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Alzheimer’s disease genetics
Early-onset AD and the amyloid cascade hypothesis. Early find-
ings of disease mutations in the amyloid precursor protein gene 
(APP) and presenilin genes1–3 were pivotal to the development of 
the amyloid cascade hypothesis4. It posits that misprocessing of 
amyloid-β (Aβ) and its deposition are the primary causal event in 
AD pathogenesis. Although these mutations explain less than 1% 
of AD, there is no doubt that this hypothesis has shaped mechanis-
tic research and drug development for AD over the last 25 years5. 
However, recent failures in clinical trials based on removing soluble 
and/or insoluble Aβ or targeting enzymes responsible for cleavage 
of APP have thrown doubt on the hypothesis6,7. Several possibili-
ties may explain this lack of success. First, the hypothesis may only 
relate to rare forms of early-onset AD in which causal mutations 
are observed. Second, the drug treatments may only be effective in 
the early stages of AD and not when the disease has already caused 
extensive neurodegeneration8,9. Indeed, evidence suggests that 
the disease process begins up to 20 years before the first cognitive 
symptoms are observed10. The hope is that amyloid-based drug tri-
als on mutation carriers, recruited and treated presymptomatically, 
will inform our understanding here11. Third, Aβ and the associated 
amyloid plaques may be correlates of disease mechanisms that have 
the primary influence on disease development12.

Late-onset AD genetics: common variation. Looking beyond AD 
mutations, genetic research has now produced extensive evidence 
that other genetic factors contribute to disease. Common forms of 
late-onset AD (LOAD) have heritability estimates of 56–79%13, and 
rarer forms with early-onset (5% of AD cases) with heritability of 
over 90%14, are contributed to by multiple genetic risk factors.

Apolipoprotein E (APOE) on chromosome 19 was the first risk 
gene identified as associating with LOAD15, as well as influencing 
familial and early forms of disease, and it remains the strongest 
genetic risk factor. The differential expression of the three major 
isoforms of ApoE (ε2, ε3 and ε4) is dependent on two point muta-

tions (rs429358 and rs7412) within exon 4 of the gene. An increased 
risk of AD is found in carriers of the ε4 allele, whereas the ε2 allele 
confers a small protective effect16,17. Risk is dose-dependent, with a 
threefold increase in ε4 heterozygotes (ApoE ε3/ε4) and a 15-fold 
increase in ε4 homozygotes (ApoE ε4/ε4). Disease susceptibility is 
thought to result from a conformational change in ApoE that affects 
the protein’s ability to bind ligands, including Aβ and TREM218. 
ApoE ε4 is thought to be less efficient in mediating clearance of 
soluble and aggregated Aβ19, but is also implicated in other cellular 
processes and tissues and certainly needs more study to define its 
full contribution to disease20.

Perhaps the most successful approach to identifying the genetic 
architecture of AD is the genome-wide association study (GWAS). 
In 2009, the first novel genetic associations were identified using 
GWAS, showing genome-wide statistically significant asso-
ciation between AD and variants within the CLU, PICALM and  
CR1 loci21,22. To date, over 50 risk loci (Fig. 1 and Table 1) with 
genome-wide significance (GWS; P < 5 × 10–8) are associated with 
AD. This success in identifying risk loci can be attributed to the 
extensive national and international collaboration seen within  
the field. The initial Genetic and Environmental Risk in AD 
(GERAD) and European AD Initiative (EADI) GWAS21,22 were 
quickly followed by studies led by the Cohorts for Heart and 
Aging Research in Genomic Epidemiology (CHARGE)23 and AD 
Genetics Consortium (ADGC)24, as well as an additional GERAD 
study25. These four consortia subsequently joined together to  
form the International Genomics of Alzheimer’s Project (IGAP) 
who, in 2013, identified a further 11 risk loci as novel genome-wide 
significant LOAD susceptibility loci26. The IGAP GWAS results 
summary dataset is freely available to researchers (individual- 
level data available upon request to the relevant consortia) and  
has been pivotal to multiple successive studies in a variety of 
research areas27–29.

Building upon the IGAP26 dataset, single-nucleotide26,30–34, 
genome-wide35,36, transethnic32 and proxy design31,37,38 (based on 
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reports of parental history) studies have identified numerous novel 
GWS loci (Fig. 1 and Table 1).

It is estimated that a substantial proportion (up to 60%)39,40 of the 
genetic variance of LOAD is not accounted for. Given the success in 
other diseases41, there is no doubt that more powerful GWAS will 
identify additional associations. Currently, studies using research-
based or clinically diagnosed AD have examined 33,692 cases and 
56,077 controls42, so more associations will be found with increasing 
sample size and greater power in the future. However, this ‘miss-
ing heritability’ may also be contributed to by rare or low-frequency 
susceptibility genes.

Late-onset AD genetics: rare variation. The primary technology 
for the detection of rare genetic variation (population frequency 
less than 1%) has been sequencing. Next-generation sequencing 
(NGS) technologies in the form of whole-exome and whole-genome 
sequencing have identified protein-coding changes associated with 
disease43–46. Interestingly, a number of rare disease-associated vari-
ants are identified in loci with common variants associated with 
LOAD47–50, suggesting that these genes influence disease suscepti-
bility in multiple ways. A number of additional loci have received 
attention as putative risk genes51–53.

Sequencing has historically proven to be prohibitively expensive 
for broad use in the field. While the costs of such experiments are 
falling, future gene discovery may be increasingly tractable through 
enriching sequencing for the most heritable samples, including 
early-onset and familial AD. An alternate approach for rare-vari-
ant detection is the use of exome-wide microarrays with variants 
selected from whole-exome sequencing. This approach has limita-
tions and can only test what is known. Sims and colleagues used  
this approach in a powerful genome-wide study and found novel 
coding variants that influence AD and also showed that improved 
imputation panels now make GWAS more amenable to detecting 
rare variants54. It is important to note that variants of small statistical 
effect can show substantive biological changes of disease relevance. 

For example, Sims et al.54 identified PLCG2 p.(Arg522), which has 
an effect size of 0.68 and has been shown to increase enzymatic 
activity in cell lines55, human microglia derived from induced pluri-
potent stem cells (iPSC) and mouse microglia (Phillips, T. et  al., 
unpublished data).

Systematic analysis of gene–gene interaction or epistasis in 
AD has been limited, largely due to insufficient power and the  
massive multiple-testing burden inherent in genome-wide epistasis 
screening. Initial studies have identified interaction between single-
nucleotide polymorphisms (SNPs) that require replication56. It is 
noteworthy that a small number of individuals live well beyond 75 
years of age without any symptoms of cognitive decline despite pos-
sessing a large number of risk factors for AD. These ‘AD-resilient’ 
individuals may harbor protective genetic variation57.

Sub-phenotypes of disease. Genetic relationships have also been 
sought for disease phenotypes. Aside from the core cognitive  
symptoms of disease, individuals with AD can develop a range of 
behavioral symptoms. One area that has received attention in recent 
years is psychosis. Psychotic symptoms are significantly more com-
mon in AD than the general population, affecting ~40% of cases58. 
They are associated with decreased quality of life for caregivers and 
patients59, more rapid cognitive60 and functional decline61, and pre-
mature institutionalization59. While no gene has, thus far, shown 
genome-wide significant association to psychosis in AD, evidence 
suggests that loci influencing psychosis in disease do so with a 
greater effect than generally seen in LOAD (excluding APOE)62 and 
that the lack of a significant association may be accounted for by 
the small sample sizes tested to date. Another area of study is rate 
of decline. Early studies show that the genetic architectures for AD 
disease risk and rate of decline are distinct, with APOE showing no 
association with disease progression60. Recent work investigating 
the impact of both single-nucleotide AD-associated variation and 
polygenic risk score (PRS) (generated from the IGAP genome-wide 
significant hits) on rate of decline show association between both 
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Fig. 1 | Schematic of Mendelian disease-causing genes and loci reaching GWS for single-variant (not gene-wide) association with sporadic AD. Blue 

circles and orange triangles represent risk and protective association, respectively. Associations identified in AD-diagnosed cohorts are not in boxes, while 

associations identified in meta-analysis of AD-diagnosed and proxy-diagnosed cohorts are indicated by black box outlines. Of note, AD case–control data 

is absent for the CNTNAP2 and HESX1 loci and is only weakly supportive for the ALPK2and APH1B loci (P = 10−2). OR, odds ratio.
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Table 1 | Loci reaching genome-wide significance for association with sporadic AD

Locus GWS locus or gene original SNP and publication Dataset Functional information

1 APOE rs429358 p.(Cys112Arg); ref. 15 Case–control A multifactorial protein, known primarily for its role in 
lipid transport. Known to bind soluble Aβ.rs7412 p.(Cys158Arg); ref. 15

2 EPHA1 rs11767557; refs. 24,25 Combined ADGC and 
GERAD+

Receptor tyrosine kinase. Role in immunity and endo-
cytosis. Regulates cell morphology and motility, including 
permeability of the blood–brain barrier to leucocytes.

3 CLU rs11136000; refs. 21,22 GERAD
EADI

Molecular chaperone. Role in immunity and cholesterol 
metabolism. Binds Aβ.

4 INPP5D rs35349669; ref. 26 IGAP Inositol polyphosphate-5-phosphatase. Role in 
immunity and cholesterol metabolism. Mediates 
signaling of multiple myeloid-cell pathways including 
proliferation, survival and chemotaxis. Inhibits TREM2 
signaling by association with DAP12.

5 HLA-DRB5/HLA-DRB1 rs9271192; ref. 26 IGAP HLA class II histocompatibility antigen. Role in 
immunity, including involvement in antigen presentation.

6 CR1 rs6656401; ref. 22 EADI Complement receptor. Role in immunity; functions 
include clearance of complement opsonized molecules 
and microglial phagocytosis.

7 TREM2 rs75932628 p.(Arg47His);  
refs. 42,44

Mixed-cohorts Receptor of the immunoglobulin superfamily, binds 
lipids and Aβ. Signals to affect multiple processes 
in myeloid cells including phagocytosis and cellular 
metabolism.

rs143332484 p.(Arg62His); 
ref. 54

IGAP

8 CD33 rs3865444; refs. 24,25 Combined ADGC and 
GERAD+

Myeloid-cell transmembrane receptor that binds sialic 
acids. Role in immunity.

9 MS4A gene cluster rs4938933; ref. 24

rs610932; ref. 25

ADGC
GERAD+

Specific function unknown. Expressed predominately in 
immune cells.

10 ABI3 rs616338 p.(Ser209Phe); ref. 54 IGAP Component of Abi–WAVE complex, which regulates 
actin polymerization. Role in immunity.

11 PLCG2 rs72824905 p.(Pro522Arg); 
ref. 54

IGAP Phospholipase catalyzing the conversion of IP3 and DAG. 
Signal transducer of multiple pathways in immune cells.

12 ZCWPW1 and PILRA rs1476679; ref. 26 IGAP ZCWPW1: Unknown function. Possible reader of 
histone modifications.
PILRA: Control of cell signaling via SHP-1.

13 MEF2C rs190982; ref. 26 IGAP Transcription factor involved in development of multiple 
tissue types. Putative master regulator of microglia. In 
neurons, controls activity-dependent synapse number. 
Hub gene.

14 CD2AP rs9349407; refs. 24,25 Combined ADGC and 
GERAD+

Adaptor molecule involved in cytoskeletal dynamics. 
Involved in early endosome morphology.

15 BIN1 rs744373; ref. 23 CHARGE Involved in endocytic recycling and Aβ production. Also 
involved in membrane folding.

16 PICALM rs3851179; ref. 21 GERAD Clathrin assembly protein involved in clathrin-mediated 
endocytosis and transcytosis.

17 CASS4 rs7274581; ref. 26 IGAP Regulates focal adhesion integrity and cell spreading. 
Roles in cytoskeleton and axon development and tau 
metabolism.

18 CELF1/SPI1 rs10838725; ref. 26 IGAP RNA-binding protein involved in pre-mRNA alternative 
splicing. Role in cytoskeleton and axon development.

19 FERMT2 rs17125944; ref. 26 IGAP Scaffolding protein, part of the extracellular matrix; 
controls cell shape.

20 NME8 rs2718058; ref. 26 IGAP Unknown function. Possibly involved in ciliary function 
with a role in cytoskeleton and/or axon development.

21 SORL1 rs11218343; ref. 26 IGAP Endocytic receptor involved in the uptake of lipo-
proteins, APP processing and lysosomal targeting of Aβ.Gene-wide48 ADES-FR

22 ABCA7 rs3764650; ref. 25 GERAD+ Transporter involved in cholesterol metabolism and 
phagocytic clearance of Aβ.Gene-wide50 IGAP

Continued
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Locus GWS locus or gene original SNP and publication Dataset Functional information

23 SLC24A4–RIN3 rs10498633; ref. 26 IGAP SLC24A4: Na+Ca2+, K+ exchange.
RIN3: Ras interaction–interference protein regulating 
endocytosis. Role in cholesterol metabolism.

24 PTK2B rs28834970; ref. 26 IGAP Cytoplasmic protein tyrosine kinase sensitive to 
calcium. Regulation of ion channels in neurons, cell 
spreading and migration and immune cell function.

25 ADAM10 rs593742; refs. 33,37 IGAP+ Metalloprotease responsible for proteolytic processing 
of APP.Combined UK Biobank 

and IGAP

26 IGHV1-67 Gene-wide35 IGAP Unknown function.

27 PPARGC1A Gene-wide36 IGAP Transcriptional coactivator regulation mitochondrial 
oxidative metabolism.

28 TP53INP1 Gene-wide35 IGAP Tumor suppressor activity; regulates autophagy and 
transcription.

29 ECHDC3 rs7920721; ref. 32 ADGC and IGAP Unknown function.

IGAP+

30 ACE rs138190086; ref. 33 IGAP+ Catalyzes the conversion of angiotensin I into a 
physiologically active peptide, angiotensin II. Controls 
blood pressure and fluid–electrolyte balance.

rs6504163; ref. 37 Combined UK Biobank 
and IGAP

31 ADAMTS1 rs2830500; ref. 33 IGAP+ Metalloproteinase. Degrades extracellular matrix  
proteo glycans. Expression is induced by immune 
response.

32 IQCK rs7185636; ref. 33 IGAP+ Unknown function.

33 TRIP4 rs74615166; ref. 30 Fundaciô ACE & IGAP Transcriptional coactivator of nuclear receptors.

34 RORA Gene-wide36 IGAP Nuclear hormone receptor. Possible roles in circadian 
rhythm, cholesterol metabolism and inflammation.

35 ZNF423 Gene-wide36 IGAP DNA-binding transcription factor. Involved in 
differentiation of adipocytes, neurons and leukemia.

36 APP rs63750847, p.(Ala673Thr); 
ref. 46

Icelandic, Finnish and 
Swedish

Amyloid precursor protein.

37 IGHG3 rs77307099; ref. 44 ADSP Immunoglobulin gene whose antibodies interact with Aβ.

38 AC099552.4 7:154988675:G:A; ref. 44 ADSP Non-coding RNA.

39 ZNF655 Gene-wide44 ADSP Zinc-finger protein; transcriptional regulation.

40 HBEGF/AFDN1 rs11168036; ref. 32 Transethnic ADGC  
and IGAP

Heparin-binding EGF-like growth factor. May be 
involved in macrophage-mediated cellular proliferation.

41 BZRAP1-AS1 rs2632516; ref. 32 Transethnic ADGC  
and IGAP

Non-coding RNA.

42 TPBG Gene-wide32 Transethnic ADGC  
and IGAP

Trophoblast glycoprotein encodes a leucine-rich  
trans mem brane glycoprotein that may be involved in 
cell adhesion.

43 DSG2 rs8093731; refs. 26,31 IGAP Desmoglein 2, a cell-adhesion molecule. Desmogleins 
are calcium-binding transmembrane glycoprotein 
components of desmosomes, cell–cell junctions 

Combined ADSP, IGAP, 
PGC–ALZ and deCODE

44 CLNK and HS3ST1 rs6448453; ref. 31 Combined UK Biobank, 
ADSP, IGAP, PGC–ALZ 
and deCODE

CLNK: member of SLP-76 family of immune-cell-
specific adaptors.

rs4351014; ref. 34 Combined GR@ 
CE–DEGESCO, IGAP 
and UK Biobank

HS3ST1: Sulfotransferase that utilizes 3′-phospho-5′-
adenylyl sulfate (PAPS) to catalyze the transfer of a sulfo 
group to position 3 of glucosamine residues in heparan.

45 SCIMP rs113260531; ref. 31 Combined UK Biobank, 
ADSP, IGAP, PGC–ALZ 
and deCODE

Transmembrane adaptor protein involved in MHC class 
II signaling transduction.

rs77493189; ref. 38 Combined UK Biobank 
and IGAP

Continued

Table 1 | Loci reaching genome-wide significance for association with sporadic AD (continued)
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the PRS and the rare TREM2 p.(His47) variant63. In fact, TREM2 
p.(His47) carriers show a 23% faster rate of decline compared with 
non-variant carriers.

Comorbid traits. Epidemiological observations of shared comor-
bidity in twin and family studies have long provided evidence for 
genetic correlations among diseases64, as has the co-occurrence of 

Locus GWS locus or gene original SNP and publication Dataset Functional information

46 PRKD3 and NDUFAF7 rs876461; ref. 34 Combined GR@ 
CE–DEGESCO, IGAP 
and UK Biobank

PRKD3: Protein kinase D family of serine–threonine 
kinases, which bind diacylglycerol and phorbol esters.

NDUFAF7: Assembly factor protein, assembly and 
stabilization of the mitochondrial respiratory chain 
complex I.

47 TREML2 rs9381040; ref. 34 Combined GR@ 
CE–DEGESCO, IGAP 
and UK Biobank

Cell surface receptor that may play a role in innate and 
adaptive immune response-enhancing T-cell activation.

48 SHARPIN rs34674752 p.(Pro294Ser); ref. 34 Combined GR@ 
CE–DEGESCO, IGAP  
and UK Biobank

Component of the LUBAC complex; plays a key role in 
NF-κB activation and regulation of inflammation.rs34173062 p.(Ser17Phe); ref. 34

49 MAPT and KANSL1# rs2732703; ref. 34 Combined GR@ 
CE–DEGESCO, IGAP  
and UK Biobank

MAPT: Transcripts are differentially expressed in 
the nervous system, depending on stage of neuronal 
maturation and neuron type.

KANSL1: Subunit of histone acetylation complexes 
MLL1 and NSL1. The NSL complex may be involved in 
transcription regulation.

50 CHRNE and C17orf107 rs72835061; ref. 34 Combined GR@ 
CE–DEGESCO, IGAP 
and UK Biobank

CHRNE: Controls an ion-conducting channel across the 
plasma membrane.
C17orf107: Unknown function.

51 IL34 rs4985556 p.(Tyr213Ter);  
refs. 34,37

Combined UK Biobank 
and IGAP

Interleukin-34. Cytokine that promotes the 
proliferation, survival and differentiation of monocytes 
and macrophages.Combined GR@ 

CE–DEGESCO, IGAP 
and UK Biobank

Dementia in parental–proxy observation (not GWS in AD diagnosed).

52 CNTNAP2* rs114360492; ref. 31 Combined UK Biobank, 
ADSP, IGAP, PGC–ALZ 
and deCODE

Member of the neurexin family.

53 ALPK2** rs76726049; ref. 31 Combined UK Biobank, 
ADSP, IGAP, PGC–ALZ 
and deCODE

Alpha kinase. Specific function is unknown.

54 ADAMTS4 rs4575098; ref. 31 Combined UK Biobank, 
ADSP, IGAP, PGC–ALZ 
and deCODE

Extracellular matrix metalloproteinase (aggrecanase-1)

55 APH1B** rs117618017 p.(Thr27lle); ref. 31 Combined UK Biobank, 
ADSP, IGAP, PGC–ALZ 
and deCODE

Component of the gamma-secretase complex; assists 
in the cleavage of APP.

56 KAT8 rs59735493; ref. 31 Combined UK Biobank, 
ADSP, IGAP, PGC–ALZ 
and deCODE

Histone acetyltransferase. Regulates the outcome of 
autophagy.

rs889555; ref. 37 Combined UK Biobank 
and IGAP

57 SPPL2A rs59685680; ref. 38 Combined UK Biobank 
and IGAP

Signal peptide peptidase-like 2A, related to TNF signaling 
(REACTOME) and signaling by GPCR. May play a role in 
the regulation of innate and adaptive immunity.

58 HESX1* rs184384746; ref. 31 Combined UK Biobank, 
ADSP, IGAP, PGC–ALZ 
and deCODE

Homeobox protein that is a transcriptional repressor.

Table differentiates between loci reaching GWS in AD diagnosed cohorts (loci numbered 1–43) and loci reaching GWS when AD diagnosed cohorts are meta-analyzed with UK Biobank proxy diagnosed 

cohorts (loci numbered 44–52). Datasets: Fundació ACE, a non-profit entity at the service of people with Alzheimer’s disease or other dementias and their caregivers (https://www.fundacioace.com/en);  

Alzheimer’s disease sequencing project (ADSP); Psychiatric Genomics Consortium Alzheimer’s disease working group (PGC–ALZ) Genome Research at Fundació ACE (GR@CE); Dementia Genetics 

Spanish Consortium (DEGESCO); deCODE, a private corporation (https://www.decode.com); + indicates the sample consortium but with additional samples. # Genome-wide significant association only 

seen in APOE ε4 analysis. * Indicates SNPs and loci with missing data in AD case–control datasets. ** Indicates SNPs and loci with minimal support (P = 10−2 genome-wide significance level) in AD case–

control datasets.

Table 1 | Loci reaching genome-wide significance for association with sporadic AD (continued)

NATuRe NeuRoScieNce | www.nature.com/natureneuroscience

https://www.fundacioace.com/en
https://www.decode.com
http://www.nature.com/natureneuroscience


REVIEW ARTICLE NATURE NEUROSCIENCE

multiple diseases in the same individual65. The advent of GWAS 
allowed, for the first-time, systematic cross-phenotype analyses, 
with a significant number of traits sharing genetic architecture66. 
Indeed, up to 4.6% of SNPs and 16.9% of genes have cross-pheno-
type associations67. In dementia, initial work shows that AD and 
Parkinson’s disease (PD) are genetically distinct68, but that demen-
tia with Lewy bodies (DLB) is correlated to both AD and PD69,70. 
Work by the Brainstorm consortium attempted to quantify the 
degree of overlap in genetic risk factors of 25 common brain dis-
orders including AD29 and a range of behavioral–cognitive pheno-
types. While AD shows no significant evidence of correlation with 
psychiatric or neurological traits, strong negative correlations with 
college attainment, years of education and intelligence are observed. 
AD and some aspects of cardiovascular disease also share common 
risk variants71. We are now in the era where sufficiently powered 
genome-wide datasets are available to extend these sophisticated 
analyses to a range of phenotypes and sub-phenotypes seen to over-
lap traditional diagnostic boundaries.

Functional genomics
The progression from genetic association to biological mechanism 
poses a significant challenge to exploiting the findings of GWAS in 
the development of new therapies. This is, in part, due to the loca-
tion of the majority of risk variants in non-coding elements of the 
genome. Combined with the polygenic nature of many diseases, it 
is clear that analytical approaches that combine multiple data types 
are required to assist in this translation.

Pathway analysis. The identification of many risk genes suggests 
commonalities or convergence in function. As with studies of gene 
expression, ‘pathway’ analysis methods have been developed for 
genomic association data that aim to identify, in general, an excess 
of association signal in sets of genes based on independent annota-
tions (for example, ALIGATOR72, INRICH73 and MAGMA74). They 
often incorporate risk loci that fall below the traditional genome-
wide significant threshold, and they can therefore offer insights 
into risk mechanisms beyond select loci, capturing the maximum 
amount of genetic association information available. Application of 
these methods to AD GWAS results has been particularly powerful 
in identifying disease-relevant processes. Indeed, these approaches 
provide some of the first convincing genetic evidence that the 
immune system contributes to AD risk (Fig. 2)75. Other pathways 
implicated include endocytosis, cholesterol metabolism, ubiquitina-
tion and, more recently, Aβ clearance and tau biology (Fig. 2)42.

Gene expression. In parallel with the identification of risk variants 
by GWAS, the genetic control of gene expression has been investi-
gated using studies of expression quantitative trait loci (eQTLs)76. 
These studies aim to link specific variants with levels of gene 
expression, often across multiple tissue types and cellular contexts. 
As such, they are a powerful tool for investigating the relationship 
between genetic disease risk and gene expression and for linking 
non-coding variants to target genes. Analytical advances such as 
transcriptome-wide association studies77 and PrediXcan78 will also 
be useful for linking risk alleles to gene expression mechanisms, 
and have recently been applied to AD GWAS to identify geneti-
cally mediated changes in brain mRNA splicing79. Although many 
resources for brain tissue exist80–82 and continue to be enhanced with 
increasing cellular and developmental resolution, a striking over-
lap of AD risk variants and eQTLs in monocytes from blood has 
also been reported83. eQTL studies represent the gold standard for 
linking variants to gene expression changes, but they require mul-
tiple donors with matched genotype and RNA-expression measure-
ments. The sample sizes often range from hundreds to thousands, 
making them expensive and difficult to perform on hard-to-isolate 
cell types. In contrast, gene expression measurements from a small 

number of samples have also proven useful in linking putative risk 
genes to specific cell types. For AD, the integration of GWAS results 
with cell types identified from single-cell RNA-sequencing of brain 
tissue has highlighted microglia as the most enriched cell type84,85; 
although the causal relationship is less clear with these studies than 
with eQTLs, they again support the role of immune cells in AD.

Tissue specificity. In addition to identifying likely causal cell types, 
the application of single-cell technologies to heterogeneous tissues 
will help resolve different cellular states. This is particularly impor-
tant for cells of the immune system, which are known to rapidly 
respond to environmental cues and to adopt long-lasting ‘activa-
tion’ states. Indeed, recent single-cell RNA-sequencing (scRNA-seq) 
profiling of microglia from mouse models of AD has identified a 
subset of ‘disease-associated microglia’86. Distinct microglia sub-
sets, based on scRNA-seq, have also been identified during normal 
development and in response to injury87,88. Identification of the 
molecular and environmental regulators of these cells states open 
up new opportunities for the manipulation of microglia function. 
Likewise, the influence of AD associated variants and genes on the 
transition between these states may have important consequences 
for understanding and treating the disease. Beyond measurements 
of gene expression, single-cell omics technologies are now capable 
of interrogating the chromatin landscape89,90, DNA methylation91 
and targeted protein abundances92,93. The availability of increas-
ingly high-resolution data on cell types of interest (for example, 
microglia) promises to refine these findings further94. Finally, con-
vergence between genes at genetic risk loci and molecular system 
level changes in aged or diseased brains suggest that AD risk genes 
operate in pathways relevant to pathology95,96, including those that 
change expression in response to Aβ accumulation97.

Epigenome. The gene-regulatory mechanisms underlying eQTLs 
and non-coding risk variants are often poorly understood, but  
our knowledge of the gene-regulatory landscape (the epigenome) 
of cell types is rapidly expanding with the advent of genome-wide 
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sequencing applications such as chromatin immunoprecipita-
tion and sequencing (ChIP–seq). These assays are able to provide 
genome-wide profiles of regulatory features based on histone modi-
fications, the binding of individual transcription factors, and bio-
physical properties such as open chromatin. Integration of these 
data types with GWAS findings can provide insights into risk 
mechanisms at individual loci, as well as identify cell types in which 
multiple loci operate. For AD GWAS, integrative analyses with gene-
regulatory elements have identified immune cell types, particularly 
monocytes, as likely effectors of risk at genome-wide significant 
loci98–100 and are starting to identify functional variants underling 
risk-associated eQTLs101. These approaches have been extended 
with methods such as stratified linkage disequilibrium (LD) score 
regression102 to partition the heritability by gene-regulatory ele-
ments from different cell types. Again, SNPs located in immune cell 
types, including microglia, are the most enriched100,103,104. Recently, 
these approaches have been used with gene-regulatory information 
from human microglia105 to increase the resolution from cell type 
to transcription-factor cistromes. Tansey et al. identified an enrich-
ment of genome-wide significant AD risk variants within a par-
ticular microglial–macrophage motif containing DNA elements104; 
these sites were also enriched for AD common variant heritability. 
Amongst these enriched cistromes were those targeted by PU.1 
(encoded by SPI1) and MEF2 (encoded by MEF2C). Interestingly, 
both SPI1 and MEF2C have been identified as AD risk or onset-
modifying loci26,35,103,106. These findings suggest that common-vari-
ant AD risk operates through transcriptional networks controlled 
by other AD risk genes that act as ‘hubs’. Such genes have also been 
referred to as ‘peripheral master regulators’107. Through coordinated 
regulation of other risk genes, they could provide important ave-
nues into trait biology.

It is noteworthy that the majority of human functional genomic 
data produced to date uses postmortem tissue and therefore poorly 
captures dynamic changes in gene regulation (for example, dur-
ing development or response to an environmental challenge). To 
address this, collections of induced pluripotent stem cells from 
genotyped individuals are being generated to explore the genetic 
control of context-specific gene expression108.

Somatic mutations
Single-cell technologies are also being used to probe heterogeneity 
in cellular DNA content and sequence. These postzygotic changes 
are known as somatic mutations. Studies of somatic mutation in the 
brain are in their infancy. Nevertheless, they do occur in healthy 
brain tissue, resulting in mosaicism109,110. Damaging mutations 
can therefore occur and accumulate in a subset of cells, resulting 
in restricted cell-type consequences, including vulnerability to cell 
death111. Whole-genome approaches to single-cell DNA content are 
largely restricted by the cost of obtaining sufficient sequencing cov-
erage for reliable quantification. However, targeted approaches have 
identified changes in APP copy number in cells from AD brain sam-
ples compared to controls112, as well as APP recombination events 
that result in the insertion of known disease-causing APP mutations 
into the genome of individual neurons113. The general importance of 
this type of mutation is still to be quantified, and it should be noted 
that they do not contribute to the observed heritability of the AD. 
They are therefore likely to operate in conjunction with common-
variant risk factors.

Risk prediction
The finding that LOAD is the result of the combined influences 
of multiple genetic loci or polygenic effects, and that these effects 
can be captured in one algorithm, has enormous utility in the field. 
While APOE has an established role as the strongest single genetic 
risk factor for sporadic AD, it is neither necessary nor sufficient 
to cause disease. The effect estimates of the other associated risk 

loci range from an odds ratio of approximately 1.1 to 2.1 for each 
disease-associated allele, meaning their individual contribution to 
disease risk is relatively small. However, the cumulative effect of 
these susceptibility loci can be captured by PRS analysis. This takes 
advantage of all relevant association information and thus captures 
most of the variance of GWAS studies, including true genetic risk 
loci that are hypothesized to lie below the genome-wide significance 
threshold. This approach is supported by the observed increase in 
explained heritability when weak effect loci are also considered114.

Early work showed that AD is a polygenic disease (P = 4.9 × 
10−26)115, an enrichment that remains significant after APOE and 
other genome-wide associated regions are excluded (P = 3.4 × 
10−19). Escott-Price and colleagues created the Cardiff PRS (CPRS) 
from 17,008 AD cases and 37,154 controls taken from the IGAP 
dataset26. Using an association cut-off of P < 0.5 they produced an 
algorithm based upon over 87,000 variants, incorporating age and 
sex, which showed an area under the curve (AUC) of 0.78, indicat-
ing that this CPRS could correctly classify cases and controls 78% of 
the time. The predictive utility of CPRS has now been validated in a 
number of independent datasets116, with the predictive accuracy of 
disease status reaching 84% in neuropathologically confirmed AD 
samples, 82% in the Alzheimer’s Disease Neuroimaging Initiative 
(ADNI) cohort (Fig. 3) and extending to over 90% sensitivity (cor-
rectly identifying AD cases) in those individuals showing the great-
est genetic risk for disease.

Notably, those with a CPRS 2 s.d. above the mean (extreme PRS) 
showed highly accurate prediction of AD diagnosis (Fig. 3). Thus, 
the CPRS could identify those at high risk early in life. This facility 
could transform our understanding of the first stages of disease and 
also provide a means to develop high- and low-risk stem cell models 
to explore disease mechanisms in human systems. Interestingly, the 
ADNI dataset also showed that APOE was just as good as CPRS 
at detecting individuals with amyloid plaque deposition. However, 
only 62% of these went on to develop AD and CPRS; extreme CPRS 
still remained the best predictor of amyloid deposition within AD. 
The genetic heritability explained by APOE and the genome-wide 
significant loci is not high (h2 = 5.1%)117, as compared to genome-
wide estimates (h2 = 24–53%)40,114,118. The CPRS115 shows prediction 
accuracy of AUC = 75–84% (compared to AUC = 66% for APOE 
and GWS loci119) in clinical and pathology-confirmed samples, 
respectively115,120. These AUC estimates are very close to the maxi-
mum prediction accuracy that can be achieved on the basis of SNP-
based heritability captured by the whole genome117 and can be used 
for AD risk prediction with more confidence. If used in the general 
population, the majority of people will gain little from CPRS, but 
those with extreme CPRS will have a high degree of confidence that 
they either will develop or never develop AD.

Current research is exploring the utility of using CPRS calcu-
lated for the biological pathways implicated in AD, enabling par-
ticipant stratification for preventative and clinical trials of relevant 
targets and potentially for precision medicine. Initial work assessing 
the cumulative risk of 20 AD associated risk variants categorized 
by biological pathway suggests that the clinical model of early AD 
pathology is explained by different biological pathways121. In partic-
ular, the endocytosis pathway shows relevance in subjects with mild 
cognitive impairment121. Development of full PRS models for each 
AD-implicated pathway are now needed to improve the quality of 
pathway-specific genetic scores that could feed into future research, 
including clinical trials of drugs targeting relevant pathways. 
Targeted drugs will also need pathway-specific biomarkers and 
drug trials that possibly move away from full disease measures to  
define outcomes, with the consequence of a likely reduction in time-
scale and cost. Identifying individuals at high or low risk of devel-
oping AD will also allow better understanding of the earliest signs 
of disease, develop appropriate biomarkers through imaging and 
bio-sampling, and help test for relationships with environmental  
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factors that may interact with genetics to delay or exasperate dis-
ease mechanisms.

Neuroimaging approaches offer insight into AD pathogenesis 
in vivo, demonstrating how the combined impact of AD risk genes 
are associated with altered brain physiology122–125. Accumulating 
evidence suggests that AD GWAS risk alleles influence brain struc-
ture and function in asymptomatic individuals. Early studies show-
case the potential roles of individual GWAS AD SNPs on brain 
structure and function126,127; however, recent work now assesses the 
impact of the cumulative impact of AD-risk SNPs through CPRS. 
These studies have primarily focused on putatively AD-susceptible 
brain regions, such as medial temporal lobe macrostructure (hip-
pocampal formation; amygdala) and other in  vivo biomarkers 
of AD pathology such as Aβ42 deposition128–132. Collectively, these 
observations suggest that an excessive burden of AD risk alleles 
may compromise brain health in individuals years before the onset 
of clinical symptoms. These hypotheses are further supported by 
large GWAS of neuroimaging data, demonstrating genetic correla-
tions between AD and markers of brain health, such as subcortical 
brain volumes133,134. However, the extended impact of AD PRS on 
the brain remains relatively unknown. This is largely due to con-
straints such as the need to do multisequence, multimodal imaging 
in large sample sizes and constraints intrinsic to harmonization pro-
cedures135. Initial evidence from a middle-aged population cohort 
(UK Biobank) does suggest relationships between CPRS and surface 
areas of the frontal and cingulate cortex, specifically with the ante-
rior cingulate for the microglia-mediated innate-immunity PRS136.

Genetic modelling and disease mechanisms
Establishing animal and cellular models of AD mutations or func-
tional coding variants is now routine. Several transgenic mouse 
models have been developed using AD mutations in APP and the 
presenilin genes, but none recapitulate the full profile of the disease 
as seen in humans137. While they do show accumulation of Aβ pep-
tide in the brain and cognitive deficits, they rarely show AD asso-
ciated cell death or tau dysfunction (unless tau mutations are also 
introduced). It is noteworthy that rodents do not naturally develop 
AD and that human-based manipulations are necessary to produce 
AD relevant changes. If, as the genetics of common forms of AD 
suggests, the disease requires multiple components to change to 
trigger AD, then it is not surprising that transgenic models of single 
AD components do not reflect full blown AD. Transgenic models of 
APOE are less numerous, but have shown interesting results when 
crossed with APP transgenic models137. APOE is shown to influence 

Aβ aggregation and clearance from the brain, although other out-
comes are now the focus of new research. Indeed, as many more 
APOE models are being produced (MODEL-AD) we will soon see 
a much broader capture of the AD phenotype. Drosophila mod-
els of AD have also been the source of much research and benefit 
from the speed at which results and manipulations can be achieved. 
Drosophila have low redundancy, which simplifies the analysis of 
gene disruption. Early work focused on APP and tau models, but 
lately the models are facilitating the screening of GWAS susceptibil-
ity genes138.

Stem-cell-derived models of AD genetic risk variants have, 
understandably, focused on rare variants, particularly those that 
cause familial AD. Lines derived from AD cases carrying PSEN1 
and PSEN2 mutations were the first to be investigated139, followed 
by APP duplications140. More recently, TREM2 variant and null lines 
have been developed and used to investigate AD-related microg-
lial function141,142. Common-variant stem cell models have generally 
lagged behind, with only a small number of target models devel-
oped, most notably APOE143,144. Only three loci identified exclu-
sively by GWAS, PICALM145, CLU146 and PLCG2, have been used 
for stem cell models. Of these, only the PICALM and PLCG2 mod-
els are based on a likely causal variant, highlighting the challenges 
of moving from GWAS association to a cell model. These models 
have begun to identify important AD-relevant biology. For example, 
neurons deficient in CLU protein are resistant to neurodegeneration 
in response to Aβ risk, and altered PICLAM expression manifests as 
disrupted transcytosis of Aβ by endothelial cells. Models of APOE-
mediated risk have identified multiple dysregulated processes across 
different stem-cell-derived cell types, for example, diminished neu-
rotrophic function of APOE ε4/ε4 astrocytes143, differential activa-
tion of neuronal APP transcription and Aβ-synthesis by glial APOE 
isoforms147, and altered Aβ aggregates and hyperphosphorylation of 
tau in organoids144. However, none, as they stand, recapitulate all 
aspects of the human AD148.

The recent advances in identifying multiple genetic risk factors 
for AD, as described above, open new avenues for disease model-
ling. Specifically, they create the ability to construct induced plu-
ripotent stem cells (iPSC) from individuals with high or low PRS 
for AD or its component pathways, thereby creating resources 
which capture multiple disease factors in the same cells. However, 
there are challenges with these approaches. Individuals selected for 
high PRS will vary in other ways that could influence outcomes. 
Accordingly, studies involving many different iPSC donors will be 
needed to overcome this natural variation and identify the disease 
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relevant consistencies. Thus, future research could combine infor-
mation from models of specific known AD variants of APP, pre-
senilin, APOE, TREM2, PLCG2 and ABI3 (for example) with the 
outcomes of high and low PRS models to triangulate disease rel-
evant mechanisms (Fig. 4). The multiplex model of AD (see below) 
also has implications for what are tested as outcome measures. 
Recent advances in cellular approaches such as scRNA-seq, three-
dimensional (3D) cultures, organoids of neurons, glia and epithelial 
cells, and the ability to transplant cells into the brains of mice to 
form chimeras will undoubtedly expand our knowledge of disease 
mechanisms underpinning the AD model.

The multiplex model of Alzheimer’s disease
The multiplex model builds on evidence we observe from genetic, 
and for that matter, environmental studies of AD. Genetics show 
us that AD is a multicomponent disease and that deficits com-
bine additively to trigger disease. There is strong evidence for 
changes in immunity and inflammation, Aβ production and clear-
ance, endocytosis, ubiquitination, cholesterol, and tau process-
ing. Epidemiological research (not reviewed here) also highlights 
a significant vascular component to AD development (Fig. 2)149. 
The multiplex model assumes that changes to some or all of these 
model components act together to trigger a disease cascade, which 
ultimately results in the cell and synaptic loss observed in AD. AD 
could be triggered by a number of different patterns of deficits that 
may differ between tissues and over the course of disease develop-
ment. Indeed, in time we may characterize AD as several diseases. 
However, until we understand the specific biological mechanisms 
that underlie the model, it is beneficial to continue viewing AD as 
a single disease. As we learn more, we will refine the model. For 
example, we already have evidence that endocytosis could affect Aβ 
clearance145. However, with current knowledge there is simply not 
enough evidence to show that they pinpoint the same disease mech-
anism. It is also assumed that the liability threshold for disease could 
result from extreme loading on a limited number of components or 
indeed, moderate vulnerability across multiple components. Future 
treatments and preventative approaches may focus on one or mul-
tiple AD components, which may also change over the course of 
disease development. The multiplex model of AD encourages future 

research to focus on a broader range of outcome measures to under-
stand disease mechanisms and identify several new targets for treat-
ments, and it may ultimately change the way we diagnose AD.

conclusions
It is now well-established that drug trials based on evidence with 
a genetic basis are more likely to succeed150. Thus, using this well-
replicated robust biological evidence for future research into dis-
ease mechanisms and therapies seems the logical step. A variety of 
genome-wide approaches have already identified over 50 loci asso-
ciated with AD at a genome-wide level of significance. Pathway and 
functional genomic analyses have shown strong patterns of suscep-
tibility implicating immunity, endocytosis, cholesterol transport, 
ubiquitination, Aβ and tau processing and have highlighted several 
hub genes of significant influence. Using most of the information 
from GWAS data, accounting for up to 50% of heritability, PRS can 
be calculated which show around 80% accuracy in predicting AD 
in a variety of independent datasets. Moreover, selecting individu-
als at the polygenic extremes achieves sensitivities of over 90% for 
the detection of AD cases. Applications of overall and AD-pathway-
specific CPRS to future research could include selection and enrich-
ment for clinical trials and precision medicine, understanding of 
early disease development through risk related epidemiology, selec-
tive biomarkers and iPSC models of PRS risk for single-cell, multitis-
sue, multi-organoid and whole-system chimeric analyses. Combine 
this with the growing multi-omic approaches now available and it 
is clear our understanding of this complex disease will advance at 
a considerable pace. Genetic studies have changed our perception 
of AD, highlighting its multifactorial complexity. Building on these 
findings, together with the role of vascular factors implicated by 
epidemiology, we propose the multiplex model as a way of integrat-
ing evidence from several domains to support our understanding of 
Alzheimer’s disease.
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