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GWAS support the systematic identification of candidate 
genomic loci responsible for phenotypic variation. A dif-
ficulty with plants is that their genomes are characterized 

by many structural variants (SVs), which can often cause pheno-
typic variation1. Although not usually analyzed, short sequencing 
reads can provide, in principle, information on many more variants 
in their source genomes than SNPs and short insertions/deletions 
(indels)2. Variants are typically discovered with short reads by map-
ping them to a reference genome, but common subsequences can 
also be directly compared among samples3,4. Such a direct approach 
is intuitively most powerful when there is no or only a poor ref-
erence genome assembly. Because short reads result from random 
shearing of genomic DNA, and because they contain sequenc-
ing errors, directly comparing short reads between two samples is 
not very effective. Instead, genetic variants in a population can be 
discovered by focusing on sequences of constant length k that are 
shorter than the original reads, termed k-mers. After k-mers have 
been extracted from all reads, k-mer sets from different samples 
can be compared against each other. Importantly, k-mers present in 
some samples, but missing from others, can identify a broad range 
of genetic variants. For example, two genomes differing in a SNP 
(Fig. 1a and Extended Data Figs. 1 and 2) will have k-mers unique 
to each genome, even if the SNP is found in a repeated region or a 
region not present in the reference genome. SVs such as large dele-
tions, inversions and translocations, will also result in k-mer differ-
ences. Therefore, instead of defining genetic variants in a population 
relative to a reference genome, a k-mer presence/absence pattern in 
raw sequencing data can be directly associated with phenotypes to 
enlarge the tagged genetic variants in GWAS5.

Reference-free GWAS based on k-mers have been used with bac-
teria, which have many dispensable genes5–7. They have also been 
applied to human genomes, which are much larger and have many 
more unique k-mers3,8, but were restricted to case–control situa-
tions, and because of high computational load, not all k-mers were 
corrected for population structure. While k-mer-based approaches 
are likely to be especially appropriate for plants, the large genomes, 
highly structured populations and excessive genetic variation 
in plants9–11 make the use of existing k-mer methods difficult.  

An attempt to use k-mer methods in plants was limited to a small 
subset of the genome and also accounted for population structure 
only for a small subset of k-mers12.

Here, we present an efficient method for k-mer-based GWAS 
and compare it directly to the conventional SNP-based approach 
on more than 2,000 phenotypes from three species with different 
genome and population characteristics—A. thaliana, maize and 
tomato. In brief, we inverted the conventional approach of building 
a genome, using it to find population variants and finally associat-
ing variants with phenotypes. In contrast, we begin by associating 
sequencing reads with phenotypes and only then infer the genomic 
context of associated sequences. We posit that this change of order is 
especially effective in plants, for which defining the full population-
level genetic variation based on reference genomes remains highly 
challenging.

Results
Comparison of SNP and k-mer genome-wide association on  
A. thaliana phenotypes. For an initial proof of concept, we exam-
ined a model trait in A. thaliana, flowering time. We used an existing 
dataset13 to define the presence/absence patterns of 31-bp k-mers 
in over 1,000 inbred accessions. Of a total of 2.26 billion unique 
k-mers, 439 million appeared in at least five accessions (Extended 
Data Figs. 3a and 4). Using the presence or absence of a k-mer as 
two allelic contrasts, we performed genome-wide association anal-
ysis with a linear mixed model (LMM) to account for population 
structure (Extended Data Fig. 3b)14 and compared it to analysis with 
SNPs and short indels (Fig. 1b).

To define a set of k-mers most likely to be associated with 
flowering time, we had to set a P-value threshold. Unfortunately, 
a single genetic variant is typically tagged by several k-mers, and 
the Bonferroni threshold would not accurately reflect the effective 
number of independent tests. To account for non-independence, we 
defined a threshold based on permutations of the phenotype15. This 
is computationally challenging, as the full genome-wide association 
analysis has to be run many times. We therefore implemented an 
LMM-based genome-wide association analysis specifically opti-
mized for the k-mer application (Extended Data Fig. 3c)16,17.
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We calculated the P-value thresholds for SNPs and k-mers, with a 
5% chance of one false positive. The threshold for k-mers was higher 
than for SNPs (35-fold), but lower than the increase in test number 

(140-fold) due to the higher dependency between k-mers (Fig. 1a).  
Twenty-eight SNPs and 105 k-mers passed their correspond-
ing thresholds. Using linkage disequilibrium (LD), we directly  
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Fig. 1 | Flowering time associations in A. thaliana. a, k-mers and different genetic variants. The blue and red lines represent two individual genomes. The 
colored short bars mark k-mers unique to each genome, and the gray bars mark k-mers shared between genomes. b, P-value quantile–quantile plot of 
SNP and k-mer associations with flowering time at 10 °C. Deviation from y = x indicates stronger than chance associations. c, LD between SNPs and k-mers 
passing P-value thresholds. Both methods identified four highly linked families of variants. Extended Data Fig. 5a,b shows SNP-to-SNP and k-mer-to-k-mer LD. 
d, P values of all SNPs and the subset of k-mers passing the P-value threshold as a function of their genomic position. The dashed lines mark the thresholds 
for SNPs (blue) and k-mers (green). Extended Data Fig. 5c,d shows separate plots for k-mers and SNPs.
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had only significant SNP hits, for which a k-mer passing the SNP threshold could be found within different LD cutoffs. For a minimum LD = 0.5 (dashed 
lines), 61% of phenotypes had a linked k-mer that passed the SNP threshold. f, Correlation of P values of top k-mers with SNPs (r = 0.87). The red circle 
marks the strongest outlier (see Fig. 3a,b). g, Ratio between top P values (expressed as −log10) for the two methods for 458 phenotypes with k-mer and 
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Nature Genetics | www.nature.com/naturegenetics

http://www.nature.com/naturegenetics


AnalysisNAtUrE GEnEtIcS

linked SNPs to k-mers without locating the k-mers in the  
genome. Four families of linked genetic variants were identi-
fied with both methods (Fig. 1c). As expected, the k-mers tagged  
the same genomic loci as the corresponding SNPs (Fig. 1d),  
and with similar results for 25-bp k-mers (Extended Data Fig. 5e). 
Therefore, k-mers identified the same genotype–flowering time 
associations as SNPs.

To increase the chances of discovering new associations, we evalu-
ated 1,582 phenotypes from 104 A. thaliana studies (Supplementary 
Table 1 and Fig. 2a). There was substantial overlap between signifi-
cant SNP and k-mer associations (Fig. 2b), and the numbers of k-mers  
and SNPs for each phenotype were highly correlated (Fig. 2c  
and Extended Data Fig. 6a). For 137 phenotypes, only a significant 
SNP could be identified, likely due to the more stringent thresh-
olds for k-mers, as the most significant SNPs rarely passed the  
k-mer threshold in these cases (Fig. 2d). Moreover, a k-mer passing  
the SNP threshold was in high LD with the top SNP (Fig. 2e).  
Although the k-mer thresholds were more stringent than the SNP 
thresholds (Extended Data Fig. 6b), only k-mer associations were 
identified for 129 phenotypes. The P values of top SNPs and k-mers 
were highly correlated (Fig. 2f), with top k-mers having a lower  
P value in almost nine of ten cases (Fig. 2g). In addition, we found 
that, on average, associated k-mers were closer to top SNPs than the 
other way around: 29% of top SNPs were in complete LD with associ-
ated k-mers whereas 13% of top k-mers were in complete LD with 
associated SNPs; the corresponding proportions were 73% and 67% 
at LD ≥ 0.5 (Fig. 2h). This is consistent with k-mers often containing 
the top SNP, while SNPs in many cases were only linked to the causal 
variant identified by k-mers.

Case studies of k-mer superiority. In addition to simply improving 
the strength of associations (Extended Data Fig. 7a), we sought to 
identify cases where k-mers provided a conceptual improvement. 
We first looked at the fraction of dihydroxybenzoic acid (DHBA) 
xylosides among total DHBA glycosides (Fig. 2f)18. In this case, all 
significant k-mers mapped uniquely near AT5G03490, encoding a 
UDP-glycosyltransferase, already identified in the original study 
(Fig. 3a and Extended Data Fig. 7c). The stronger k-mer associa-
tions could be traced back to two nonsynonymous SNPs, 4 bp apart, 
in the gene’s coding region. Due to their proximity, one k-mer held 
the state of both SNPs, and their combined information was more 
predictive of the phenotype than either SNP alone (Fig. 3b).

Our next case study involved seedling growth in the presence 
of a flg22 variant19, for which we could map only three of the ten 
significant k-mers to the reference genome, in the proximity of sig-
nificant SNPs in AT1G23050 (Fig. 3c and Extended Data Fig. 7d). 
To identify the genomic source of the seven remaining k-mers, we 
assembled the short reads from which they originated. The resulting 
962-bp fragment also included the three mappable k-mers (Fig. 3d), 
but did not contain a 892-bp helitron transposable element (TE)20 
present in the reference genome. While the k-mer method did not 
identify a new locus, it revealed an SV as the likely cause of differ-
ences in flg22 sensitivity.

Finally, we looked for phenotypes for which only significant 
k-mers were identified. One was germination in darkness under 
low nutrient supply21, for which none of the 11 k-mers identified 
(Fig. 3e and Extended Data Fig. 7e,f) could be traced back to the 
reference genome. The reads containing these k-mers assembled 
into a 458-bp fragment that had a hit in the genome of Ler-0,  
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a non-reference accession22. The flanking sequences were syntenic 
with the reference genome, with a 2-kb SV that included the assem-
bled 458-bp fragment (Fig. 3f). This variant affected the 3′ UTR of 
the gene encoding the bZIP67 transcription factor. Accumulation 
of the bZIP67 protein but not bZIP67 mRNA appears to mediate 
environmental regulation of germination23; an SV in the 3′ UTR is 
consistent with translational regulation of bZIP67. This case dem-
onstrates the ability of our k-mer method to reveal associations with 
SVs not tagged by SNPs.

k-mer-based GWAS in maize. To demonstrate the usefulness of our 
approach with larger, more complex genomes, we analyzed maize24, 
which has a genome of ~2.5 Gb and extensive presence/absence vari-
ation of genes10,25,26. We applied our approach to 252 mostly morpho-
logical traits27 in 150 inbred lines with short-read sequence coverage 
of at least 6× (ref. 28). A total of 2.3 billion k-mers were present in at 
least five accessions (Extended Data Fig. 8a). Significant associations 
were identified for 89 traits by at least one of the methods and for 37 
traits by both methods (Fig. 4a). As in A. thaliana, statistically signifi-
cant variants as well as top associations were well correlated between 
the two methods (Fig. 4b,c and Extended Data Fig. 8b–d). Top 
k-mers had lower P values than top SNPs (Extended Data Fig. 8e),  
and the k-mer method detected associations not found by SNPs.

A major challenge for maize is the high fraction of short reads that 
do not map uniquely to the genome. Previously, additional infor-
mation was used to find the genomic position of SNPs, including  

population LD and genetic map position28. We therefore compared 
SNPs and k-mers using LD, without locating k-mers in the genome. 
In several cases, a k-mer marked a common allele in the population 
with strong phenotypic effects, without the allele having been identi-
fied with SNPs. For example, for days to tassel, one clear SNP hit 
was also tagged by k-mers (Fig. 4d,e) but a second variant was only 
identified with k-mers. Another example is ear weight, for which no 
SNP was found (Extended Data Fig. 8f) but several unlinked k-mer-
tagged variants were identified (Fig. 4f). Thus, new alleles with high 
predictive power for maize traits can be revealed using k-mers.

As with SNPs, the difficulty of unique short-read mapping also 
undermined our ability to identify the source of k-mers associated 
with specific traits. For example, we attempted to locate the genomic 
position of the k-mer corresponding to the SNP associated with 
days to tassel on chromosome 3 (Fig. 4d). Only about 1% of reads 
from which the k-mers originated could be mapped uniquely to 
the reference genome. However, when we assembled all originated 
reads into a 924-bp contig, we could place it to the same position 
as the identified SNPs. This fragment had two single-base-pair dif-
ferences relative to the reference genome, and was not located near 
any gene. Thus, we could use the richness of combining reads from 
several accessions to more precisely locate variant origin.

k-mer-based GWAS in tomato. At ~900 Mb, the tomato genome 
is smaller than that of maize, but it presents its own challenges, as 
there is a complex history of introgressions from wild relatives into 
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domesticated tomatoes29,30. Starting with 981 million k-mers from 
246 accessions (Extended Data Fig. 9a), we performed genome-
wide association analysis on 96 metabolite measurements31,32. For 
many metabolites, an association was identified by both methods, 
but 3 had only SNP hits and 13 only k-mer hits (Fig. 5a). Similarly 
to the other species, the number of identified variants as well as 
top P values were correlated between methods (Fig. 5b,c). Top  
k-mer associations were also stronger than associations for top 
SNPs (Extended Data Fig. 9d), even more so than was seen in  
A. thaliana or maize.

In a case study, we examined the concentration of guaiacol, 
responsible for a strong off-flavor in tomato31. Associated SNPs 
were found on chromosome 9 and on ‘chromosome 0’ (Fig. 5d), 
which contains sequence scaffolds not assigned to the 12 nuclear 
chromosomes. Of the 293 guaiacol-associated k-mers, 180 could 
be mapped uniquely to the genome, all close to significant SNPs. 
Among the remaining k-mers, of particular interest was a group of 
35 k-mers in high LD and with especially low P values (Fig. 5e). 
Assembly of the corresponding short reads resulted in a 1,172-bp 
fragment, of which the first 574 bp aligned near significant SNPs 
in chromosome 0 (Fig. 5f) and the remainder matched the non-
reference NSGT1 (non-smoky glycosyltransferase1) gene, which 

had been originally pinpointed as causal for variation in guaiacol33. 
The 35 significant k-mers covered the junction between these two 
mappable regions. Most of the NSGT1 coding sequence is absent 
from the reference genome but present in other accessions. The sig-
nificant SNPs identified on chromosomes 0 and 9 apparently repre-
sent the same region in other accessions, connected by the fragment 
we assembled (Fig. 5f). Thus, we identified an association outside 
of the reference genome and linked the SNPs on chromosome 0 to 
chromosome 9.

k-mer-based kinship estimates. We have shown that the assem-
bly of short fragments from k-mer-containing short reads reveals 
hits not only in the reference genome, but also in other published 
sequences. This opens up the possibility of applying our method 
to species without a high-quality reference genome, as contigs that 
include multiple genes can be relatively easily and cheaply gener-
ated34. The major question with such an approach is then how to 
correct for population structure in the genome-wide association step 
without kinship information from SNPs, determined by mapping 
to a reference genome. To learn kinship directly from k-mers, we 
estimated relatedness using k-mers, with presence or absence as the  
two alleles. We calculated relatedness matrices for A. thaliana, 
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maize and tomato and compared them to the SNP-based related-
ness. In all three species, there was agreement between the two 
methods, although initial results were clearly better for A. thaliana  
and maize than for tomato (Fig. 6). The inferior performance 
in tomato was due to 21 accessions (Extended Data Fig. 10) that 
appeared to be more distantly related to the other accessions  
when kinship was estimated on the basis of k-mers rather than SNPs. 
This is likely because these accessions contain diverged genomic 
regions that perform poorly in SNP calling, resulting in inaccurate 
relatedness estimates. In conclusion, k-mers can be used to calculate 
relatedness between individuals, thus paving the way for GWAS in 
organisms without high-quality reference genomes.

Discussion
The complexity of plant genomes can make SNP-based identi-
fication of genotype–phenotype associations challenging. We 
have shown that k-mers can identify not only almost all associa-
tions found by SNPs and short indels but also SVs and variants in 
sequences not present in reference genomes. The expansion of vari-
ant types detected by the k-mer method complements SNP-based 
approaches and increases opportunities for finding and exploiting 
complex genetic variants driving phenotypic differences in plants, 
regardless of reference genome quality.

k-mers mark genetic polymorphisms in the population, but the 
types and genomic positions of these polymorphisms are initially 
not known. While one can also use k-mers for predictive models 
without knowing their genomic context, in many cases the genomic 
context of associated k-mers is of interest. The simplest solution 
is to align k-mers or the corresponding short reads to a reference 
genome35. Of interest are cases where k-mers cannot be placed on 
the reference genome. For these, one can first identify the originat-
ing short reads and assemble these into larger fragments, which is 
an effective path to uncover the genomic context of k-mers. The 
resulting fragment also captures phased haplotype information. 
Combining reads from multiple accessions can provide high local 
coverage around k-mers of interest, increasing the chances that size-
able fragments can be assembled and located.

A further improvement will be the use of k-mers to tag hetero-
zygous variants. In our current implementation, which relies on 
presence/absence of k-mers, one of the homozygous states has to 
be clearly differentiated not only from the alternative homozygous 

state but also from the heterozygous state. This did not affect our 
comparisons between SNPs and k-mers in this study, as we only 
looked at inbred populations where homozygous, binary states 
are expected. Another improvement will be the use of k-mers to 
detect causal copy number variations. So far, we can only tag copy 
number variants if the junctions produce unique k-mers, but it 
would be desirable to also use k-mers inside copy number variants. 
Normalized k-mer counts would create a framework that could, at 
least in principle, detect almost any kind of genomic variation.

The comparison of k-mer- and SNP-based GWAS provides an 
interesting view on trade-offs in the characterization of genetic vari-
ability. The lower top P values obtained with k-mers where a SNP is 
the underlying variant suggest incomplete use of existing informa-
tion in SNP calling. On the other hand, our analysis likely included 
some k-mers that represent only sequencing errors. While requir-
ing k-mers to appear multiple times in a sequencing library and in 
multiple individuals removes most sequencing errors, this can also 
lead to some k-mers being labeled erroneously as absent. Finally, the 
increase in test load is an inevitable result of increasing the search 
space to tag more genetic variants.

k-mer-based approaches invert how GWAS are usually done. 
Instead of first locating sequence variations in the genome, we 
begin with sequence–phenotype associations and only then find the 
genomic context of associated sequences. Technological improve-
ments in short- and long-read sequences, as well as methods 
to integrate them into a population-level genetic variation data 
structure, will expand the covered genetic variants36,37. While tra-
ditional GWAS methods will benefit from these improvements, so 
will k-mer-based approaches, which will be able to use tags span-
ning larger genomic distances. Therefore, we posit that, for GWAS, 
k-mer-based approaches are ideal because they minimize arbitrary 
choices when classifying alleles and they capture more, almost opti-
mal, information from raw sequencing data.
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Methods
Curation of an A. thaliana phenotype compendium. Studies containing 
phenotypic data on A. thaliana accessions were located in PubMed using a set 
of general search terms. For most studies, relevant data were obtained from the 
supplementary information; otherwise, requests were sent to the corresponding 
authors. Data already uploaded to the AraPheno dataset38 were downloaded. 
Phenotypic data in PDF format were extracted using Tabula software. Different sets 
of naming for accessions were converted to accession indices. In the case where 
an index for an accession could not be located, we omitted the corresponding data 
point. In the case where an accession could potentially be assigned to different 
indices, we first checked whether it was part of the 1001 Genomes (1001G) project; 
if so, we used the 1001G index, but otherwise one of the possible indices was 
randomly assigned. Phenotypes of metabolite measurements from two studies39,40 
were filtered to a reduced set by the following procedure: taking the first phenotype 
and sequentially retaining phenotypes if the correlation with all previously taken 
phenotypes was lower than 0.7. Data from the second study40 were further filtered 
for phenotypes with a title. The assignment of categories for each phenotype was 
done manually (Supplementary Table 1). All processed phenotypic data can be 
found at https://zenodo.org/record/3701176#.XmX9u5NKhhE.

Whole-genome sequencing data and variant calls of A. thaliana. Whole-
genome short reads for 1,135 A. thaliana accessions were downloaded from the 
NCBI Sequence Read Archive (SRA; accession SRP056687). Accessions with 
fewer than 108 unique k-mers (a proxy for low effective coverage) were removed, 
resulting in a set of 1,008 accessions. The 1001G VCF file with SNPs and short 
indels was downloaded (http://1001genomes.org/data/GMI-MPI/releases/v3.1) 
and condensed into these accessions using vcftools v0.1.15 (ref. 41). We required 
a minor allele count (MAC) of five individuals, resulting in 5,649,128 genetic 
variants. The VCF file was then converted to a PLINK binary file using PLINK 
v1.9 (ref. 42). The TAIR10 reference genome was used for short-read and k-mer 
alignments. The coordinates for genes in figures were taken from Araport1143.

Whole-genome sequencing data and variant calls of maize. Whole-genome short 
reads of maize accessions corresponded to the ‘282’ set of the maize HapMap3.2.1 
project28. Sequencing libraries ‘×2’ and ‘×4’ were downloaded from NCBI SRA 
(accession PRJNA389800) and combined. Coverage per accession was calculated 
as the number of reads multiplied by read length and divided by the genome size. 
Data for 150 accessions with coverage of > 6× were used. Phenotypic data for the 
252 traits measured for these accessions were downloaded from Panzea27.

Two phenotypes were constant over more than 90% of the 150 accessions, and 
these were removed from further analysis (NumberofTilleringPlants_env_07A, 
TilleringIndex-BorderPlant_env_07A). The HapMap3.2.1 VCF files (c*_282_
corrected_onHmp321.vcf.gz) of SNPs and indels were downloaded from Cyverse. 
Variant files were filtered using vcftools v0.1.15 to the relevant 150 accessions. 
Variants were further filtered for a MAC of ≥ 5, resulting in a final set of 35,522,659 
variants. The B73 reference genome, version AGPv3 (ref. 44), which was used to 
create the VCF file, was downloaded from MaizeGDB and used for alignments44.

Whole-genome sequencing data and variant calls of tomato. Whole-genome 
short reads were downloaded for 246 accessions with coverage of > 6× from 
NCBI SRA and the European Nucleotide Archive (ENA) portal of the European 
Bioinformatics Institute (accession numbers SRP045767, PRJEB5235 and 
PRJNA353161). A table with coverage per accession was shared by the authors31. 
Metabolite measurements (adjusted values) were taken from Tieman et al.31, as 
well as a subset from Zhu et al.32. These were filtered to a reduced set according 
to the procedure described previously for A. thaliana. Metabolites were ordered 
as reported originally32. Only the repeat with the most data points, and requiring 
at least 40, was retained. The VCF file with SNPs and short indels31 was obtained 
from the authors and filtered for the relevant 246 accessions. Variants were further 
filtered for a MAC of ≥ 5, resulting in a final set of 2,076,690 variants. The reference 
genome SL2.5 (ref. 29; https://www.ncbi.nlm.nih.gov/assembly/GCF_000188115.3/) 
used to create the VCF file was used for alignments.

Calculation and comparison of kinship matrices. Kinship matrices of relatedness 
between accessions were calculated as in EMMA46 using default parameters. The 
algorithm was recoded in C++ to directly read PLINK binary files. For k-mer-
based relatedness, the same algorithm was used, coding presence/absence as 
two alleles. For comparison of k-mer- and SNP-based relatedness, we correlated 
(Pearson) the values for all n2 pairs for n accessions. For tomato, 3,492 pairs had 
a relatedness of more than 0.15 lower for k-mers than for SNPs. Approximately 
3,300 (94.4%) of these pairs were between a set of 21 accessions and all other 225 
accessions. We calculated the correlation twice: for all pairs and for pairs of these 
225 accessions.

Genome-wide association on SNPs and short indels or on the full k-mers table. 
Genome-wide association on the full set of SNPs and short indels was conducted 
using LMMs with the kinship matrix in GEMMA (v0.96)14. Minor allele frequency 
(MAF) and MAC were set to 5% and 5, respectively, with a maximum of 50% 
missing values (-miss 0.5). To run genome-wide association on the full set of 

k-mers (for example, in Fig. 1b), k-mers were first filtered for those having only 
unique presence/absence patterns on the relevant set of accessions, a MAF of at 
least 5% and a MAC of at least 5. Presence/absence patterns were then condensed 
to only the relevant accessions and output directly as a PLINK binary file. GEMMA 
was then run using the same parameters as for the SNP genome-wide association 
described above.

Phenotype covariance matrix estimation and phenotype permutation. EMMA 
(emma.REMLE function) was used to calculate the variance components, which 
were used to calculate the phenotypic covariance matrix46. We then calculated 100 
permutations of the phenotype using the mvnpermute R package15. The n% (for 
example, n = 5 gives 5%) family-wise error-rate threshold was defined by taking 
the nth top P value from the 100 top P values of running genome-wide association 
analysis on each permutation. In all cases, unless indicated otherwise, the 5% 
threshold was used.

Scoring P values from genome-wide association analysis for similarity to uniform 
distribution and filtering phenotypes. For each SNP-based genome-wide association 
analysis, we scored for a general bias in P-value distribution, similarly to Atwell et al.47. 
All SNP P values were collected; the 99% higher P values were tested against the 
uniform distribution using a Kolmogorov–Smirnov test; and the test statistic was used 
to filter phenotypes for which the distribution deviated significantly from the uniform 
distribution. A threshold of 0.05 was applied, filtering 89, 0 and 295 phenotypes for  
A. thaliana, maize and tomato, respectively.

k-mer genome-wide association analysis. Genome-wide association of k-mers  
was done in two steps, with the aim of selecting the k-mers with the most 
significant P values. The first step was based on the approach used in Bolt-lmm-
inf or GRAMMAR-Gamma16,17. For phenotypes y, genotypes g and a covariance 
matrix Ω, the k-mer score is:

T2
score ¼

1
γ

~gTΩ�1~yð Þ2

~gT~g

where ~g ¼ g � E gð Þ
I

 and ~y ¼ y � E yð Þ
I

. The first step was used only to filter  
a fixed number of top k-mers; thus, we could use any score monotonous with T2

score
I

 

and specifically ~gTΩ�1~yð Þ2
~gT~g

I

, which is independent of γ (see the Supplementary 
Note on calculation optimization and Supplementary Table 3). In the second  
step, the best k-mers were run using GEMMA to calculate the likelihood ratio test 
P values14.

The number of k-mers filtered in the first step was set to 10,000 for A. thaliana 
and 100,000 for maize and tomato. Both steps associated k-mers while accounting 
for population structure and, while the first step used an approximation, the 
second used an exact model. Therefore, real top k-mers may be lost, as they would 
not pass the first filtering step. To control for this, we first defined the 5% family-
wise error-rate threshold based on the phenotype permutations and then identified 
all of the k-mers that passed the threshold. Next, we used the following criteria 
to minimize the chance of losing k-mers: we checked whether all the identified 
k-mers were in the top N/2 k-mers from the ordering of the first step (N = 10,000 
or 100,000, depending on species). For example, in maize, all k-mers passing the 
threshold in the second step should be in the top 50,000 k-mers from the first step. 
The probability that this will happen randomly is 2−m, where m is the number of 
identified k-mers, which is unlikely in most phenotypes. In 8.5% of phenotypes 
from A. thaliana, the criteria were not fulfilled and for these phenotypes we 
reran both steps with 100× more k-mers filtered (1,000,000) in the first step. For 
six phenotypes, the criteria still did not hold and these were not used in further 
analysis. In tomato, 33% of phenotypes did not fulfill these criteria. In these 
cases, we reran the first step with 100× more k-mers filtered (10,000,000), and 17 
phenotypes still did not pass the threshold and were omitted from further analysis. 
The permutations were not rerun, and the threshold defined using 100,000 k-mers 
was used, as the top k-mer used to define the threshold tended to be high in the 
list. For maize, all phenotypes passed the criteria without rerunning.

SNP-based GWAS on phenotype permutations. To calculate thresholds for  
SNP-based GWAS, we used the two-step approach as used for k-mers. The permuted 
phenotypes were run in two steps, as we were only interested in the top P value to 
define thresholds. We filtered 10,000 variants in the first step, which were then run 
using GEMMA to get the exact scores14. The non-permuted phenotypes were run 
using GEMMA on all the variants.

Calculation of linkage disequilibrium. Two variants, x and y, can either be a 
k-mer or a SNP. For a k-mer, variants were coded as 0 or 1 if absent or present, 
respectively. For SNPs, one variant was coded as 0 and the other as 1. If one of the 
variants had a missing or heterozygous value in a position, this position was not 
used in the analysis. LD was calculated using the r2 measure48. The LD value was 
calculated using the formula:

r2 ¼ pðx ¼ 1 ^ y ¼ 1Þ � pðx ¼ 1Þ ´ pðy ¼ 1Þð Þ2
p x ¼ 1ð Þ ´ p y ¼ 1ð Þ´ p x ¼ 0ð Þ ´ p y ¼ 0ð Þ
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Comparing Col-0 and Ler genome assemblies with k-mers. The lists of 31-bp 
k-mers that are part of the Col-0 TAIR10 and the Ler genomes22 were created 
using KMC v3 (ref. 45). The lists from both genomes were filtered for k-mers 
appearing in a single genome and those appearing only once in a genome. The 
positions of the filtered k-mers were identified by checking each position in the 
genome against the filtered lists. In Extended Data Fig. 1, k-mers from these lists 
are plotted around four variants, as defined previously22. The statistics presented 
in Extended Data Fig. 2 are for all variants reported in the supplementary tables 
of Zapata and colleagues22, under the titles ‘Lindel_Allelic’, ‘Lindel_NonAllelic’, 
‘IntraChromTransloc’, ‘InterChromTransloc’ and ‘InversionSites’.

Calculating linkage disequilibrium of the closest SNP/k-mer. In Supplementary 
Fig. 1, to calculate LD between all k-mers and SNPs in the A. thaliana 1001G 
project, the 1001G-imputed SNPs matrix was used49 (provided by Ü. Seren) to 
avoid dealing with missing values in the original VCF file. The imputed matrix 
was condensed to the 1,008 accessions used in the k-mers table, and only SNPs 
with MAF ≥ 0.05 were considered. k-mers were also filtered for MAF ≥ 0.05. We 
were left with 898,869 SNPs and 163,644,699 k-mers; therefore, the complexity of 
calculating all LD was (898,869) × (163,644,699) × (1,008) ≥ 1017. This calculation 
was done using the SSE4 command set by representing the variant per individual 
as one bit and combining 64 individuals in one CPU word. Only the maximal LD 
of each SNP to all k-mers and of each k-mer to all SNPs were saved.

Linkage disequilibrium cumulative graph. In Fig. 2e,h, for a set of phenotypes 
and for every l = 0, 0.05, …, 1, we calculated the percentage of phenotypes for 
which there was a k-mer or a SNP in the predefined group, which had LD ≥ l with 
the top SNP or top k-mer, respectively. The predefined groups were (1) all of the  
k-mers that passed the SNP-defined threshold in Fig. 2e or (2) all of the SNPs  
or k-mers that passed their own defined thresholds in Fig. 2h. The percentage was 
then plotted as a function of l.

Retrieving source reads of a specific k-mer and assembling them. For a k-mer 
identified as being associated with a phenotype, we first looked in the k-mers table 
and identified all accessions included in the association analysis and having this 
k-mer present. For each of these accessions, we went over all sequencing reads 
and filtered out all paired-end reads that contained the k-mer. To assemble paired 
reads, SPAdes v3.11.1 was used with the ‘--careful’ parameter50.

Alignment of reads or k-mers to the genome. Paired-end reads were aligned 
to the genome using bowtie2 v2.2.3 with the ‘-very-sensitive-local’ parameter. 
k-mers were aligned to the genome using bowtie v1.2.2 with the ‘-best-all-strata’ 
parameter51.

Analysis of flowering time in 10C. In Fig. 1 and Extended Data Fig. 5, to find 
the location of the 105 identified k-mers in the genome, k-mers were first mapped 
to the A. thaliana genome. Of the 105 k-mers, 84 had a unique mapping, 1 was 
mapped to multiple locations and 20 could not be mapped. For the 21 k-mers with 
no unique mapping, we located the sequencing reads that they originated from and 
mapped these to the A. thaliana genome. For each k-mer, we looked only at the 
reads with the top mapping scores. For the single k-mer that had multiple possible 
alignments, the originating reads did not have a consensus mapping location in 
the genome. For every k-mer from the 20 non-mapped k-mers, all top reads per 
k-mer (in some cases except one) mapped to a specific region spanning a few 
hundred base pairs. The middle of this region was defined as the k-mer position 
for the Manhattan plot in Fig. 1d. To find the locations of all k-mers presented in 
Extended Data Fig. 5d, we used only uniquely mapped k-mers.

To find the location of the 93 associated k-mers of length 25 bp (Extended 
Data Fig. 5e), we followed the same procedure: 87 k-mers had unique mapping, 
1 mapped multiple times and 5 could not be mapped. For the 5 non-mappable 
k-mers and the k-mer with non-unique mapping, we located the short reads 
from which they originated and aligned them to the genome. For each of 
the 5 k-mers, all reads with the top mapping score were mapped to a specific 
region of a few hundred base pairs, and we took the middle of the region as 
the location in the Manhattan plot. For the k-mer with multiple mappings, 15 
of 17 reads mapped to the same region and we used this location. All k-mers 
mapped to the 4 locations in the genome for which SNPs were identified, except 
one—AAGCTACTTGGTTGATAATACTAAT; the reads from which this k-mer 
originated mapped to the same region on chromosome 5 at position 3,191,745–
3,192,193 and we used the middle of this region.

Analysis of the xyloside fraction. In Fig. 3a,b and Extended Data Fig. 7b,c, all k-
mers passing the threshold were mapped uniquely to chromosome 5 in the region 
871,976–886,983. Of the 123 identified k-mers, 27 had the same minimal  
P value (−log10 P value = 44.7). These k-mers mapped to chromosome 5 in positions 
871,976–872,002, all covering the region 872,002–872,007. For the 60 accessions 
used in this analysis, all reads from 1001G were mapped to the reference genome. 
The mapping in region 872,002–872,007 of chromosome 5 was examined manually 
by Integrative Genomics Viewer (IGV) in all accessions52. The SNPs at 872,003 and 
872,007 were called manually without knowledge of the phenotype value.

The hierarchical clustering in Extended Data Fig. 7b was done according to 
all SNPs on chromosome 5 from position 870,000–874,000. The distance between 
every two accessions was defined as the average number of SNPs with different 
values, taking into account only SNPs with no missing values.

Analysis of growth inhibition in the presence of flg22. In Fig. 3c,d, the 
phenotype in the original study was labeled ‘flgPsHRp’ (ref. 19). For each of the 
seven k-mers that could not be mapped uniquely to the genome, the originated 
reads from all accessions were retrieved and assembled. All seven cases resulted 
in the same assembled fragment (SEQ1; Supplementary Table 2). Using NCBI 
BLAST, we mapped this fragment to chromosome 1: position 40–265 was mapped 
to 8,169,229–8,169,455 and position 262–604 was mapped to 8,170,348–8,170,687. 
For every accession from the 106 that were used in the genome-wide association 
analysis, we tried to locally assemble this region to see whether the junction 
between chromosome 1 positions 8,169,455–8,170,348 could be identified. We 
used all 31-bp k-mers from the above assembled fragment as bait and located all 
the reads for each accession separately. For 11 of the 13 accessions that had all ten 
identified k-mers, we got a fragment from the assembly process. In all 11 cases, the 
exact same junction was identified. For one of the four accessions that had only 
part of the ten identified k-mers, we got a fragment from the assembler that had 
the same junction. For 43 of the 89 accessions that had none of the identified  
k-mers, the assembly process resulted in a fragment, but in none of these cases 
could the above junction be identified.

Analysis of germination in darkness and low nutrients. In Fig. 3e,f, the 
phenotype in the original study was labeled ‘k_light_0_nutrient_0’ (ref. 21). The 
11 identified k-mers had two possible presence/absence patterns, separating them 
into two groups of four and seven k-mers. The short-read sequences containing 
the four or seven k-mers were collected separately and assembled, resulting in the 
same 458-bp fragment (SEQ2; Supplementary Table 2). This fragment was used 
as a query in NCBI BLAST search, resulting in alignment to Ler-0 chromosome 
3 (LR215054.1) position 15,969,670–15,970,128. The region from 15,969,670–
3000bp to 15,970,128 + 3000 bp in LR215054.1 was retrieved and used as the 
query for a NCBI BLAST search. The fragment mapped to Col-0 reference genome 
chromosome 3 (CP002686.1). Region 1–604 mapped to 16,075,369–16,075,968, 
region 930–1445 mapped to 16,076,025–16,076,532, region 3,446–3,946 mapped to 
16,079,744–16,080,244 and region 3,958–6,459 mapped to 16,080,301–16,082,781.

Analysis of root branching zone. In Supplementary Fig. 2, the phenotype in the 
original study was labeled ‘Mean(R)_C’, that is, branching zone in no treatment53. 
No SNPs and one k-mer (AGCTACTTTGCCACCCACTGCTACTAACTCG) 
passed their corresponding 5% thresholds. The k-mer mapped to the chloroplast 
genome at position 40,297, with one mismatch. No SNPs and another k-mer 
(CCGGCGATTACTAGAGATTCCGGCTTCATGC) passed the 10% family-
wise error-rate threshold. This k-mer mapped non-uniquely to two places in the 
chloroplast genome: 102,285 and 136,332.

Analysis of lesion by Botrytis cinerea UKRazz. In extended Data Fig. 7a, the 
lesion by Botrytis cinerea UKRazz phenotype was labeled as ‘Lesion_redgrn_m_
theta_UKRazz’39. In the genome-wide association analysis, 19 k-mers and no SNPs 
were identified. All k-mers had the same presence/absence pattern. The short-read 
sequences from which the k-mers originated were mapped to chromosome 3 
around position 72,000, and contained a 1-bp deletion of a T nucleotide in position 
72,017. Whole-genome sequencing reads were mapped to the genome for the 61 
accessions with phenotypes used in these analyses. We manually observed the 
alignment around position 72,017 of chromosome 3, without knowing whether 
the accession had the identified k-mers. For 20 accessions, we observed the 1-bp 
deletion in position 72,017, and all 19 accessions containing the k-mers were part 
of these 20.

Analysis of days to tassel and ear weight in maize. In Fig. 4, ear weight 
phenotype was labeled ‘EarWeight_env_07A’ in the original dataset27. Days 
to tassel were measured in growing degree days (GDD) and labeled as 
‘GDDDaystoTassel_env_06FL1’ in the original dataset. In a comparison of LD 
between k-mers and SNPs in days to tassel (Fig. 4e, top), two SNPs were filtered 
out as having more than 10% heterozygosity and one as having exactly 50% 
missing values. In days to tassel, the k-mer that was similar to the identified SNPs 
was AGAAGATATCTTATGAACTCCTCACCAGTAA. The 171 paired-end reads 
from which this k-mer originated mapped to the genome as follows: 2 (1.17%) 
aligned concordantly zero times, 2 (1.17%) aligned concordantly exactly once and 
167 (97.66%) aligned concordantly more than once. The assembly of these reads 
produced two fragments: the first of length 273 bp with coverage of 1.23 and the 
second of length 924 bp with coverage of 27.41 (SEQ3; Supplementary Table 2). 
We aligned this second fragment to the genome using Minimap2 with default 
parameters54. Minimap2 reported only one hit to chromosome 3 (NC_024461.1) in 
position 159,141,222–159,142,137.

Analysis of guaiacol concentration in tomato. For Fig. 5d–f, guaiacol concentra
tion was labeled ‘log3_guaiacol’ in the original study. From the 293 k-mers 
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passing the threshold, 184 could be mapped uniquely to the genome: 135 to 
chromosome 0 at position 12,573,795–12,576,534, 45 to chromosome 9 at position 
69,301,436–69,305,717, 3 to chromosome 6 at position 8,476,136–8,476,138 
and 1 to chromosome 4 at position 53,222,324. The four k-mers that mapped 
to chromosomes 4 and 6 were checked manually by locating their reads and 
aligning them to the genome. In all cases, no reads could be aligned to the genome 
(> 99.5%). For the 35 k-mers not mapping to the genome and in high LD (Fig. 5e),  
all reads containing at least one of the k-mers were retrieved and assembled 
(SEQ4; Supplementary Table 2). An NCBI BLAST search of this fragment resulted 
in positions 1–574 mapped to position 12,578,806–12,579,379 on chromosome 
0 of the tomato genome (CP023756.1) and positions 580–1,169 mapped to 
positions 289–878 in NSGT1 (KC696865.1). The R104 smoky accession NSGT1 
ORF starts at position 307, as reported previously33. An NCBI BLAST search of 
NSGT1 (KC696865.1) identified mapping to chromosome 9 of the tomato genome 
(CP023765.1) from 975–1,353 to positions 69,310,153–69,309,775.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
A list of all phenotypes and top SNPs or k-mers passing their corresponding 
thresholds can be found at https://zenodo.org/record/3701176#.XmX9u5NKhhE.
The authors declare that all other data supporting the findings of this study are 
available within the Supplementary Information files.

Code availability
Code is available at https://github.com/voichek/kmersGWAS.
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Extended Data Fig. 1 | Examples of well characterized structural variant tagged by k-mers. Examples of how k-mers tag well characterized structural 
variants22 between the Col-0 reference genome and the Ler fully assembled genome. The two genomes were used to count 31 bp k-mers, and all k-mers 
unique to one genome and appearing only once in it were plotted in the indicated regions. The a translocation, b inversion and c-d insertion/deletion 
positions are indicated by vertical lines and red shades. The k-mers unique to Col-0/Ler are plotted in the upper/lower panels in red/blue, respectively. 
The five positions tagged by k-mers inside the translocation presented in a are either SNPs or 1 bp indels.
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Extended Data Fig. 2 | Genome-wide evaluation of k-mer potential to detect SVs in well-characterized genomes. a, For every translocation or inversion, 
previously identified22 between the Col-0 reference genome or the Ler genome we evaluate if it is tagged by 31 bp k-mers. Each translocation or inversion 
will affect 4 edges between the translocated fragment and the neighbouring genomic regions (bottom panel). For every previously identified translocation 
or inversion, the number of edges (0-4) which are tagged by k-mers unique to one genome were counted. Only 1.1% of these SVs were not tagged by any 
k-mer unique to one genome (upper panel). b, For every edge tagged by k-mers, described in A, we plot the number of k-mers unique to one genome 
which tagged it. The histogram is enriched with edges covered by the maximal number of k-mers, 31. c, Evaluating the potential to tag by k-mers long 
insertions/deletions between the well characterized genomes of Col-0 and Ler22. While in the genome with the apparent deletion only the junction 
between the two fragments will be tagged by unique k-mers, in the genome with the apparent insertion, the entire insert will be tagged (bottom panel). 
Only 0.4% of the previously characterized long insertions/deletions are not tagged by unique k-mers.
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Extended Data Fig. 3 | Pipeline for k-mer-based GWAS. a, Creating the k-mer presence/absence table: Each accession’s genomic DNA sequencing reads 
are cut into k-mers45, filtering k-mers appearing less than twice/thrice in a sequencing library. k-mers are further filtered to retain only those present in at 
least 5 accessions, and ones that are found in both forward and reverse-complement form in at least 20% of accessions they appeared in. All k-mer lists 
are combined into a k-mer presence/absence table. b, Genome-wide associations on the full k-mers table using SNP-based software: the k-mers table is 
converted into PLINK binary format, which is used as input for SNP-based association mapping software14,42. c, GWA optimized for the k-mers: k-mers 
presence/absence patterns are first associated with the phenotype and its permutations using a LMM to account for population structure16,17. This first 
step is done by calculating an approximated score of the exact model. Best k-mers from this first step (for example 100,000 k-mers) are passed to the 
second step, In which an exact p-value is calculated14 for both the phenotype and its permutations. A permutation-based threshold is calculated, and all 
k-mers passing this threshold are checked for their rank in the scoring from the first step. If not all k-mers hits are in the top 50% of the initial scoring, 
then the entire process is rerun from the beginning, passing more k-mers from the first to the second step. This last test is built to confirm that the 
approximation of the first step will not remove true associated k-mers.
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Extended Data Fig. 4 | Allele counts for A. thaliana 1001G k-mers. Histogram of k-mer allele counts: For every N=1..1008, the number of k-mers appeared 
in exactly N accessions is plotted.
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Extended Data Fig. 5 | Flowering time-genotype associations in A. thaliana identified with k-mers. a, LD between SNPs associated with flowering time. 
Dashed lines represent the four variant types, as in Fig. 1c. b, LD between k-mers associated with flowering time, Dashed lines represent the four variant 
types, as in Fig. 1c. c, Same as Fig. 1d with only SNPs. d, Same as Fig. 1d with only k-mers presented, showing also k-mers lower than the threshold.  
e, Manhattan plot of SNPs and k-mer associations with flowering time in 10 °C as in Fig. 1d for k-mers of length 25 bp.
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Extended Data Fig. 6 | Comparison of SNP- and k-mer-GWAS on phenotypes from 104 studies on A. thaliana accessions. a, Histogram of the number  
of identified k-mers vs. identified SNPs (in log2) for A. thaliana phenotypes. Only the 458 phenotypes with both variant types identified were used.  
b, Histogram of thresholds difference of k-mers vs. SNPs of all A. thaliana phenotypes. Thresholds were -log10 transformed.
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Extended Data Fig. 7 | See next page for caption.
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Extended Data Fig. 7 | Specific case studies in which k-mers are superior to SNPs. a, Results from GWAS on measurements of lesions by Botrytis cinerea 
UKRazz strain39. An example of k-mers having better hold on a short variant: 19 k-mers and no SNPs were identified, all k-mers in complete LD (top row). 
Sequence reads containing the k-mers mapped to chromosome 3, with a single T nucleotide deletion out of an eight T’s stretch, in position 72,017. Manual 
(middle) and the 1001G project (bottom) calls are shown. In the 1001G, 57 of 61 accessions contain missing values. b, Haplotypes around SNPs associated 
with xylosides concentrations are not correlated with this trait. All SNPs in positions 870,000 to 874,000 in chromosome 5 were hierarchically clustered 
(left panel, white mark missing values). The two identified SNPs are marked by arrows and a close-up of their state is shown (middle panel). Phenotypic 
values colored according to the two SNPs: TG blue, TT red, and CT green (right panel). c-e, Manhattan plot for: c, xyloside percentage, d, seedling growth 
inhibition by a flg22 variant, e, germination in darkness in low nutrient conditions. f, Germination phenotype plotted for accessions with top associated  
k-mer present or absent. Boxes cover 25%- 75% percentiles, medians marked by horizontal lines, and whiskers cover the full range of values.
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Extended Data Fig. 8 | Comparison of SNP- and k-mer- based GWAS in maize. a, Histogram of k-mer allele counts for maize accessions. b, Histogram 
of difference between threshold values of SNPs and k-mers for maize phenotypes. c, Histogram of the top SNP P-value divided by the k-mers defined 
threshold, in (-log10), for maize phenotypes. Plotted for phenotypes with only identified SNPs (upper panel) or for phenotypes with both SNPs and k-mers 
identified (lower panel). d, Histogram of the number of identified k-mers vs. identified SNPs for maize phenotypes. e, Histogram of the difference between 
top (-log10) p-values in the two methods for maize phenotypes identified by both methods. Plotted as in Fig. 2g. f, Manhattan plot of associations with ear 
weight (environment 07A). Associated k-mers could not be located in the reference genome, and are thus not presented.
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Extended Data Fig. 9 | Comparison of SNP- and k-mer-based GWAS in tomato. a, Histogram of k-mers allele counts for tomato accessions. b, Histogram 
of difference between threshold values of SNPs and k-mers for tomato phenotypes. c, Histogram of the top SNP P-value divided by the k-mers defined 
threshold, in -log10, for tomato phenotypes. Plotted for phenotypes with only identified SNPs (upper panel) or for phenotypes with both SNPs and k-mers 
identified (lower panel). d, Histogram of the difference between top (-log10) p-values in the two methods for tomato phenotypes. e, Histogram of the 
number of identified k-mers vs. identified SNPs for tomato phenotypes.
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Extended Data Fig. 10 | Kinship matrix calculation based on k-mers for tomato accessions. Identification of pairs of tomato accessions for which 
relatedness as measured with k-mers is much lower than relatedness as measured with SNPs. For every pair among the 246 accessions, a black square  
is plotted if the difference in relatedness between SNPs and k-mers is larger than 0.15. Accessions are ordered by the number of black square in their  
row/column. Red lines mark the 21 accessions with most black squares, that is, those for which the k-mer/SNP difference in relatedness is larger than  
0.15 for the most pairs.
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