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Abstract

There is increasing interest within the genetics community in estimating the relative contribution of parental genetic effects 

on offspring phenotypes. Here we describe the user-friendly M-GCTA software package used to estimate the proportion of 

phenotypic variance explained by maternal (or alternatively paternal) and offspring genotypes on offspring phenotypes. The 

tool requires large studies where genome-wide genotype data are available on mother- (or alternatively father-) offspring pairs. 

The software includes several options for data cleaning and quality control, including the ability to detect and automatically 

remove cryptically related pairs of individuals. It also allows users to construct genetic relationship matrices indexing genetic 

similarity across the genome between parents and offspring, enabling the estimation of variance explained by maternal (or 

alternatively paternal) and offspring genetic effects. We evaluated the performance of the software using a range of data 

simulations and estimated the computing time and memory requirements. We demonstrate the use of M-GCTA on previ-

ously analyzed birth weight data from two large population based birth cohorts, the Avon Longitudinal Study of Parents and 

Children (ALSPAC) and the Norwegian Mother and Child Cohort Study (MoBa). We show how genetic variation in birth 

weight is predominantly explained by fetal genetic rather than maternal genetic sources of variation.

Keywords M-GCTA  · Maternal effects · Paternal effects · G-REML · Heritability · SNP heritability

Introduction

Maternal genetic effects may be defined as the causal influ-

ence of maternal genotypes on offspring phenotypes over 

and above that which results from the transmission of genes 

from mother to child (Mather and Jinks 1982; Wolf and 

Wade 2009). This definition of maternal genetic effects 

focuses on the effect of the maternal genome and is distinct 

from contributions due to mitochondrial inheritance and 

genetic effects due to imprinting. Maternal genetic effects 

can affect offspring phenotypes through the intrauterine 

environment or postnatal influences via the environment that 

the mother provides for her offspring. The importance of 

maternal genetic effects has long been recognized by quanti-

tative geneticists (Wolf and Wade 2009). However, in human 

Edited by Stacey Cherny.

Electronic supplementary material The online version of this 
article (https ://doi.org/10.1007/s1051 9-019-09969 -4) contains 
supplementary material, which is available to authorized users.

 * David M. Evans 
 d.evans1@uq.edu.au; dave.evans@bristol.ac.uk

1 University of Queensland Diamantina Institute, University 
of Queensland, Brisbane, QLD, Australia

2 Medical Research Council Integrative Epidemiology Unit, 
University of Bristol, Bristol BS8 2BN, UK

3 Bristol Medical School, Population Health Sciences, 
University of Bristol, Bristol, UK

4 KG Jebsen Center for Diabetes Research, Department 
of Clinical Science, University of Bergen, Bergen, Norway

5 Department of Genetics and Bioinformatics, Health Data 
and Digitalization, Norwegian Institute of Public Health, 
Oslo, Norway

6 Department of Medical Genetics, Haukeland University 
Hospital, Bergen, Norway

7 Department of Pediatrics and Adolescents, Haukeland 
University Hospital, Bergen, Norway

8 K.G. Jebsen Center for Genetic Epidemiology, Department 
of Public Health and Nursing, NTNU, Norwegian University 
of Science and Technology, Trondheim, Norway

http://orcid.org/0000-0003-0663-4621
http://crossmark.crossref.org/dialog/?doi=10.1007/s10519-019-09969-4&domain=pdf
https://doi.org/10.1007/s10519-019-09969-4


 Behavior Genetics

1 3

studies maternal effects have largely been treated as environ-

mental sources of resemblance between relatives, and/or as 

a factor that may contaminate estimates of the heritability 

and/or common environment depending on the study design 

(Falconer and Mackay 1996; Meyer 1992).

The impact of maternal genetic effects on offspring phe-

notypes can be quantified in studies of experimental animals, 

using controlled breeding and cross-fostering designs, such 

as factorial designs involving reciprocal crosses, half-sibling 

and full-sibling hybrid designs (Bernardo 1996; Lynch and 

Walsh 1998). In humans, maternal effects are typically esti-

mated using study designs involving the children of monozy-

gotic and dizygotic twins (Corey and Nance 1978), or using 

studies involving half-siblings (York et al. 2013). In these 

studies, the covariance between different pairs of relatives 

allows decomposition of the phenotypic variance into mater-

nal genetic effects and other variance components of interest. 

For example, using a study design involving the offspring 

of monozygotic and dizygotic twins, Magnus et al. (1984a) 

reported a distinct maternal genetic effect on offspring birth 

weight (3–20% of the phenotypic variance), which neverthe-

less was smaller than the estimated contribution from the 

fetal genome (50–69.4% of the phenotypic variance) (Mag-

nus 1984a, b).

With the advent of genome-wide genotyping technology, 

genome-wide association studies (GWAS) have provided the 

ability to identify specific genetic loci in mothers that influ-

ence offspring phenotypes independent of offspring geno-

type. For example, investigators have used a combination of 

conditional association analysis of genotyped mother–off-

spring pairs (Horikoshi et al. 2016; Beaumont et al. 2018) 

and more recently structural equation modelling of geno-

typed mothers who report their own and their offspring’s 

phenotype (Warrington et al. 2018a) to identify maternal 

genetic effects at individual loci on offspring birth weight. 

However, maternal loci that influence offspring phenotypes 

typically have small effect sizes and thus may be difficult 

to identify in anything but the largest GWAS (Moen et al. 

2019).

In 2010, Yang et al. introduced the G-REML frame-

work in human genetic studies in which genome-wide 

genetic similarity between unrelated individuals was used 

to partition phenotypic variance into genetic components 

of variation explained by tagged SNPs present on genome-

wide arrays and residual sources of variation (Yang et al. 

2010). This method allowed investigators to estimate the 

proportion of variance in the phenotype explained by all 

the genotyped SNPs on microarrays (so-called “SNP herit-

ability”), and suggested that much of the missing heritability 

(Maher 2008) was in fact hiding in the form of variants of 

small effect scattered across the genome. We subsequently 

extended the basic G-REML framework to estimate the 

proportion of trait variance due to maternal genetic effects 

via a procedure we called maternal genome-wide complex 

trait analysis (M-GCTA) (Eaves et al. 2014). Specifically, 

M-GCTA used genome-wide SNP data from mother–off-

spring pairs to partition the phenotypic variance in the off-

spring phenotype into components attributable to the moth-

ers’ genome, the child’s genome, the covariance between the 

two, and residual sources of variation (Eaves et al. 2014). 

Our results suggested that the presence of maternal genetic 

effects could inflate estimates of SNP heritability from pro-

cedures based on G-REML that did not take into account this 

putative source of variation (Yang et al. 2010; Speed et al. 

2017). Although not discussed in the original article, we 

note that exactly the same method can also be used to esti-

mate variation in offspring phenotype due to paternal genetic 

effects (although not maternal and paternal genetic effects 

simultaneously). The M-GCTA method has been applied to 

different perinatal phenotypes including birth length, birth 

weight, and gestational weight gain during pregnancy (Eaves 

et al. 2014; Horikoshi et al. 2016; Warrington et al. 2018b). 

Although the M-GCTA method attracted much attention 

across the scientific community (Hewitt 2015; Timpson 

et al. 2018), it has not been widely adopted by research-

ers. One reason is that application of the method requires 

thorough understanding of what might be perceived as a 

complicated linear mixed model and also the construction 

of several large genetic relatedness matrices (GRMs), which 

can be difficult and error prone in practice.

In this manuscript, we introduce the user-friendly 

M-GCTA software package, which implements the M-GCTA 

statistical model, and includes an extension to estimate 

the variance due to paternal genetic effects (i.e. instead of 

maternal genetic effects, but not both simultaneously). Our 

software automatically constructs GRMs indexing genetic 

similarity across the genome between parents and offspring, 

thus allowing for the estimation of either maternal or pater-

nal genetic effects. Several options for data cleaning and 

quality control are coded in the software, including the abil-

ity to detect and automatically remove one individual from 

each pair of related individuals. In order to assess the per-

formance of M-GCTA, we applied the program to simulated 

data and compared the results with estimation in the GCTA 

software package using custom derived genomic relatedness 

matrices (Yang et al. 2011a, b), and also by structural equa-

tion modelling using the OpenMx library and the R software 

package, version 3.5.1 (Boker et al. 2011; Eaves et al. 2014). 

We estimated the CPU time and memory requirements of 

the M-GCTA software by applying it to simulated data-

sets consisting of different numbers of genetic markers and 

mother–offspring pairs. We also applied M-GCTA to birth 

weight data from two large population based cohort studies 

that contain genotyped mothers and their offspring; the Nor-

wegian Mothers and Child Cohort Study (MoBa) (Magnus 

et al. 2016) and the Avon Longitudinal Study of Parents and 
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Children (ALSPAC) (Boyd et al. 2013; Fraser et al. 2012). 

We show that offspring birth weight is influenced by fetal 

genetic factors and indirectly by the maternal genome to a 

lesser extent. Finally, we discuss the challenges in interpre-

tation, limitations, assumptions and opportunities for future 

application of M-GCTA.

Methods

M‑GCTA model

Following Eaves et al. (2014), the path model underlying the 

M-GCTA method is illustrated in Fig. 1 (Eaves et al. 2014). 

Although we have specified this model with respect to moth-

ers and their offspring, we emphasize that the model could 

equally apply to fathers and their offspring where these rela-

tionships are of interest and genome-wide data are available. 

In Fig. 1, and following the convention of structural equa-

tion modelling, observed (measured) variables are denoted 

by square boxes and latent (unmeasured) factors by circles. 

Single headed arrows represent causal relationships and dou-

ble-headed arrows indicate correlational relationships. The 

variable P denotes the measured offspring phenotype (which 

is influenced by both offspring and maternal genotypes).

The M-GCTA model parameterizes the similarity 

between unrelated genotyped mother–offspring pairs as a 

function of four latent genetic factors. GMM represents mater-

nal genotypes at loci that exert an effect on the offspring phe-

notype P via path m (i.e. maternal genetic effects). GMC rep-

resents these same loci in offspring and the degree to which 

these loci affect the offspring phenotype is quantified by the 

path coefficient c. GCC represents offspring genotypes at loci 

that induce no maternal effect when present in the mother’s 

genome but contribute directly to the offspring phenotype P 

via path h. Finally, GCM represents the maternal loci that do 

not affect the offspring phenotype P. The same latent genetic 

factors in mothers and offspring are expected to correlate 0.5 

with each other. Finally, E represents the effect of residual 

environmental and untagged genetic factors that contribute 

to phenotype P through the causal path e.

Assuming all latent variables (i.e., circles) have unit vari-

ance, then the path model in Fig. 1 represents the following 

structural equation and variance decomposition:

with

where yj is the phenotypic value of individual j, μ is the 

mean phenotype, and m, h, c and e are path coefficients, with 

m2, h2, c2, and e2 their corresponding variance components, 

and GMMj
 , GCCj

 , GMCj
 , and Ej are deviations of each indi-

vidual on the corresponding latent genetic or residual effects 

with variance one. We stress that the h2 and c2 terms in the 

variance decomposition above have special meanings that 

are different from how these terms might be used in other 

manuscripts (i.e. h2 and c2 are often used to represent herit-

ability and variance due to the shared environment respec-

tively in other situations). In contrast, in the present manu-

script, h2 refers to the phenotypic variance explained by 

SNPs at loci that induce no maternal effect when present in 

the mother’s genome but contribute directly to the offspring 

phenotype when present in the offspring genome. Likewise, 

 c2 refers to the phenotypic variance explained by the direct 

effect of that set of offspring SNPs that when present in the 

mother’s genome exert maternal effects on the offspring 

phenotype.

In Fig. 2, the path model is extended to show the expected 

relationship between two unrelated mother–offspring pairs 

(i and j). The correlations between the latent genetic factors 

are defined as follows: αij is the genomic relatedness coef-

ficients between mothers of pair i and j, βij is the related-

ness coefficient between the offspring of pair i and j, and 

δij is the relatedness coefficients between the mother of pair 

i and the child of pair j. The following formula is used to 

yj = � + mGMMj
+ hGCCj

+ cGMCj
+ eEj

var(y) = m
2 + h

2 + c
2 + mc + e

2

1
2
/

ℎ

1
2
/

Fig. 1  Path model illustrating the relationship between latent mater-
nal and offspring genetic factors and the observed offspring pheno-
type for a single mother–offspring pair. GMM represents maternal 
genotypes at loci that exert an effect on the offspring phenotype P via 
path m (i.e. maternal genetic effects). GMC represents these same loci 
in offspring and the degree to which these loci affect the offspring 
phenotype is quantified by the path coefficient c. GCC represents off-
spring genotypes at loci that induce no maternal effects when present 
in the mother’s genome but contribute directly to the offspring phe-
notype P via path h. Finally, GCM represents the maternal loci that 
do not affect the offspring phenotype P. The same latent genetic fac-
tors in mothers and offspring are expected to correlate 0.5 with each 
other. Finally, E represents the effect of residual environmental and 
untagged genetic factors that contribute to phenotype P through the 
causal path e 
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calculate the genetic relatedness coefficient between each 

pair of individuals:

where xik refers to the number of alleles (0, 1 or 2) for 

individual i at the kth SNP, pk is the allele frequency of the 

kth SNP, and the measure is averaged over S SNPs across the 

genome. The correlations between the latent genetic vari-

ables (α, β, and δ) are assumed to be estimated without bias 

or error using genome-wide relatedness coefficients between 

unrelated pairs of individuals (Yang et al. 2011a, b; Eaves 

et al. 2014). Accordingly, the expected covariance between 

the offspring’s phenotypes from pair i and j is:

The M-GCTA model can also be expressed in terms of 

matrix algebra and variance components. Under this for-

mulation, the genomic relatedness coefficients form the 

elements of three n × n matrices (where n is the number of 

mother–offspring pairs) indexing the genomic similarity 

between mothers (M; the elements of which were previously 

denoted αij), children (O; the elements of which were previ-

ously denoted βij), and between mothers and children (D; the 

elements of which were previously denoted δij). In the inter-

est of clarity, the matrices M and O are symmetric, whilst 

the matrix D is asymmetric.. The matrix formed by summing 

the D matrix with its transpose D + D′) i.e. summing the 

genomic relatedness coefficients between mother i and child 

j, and between mother j and child i is also symmetric. By 

defining the variance of the offspring phenotype explained 

by maternal genetic effects as �2

M
= m

2 , by offspring genetic 

1

S

S
∑

k=1

(

xik − 2pk

)(

xjk − 2pk

)

2pk

(

1 − pk

)

cov
(

yi, yj

)

= �ijm
2
+ �ij

(

c2
+ h2

)

+ mc
(

�ij + �ji

)

effects as �2

O
= c2

+ h2 , by twice the covariance between the 

two as σD = mc, and by the residual environmental effects as 

�
2

e
= e

2 , the phenotypic variance–covariance matrix (V) can 

be partitioned as:

The variance components can then be estimated using 

restricted maximum likelihood (REML) (Yang et  al. 

2011a, b) or full information maximum likelihood in e.g. 

the OpenMx software package (Boker et al. 2011; Eaves 

et al. 2014). Whilst we have not included fixed effects in the 

above description of the M-GCTA model, similar to ordi-

nary GCTA, the M-GCTA software package can estimate 

fixed effects if included in the model for the means.

Implementation and application of the M‑GCTA 
software

The M-GCTA software package is an extension of the 

GCTA software that has been written in C++ (Yang et al. 

2011a, b). The M-GCTA software uses source code from 

the GCTA software package (currently version 1.26.0) that 

has been modified to fit the M-GCTA statistical model and 

perform quality control functions relevant to genome-wide 

SNP datasets with parents and their offspring. Our program 

implements the M-GCTA method in two steps. First, the 

software identifies unrelated mother-/father- offspring pairs 

and calculates GRMs [i.e. matrices M, O and (D + D’)]. 

The package then uses these GRMs to estimate the variance 

explained by each component using restricted maximum 

likelihood. We have implemented the M-GCTA software 

package as a downloadable application for the Linux/Unix 

platform. We built the M-GCTA software because applica-

tion of the M-GCTA statistical method in more generic soft-

ware packages e.g. OpenMx can be difficult and error prone 

V = M�
2

M
+ O�

2

O
+

(

D + 2D
�
)

�
D
+ I�

2

e

Fig. 2  M-GCTA path model 
showing the relationship 
between two unrelated mother–
offspring pairs (e.g. pair i and 
pair j). The correlations between 
the latent genetic factors are 
defined as follows: αij is the 
genomic relatedness coefficients 
between mothers of pair i and j, 
βij is the relatedness coefficient 
between the offspring of pair i 
and j, and δij is the relatedness 
coefficients between the mother 
of pair i and the child of pair j 
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in practice. The aim of creating the M-GCTA software was 

to make it easy and straightforward for researchers to apply 

the M-GCTA statistical method.

M-GCTA identifies maternal and paternal relationships 

based on information provided by users in PLINK style.

fam or.ped files (Purcell et al. 2007). It identifies families 

according to the family identifier (i.e. the first column of the.

fam or.ped file), and recognises father-offspring pairs and 

mother–offspring pairs based on values provided by the user 

(i.e. the third and fourth columns of the.fam or.ped file). By 

specifying the –mat or –pat flag, M-GCTA will extract the 

relevant parent–offspring pairs and perform the analyses (i.e. 

no explicit pruning of maternal and or paternal information 

by the user is required to perform these analyses and both 

sets of parents can be included in the data files).

Users are required to generate PLINK style pedigree files 

consisting of mother–offspring duos, father-offspring pairs, 

parent child trios, or some combination of all of these. Users 

must only include one offspring per family. If additional off-

spring are included in the pedigree files then these families 

will be automatically excluded from analyses, a warning 

produced, and the identity of the offending families will be 

written to a text file. It is then up to the user how to deal 

with these individuals. Details of all the options provided by 

M-GCTA and recommendations for running the M-GCTA 

software are described on the M-GCTA github page (https 

://githu b.com/uqzqi ao/M-GCTA ).

Currently, the M-GCTA statistical model can only esti-

mate maternal/paternal (and other) variance components 

using one parent and child at a time (i.e. either mothers and 

their child, or fathers and their child). Extending the sta-

tistical model to estimate maternal and paternal variance 

components simultaneously using parent–offspring trios, 

including more than one child in each family in the analy-

sis, and extending the model to multivariate situations are 

all current areas of research by our group. We expect that we 

will include these options in future releases of the M-GCTA 

software when the parameterization of these extensions to 

the basic model are developed.

Application of the M‑GCTA software to simulated data

In order to compare estimates of maternal and offspring 

genetic variance components obtained from the M-GCTA 

software against those obtained from standard GCTA, we 

performed a simple data simulation. Following Eaves et al. 

(Eaves et al. 2014), we simulated 1000 mother–offspring 

pairs and an additional 50 singleton individuals to mimic 

real life situations where these singleton individuals would 

need to be detected and removed before analysis. We simu-

lated 250 SNPs that accounted for all of the direct offspring 

and indirect maternal genetic effects and their covariance 

on the offspring phenotype. SNPs 1–125 were assigned to 

have direct genetic effects on an individual’s phenotype 

when present in their own genome and SNPs 76–200 were 

assigned to have indirect effects on an individual’s pheno-

type when present in their mother’s genome. Thus, SNPs 

1–75 and SNPs 126–200 contributed exclusively to offspring 

genetic effects and maternal genetic effects, respectively, 

while SNPs 76–125 had both offspring and maternal genetic 

effects on offspring phenotypes. SNPs 201 to 250 exerted 

no effects on the offspring’s phenotype. We simulated three 

scenarios. In scenario one, the effects of all shared SNPs 

(i.e. SNPs 76–125) on the offspring’s phenotype were in 

the same direction. In scenario two, the effect of all shared 

SNPs were in opposite directions (for example, SNPs that 

had a positive maternal genetic effect had a negative off-

spring genetic effect). In scenario three, the effects of 30 

out of 50 SNPs were in opposite directions whilst the rest 

of the shared SNPs exerted effects in the same direction. 

Due to the relatively small sample size, we simulated all 

increasing alleles having high allele frequencies sampled 

randomly from a uniform distribution (between 0.4 and 

0.6), and each increasing allele exerted a large effect on the 

simulated phenotype (between 0.45 and 0.55). Across all 

conditions, we added a random normal variate (mean zero, 

variance four) to the genotypic value of each individual to 

simulate residual and environmental effects. We assumed 

all genetic effects were additive and there were no inter-

actions between maternal and offspring genomes. We con-

ducted 1000 simulations for each scenario, and the mean 

and the standard deviation of the parameter estimates from 

the 1000 simulations were reported. The simulated datasets 

were generated in R (R Core Team 2013), and were then 

converted to binary PLINK format (Purcell et al. 2007) for 

downstream analysis. For analysis in GCTA (i.e. in order 

to benchmark our M-GCTA software against), we first 

extracted all mother–offspring pairs (N = 1000), arranged the 

mothers in order of family identifier, and then their offspring 

below them in exactly the same order. Having identified 

the 50 singleton individuals, we directed GCTA to remove 

them. We created an overall GRM for all individuals (i.e. 

2 N × 2 N = 2000 × 2000) using the GCTA software, and then 

constructed new GRMs indexing genomic sharing between 

mothers, offspring, and between mothers and offspring (i.e. 

the M, O, and (D + D’) matrices) from the appropriate rows 

of the larger matrix. We then fit the three GRMs in a vari-

ance components model using the original GCTA software. 

For comparison, we applied the M-GCTA software to the 

same simulated data. We emphasize that the M-GCTA soft-

ware fits the same underlying variance components model 

but detects mother–offspring (or father-offspring) pairs in 

the data, removes singleton individuals from the analysis, 

and constructs the requisite GRMs automatically for the 

user without the need for time consuming and error prone 

scripting.

https://github.com/uqzqiao/M-GCTA
https://github.com/uqzqiao/M-GCTA
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Finally, we compared the results from GCTA and 

M-GCTA to those from fitting a structural equation model 

implemented in R using the OpenMx software package. We 

parameterized the M-GCTA model two ways in OpenMx. In 

one formulation we modelled the path coefficients in Fig. 1 

(i.e. m, h, c, and e) and explicitly modelled the constraint 

σD = mc. In the other, we parametrized the model using a 

variance components framework in which the above con-

straint was implicit (i.e. similar to how the model is param-

eterized in GCTA and the M-GCTA software). We fitted 

a series of five models. In the full model we estimated all 

four variance components (σM, σO, σD, σE). In the first sub-

model we set the covariance between maternal and offspring 

genetic effects to zero. In the second (and third) sub-models 

we further constrained the maternal (or offspring) genetic 

components to zero. Finally, we constrained all variance 

components responsible for the covariation between moth-

ers and their children to zero (σM, σO, σD). We calculated 

twice the difference in log-likelihood between the full model 

and each of the sub-models, and evaluated the difference in 

relative to the full model by (twice the) difference in log-

likelihood chi-square. The R code used for performing the 

simulations is included in the Supplementary Materials 

(Supplementary Material 1).

CPU and memory requirements

To quantify the computational requirements of the M-GCTA 

software, we simulated datasets that ranged in size from 

N = 3000 to 15,000 mother–offspring pairs and S = 500,000 

or 1,000,000 SNP markers. We note that this dataset size 

is representative of the size of cohorts of mother–offspring 

pairs that currently exist around the world (Evans et al. 

2019). The datasets were simulated using an approach simi-

lar to that described above. For each set of simulated data-

sets, 37.5% of all simulated SNPs contributed exclusively 

to offspring genetic effects, 37.5% of SNPs contributed to 

maternal genetic effects, while the remaining 25% of SNPs 

exerted offspring and maternal genetic effects on offspring 

phenotypes in the same direction. We benchmarked the 

running time and memory use of the M-GCTA software by 

running simulations on these datasets. Reported run times 

are the medians of five identical runs using 20 cores of a 

3.2 GHz Intel Xeon E5-2667 v3 processor.

Application of the M‑GCTA software to birthweight data 

in the ALSPAC Cohort

We applied the M-GCTA software to offspring birth weight 

data from the ALSPAC birth cohort. ALSPAC is an ongo-

ing transgenerational population-based birth cohort study 

that initially recruited 14,541 pregnant women resident 

in the Bristol area of the U.K. (formerly known as Avon) 

with expected delivery dates between 1 April 1991 and 31 

December 1992 (Fraser et al. 2012; Boyd et al. 2013). It 

resulted in 14,062 live births, of which 13,988 survived to 

the end of the first year of age. Detailed information has 

been collected on both mothers and children as early as the 

eighth gestational week and at regular follow-up intervals, 

using a combination of questionnaires, clinical assessments, 

and health and administrative records. Biological samples 

including DNA have been taken repeatedly, and a wide range 

of data has been generated including genome-wide array, 

genome sequencing, and DNA methylation data. Ethical 

approval has been obtained from the ALSPAC Law and Eth-

ics Committee, and other relevant ethics committees, and 

written informed consent has been provided by all partici-

pants. Birth weight was extracted from routine hospital birth 

records. Details of the ALSPAC data are available through 

a fully searchable data dictionary: www.bris.ac.uk/alspa c/

resea rcher s/data-acces s/data-dicti onary .

Genome-wide genotyping was performed on mater-

nal and offspring samples using the Illumina 660 K and 

HumanHap550 quad SNP genotyping platforms respec-

tively. Detailed quality control and genotyping imputation 

processes have been described previously (Evans et al. 2013; 

Fatemifar et al. 2013). After preliminary data management, 

we obtained a dataset consisting of 8340 unrelated moth-

ers (i.e., each mother was unrelated with other mothers pre-

sented in the dataset) and 8365 unrelated children, with “best 

guess” genotypes at 2,425,567 autosomal markers imputed 

from the HapMap Phase II (release 22) data as the dataset. 

The quality control procedures used to generate this dataset 

are detailed in Supplementary Fig. 1.

We first applied the M-GCTA software to this dataset in 

order to perform data management and quality control. We 

set a threshold for the genetic relationship between indi-

viduals of 0.025 and M-GCTA removed one from each pair 

of identified cryptically related individuals. This was not 

applied to the mother–child pairs who will have a genetic 

relationship of ~ 0.5 (this was confirmed in the datasets), 

but rather to test that all the mothers in the sample are unre-

lated, the children are unrelated and mothers from pair i and 

children from pair j are unrelated. This command operated 

in three consecutive steps. First, singletons and mother–off-

spring pairs who do not have an offspring phenotype were 

removed, yielding N = 5189 mother–offspring pairs. Second, 

mother–offspring pairs were ordered according to family 

identifier, and a GRM for all 2 N × 2 N individuals in the 

dataset was created. Third, the software iteratively excluded 

one individual from each pair of cryptically related indi-

viduals who had an estimated relationship > 0.025 while 

minimizing the overall loss in sample size. This process 

yielded a combined dataset of 4321 unrelated mother–off-

spring pairs. Mother–offspring pairs with offspring birth 

weight measures four standard deviations (SD) away from 

http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary
http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary
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the sex-specific mean were removed (11 mother–offspring 

pairs). Birthweight was adjusted for the first twenty principal 

components, and Z scores were calculated for each sex. Last, 

we applied M-GCTA on the 4310 mother–offspring pairs 

and performed the REML analysis to estimate the effects of 

maternal genotypes, offspring genotypes and their covari-

ance on offspring birth weight.

Application of the M‑GCTA software to birthweight data 

in the Norwegian Mothers and Children Cohort Study 

(MoBa)

The M-GCTA software was applied to birth weight data 

from the Norwegian Mother and Child Cohort Study 

(MoBa) (Magnus et  al. 2016). MoBa is an open-ended 

cohort study that recruited pregnant women from 1999 to 

2008. Approximately 114,000 children, 95,000 mothers, 

and 75,000 fathers of predominantly Norwegian ancestry 

were enrolled in the study from 50 hospitals all across Nor-

way. Birth weight was measured at the respective hospitals 

at birth. In 2012, the project Better Health By Harvesting 

Biobanks (HARVEST) randomly selected 11,000 triads 

from MoBa’s biobank for genotyping, excluding children 

matching any of the following criteria: (1) stillborns (2) 

deceased (3) twins (4) non-existing Medical Birth Regis-

try (MBR) data (5) missing anthropometric measurements 

at birth in MBR (6) pregnancies where the mother did not 

answer the first questionnaire, and (7) missing parental DNA 

samples. In 2016, HARVEST randomly selected a second 

set of 6000 triads using the same criteria. Ethical approval 

has been obtained from the MoBa Ethics Board, and other 

relevant ethics committees, and written informed consent 

has been provided by all participants. For the first set of 

triads, genotyping was performed using Illumina Human-

CoreExome-12 v.1.1 and HumanCoreExome-24 v.1.0 arrays 

for 7000 and 4000 triads, respectively, at the Genomics Core 

Facility located at the Norwegian University of Science and 

Technology, Trondheim, Norway. The second set of triads 

was genotyped using Illumina Global Screening Array v.1.0 

for all 6000 triads at the Erasmus University Medical Center 

in Rotterdam, Netherlands.

The genotypes were called in Illumina Genome Studio 

(for the first sample v.2011.1 and for the second v.2.0.3) 

using only samples with call rate ≥ 0.98 and GenCall 

score ≥ 0.15 for defining cluster positions. We excluded 

variants with low call rates, signal intensity, quality scores, 

heterozygote excess and deviation from Hardy–Weinberg 

equilibrium based on the following QC parameters: call 

rate < 98%, cluster separation < 0.4, 10% GC-score < 0.3, 

AA T Dev > 0.025, HWE P-value < 10–6. Samples were 

excluded based on call rate < 98% and heterozygosity 

excess > 4 SD. Study participants with non-Norwegian 

ancestry were excluded after merging with samples from 

the HapMap project (ver. 3) to remove ethnic outliers.

Prior to imputation, the genetic dataset was harmonized 

with the Haplotype Reference Consortium (HRC) v.1.1 

imputation panel using the HRC Imputation preparation 

tool by Will Rayner version 4.2.5. Insertions and deletions 

were excluded. Allele, marker position, and strand orienta-

tion were updated to match the reference panel. A total of 

384,855 and 568,275 markers remained eligible for phasing 

and imputation in the first and second sample, respectively. 

Pre-phasing was conducted locally using Shapeit v2.790 

to allow for phasing utilizing the pedigree data. Imputa-

tion was performed on the Sanger Imputation Server using 

the Positional Burrows-Wheeler Transform and HRC ver-

sion 1.1 reference panel. After imputation, to avoid inclu-

sion of poorly imputed markers, only markers genotyped in 

either of the two samples and having a quality score (INFO 

score) > 0.9 were included in the analysis (i.e. genotyped 

in one sample and imputed with high quality in the other 

sample). Additionally, markers with MAF < 0.01 and HWE 

p-value < 1 × 10−6 were excluded. No markers had missing 

calls after imputation. After exclusions, 497,187 markers 

were eligible for analysis.

After preliminary data management 13,934 independent 

mother and child duo pairs were available. GCTA was used 

to filter cryptically related individuals > 0.025 by removing 

one in each pair of samples in mothers and children sepa-

rately. Additionally, any sample missing birth weight or hav-

ing birth weight 4 standard deviations away from the mean 

were excluded. After data management 7,910 mother–off-

spring pairs were eligible for analysis. Birthweight was 

z-score transformed and were adjusted for sex, gestational 

duration and the first four ancestry-informative principal 

components. M-GCTA performed the REML analysis to 

resolve the effects of maternal genotype, offspring genotype 

and their covariance on offspring birth weight.

Meta‑analysis

Estimates of the variance components obtained in the 

ALSPAC and MOBA cohorts were combined using inverse 

variance weighted meta-analysis of the variance compo-

nents in the R package meta (DerSimonian and Laird 1986; 

Schwarzer 2007).

Results

We used the same simulation strategy to generate small 

sets of data, containing 1000 mother–offspring pairs and 

50 singletons. We simulated 250 SNPs in total, appor-

tioning 75 SNPs to have direct offspring genetic effects 

only on the phenotype, 75 SNPs to have maternal genetic 
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effects only on the phenotype, 50 SNPs that had both off-

spring and maternal genetic effects and 50 SNPs that had 

no effect on the phenotype. Table 1 summarizes the results 

for the simulated mother–offspring pairs across three sce-

narios (i.e. positive covariance between maternal and fetal 

genetic effects, negative covariance between maternal and 

fetal effects, and a mixture of the two). Estimates of model 

parameters and test statistics obtained from the M-GCTA 

software package were almost identical to those obtained 

by analysis using standard GCTA and through analysis in 

R using the OpenMx package. Likewise, it did not appear 

to matter whether the model constraint was explicitly or 

implicitly modelled by the OpenMx software, the param-

eter estimates were the same. All formulations of the 

M-GCTA model appeared to correctly recover the under-

lying model parameters regardless of whether the underly-

ing SNPs influenced the phenotypes in the same direction, 

different directions, or a mixture of the two. Similar results 

were obtained using an analysis involving father-offspring 

pairs (Supplementary Table 1).

We assessed the computational performance of the 

M-GCTA software by running it on several simulated data-

sets of varying size (Fig. 3; Supplementary Table 2). Based 

on the computational costs in standard GCTA-GREML anal-

ysis (Yang et al. 2014), it appears as if compute time scales 

O
(

4SN
2
+ N

3
)

 whereas we estimate that memory required 

is approximately N × S × 4 × 2 + N × N × 8 × 7 bytes (where N 

is the number of mother–offspring pairs and S is the number 

of SNP markers).

We applied the M-GCTA software to 4,310 mother–child 

pairs from the ALSPAC cohort, and found that the child’s 

genotype ( �2

O
 = 23%; s.e. = 10%) made a larger contribution 

to the variance in birth weight than either the mother’s geno-

type ( �2

M
 = 5%; s.e. = 9%) or twice the covariance between 

the two (σD = 8%; s.e. = 7%) (Table 2). These results closely 

match estimates from previous studies using the ALSPAC 

cohort (Horikoshi et al. 2016; Warrington et al. 2018b), 

which reported that maternal and fetal contributions to 

birth weight were 4% and 24%, respectively, with a slightly 

smaller covariance (i.e., 4%) between the two. Similar results 

were found when we applied M-GCTA to 7,910 mother–off-

spring pairs from the MoBa cohort. The maternal genome 

explained 8% (s.e. = 6%) and fetal genome 29% (s.e. = 6%) 

of the variation in offspring birth weight (Table 2), with a 

slightly smaller covariance (i.e., 4% ± 5%) between the two. 

These results are highly consistent with previous reports 

using the MoBa cohort (Warrington et al. 2019). A meta-

analysis of M-GCTA results from these two cohorts showed 

that 7% (s.e. = 5%) and 27% (s.e. = 5%) of variance in birth 

weight were captured by assays of maternal and fetal genetic 

variation, respectively, and an additional 5% (s.e. = 4%) of 

variance was attributable to the covariance between the two. 

No statistical heterogeneity was observed.

Discussion

In this manuscript, we describe M-GCTA, a user-friendly 

software package that implements G-REML methodol-

ogy for mother (or alternatively father) child pairs with 

genome-wide SNP data. The M-GCTA software package 

accepts genome-wide SNP data from mother (or alterna-

tively father) offspring pairs in PLINK pedigree or binary 

file format. The software allows the user to construct 

GRMs indexing genetic similarity across the genome 

between parents and offspring enabling the estimation of 

variance due to maternal (or alternatively paternal) and off-

spring genetic effects. The software also includes several 

options for data cleaning and quality control, including the 

ability to detect and automatically remove one mother–off-

spring pair from each pair of related individuals.

We performed several simulations which show that the 

M-GCTA software package calculates the same variance 

component estimates as GCTA, however it is much less 

time consuming and error prone due to the data clean-

ing and quality control features included. Our simulations 

also showed that there was no difference in the variance 

components estimates according to whether the σD = mc 

constraint was explicitly modelled in OpenMx or implic-

itly modelled in the other formulations.

There are two key computational steps implemented in 

the M-GCTA software package, building the GRM and 

estimating the variance components. Accordingly, the 

compute time and memory usage of the M-GCTA soft-

ware can be estimated by summing the requirements of 

both components. Our results show that current desktops/

laptops will not have sufficient RAM to run the M-GCTA 

software on most realistically sized datasets, but that com-

pute servers providing larger RAM will probably be ade-

quate. Extrapolating our results, we expect that M-GCTA 

could realistically be used to compute GRMs and estimate 

variance components on N = 50,000 mother–offspring 

pairs assuming m = 1,000,000 markers genome-wide (i.e. 

which is our estimate of the number of mother–offspring 

pairs with genome-wide data that are currently available 

worldwide as part of the Early Growth Genetics Consor-

tium (Moen et al. 2019)) given the computing resources 

typically available in many modern scientific institutes.

We applied the M-GCTA software package to off-

spring birth weight data from a large sample of unrelated 

mother–offspring pairs from the ALSPAC and MoBa 

cohorts. Birth weight is a complex trait, which is likely 

to be influenced by both maternal and fetal genetic factors 

in addition to the environment (Magnus 1984a, b; Lunde 

et al. 2007; Horikoshi et al. 2016; Warrington et al. 2019). 

Using the M-GCTA software we found that the variance 

in birth weight explained by tagged maternal, and fetal 
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Table 1  Comparison of variance components estimates from mother–offspring simulated data using the M-GCTA software package, ordinary 
GCTA and the OpenMx package

�
2

M
�

2

O
σD �

2

E
 − 2lnL LRT (χ2) df p Value

Scenario 1

 Simulated values 15.46 (0.71) 15.47 (0.71) 6.15 (1.00) 4.00 (0.18) – – – –

 M-GCTA software

  Full model (default) 15.49 (0.81) 15.48 (0.82) 6.16 (0.51) 4.01 (0.25) 3588.435 – – –

  �
D
= 0 16.27 (0.81) 16.25 (0.83) – 3.93 (0.24) 3619.216 30.781 1 1.44 × 10−8

  �2

M
= �

D
= 0 – 25.45 (1.51) – 15.65 (0.84) 4231.646 643.211 2  < 2 × 10−16

  �2

O
= �

D
= 0 25.49 (1.52) – – 15.65 (0.81) 4231.817 643.382 2  < 2 × 10−16

  �2

M
= �

2

O
= �

D
= 0 – – – 41.12 (1.88) 4717.640 1129.205 3  < 2 × 10−16

 Standard GCTA software

  Full Model 15.49 (0.81) 15.48 (0.82) 6.16 (0.51) 4.01 (0.25) 3588.435 – – –

  �
D
= 0 16.27 (0.81) 16.25 (0.83) – 3.93 (0.24) 3619.216 30.781 1 1.44 × 10−8

  �2

M
= �

D
= 0 – 25.45 (1.51) – 15.65 (0.84) 4231.646 643.211 2  < 2 × 10−16

  �2

O
= �

D
= 0 25.49 (1.52) – – 15.65 (0.81) 4231.817 643.382 2  < 2 × 10−16

  �2

M
= �

2

O
= �

D
= 0 – – – 41.12 (1.88) 4717.640 1129.205 3  < 2 × 10−16

OpenMx package

  Full model 15.49 (0.81) 15.48 (0.82) 6.16 (0.51) 4.00 (0.25) 5421.333 – – –

  �
D
= 0 16.27 (0.81) 16.25 (0.83) – 3.93 (0.24) 5452.130 30.797 1 1.43 × 10−8

  �2

M
= �

D
= 0 – 25.45 (1.51) – 15.64 (0.84) 6065.599 644.266 2  < 2 × 10−16

  �2

O
= �

D
= 0 25.49 (1.52) – – 15.63 (0.81) 6065.769 644.436 2  < 2 × 10−16

  �2

M
= �

2

O
= �

D
= 0 – – – 41.08 (1.88) 6552.324 1130.991 3  < 2 × 10−16

 Alternative model specification 
with the constraint σD = mc

M h c e

  Full model 3.93 (0.10) 3.60 (0.13) 1.57 (0.14) 2.00 (0.06) 5421.333 – – –

  c = 0 4.03 (0.10) 4.03 (0.10) – 1.98 (0.06) 5452.130 30.797 1 1.43 × 10−8

  m = c = 0 – 5.03 (0.35) – 3.95 (0.11) 6065.599 644.266 2  < 2 × 10−16

  h = c = 0 5.00 (0.72) – – 3.95 (0.10) 6065.769 644.436 2  < 2 × 10−16

  m = h = c = 0 – – – 6.41 (0.15) 6552.324 1130.991 3  < 2 × 10−16

Scenario 2

 Simulated values 15.50 (0.72) 15.47 (0.71)  − 6.20 (1.00) 4.00 (0.18) – – – –

 M-GCTA software

  Full model (default) 15.47 (0.83) 15.47 (0.83)  − 6.16 (0.65) 4.00 (0.25) 3562.294 – – –

  �
D
= 0 14.60 (0.80) 14.60 (0.80) – 4.10 (0.26) 3595.715 33.421 1 3.71 × 10−9

  �2

M
= �

D
= 0 – 13.16 (1.09) – 15.62 (0.83) 4099.941 537.647 2  < 2 × 10−16

  �2

O
= �

D
= 0 13.13 (1.08) – – 15.65 (0.81) 4100.851 538.557 2  < 2 × 10−16

  �2

M
= �

2

O
= �

D
= 0 – – – 28.79 (1.28) 4361.639 799.344 3  < 2 × 10−16

 Standard GCTA software

  Full model 15.47 (0.83) 15.47 (0.83)  − 6.16 (0.65) 4.00 (0.25) 3562.294 – – –

  �
D
= 0 14.60 (0.80) 14.60 (0.80) – 4.10 (0.26) 3595.715 33.421 1 3.71 × 10−9

  �2

M
= �

D
= 0 – 13.16 (1.09) – 15.62 (0.83) 4099.941 537.647 2  < 2 × 10−16

  �2

O
= �

D
= 0 13.13 (1.08) – – 15.65 (0.81) 4100.851 538.557 2  < 2 × 10−16

  �2

M
= �

2

O
= �

D
= 0 – – – 28.79 (1.28) 4361.639 799.344 3  < 2 × 10−16

 OpenMx package

  Full model 15.47 (0.83) 15.47 (0.83)  − 6.16 (0.65) 4.00 (0.25) 5395.222 – – –

  �
D
= 0 14.61 (0.80) 14.61 (0.80) – 4.09 (0.26) 5428.657 33.435 1 3.68 × 10−9

  �2

M
= �

D
= 0 – 13.16 (1.09) – 15.60 (0.83) 5933.860 538.638 2  < 2 × 10−16

  �2

O
= �

D
= 0 13.13 (1.08) – – 15.63 (0.81) 5934.771 539.549 2  < 2 × 10−16

  �2

M
= �

2

O
= �

D
= 0 – – – 28.76 (1.28) 6195.967 800.745 3  < 2 × 10−16

 Alternative model specification m h c e
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genetic sources of variation and the covariance between 

the two was around 4%, 23% and 9% respectively. Our 

results suggest that fetal genetics are the primary source 

of individual differences in birth weight that results from 

genetic factors, and that maternal genetic effects contribute 

to a much lesser extent, consistent with previous research 

(Horikoshi et al. 2016; Warrington et al. 2019).

It is worth highlighting that the covariance between 

maternal and fetal genetic sources of variation estimated 

by M-GCTA represents a genetic covariance that has been 

calculated across all SNPs in the GRM. Thus, a positive 

(or negative) covariance does not necessarily mean that all 

maternal and fetal loci across the genome affect the off-

spring’s phenotype in the same direction, but rather that 

in aggregate, the overall effect is in a positive (negative) 

direction. Focusing on this aggregate measure means that 

potentially interesting effects at individual loci might be 

missed. This is illustrated in the simulation results under 

scenario three where 60% of the SNPs with both mater-

nal and offspring effects operated in the same direction 

whereas the other 40% operated in opposite directions, 

and the overall covariance estimated by M-GCTA was 

Table 1  (continued)

�
2

M
�

2

O
σD �

2

E
 − 2lnL LRT (χ2) df p Value

  Full model 3.93 (0.11) 3.60 (0.09)  − 1.57 (0.14) 2.00 (0.06) 5395.222 – – –

  c = 0 3.82 (0.10) 3.82 (0.10) – 2.02 (0.06) 5428.657 33.435 1 3.68 × 10−9

  m = c = 0 – 3.61 (0.35) – 3.95 (0.10) 5933.860 538.638 2  < 2 × 10−16

  h = c = 0 3.62 (0.15) – – 3.95 (0.10) 5934.771 539.549 2  < 2 × 10−16

  m = h = c = 0 – – – 5.36 (0.12) 6195.967 800.745 3  < 2 × 10−16

Scenario 3

 Simulated values 15.48 (0.72) 15.47 (0.73)  − 1.21 (1.03) 4.00 (0.18) – – – –

 M-GCTA software

  Full model (default) 15.48 (0.81) 15.47 (0.81)  − 1.26 (0.60) 4.00 (0.25) 3602.236 – – –

  �
D
= 0 15.31 (0.78) 15.30 (0.78) – 4.01 (0.25) 3603.750 1.514 1 0.11

  �2

M
= �

D
= 0 – 18.07 (1.24) – 15.61 (0.78) 4159.793 557.557 2  < 2 × 10−16

  �2

O
= �

D
= 0 18.07 (1.29) – – 15.59 (0.82) 4158.808 556.573 2  < 2 × 10−16

  �2

M
= �

2

O
= �

D
= 0 – – – 33.69 (1.51) 4518.627 916.391 3  < 2 × 10−16

 Standard GCTA software

  Full model 15.48 (0.81) 15.47 (0.81)  − 1.26 (0.60) 4.00 (0.25) 3602.236 – – –

  �
D
= 0 15.31 (0.78) 15.30 (0.78) – 4.01 (0.25) 3603.750 1.514 1 0.11

  �2

M
= �

D
= 0 – 18.07 (1.24) – 15.61 (0.78) 4159.793 557.557 2  < 2 × 10−16

  �2

O
= �

D
= 0 18.07 (1.29) – – 15.59 (0.82) 4158.808 556.573 2  < 2 × 10−16

  �2

M
= �

2

O
= �

D
= 0 – – – 33.69 (1.51) 4518.627 916.391 3  < 2 × 10−16

OpenMx package

  Full model 15.48 (0.81) 15.47 (0.81)  − 1.26 (0.60) 3.99 (0.25) 5435.161 – – –

  �
D
= 0 15.31 (0.78) 15.30 (0.78) – 4.00 (0.25) 5436.676 1.515 1 0.11

  �2

M
= �

D
= 0 – 18.07 (1.24) – 15.59 (0.78) 5993.729 558.567 2  < 2 × 10−16

  �2

O
= �

D
= 0 18.07 (1.29) – – 15.57 (0.82) 5992.741 557.580 2  < 2 × 10−16

  �2

M
= �

2

O
= �

D
= 0 – – – 33.66 (1.51) 6353.112 917.951 3  < 2 × 10−16

 Alternative model specification m h c e

  Full model 3.93 (0.10) 3.92 (0.10)  − 0.32 (0.15) 2.00 (0.06) 5435.161 – – –

  c = 0 3.91 (0.10) 3.91 (0.10) – 2.00 (0.06) 5436.676 1.515 1 0.11

  m = c = 0 – 4.19 (0.72) – 3.95 (0.10) 5993.729 558.567 2  < 2 × 10−16

  h = c = 0 4.21 (0.62) – – 3.95 (0.10) 5992.741 557.580 2  < 2 × 10−16

  m = h = c = 0 – – – 5.80 (0.13) 6353.112 917.951 3  < 2 × 10−16

Parameter estimates are presented with standard errors in parentheses (1000 simulations). Abbreviations: �2

M
 variance due to tagged maternal 

genetic effects on child’s phenotype, �2

O
 variance due to tagged direct offspring genetic effects, σD (twice the) covariance between maternal 

and offspring genetic effects, �2

e
 variance due to residual effects. Note that σD can be positive or negative, and represents twice the covariance 

between maternal and offspring genetic effects. lnL refers to the log likelihood. LRT = − 2 × (L − L0), where LRT is the likelihood ratio test, L is 
the likelihood of the current model and  L0 refers to full/saturated model. df is the degrees of freedom and equals the difference in the number of 
parameters between the two models. m, h, c, e are the estimated path coefficients in Fig. 1. Under this formulation �2

M
 = m2, �2

O
 = h2 + c2, σD = mc, 

and �2

E
 = e2
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negative. Additionally, we report a positive genetic correla-

tion between maternal and offspring genetic effects on birth 

weight, despite the fact that previous work has identified 

at least nine individual loci that exert opposing maternal 

and fetal effects on birth weight putatively through effects 

on glucose sensing in mother and child (Warrington et al. 

2018a; Beaumont et al. 2018). Thus, it is likely that the 

opposing instances of these individual SNPs are cancelled 

out by polygenic contributions that exert shared effects on 

birth weight in the same direction (Warrington et al. 2019). 

The corollary is that users should be careful not to constrain 

variance components to be positive in M-GCTA in order 

to allow for the possibility of negative covariance between 

maternal and offspring genetic effects.

Whilst we have used offspring birth weight to illustrate 

the application of the M-GCTA software in this manuscript, 

our software package will likely be useful for the analysis 

of many other phenotypes, especially perinatal and early 

developmental traits such as birth length (Lunde et al. 2007; 

Eaves et al. 2014; van der Valk et al. 2014), gestational age 

(Lunde et al. 2007; York et al. 2013), crown-heel length and 

head circumference (Masuda et al. 2002; Rice and Thapar 

2010; Taal et  al. 2012), where large scale GWAS have 

already been performed and maternal and fetal genome-wide 

SNP data is available in large numbers of participants. As 

long as genome-wide SNP data is available in a relatively 

large dataset of mother–offspring (or alternatively father-

offspring) pairs, then it is possible to use this software to 

resolve maternal (or alternatively paternal) and offspring 

genetic effects. However, the challenge will be in finding 

enough genotyped mother (or father) offspring pairs with 

individual level GWAS data to run sufficiently powered 

analyses (Evans et al. 2019). Cohorts with large numbers 

of mother–offspring pairs include the Avon Longitudinal 

Study of Parents and Children (Fraser et al. 2012; Boyd et al. 

2013), the Norwegian MoBa Study (Magnus et al. 2016), the 

Norwegian HUNT study (Krokstad et al. 2012), and the UK 

Biobank study (Sudlow et al. 2015).

Fig. 3  CPU times and Memory Requirements for the M-GCTA soft-
ware. CPU times (upper panel) and memory use (lower panel) are 
plotted for runs on subsets of simulated data sets with increasing sam-
ple size and number of markers (m = 500,000 and 1,000,000, respec-
tively). Note, the x axis refers to N, the number of mother–offspring 
pairs, the total number of individuals is 2 N. Reported CPU times are 
the medians of five identical runs using 20 cores of a 3.2 GHz Intel 
Xeon E5-2667 v3 processor. Reported CPU times are the total time 
required to compute the genetic relationship matrix (GRM) between 
mothers and offspring, and perform REML analysis. Note that the 
CPU time and memory use may vary by a small factor as a function 
of the computing environment. Software version: M-GCTA, beta 
0.1.1. Numerical data with more details are provided in Supplemen-
tary Table 2

Table 2  Results of applying 
M-GCTA software on offspring 
birth weight in the ALSPAC 
and MoBa cohorts and the 
meta-analysis of the two

Results are presented as standardized variance components. �2

G
 variance due to total tagged genetic effects 

on child’s phenotype; �2

M
 variance due to tagged maternal genetic effects; �2

O
 variance due to tagged off-

spring genetic effects; σD twice the covariance between tagged maternal and fetal genetic sources of varia-
tion; �2

E
 variance due to residual effects; s.e. standard error; I2, the I square statistic, measures the propor-

tion of the variability in estimates that is due to heterogeneity; Q, the Cochran Q test (standard chi-squared 
test) statistic for heterogeneity; Pheterogeneity is the corresponding heterogeneity p-value for the Q test statistic

Variance 
component

ALSPAC 
(N = 4310 pairs)

MoBa (N = 7910 
pairs)

Meta-analysis

Estimate s.e Estimate s.e Estimate s.e I2 Q Pheterogeneity

�
2

M
0.05 0.09 0.08 0.06 0.07 0.05 0.0% 0.08 0.78

�
2

O
0.23 0.10 0.29 0.06 0.27 0.05 0.0% 0.26 0.61

σD 0.08 0.07 0.04 0.05 0.05 0.04 0.0% 0.22 0.64

�
2

G
0.37 0.10 0.40 0.07 0.39 0.05 0.0% 0.06 0.81
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Although we have focused on estimating maternal effects 

in this manuscript, as noted, our software can alternatively 

be used to estimate the contribution of paternal genetic 

effects on offspring phenotypes. M-GCTA includes explicit 

routines for the automatic cleaning and analysis of paternal-

offspring genotype data, making this process easy for users. 

Genetic variants in the paternal genome can affect their 

children’s phenotype independently of offspring genotype 

by contributing to the paternally provided environment, a 

phenomenon recently referred to as “genetic nurture” (Kong 

et al. 2018). Whilst extensive studies have been conducted 

to investigate maternal genetic effects on a variety of off-

spring phenotypic traits, the number of studies examining 

paternal genetic effects has been low and has often focused 

on investigating the evidence for effects mediated via epi-

genetic mechanisms (Curley et al. 2011; Rando 2012). One 

interesting idea would be to use the estimation of paternal 

genetic effects as a negative control in maternal studies of 

perinatal phenotypes similar to what has been done in tradi-

tional observational epidemiological studies (Smith 2008, 

2012). Paternal genetic effects are unlikely to exert large 

intrauterine environmental effects on offspring phenotypes, 

but are likely to share the same potential confounding fac-

tors (e.g. population stratification, assortative mating, etc.) 

as studies focusing on maternal genetic effects. Therefore, 

for these phenotypes, we would expect stronger evidence for 

a maternal genetic effect, whereas estimated maternal and 

paternal variance components of similar size may indicate 

the presence of residual confounding in the analysis (Rich-

mond et al. 2014). In the future, we intend to expand the 

M-GCTA model to jointly estimate paternal and maternal 

effects in the same G-REML framework and simultaneously 

account for any effects due to assortative mating.

We note that the M-GCTA model involves a number of 

assumptions common to the G-REML framework including 

normality of phenotypes, no G × E interactions or non-addi-

tive genetic effects, and random mating (Eaves et al. 2014). 

Additionally, M-GCTA estimates of maternal and offspring 

genetic effects might be biased if paternal genetic effects 

and/or parent-of-origin effects (POEs) affect the phenotype 

under study and are not modelled correctly in the analysis. 

For example, paternal genotypes will be correlated 0.5 with 

offspring genotypes. If paternal genetic effects affect the off-

spring phenotype then they may incorrectly be modelled as 

offspring genetic effects and bias estimates of the variance 

components. POEs refer to the phenomenon in which the 

effect of an allele depends on whether it is inherited from the 

mother or the father, the best studied of these effects being 

genomic imprinting (Guilmatre and Sharp 2012; Lawson 

et al. 2013). Thus, estimation of parental genetic effects by 

incorporating maternal (or alternatively paternal) genotypes 

into the model without further investigation of the underly-

ing mechanisms, as what we do in M-GCTA, may capture 

confounding effects from POEs. Although the contribution 

in phenotypic variation from imprinting has not been fully 

investigated, evidence suggests that < 1% of the human 

genome is imprinted (Morison et al. 2005; Lawson et al. 

2013; Cuellar Partida et al. 2018). Indeed, the G-REML 

methodology can be extended to estimate the proportion of 

phenotypic variance due to parent of origin effects across 

the genome (Laurin et al. 2018). Similar to M-GCTA, the 

method requires genome-wide SNP information on parent(s) 

and children in order to determine the parental origin of 

allelic transmissions. Using this method, we have shown that 

POEs on a range of different traits is likely to be very small 

(Laurin et al. 2018). In theory, a component indexing POEs 

could be added to the M-GCTA model so that POEs and 

maternal sources of variation could be estimated together, 

but future work is necessary to ensure optimal parameteriza-

tion and the properties of such a combined model.

Finally, since publication of the M-GCTA method (Eaves 

et al. 2014), a number of high profile procedures that share 

some similarities to M-GCTA in their methods and/or aims 

have been published in the literature (Kong et al. 2018; 

Young et al. 2018). Kong et al. (2018) created a procedure 

to detect what the authors term “genetic nurturing effects” 

of parents on their offspring (i.e. these genetic nurturing 

effects include, but are not limited to, maternal genetic 

effects). The Kong et al. approach regresses offspring phe-

notype on genome-wide polygenic scores (Evans et al. 2009) 

consisting of transmitted and untransmitted alleles. From 

this regression, estimates of the direct effect of alleles and 

indirect effects through "genetic nurture" on the offspring’s 

phenotype can be obtained. In addition, the authors show 

how it is possible to examine parent of origin effects i.e. 

whether direct and indirect effects differ between paternally 

and maternally transmitted alleles and whether the presence 

of assortative mating is likely to influence the estimates 

obtained. A key difference between M-GCTA and the Kong 

et al. (2018) approach, is that the latter utilizes genome-wide 

polygenic scores (which tend not to do an optimal job of 

tagging information across the genome), whereas M-GCTA 

summarizes genome-wide information more elegantly in the 

form of genetic relationship matrices.

The same group of authors also created a procedure 

called relatedness disequilibrium regression (RDR) which 

shares many methodological similarities with M-GCTA. 

RDR attempts to estimate heritability (or alternatively 

SNP heritability) by exploiting variation in relatedness 

between pairs of individuals due to random Mendelian 

segregation (which by definition should be orthogonal to 

environmental factors). Specifically, RDR first quantifies 

how much more or less related pairs of individuals are 

compared to what would be expected from the relatedness 

of their parents. Using this information, the authors show 

how it is possible to partition the phenotypic variance 
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into components due to the direct effect of individuals’ 

genotypes on their own traits (i.e. heritability), as well 

as the variance of the part of the environmental compo-

nent of the phenotype that is correlated with the paren-

tal phenotype (which include maternal effects and other 

forms of “genetic nurture”), and the covariance between 

both of these components. However, application of RDR 

requires thousands of genotyped parents of probands (i.e. 

genotyped mothers, fathers and their offspring), mean-

ing that the procedure currently has very limited practi-

cal utility. In contrast, M-GCTA only requires genotyped 

mother–offspring pairs (or alternatively father-offspring 

pairs), meaning that the method can be applied much more 

widely currently (but contingent on the assumptions dis-

cussed above). In conclusion, in this manuscript we have 

described a user-friendly tool for estimating the proportion 

of phenotypic variance due to tagged maternal (or alterna-

tively paternal) and offspring genetic effects on offspring 

phenotypes using large studies where genome-wide geno-

type data are available on mother- (or father-) offspring 

pairs. We applied the M-GCTA software package to birth 

weight using mother–offspring pairs from two large popu-

lation based birth cohorts, the ALSPAC and MoBa stud-

ies, and showed how genetic variation in birth weight was 

predominantly due to fetal genetic rather than maternal 

genetic sources of variation. In the future, we expect that 

the M-GCTA software will be used in the genetic analy-

sis of parent–offspring pairs from large cohorts to further 

enhance understanding of parental genetic effects on off-

spring health-related phenotypes.
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