzed 
from blood samples collected into fluoride oxalate tubes and centrifuged at 1,900g 
for 10 min at 4 °C. Serum C-peptide, insulin, triglyceride, fasting lipid profile, 
thyroid-stimulating hormone, alanine aminotransferase and liver-function panel 
were analyzed in blood samples collected into gel serum-separator collection 
tubes and were allowed to stand at room temperature before being centrifuged at 
1,900g for 10 min at 4 °C. Samples were aliquoted and stored at −80 °C. Blood, for 
complete blood count (CBC) analysis, was collected into EDTA tubes, kept at 4 °C 
and analyzed within 12 h of collection.

Serum biomarkers. In the United Kingdom, insulin, glucose, triglyceride and 
C-peptide analysis was conducted by Affinity Biomarkers Labs. Glucose and 
triglyceride analyses were conducted on a Siemens ADVIA 1800 using Siemens 
assay kits (Siemens Healthcare Diagnostics). Triglyceride was analyzed using the 
ADVIA chemistry triglyceride method based on the Fossati three-step enzymatic 
reaction with a Trinder endpoint. Glucose was analyzed using the ADVIA 
chemistry glucose oxidase method (based on the modified method of Keston). 
C-peptide and insulin were analyzed using the Siemens ADVIA Centaur XP 
systems using a two-site sandwich immunoassay. CBC was measured by Viapath 
using standard automated clinical chemistry techniques. The inter-assay coefficient 
of variation for PREDICT samples analyzed by Affinity were as follows: insulin, 
3.4%; C-peptide, 7.9%; triglyceride, 3.7%; and glucose, 2.6%.

In the United States, CBC was established using fresh blood samples in the 
MGH Core Laboratory. Hb1AC tests were performed by the MGH Diabetes 
A1c lab. Glucose, insulin, triglyceride and C-peptide were conducted by Quest 
Diagnostics using standard automated clinical chemistry techniques.

Upon completion of the US study, frozen serum and plasma samples were 
sent from the United States to the United Kingdom, and the entire cohort had 
measurements of a liver-function panel, full lipids (total cholesterol, high-density 
lipoprotein cholesterol, low-density lipoprotein cholesterol and triglyceride), 
thyroid-stimulating hormone and alanine aminotransferase, which were performed 
by Affinity Biomarkers Labs. Details are described elsewhere48.

Glucose using CGM. Interstitial glucose was measured every 15 min using Freestyle 
Libre Pro CGMs (Abbott). Monitors were fitted by trained nurses on the upper, 
non-dominant arm at participants’ baseline visit and were covered with Opsite 
Flexifix adhesive film (Smith & Nephew Medical) for improved durability, and 
were worn for the entire study duration (14 d). Data were collected 12 h and 
onwards after the device was activated for analysis. For a subgroup of participants 
(n = 377), we fitted two monitors on their arms and calculated the coefficient of 

NATuRE MEDICINE | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


ARTICLESNATURE MEDICINE

variation (CV = 11.75%) and correlation (r = 0.97) of their iAUC responses to 
standardized meals (Extended Data Fig. 2b).

Time points for analyses. Glucose. The 2-h glucose iAUC was used for both clinical 
and at-home analyses.

Insulin and C-peptide. C-peptide was measured at home as a surrogate for insulin 
secretion, because the reliability of C-peptide measured from DBS is higher than 
that of insulin (see ref. 49), and C-peptide remains stable on paper filters for up to 
6 months49. C-peptide was measured at 60 min postprandially to coincide with the 
peak in C-peptide seen in healthy individuals in the clinic, and again at 120 min to 
coincide with the strong decline in insulin level (Extended Data Fig. 2c). However, 
because previous genetic studies have tested the heritability of postprandial insulin 
at 120 min, this time point was included for our own heritability analyses (Fig. 2b,c).  
All other analyses refer to the 1-h rise for C-peptide.

Triglyceride. The rise in triglyceride at 6 h postprandially (triglyceride6h-rise) was 
selected to represent postprandial lipemic response from serum collected at 
clinic and in home-based DBS tests. This is a measure of lipemia that is most 
closely correlated with atherogenic lipoproteins, as compared with iAUC0–6h, Cmax 
(maximum serum concentration of triglycerides at 0–6 h) and 4-h triglyceride 
concentration (see refs. 50–52).

Activity and sleep. Energy expenditure was measured using a triaxial accelerometer 
(AX3, Axivity) fitted by nurses at the baseline visit on the non-dominant wrist, 
which was worn for the duration of the study (except during water-based activities, 
including showers and swimming). Accelerometers were programmed to measure 
acceleration at 50 Hz with a dynamic range of ±8 g (where g refers to local 
gravitational force equal to 9.8 ms2). Non-wear periods were defined as windows 
of at least 1 hour with less than 13 mg for at least 2 out of 3 axes, or where 2 out of 
3 axes measured less than 50 mg. Windows of sleep were measured using methods 
described elsewhere53.

Genotyping. Whole-genome genotyping was available for 241 individuals from 
the UK cohort from previous TwinsUK studies. Genotyping was performed with 
the Illumina Infinium HumanHap610. Normalized GWAS intensity data were 
pooled and genotypes called on the basis of the Illuminus algorithm. No calls 
were assigned if the most likely call had a posterior probability of less than 0.95. 
Validation of pooling was done by visual inspection of 100 random, shared SNPs 
for overt batch effects (none were observed). SNPs that had a low call rate (≤90%), 
Hardy–Weinberg P < 1 × 10−6 and minor allele frequencies <1% were excluded, 
and samples with call rates <95% were removed. Genotype imputations were 
performed to increase the coverage. Imputation of genotypes for all polymorphic 
SNPs that passed the quality-control stage were performed on the Michigan 
Imputation Server (https://imputationserver.sph.umich.edu) using the 1000G 
Phase3 v5 reference panel54. SNPs previously reported to be associated with 
postprandial glycemia, triglyceride or insulin in a GWAS17–20 were extracted from 
the full set of genome-wide genotypes using PLINK, and were tested for association 
with postprandial measures using linear regression methods.

Processing of habitual diet information. UK nutrient intakes were determined using 
FETA software to calculate macro- and micronutrient data43. Submitted FFQs 
were excluded if more than 10 food items were left unanswered, or if the total 
energy intake estimate derived from FFQ as a ratio of the subject’s estimated basal 
metabolic rate (determined by the Harris–Benedict equation)43 was more than  
2 s.d. outside the mean of this ratio (<0.52 or >2.58).

Statistical analysis. Basic analyses. The descriptive characteristics of study 
participants are summarized in Supplementary Table 1.

In order to reduce the dimension of the data, principal-component analyses 
(PCAs) with orthogonal transformation (varimax procedure) were applied to 
derive principal components (PCs) representative of individual characteristics 
(20 PCAs), microbiome (40 PCAs), meal composition (1 PCA), habitual 
diet (5 PCAs) and meal context (5 PCAs) (see Supplementary Table 3 for the 
full list of input variables). All the necessary prerequisites of PCA, including 
linearity, Kaiser–Meyer–Olkin measure of 0.88 and the significant Bartlett’s test 
of sphericity (P < 0.001), were met. Each participant received a score for each 
category mentioned above. To investigate the association between each outcome 
(iAUC, triglyceride6h-rise, C-peptide1h-rise) and our exposures (individual baseline 
characteristics, microbiome (16S), meal content, habitual diet and meal context), 
multivariable regressions were applied and R2 values were reported. Further, we 
derived PCAs for anthropometrics, biochemical/clinical factors, physical activity 
and sleep features separately to investigate their roles. Multi-collinearity for the 
multiple linear regressions was assessed with variance inflation factors (VIF) at 
each step55. Multi-collinearity was considered high when the VIF was >1 × 1038.  
ROC curves were constructed and the AUC was calculated to assess the 
discriminatory power of fasting blood glucose versus 2 h glucose iAUC, fasting 
triglyceride versus triglyceride6h-rise and fasting C-peptide versus C-peptide1h-rise to 
detect IGT, and ASCVD 10-year risk (70% applied as a cut-off point). Values of 

AUC range from 0.5 to 1, with 0.5 indicating no discrimination, and 1 indicating 
perfect discrimination of either IGT or ASCVD 10-year risk. P ≤ 0.05 was 
considered statistically significant. All analyses were performed using R (version 
3.4.2 ,R Core Team).

Meal composition. To estimate macronutrient effects on glycemic response, we 
fitted a multivariate regression model with carbohydrates, fats, fiber and protein as 
predictors on meals 1, 2, 4, 5, 6, 7 and 8. Multi-collinearity was assessed for these 
predictors through VIF; we concluded that it was non-existent, VIF < 10. The 
regression coefficients were all significant (P < 0.001) with values −79.23 mmol per 
l per s, −142.41 mmol per l per s and −185.49 mmol per l per s for fat, fiber and 
protein, respectively, after adjustment by carbohydrates.

Heritability and ACE model. To estimate the heritability, we analyzed the 
data according to the classical ACE model. In this model, heritability is an 
approximation of the relative importance of additive genetic differences for variance 
of postprandial responses in the population56. Shared or familial environmental 
influences reflect experiences that contribute to twin similarity. Non-shared 
or individual-specific environmental influences refer to the contribution of 
environmental experiences not shared by family members. Information concerning 
shared genetic and environmental influences is best estimated by structural 
equation modeling techniques that fit models of twins by zygosity in order to 
describe the causes of the variance in postprandial responses. Therefore, the total 
variance in the trait can be partitioned into genetic variance (A), shared (familial) 
environmental variance (C) and individual-specific environmental variance (E). 
The level of statistical significance was set at P < 0.05 in all analyses, and R software 
(version 3.0.2) together with the ‘mets’ (multivariate event times) package (https://
rdrr.io/cran/mets/src/R/methodstwinlm.R) was used for all statistical analyses.

Meal ranking. Six different types of meal were ranked for each individual: the one 
with the highest 2 h glucose iAUC for that person was rank 6, the one with the 
second highest 2 h glucose iAUC was rank 5, and so on, down the one with the 
lowest 2 h glucose iAUC (rank 1). The distribution of these ‘in-person rankings’ is 
presented in Extended Data Fig. 3.

Multilinear ANOVA to assess the role of individualized responses to meals. The 
different sources of variation in glycemic response for meals 2, 3, 4, 6 and 8 
(described in Supplementary Table 3) were analyzed using the multilevel linear 
ANOVA40 model and were analyzed using a multilevel (hierarchical) linear 
Bayesian ANOVA model as described by Gelman and Hill57.

The different sources of variation in glycemic response for meals 2, 3, 4 and 6 
and were analyzed using a multilevel (hierarchical) linear Bayesian ANOVA model 
as described by Gelman and Hill57.

Hierarchical Bayes models can accommodate non-normal dependent variables 
that are difficult to incorporate in classical ANOVA and multilevel linear models. 
The approach consists of sub-models at two levels: at level 1, the parameters of 
individuals, meals and person–meal interactions; and at level 2, the moments of 
the distributions from which level 1 parameters are drawn. Level 2 imposes some 
homogeneity on level 1 parameters, for example:

αm � N 0; σ
2

α

� �

that is, the meal terms are distributed normally with the same s.d. (σα), ensuring 
homogeneity.

σα  half -Cauchyð5Þ

that is, the standard deviation of the above distribution has a particular prior (a 
half-Cauchy distribution with a scale factor of 5).

The other terms (βp, γm,p, ϵm,p,k, ϵm,p,k,n) have similar hierarchical distributions 
(though the s.d. of ϵm,p,k, ϵm,p,k,n have a uniform prior distribution as opposed to a 
half-Cauchy distribution).

The parameters at both levels (that is, all the αm values and σα, and analogously 
for the other parameters) were sampled using an Markov chain Monte Carlo routine 
in pymc3 (ref. 58). We plotted the sampled values of σα, σβ, σγ, σϵ and σϵn

I

in Fig. 6b.

log iAUCð Þ ¼ ym;p;k;n ¼ αm þ βp þ γm;p þ ϵm;p;k þ ϵm;p;k;n

where:
log (iAUC) = ym,p,k,n is the 2-h iAUC for person p, eating meal m, for the kth 

time measured on CGM n (given the availability of data with 2 CGMs for a subset 
as described in below).

αm is the meal content (across all people) for meal m, for example high- or 
low-carbohydrate meals.

βp is individual glucose scaling (across all meals) for person p, for example 
overall high- or low-responding people.

γm,p is the meal-specific response for individual p to meal m, for example a 
specific person responds particularly strongly to a specific meal.

ϵm,p,k,n is error stemming from the CGM (participants selected for this analysis 
wore two CGM devices, so n indexes the device providing the measurement).

ϵm,p,k is other sources of variation, including meal timing, exercise, sleep and 
circadian rhythm.
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This Bayesian ANOVA model is a Bayesian hierarchical model that attempts 
to explain the observed log (iAUC) of a meal as a sum of categorical terms, that is, 
individuals are not classified according to any characteristics, but are included as 
unique individuals with log (2 h glucose iAUC) for various different meals. If this 
was an extended glycemic-index model, it would correspond to expressing the log 
(iAUC) as the sum of a meal term (analogous to the glycemic load of the meal) and 
an individualized term. This ‘individual glucose scaling’ is not a linear function of 
a person’s characteristics (such as age, sex or body-mass index), but rather is how 
each individual ranks overall given the log (iAUC) values for the various meals. 
This allowed us to test whether there was an interaction term between meals and 
persons, that is, an individualized response component to particular meals that was 
not merely due to a person being a high, average or low responder and to a meal 
having on average a higher glycemic response (for example, OGTT) than another 
meal (for example, a high-fat muffin). Given the availability of data concerning 
repeated occurrences of a person eating a particular meal and measurements from 
multiple CGMs for the same meal, we were able to extend the model to include a 
person–meal interaction and a CGM error and, analogously, infer the error due 
to the CGMs and the degree to which a person’s response to a particular meal 
is consistently higher or lower than expected from the glycemic index model, 
that is, a personalized glycemic load. The person–meal interaction effects allow 
different people to have different ordering of glycemic responses to meals, so one 
person might respond more strongly to meal A than to meal B, whereas another 
person might respond more strongly to meal B than meal A. Figure 6c shows 50% 
and 95% intervals on s.d. of the effects in the model. These can be approximately 
interpreted as percentage increase (or decrease) in iAUC contributed by the various 
effects in the model.

CGM repeatability. A subset of participants (n = 377) wore two CGMs simultaneously, 
providing duplicate measurements for the meals they consumed and therefore 
allowing us to distinguish CGM error from unexplained sources of variation. 
Postprandial glucose measurements for 3,280 meals eaten collectively by 377 
participants in the UK cohort were used in this analysis. (Extended Data Fig. 2b).

Computation of clinical indices. Atherosclerotic cardiovascular disease risk 
(ASCVD) 10-year risk. (American Heart Association/Journal of the American 
College of Cardiology ASCVD 10-year risk) The 10-year ASCVD59 risk score 
is a gender- and race-specific single multivariable risk-assessment tool used 
to estimate the 10-year CVD risk of an individual, and has clinically replaced 
the Framingham 10-year cardiovascular risk score. It is based on the age, sex, 
ethnicity, total and HDL cholesterol, systolic blood pressure, smoking status, use of 
blood-pressure-lowering medications and the presence of type 2 diabetes.

Impaired glucose tolerance. We used the standard definition from the American 
Diabetes Association60 (fasting plasma glucose < 7.0 mmol l–1 and OGTT 2-h 
value ≥ 7.8 mmol l–1 but <11.1 mmol l–1).

Validation of machine-learning model cross-validation and difference (Bland–Altman 
plots). To further illustrate the reliability of the machine-learning predictions, 
we conducted a leave-one-out cross-validation procedure and generated Bland–
Altman plots to analyze the agreement between two. To generate the Bland–
Altman plots we used the Predict UK and US data showing predicted versus 
measured postprandial responses. We generated Bland–Altman plots for predicted 
and measured postprandial responses for each biomarker (triglycerides, C-peptide 
and glucose). (Extended Data Fig. 4a).

Leave-one-out cross-validated Pearson’s r in Predict UK. To perform k-fold 
cross-validation, the entire dataset was split into k groups. Treating each group 
as a test set and the remaining groups as the training set, the model is fitted k 
times. The Pearsons’s r between the values predicted by the fitted models and the 
measured values in the test sets is used as the metric for model evaluation, which 
we refer to as the cross-validated Pearson r.

The special case, in which k is the size of the dataset, is referred to as 
leave-one-out cross-validation, and we refer to the corresponding evaluation 
metric as leave-one-out cross-validated Pearson’s r. The machine-learning models 
for the three biomarkers of interest were evaluated using the aforementioned 
metric and are reported in the Extended Data Fig. 4b. These scores are similar to 
the cross-validated fivefold scores in the main text.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The data used for analysis in this study are held by the department of Twin 
Research at Kings College London. The data can be released to bona fide 
researchers using our normal procedures overseen by the Wellcome Trust and 
its guidelines as part of our core funding. We receive around 100 requests per 
year for our datasets and have a meeting 3 times per month with independent 
members to assess proposals. The application is at https://twinsuk.ac.uk/
resources-for-researchers/access-our-data/. This means that the data need to be 

anonymized and conform to GDPR standards. Specifically for this paper, all the 
variables used in the models can be requested as well as the summary outcome 
measures for each person. The 16S microbiome data will be uploaded onto the EBI 
website (https://www.ebi.ac.uk/) with unlimited access. Source data for Figs. 2–6 
and Extended Data Figs. 2–4 are presented with the paper

Code availability
The scripts for statistical analysis are freely available upon request to the 
Department of Twins Research and Genetic Epidemiology at King’s College 
London. Application is via https://twinsuk.ac.uk/resources-for-researchers/
access-our-data/. The scripts used for machine-learning analyses can be found in 
the Supplementary Software.
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Extended Data Fig. 1 | Consort Diagrams for uK and uS populations in the PREDICT 1 study. Consort Diagrams for a, UK and b, US populations in the 

PREDICT 1 study.
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Extended Data Fig. 2 | Repeatability in the PREDICT 1 study. Repeatability in the PREDICT 1 study. a, Intraclass correlations. b, Pearson’s correlation and 

CV of 2h-iAUCs measured with two monitors worn by the same participant (n = 377). P-value from two-sided t-test c, Mean and standard error of fasting 

and postprandial serum insulin and C-peptide concentrations during the clinic visit in the PREDICT 1 study, n = 1,036.
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Extended Data Fig. 3 | Frequency distribution of in-person ranking for 6 of meals shown in Fig. 6a. Frequency distribution of in-person ranking for  

6 of meals shown in Fig. 6a. (High fat 40 g = meal 7, High protein = meal 8, UK average = meal 2, High carb = meal 4, OGTT = meal 5, Uk average at  

lunch = meal 2). n = 1102 participants.
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Extended Data Fig. 4 | Machine learning comparisons, cross validation and repeatability. Machine learning comparisons, cross validation and 

repeatability. a, Bland-Altman plots comparing predicted and measured postprandial responses in TG, glucose and C-peptide using UK and US data. 

Sample sizes used were (n = number of meals) triglyceride UK: n = 958 US: n = 91; C-peptide UK: n = 957 US: n = 93; Glucose UK: n = 11550 US: n = 1200. 

b, Leave-one-out cross-validated Pearson R scores in PREDICT UK. 5-fold cross validation for triglyceride6h-rise on n = 958 meals, for lgucoseiAUC0-2h on 

n = 11,550 meals, p-values shown for two-sided t-test c, comparison of models using repeat meals vs not using them.
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Data collection Data from questionnaires, clinical visits and laboratory data was entered using comma delimited files, Excel spreadsheets and Microsoft 
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Life sciences study design
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Sample size 1002 individuals were recruited for the UK cohort (allowing for 80% power to detect correlations r=0.15 with p<0.0001 to allow adjustment 

for 500 test), 100 for the US cohort to enable replication of the larger effects (80% for r=0.28 with p<0.05) , the final sample size excludes 

individuals who  dropped out (didn't finish the clinic visit) 

Data exclusions pre-established exclusion criteria were T2D. At the analysis level, exclusions were performed wherever c-peptide, glucose, triglyceride 

measures were missing for the any of the postprandial responses.

Replication the US cohort has been used as replication for findings in the larger UK cohort. Prediction models for triglyceride and glucose were 

successfully replicated but not so for c-peptide

Randomization given the single arm nature of the study, randomization was not applicable

Blinding there was no control or placebo arm therefore blinding was not applicable
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Recruitment Particpants enrolled already in the TwinsUK cohort were recruited as part of  studies which are included in the cohort's annual 

newsletter and also mentioned onour website: http://www.twinsuk.ac.uk/ Non-twins were recruited via independent 

recruitment agencies, project specific website and online advertising including the use of social media platforms and social media

Ethics oversight Ethics was granted by the London - Hampstead Research Ethics Committee (REC approval18/LO/0663) and by the Partners 

Healthcare IRB (2018P002078)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Clinical trial registration NCT03479866

Study protocol https://clinicaltrials.gov/ct2/show/record/NCT03479866
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Data collection Data was collected at St Thomas' Hospital, London and Massachusetts General Hospital, Boston

Outcomes • Gut microbiome profile, triglyceride blood concentration, glucose blood concentration, record of sleep pattern using a 

wearable device (i.e. fitness watch), record of physical activity using a wearable device (i.e. fitness watch)
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