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Across the animal kingdom, males tend to exhibit more behavioural and mor-
phological variability than females, consistent with the ‘greater male
variability hypothesis’. This may reflect multiple mechanisms operating at
different levels, including selectivemechanisms that produce andmaintain vari-
ation, extended male development, and X chromosome effects. Interestingly,
human neuroanatomy shows greater male variability, but this pattern has not
been demonstrated in any other species. To address this issue, we investigated
sex-specific neuroanatomical variability in chimpanzees by examining relative
and absolute surface areas of 23 cortical sulci across 226 individuals (135F/
91M), using permutation tests of the male-to-female variance ratio of residuals
from MCMC generalized linear mixed models controlling for relatedness. We
used these models to estimate sulcal size heritability, simulations to assess
the significance of heritability, and Pearson correlations to examine inter-sulcal
correlations. Our results show that: (i) male brain structure is relatively more
variable; (ii) sulcal surface areas are heritable and therefore potentially subject
to selection; (iii) males exhibit lower heritability values, possibly reflecting
longer development; and (iv) males exhibit stronger inter-sulcal correlations,
providing indirect support for sex chromosome effects. These results provide
evidence that greater male neuroanatomical variability extends beyond
humans, and suggest both evolutionary and developmental explanations for
this phenomenon.
1. Introduction
Questions surrounding the mechanisms by which trait variation is produced
and maintained over time are at the heart of evolutionary biology. Across the
animal kingdom, males tend to exhibit greater behavioural and morphological
variability than females, consistent with the ‘greater male variability hypoth-
esis’ [1,2]. Sexually selected traits, in particular, tend to be more variable in
males than either (i) the same trait in females or (ii) other, non-sexually selected
traits [1]. This phenomenon has puzzled biologists for decades, since directional
selection from male–male competition and/or female mate choice is expected to
deplete male phenotypic and genotypic variation. However, there are a number
of non-mutually exclusive evolutionary and developmental mechanisms that
can lead to sex differences in trait variability.

Some of these evolutionary mechanisms include balancing selection, which
maintains genetic diversity in populations, and disruptive selection, which
favours extreme phenotypes. If these selective processes act on a heritable
trait (i.e. a trait for which variation is explained by some genetic, rather than
purely environmental, variation) within one sex only, this can lead to multiple
morphotypes evolving within that sex. For example, one form of balancing
selection, negative frequency-dependent selection, may occur if the relative
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selective value of a variant is higher when the relative abun-
dance of that variant is lower [3].

Additionally, development can impact sex differences in trait
variability, since condition-dependent expression characterizes
many sexually selected traits [4]. Accordingly, environmental
effects that increase condition variability during development
may also increase trait variability. This relationship has been
demonstrated in multiple experimental studies (e.g. [5]). The
effects of condition on male trait variability may be particularly
pronounced in species that exhibit direct male–male competition
and, consequently, male-biased body size sexual dimorphism,
since this necessitates longer developmental periods for males
and leaves them more susceptible to environmental effects
on condition.

The influence of sex chromosomes provides an additional
developmental explanation for greater male trait variability
for species with heterogametic males. In mammals, the Y
chromosome contains few genes besides the male sex-deter-
mining factors. While males have one set of X-linked alleles
that can be expressed, females have two alternative sets of
X-linked alleles, which may permit mosaic levels of trait
expression and decrease population variability in females
relative to males. Consequently, male mammals are expected
to show larger variability than females in traits that are
influenced by genes located on the X chromosome [6–8].

Interestingly, numerous studies have demonstrated that
human males are more variable than females, not only for
physical traits (e.g. [9]), but also for aspects of cognition and
behaviour [10–15]. Recent work suggests that these differences
are likely to reflect greater male variability in brain gene
expression and structure [16–21]. Throughout the human lit-
erature, the ‘greater male variability hypothesis’ [2] has
sparked debate regarding its validity and potential causes
[11]. For example, while some question the existence of this
pattern in cognition (e.g. [22]), others have proposed that
these differences reflect extended male development [23], sex
chromosome effects [10,24] or sexual selection processes [29];
however, such mechanisms are hard to measure in modern
humans. Furthermore, no study to date has examined sex
differences in neuroanatomical variability in any non-human
taxa, aside from overall brain size [25,26] or cell morphology
[27]. Accordingly, it is uncertain whether greater variability
in humanmale neuroanatomy is unusual in nature, orwhether
it represents a common pattern observed in other species.

To address this question, we investigate sex differences in
brain structure variability in chimpanzees, one of the closest
living primate relatives of humans, by examining the relative
and absolute surface areas of 23 cortical sulci among a sample
of 226 individuals (135 females, 91 males; sample sizes vary
across analyses—see Material and methods). Such a large
sample size of brain structure data from magnetic resonance
imaging (MRI) is currently available exclusively in chimpan-
zees, and not any other non-human primate species. The
organization of sulci and gyri across the cortex is likely to reflect
other aspects of underlying neural architecture [28], as the fold-
ing of the cerebral cortex reflects combined effects of variation in
cortical surface area and connectivity [29,30]. Sulcal organiz-
ation may reflect some aspects of cortical cytoarchitectonic
organization [31], since certain functional areas can be consist-
ently located using specific sulci, both across [32] and within
species [33–35]; however, this relationship is likely to be limited
to certain areas [33–36]. Given that the surface areas of specific
cortical areas correlate with certain abilities (e.g. planum
temporale and musical skill [37]), larger sulcal surface areas
may provide additional surface area for related cortical areas,
and therefore the elaboration of certain sensorimotor and cogni-
tive abilities. Cortical volume is the product of thickness and
surface area, so it is unclear howmuch each component contrib-
utes to cortical volume variation [38]. Nevertheless, sulcal
variation has been linked to inter-individual differences in be-
haviour (e.g. handedness [39,40]) in primates, and correlates
with the severity of some human neurological disorders
[41,42]. Additionally, motor and cognitive outcomes in
humans are correlated with the surface areas of specific sulci
early in development [43]. Previous work has identified sexu-
ally dimorphic aspects of sulcal morphology (e.g. sulcal
lengths) in multiple primate and non-primate species (e.g.
[28,44–46]); however, sex differences in the variability of sulcal
morphology have yet to be investigated.

Accordingly, we studied sex differences in variability of sulcal
sizes, and predicted that males would exclusively exhibit
greater variability (‘Prediction 1’) due to a combination of the
evolutionary and developmental mechanisms discussed
above. Specifically, male chimpanzees are subject to various
sex-biased selective pressures, including direct male–male com-
petition, as demonstrated by intermediate body and canine size
dimorphism [47], indirect male–male competition, as demon-
strated by large relative testis volume [48], and mechanisms of
indirect female mate choice, such as sexual swellings and copu-
lation calls [49]. The attainment of a larger bodysize necessitates
a longer developmental period in male chimpanzees than in
females [50], exposingmales to additional environmental effects
that may influence condition-dependent traits, which include
cognition (e.g. [51]). In addition, though dominance rank is
positively correlated with male chimpanzee reproductive suc-
cess, their fission–fusion grouping pattern allows low-ranking
males to use alternative mating strategies, such as consortship,
to achieve reproductive success [52]. Variation in mating strat-
egies may reflect negative frequency-dependent selection
and/or disruptive selection from male aggression biases and/
or female preferences [53]. Together, these mechanisms are
expected to create multiple routes to male success, producing
and maintaining relatively greater variation in male behaviour-
al phenotypes, rather than producing one male phenotype that
is under linear directional selection. Finally, there is evidence
that X chromosome genes affect sulcal morphology [54], so con-
sistent X chromosome expression acrossmale chimpanzee brain
tissues may lead males to exhibit relatively more variable sulcal
surface areas.

In order to tease apartwhether all of thesemechanisms con-
tribute to greater male variability in brain structure, we
conducted three additional analyses. Specifically, in order for
a trait to be subject to selection, it must be heritable; therefore,
if a trait that is more variable in males is not heritable, this pat-
tern cannot reflect selection. Correspondingly, we assessed
heritability, andpredicted that sulcal surface areaswouldbeheri-
table (‘Prediction 2’). This is in accordance with previous work
on the heritability of sulcal morphology in humans [45] and
non-human primates [28,45]. In chimpanzees, sulcal lengths
[55], non-sulcal aspects of brain structure [55–58], and aspects
of cognition [58–60] and personality [61] are also heritable.
Additionally, if greater male trait variation reflects variation in
condition due to extended male development, these traits
should show relatively more covariation with the environment
in males. Heritability measures the degree of phenotypic vari-
ation that is due to genetic (versus environmental) variation,
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so we assessed sex differences in heritability, and predicted that
heritability would be lower in males (‘Prediction 3’). Finally, if
consistent X chromosome expression across male tissues con-
tributes to greater male variability in sulcal size, we may also
expect this expression pattern to produce relatively stronger
interregional correlations inmale brains [17,19,20].Accordingly,
we examined correlations between sulcal sizes and predicted that
more pairs of sulci would exhibit significantly stronger corre-
lations in males (‘Prediction 4’).
/journal/rspb
Proc.R.Soc.B
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2. Material and methods
(a) Subjects
In vivo MRIs from 226 captive chimpanzees (135F/95M) made
available through the National Chimpanzee Brain Resource
were used in this study. Chimpanzees were housed at the
Yerkes National Primate Research Center and the National
Center for Chimpanzee Care at The University of Texas MD
Anderson Cancer Center. Individuals ranged in age from 6 to 53
years (mean = 26.3, s.d. = 10.6; females: mean = 28.0, s.d. = 11.4;
males: mean = 23.8, s.d. = 8.7) at the time of imaging. Studies of
humans suggest sex differences in neuroanatomical variability
are present across the lifespan [20], the degree of cortical folding
reaches adult levels by early childhood and does not decrease
with ageing [33] and relative sulcal surface areas do not change
substantially with age [62]. Accordingly, all individuals were
included in our study to obtain the largest possible sample size.

(b) Sulci labelling
The processing used to extract sulcal measurements from the
images derives from BrainVISA, a pipeline initially dedicated to
the human brain [63], with some tuning to account for specificities
of chimpanzee anatomy. Twenty-three primary and secondary
labelled sulci were included in this study. For each sulcus and over-
all folding area, surface areas from both cerebral hemispheres were
combined to obtain total surface area. When the folds bifurcated or
comprised several segments, all segments or branches were
included in the labelling. Additionally, when delineating certain
sulci was difficult, labelling was approached conservatively (see
electronic supplementary material, Methods for examples). Details
regarding MRI image collection and post-image processing are
available in the electronic supplementary material.

(c) Statistical analyses
All statistical analyses were performed in R 3.4.2 [64]. For the
total surface area of each sulcus and overall folding area, outliers
were identified within each sex as values occurring 1.5 times
beyond the interquartile range of boxplots that adjust for skew-
edness during whisker determination [65,66]. Here, we present,
in detail, the results of analyses that excluded identified outliers
(correlations: n = 67; variability analyses: n = 164–210). Analyses
were re-run including these outliers (correlations: n = 120; varia-
bility analyses: n = 177–224), the results of which are available in
the electronic supplementary material.

For each sulcus and within each sex, the average surface area
range size was calculated across 1000 random samples for every
possible sample size (from n = 2 to the actual subset sample
size). The average range sizes were plotted against sample size
in order to demonstrate that each distribution reached a horizontal
asymptote (electronic supplementary material, figures S2–S49).

(i) Sex differences in variability
We measured sex differences in the variability of each sulcus by
comparing male and female variances of residuals from
generalized linear mixed models (R package MCMCglmm: [67]),
controlling for relatedness between individuals. For each sulcus,
analyses were conducted on: (i) all individuals for which the
sulcus was measured (n = 177–224; mean = 218); and (ii) a subset
of these data that excluded outliers for that sulcus (n = 164–210;
mean = 199). Results using the latter are presented here in detail
(see electronic supplementary material for additional results). All
continuous variables were standardized prior to analysis. To test
for sex differences in the relative surface area of different sulci,
we included remaining folding area (RFA; total folding area−
total surface area of sulcus), age, scanner type and rearing con-
dition (wild caught, mother-reared, nursery-reared) as fixed
effects. Total sulcal area scales nearly isometrically with total
brain volume [68], so including RFA represents a correction for
overall brain size. We also ran models excluding RFA to examine
sex differences in absolute surface area variability. In all analyses,
the pedigreewas included as a random effect. For all offspring, the
mothers were known, and paternity tests confirmed the fathers of
most animals in this study. Following other studies [55], we used
the default prior for the mean and variance of fixed effects for
Gaussian family models in MCMCglmm and a slightly informa-
tive inverse-Wishart prior for the random effects and residual
variances (V = 1, nu = 1). Models were run for 1 000 000 iterations,
sampling every 100 iterations with a burn-in of 500 000. MCMC
diagnostics were run using the R package coda [69]. We ensured
proper mixing occurred by visually inspecting trace and density
plots. We examined autocorrelation plots to confirm reduced cor-
relation between successive samples (i.e. correlations quickly
dropped below the threshold of 0.1) and confirmed effective
sample sizes were greater than 1000 for all variables. Finally, we
ran each chain twice and confirmed convergence using the
Gelman–Rubin statistic (PSRFs < 1.1, [70]). We extracted residuals
for each individual and used these values in subsequent analyses.

We tested for significant sex differences in residual variance
using permutation tests. In line with previous work [17,20], we cal-
culated the male-to-female variance across the residuals, randomly
permuted the sex variable among the residuals 10 000 times, and
calculated the proportion of permuted test statistics (absolute
value) greater than the observed ratio (absolute value). This pro-
portion is referred to here as ‘pPERM’ and represents a two-sided
test of sex differences in variability. We also used the Benjamini–
Hochberg procedure to indicate which results remain significant
after adjusting for the false discovery rate (i.e. correct for multiple
comparisons; adjusted pPERM values).

(ii) Heritability
For each sulcus, we calculated heritability from the MCMCglmm
models described above. We estimated the ratio of additive gen-
etic to phenotypic variance for each sample of the posterior
distribution, h2 =VA/VP =VA/(VA +VR), where h2 is the herit-
ability, VA the additive genetic variance, VP the phenotypic
variance and VR the residual (i.e. non-additive genetic) variation.
This was done using the output from MCMCglmm, which pro-
vides the additive genetic variance as the posterior distribution
of variance for the pedigree random effect (i.e. the ‘animal’
term) in addition to the residual variance (i.e. ‘unit’ term). We
extracted mean estimates and 95% highest posterior density
intervals from these distributions.

We first tested the significance of heritability estimates by
comparing the deviance information criterion (DIC) in models
including pedigree information, and in models excluding it,
which yielded a DIC differential value (ΔDIC). ΔDIC values
from 5 to 10 are considered substantial evidence in favour of
the model with the lower DIC, and a difference of 10 effectively
rules out the model with the larger DIC [71]. Given that variance
components from which heritability is estimated are bound to be
positive, even non-significant estimates will not overlap
0. Accordingly, we followed previous studies [55] and also
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assessed the significance of heritability using a simulation
approach consisting of measuring the heritability of random
variables using the same population structure and models.
‘pSIM’ values were calculated as the proportion of 1000 simu-
lations yielding lower ΔDIC than each evaluated variable. Due
to time and processing constraints, ‘pSIM’ values were only cal-
culated for sulcal measures showing sex differences in variability
in our analyses excluding outliers. We used the Benjamini–Hoch-
berg procedure to indicate which results remain significant after
adjusting for the false discovery rate (i.e. correct for multiple
comparisons; adjusted pSIM values).

(iii) Sex differences in heritability
Sex-specific heritability estimates were calculated for each sulcus
as above, using subsets of males or females only. The mean esti-
mates are provided.

(iv) Correlations between sulcal sizes
Correlationanalyseswereused toassesswhetherpairs of sulciwere
correlated, and if therewas a difference in the strength of these cor-
relations between males and females. For these analyses only, we
limited our sample to individuals that were measured for all 23
sulci (n = 120 (66F/54M)). Here, we present analyses of a subset
of these data, which excludes individuals who were outliers for
any sulcus or for total folding area (n = 67 (39F/28M)). In line
with other work [17,20], Pearson correlation coefficients between
every pair of sulci were assessed for males and females separately.
The significance of the differences betweenmale and female corre-
lation matrices was assessed by the difference in their Fisher’s z-
transformed values. p-values were computed by randomly per-
muting the sex variable among the sulcal measurements 10 000
times, taking the absolute value of the difference between male
and female correlationmatrices for each permutation, and calculat-
ing the proportion of permuted test statistics greater than the
absolute value of the observed sex difference in correlation.
3. Results
(a) Sex differences in variability
Consistent with Prediction 1, two-sided permutation tests
show that males exhibit significantly more variable relative
surface areas (SA) at the inferior frontal (pPERM= 0.04),
middle frontal (pPERM= 0.03), occipital lateral (pPERM=
0.02), superior parietal (pPERM= 0.04) and superior tem-
poral (pPERM< 0.01) sulci, and more variable absolute SA
for the fronto-orbital (pPERM= 0.04), middle frontal
(pPERM= 0.03), occipital lateral (pPERM= 0.01), superior
parietal (pPERM= 0.02) and superior temporal (pPERM<
0.01) sulci (table 1; electronic supplementary material, table
S1; figure 1). This test is significant for the superior temporal
sulcus (STS) after adjustment for multiple comparisons
(adjusted pPERM< 0.05; table 1; electronic supplementary
material, table S1). When evaluated using one-sided tests, a
few additional sulci are significantly more variable in males
(relative SA: fronto-orbital, superior precentral; absolute SA:
cingulate, inferior frontal, superior precentral; figure 1).
Males do not exhibit more variability when the middle and
superior frontal sulci are combined (electronic supplementary
material, table S1; see Material and methods). Females do not
exhibit greater variability at any sulcus across all analyses.
Results are similar when outliers are included, except that
males are more variable at fewer sulci (electronic supplemen-
tary material, table S2). Given that measurements are
available for more females than males across all sulci, we
expect that our estimates of greater male variability are con-
servative. Resampling procedures confirmed that most
distributions approached a horizontal asymptote (electronic
supplementary material, figures S1–S48), suggesting our
sample sizes are sufficient to capture population-level vari-
ation. Coefficient estimates for the covariates included in
MCMCglmm models are provided in electronic supplemen-
tary material, tables S3 and S4.

(b) Heritability
Consistent with Prediction 2, DIC indicates that the majority of
relative and absolute sulcal measures are heritable (dDIC > 10),
with the mean heritability estimates ranging from 0.24 to 0.60
(table 1; electronic supplementary material, tables S1 and S2).
DIC simulations indicate that relative SAs are significantly
heritable for the inferior frontal (pSIM= 0.02) and superior
temporal (pSIM< 0.01) sulci, and absolute SAs are signifi-
cantly heritable for the occipital lateral (pSIM= 0.04),
superior parietal (pSIM= 0.04) and superior temporal
(pSIM< 0.1) sulci. Values for the STS remain significant after
correcting for multiple comparisons (adjusted pSIM< 0.05).

(c) Sex differences in heritability
Consistent with Prediction 3, males exhibit generally lower
heritability estimates than females for both relative and absol-
ute sulcal SAs (table 1; electronic supplementary material,
tables S1 and S2). For absolute SAs, males exhibit relatively
lower heritability estimates for 14 sulci, while females exhibit
relatively lower heritability estimates for 10 sulci. For relative
SAs, males exhibit relatively lower heritability estimates for
13 sulci, while females exhibit relatively lower heritability
estimates for 11 sulci. Notably, the sulci that are significantly
more variable in males also exhibit much lower male herit-
ability estimates, except for the superior parietal sulcus
(table 1; electronic supplementary material, tables S1 and S2).

(d) Correlations between sulcal sizes
Consistent with Prediction 4, there are more pairs of sulci that
exhibit significantly stronger size correlations in male brains
than in female brains. Coefficients of correlations between the
sizes of pairs of sulci are significantly higher in males for 13
pairs of sulci, while they are significantly higher in females for
only six pairs of sulci (figure 2). A similar pattern is found
when outliers are included (electronic supplementary material,
figure S49).
4. Discussion
To our knowledge, this is the first study to demonstrate
greater male neuroanatomical variability in a non-human pri-
mate species (in this case one of our closest living relatives,
the chimpanzee). Specifically, we find that males exclusively
exhibit more variable sulcal surface areas than females
(table 1; electronic supplementary material, tables S1 and
S2; figure 1). Sulcal measurements were taken consistently
across all individuals in this study from MRI data using an
automated method; therefore, this intraspecific pattern is
not impacted by potential issues surrounding identification
of homologous sulci across species. Our results suggest that
sex differences in variability may reflect a combination of
sexual selection, sex-specific developmental schedules and/
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or sex chromosome effects. In particular, most of these
measures are heritable, so they can be subject to evolutionary
selection (table 1; electronic supplementary material, tables
S1 and S2). Interestingly, the specific regions that exhibit
more variability in males may be associated with cognitive
abilities that may facilitate inter- and intrasexual selection.
We also find that males exhibit generally lower heritability
values than females, suggesting that relatively more male
phenotypic variation is explained by the environment
(table 1; electronic supplementary material, tables S1 and
S2). Finally, males generally exhibit greater correlations than
females between sulci, providing indirect support for sex
chromosome effects (figure 2; electronic supplementary
material, figure S49). Together, these results provide evidence
that greater male neuroanatomical variability extends beyond
humans and suggest that both developmental and adaptive
explanations for this phenomenon may be relevant.

Greater neuroanatomical variability among male chimpan-
zees may reflect selection, since most of the relevant sulcal
measurements are heritable (table 1; electronic supplementary
material, tables S1 and S2). If sulcal surface areas represent
investment in the size of related cortical areas, and therefore cer-
tain cognitive abilities, disruptive/balancing selection on male
behaviour may lead males to vary more than females in the
size of related sulci. It seems likely that male chimpanzee repro-
ductive tactics have been subject to disruptive/balancing
selection, allowing a variety of male behaviours to increase
reproductive success and resulting in the production and main-
tenance of multiple behavioural phenotypes [52]. This may be
reflected in our results, since the sulci that are more variable
in male chimpanzees may be involved in cognitive abilities
that are associated with direct intrasexual competition (i.e.
combat), possessive mate guarding and/or consortships.

Forexample, the STS is involved in social informationproces-
sing in humans and other primates [72,73]. Interspecific
differences in STS morphology are suggested to reflect socio-
cognitive differences [74,75], and experimental studies suggest
that living in larger groups increases grey matter (GM) in the
primatemid-STS [76]. In addition, the orbitofrontal cortex is acti-
vated during face-matching tasks in chimpanzees [73], the lateral
occipital cortex is activated by faces and other objects in humans
and chimpanzees [77,78] and the superior parietal sulcus is
associated with visuomotor attention in humans [79,80]. While
males using different mating strategies are likely to differ in
their socio-cognitive and combat abilities, females may not be
expected to show as much variation. Accordingly, greater male
variability at the superior temporal, fronto-orbital, occipital lat-
eral and superior parietal sulci may reflect disruptive selection
on male social and visual information processing skills, which
may be under stabilizing selection in females.

Similarly, different mating strategies may place varying
demands onmalemotor and inhibitory control, since successful
male–male combatnecessitatesmovement regulationandsubor-
dinatemales often need to prevent themselves from feeding and
mating in thepresence of dominant individuals [81]. By contrast,
we may not expect these skills to vary as much among females.
Asymmetry of the fronto-orbital sulcus and inferior frontal
gyrus predicts handedness for tool use and gesturing, respect-
ively, in chimpanzees [82,83]. Male chimpanzees exhibit more
variable asymmetry measures for these regions [83] and tool
use performance [65]. Accordingly, greater male variability at
the fronto-orbital and inferior frontal sulcimay reflect disruptive
selectiononmalemotor control.Additionally, the inferior frontal
cortex, middle frontal gyrus and superior parietal sulcus facili-
tate behavioural inhibition [84–86], so greater male variability
at the inferior frontal, middle frontal and superior parietal sulci
may reflect disruptive selection on male inhibitory control.

In addition to the effects of selection, male chimpanzees
may exhibit more neuroanatomical variation since they have
longer developmental periods [87]. While female growth
slows at around 10 years old, male growth continues until
13 years old [87]. Furthermore, female chimpanzees wean
their daughters earlier than their sons [88,89]. This leaves
males exposed to additional environmental effects that may
influence condition-dependent traits, such as cognition (e.g.
[51]). Notably, maternal glucocorticoid concentrations during
gestation impact the HPA axis function of male offspring
more than that female offspring [90], and males exhibit
higher variability for other traits that are likely to be influenced
by condition (e.g. body size [87]).

Finally, sex chromosomes may contribute to greater male
neuroanatomical variability. In particular, we find that there
aremore pairs of sulci that exhibit significantly greater size cor-
relations in male brains than in female brains (figure 2;
electronic supplementary material, figure S49), in accordance
with studies of humans [17,20]. This may reflect that males
exhibit consistent X chromosome gene expression across tis-
sues, which is expected to produce both higher inter-regional
correlations and greater population variability among males
[10,24]. Other studies have also provided indirect evidence
for sex chromosome effects on sex differences in trait variabil-
ity, since in species with homogametic (e.g. ZZ)males, females
typically have higher phenotypic variability [8].

Sex differences inmorphological and behavioural variability
have been identified in numerous taxa, and such differences are
likely attributable to developmental effects and/or sexual selec-
tion mechanisms that tend to produce and maintain variation.
Here, we show that greater male neuroanatomical variability is
not only present in humans, but also one of our closest living
relatives, chimpanzees. In particular, balancing or disruptive
selection on alternative reproductive tacticsmaymaintain cogni-
tive, and therefore neuroanatomical, variation among males,
extended developmental periods may leave males more vulner-
able to environmental effects, and sex chromosome effects may
explain greater inter-regional neuroanatomical correlations
among males. Given that the sulcal measurements used here
are derived from MRI scans of captive living individuals, the
males in our studymay not participate in all of the reproductive
strategies available to wild chimpanzees; however, our results
indicate that this is not necessary to maintain greater male neu-
roanatomical variability, as this pattern is still evident in the less
variable conditions of captivity. Additionally, we acknowledge
that some of our results are sensitive to multiple corrections test-
ing; however, we believe this may reflect a lower sample size
(due to data availability) compared to human studies, which
typically include thousands to tens of thousands of individuals
[17–20]. Using this work, future comparative studies on taxa
with varying sex chromosome compositions, developmental
schedules and mating systems have the potential to tease apart
the primary drivers of sex differences in neuroanatomical varia-
bility. Altogether, this line of inquiry will contribute to our
understanding of intraspecific variation in neuroanatomy and
behaviour.
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