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SUMMARY

Spatial cognition is used by most organisms to navigate their environment. Some species rely particularly

heavily on specialized spatial cognition to survive, suggesting that a heritable component of cognition

may be under natural selection. This idea remains largely untested outside of humans, perhaps because

cognition in general is known to be strongly affected by learning and experience.1–4 We investigated the ge-

netic basis of individual variation in spatial cognition used by non-migratory food-caching birds to recover

food stores and survive harsh montane winters. Comparing the genomes of wild, free-living birds ranging

from best to worst in their performance on a spatial cognitive task revealed significant associations with

genes involved in neuron growth and development and hippocampal function. These results identify candi-

date genes associated with differences in spatial cognition and provide a critical link connecting individual

variation in spatial cognition with natural selection.

RESULTS AND DISCUSSION

Inter- and intra-specific variation in cognitive abilities and

associated brain morphology is a topic of great interest and

debate because the exact mechanisms of their evolution

remain elusive.1–3 Cognition in particular is thought to be

primarily affected by environmental events including develop-

ment and individual experience,4 yet the contribution of

genetic variation to naturally occurring cognitive variation re-

mains unclear. It has long been hypothesized that the remark-

ably specialized spatial cognitive abilities required for caching

and recovering food stores have evolved across species via

natural selection (e.g., Figure 1A).1,5,6 However, until recently,

the evidence supporting this hypothesis was indirect. For

example, birds experiencing harsher winter conditions, where

reliance on food caches is greater (e.g., chickadee species at

higher elevations and latitudes; Figure 1B), have been shown

to outperform those inhabiting milder environments on spatial

cognitive tasks7,8,9 and exhibit significant differences in hippo-

campus morphology, including increased neuron number,

soma size (Figure 1C), and hippocampal neurogenesis

rates.7,8 Moreover, differences in spatial cognition have been

associated with differential gene expression in the hippocam-

pus,10 and hybrid chickadees (F1 and backcrossed hybrids)

show deficiencies in both learning and memory, conceivably

due to a breakdown of relevant genetic pathways.11,12

Together, this work warrants investigation into possible

genetic mechanisms underlying variation in spatial cognition

in natural populations.

Our recent research on wild, free-living mountain chickadees

(Poecile gambeli) inhabiting an elevation gradient in the northern

Sierra Nevada provided the first direct evidence for natural se-

lection via differential survival based on spatial learning and

memory abilities.14 Mountain chickadees are non-migratory

food-caching birds that rely on specialized spatial memory to

recover thousands of stored food items scattered throughout

their territories.6 Individuals with better spatial learning and

memory abilities are more likely to survive their first winter

compared to those with worse spatial cognition.14 Additionally,

spatial cognitive ability does not appear to change with age

and experience, suggesting that it is a temporally stable

trait.14–16 Given the evidence that natural selection acts on indi-

vidual variation in spatial cognitive abilities of food-storing birds,

this variation should be heritable and hence should have a

genetic basis.17,18

Although spatial cognitive abilities are critical for overwinter

survival in food-caching birds, considerable variation persists

both within and among populations. In mountain chickadees in

the northern Sierra Nevada, this is likely due to gene flow along

an elevation gradient,19 temporally variable selection on a com-

plex trait, and, perhaps, certain environmental influences on

cognition (Figures 1A and 1B). Our long-term spatial cognitive

dataset collected using well-established radio frequency identi-

fication (RFID) enabled ‘‘smart’’ feeders (Figure 1D; Video S1)
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provides an unprecedented opportunity to investigate the ge-

netic basis of this naturally occurring variation in spatial cognitive

abilities.

We used whole-genome sequencing, combining traditional

genome-wide association studies (GWASs) and a Random For-

est machine learning approach,20 to compare the genomes of

wild, free-living birds. We sampled birds from high and low ele-

vations that performed the best on a spatial cognitive task, all

of whom survived more than one year (n = 22), to those that per-

formed the worst on the task and generally did not survive more

than 1 year (n = 15/20)—the group with better spatial cognition

was associated with a significant survival advantage (Fisher’s

exact test, p < 0.001). Birds from both high and low elevations

were selected for each performance group to ensure that the

strongest signal between groups was variation in cognition and

not a correlate of elevation.

Spatial cognitive ability was assessed using automated

‘‘smart’’ feeder arrays equipped with RFID technology.14,15,21,22

Birds were fitted with plastic leg bands embedded with passive

integrative transponder (PIT) tags, allowing for unique identifica-

tion. The RFID spatial array consisted of 8 equidistant feeders

programmed so that each bird was only rewarded at one feeder

location, while all feeders recorded the identity and time of visit

by any PIT-tagged birds (Figure 1D; Video S1). Spatial cognitive

ability was measured as the mean number of errors (number of

unrewarding feeders visited prior to visiting the correct

rewarding feeder) per trial across the entire testing period. This

measure provides a robust representation of ecologically rele-

vant spatial cognitive abilities because it is repeatable within in-

dividuals14,15 and is associated with fitness consequences, both

direct via differential survival14 and indirect via differential female

reproductive investment.22

We sampled 42mountain chickadees across 3 years of testing

from the extremes of the cognitive performance range: 22 were

chosen as the best and 20 were chosen as the worst. Perfor-

mance scores of individuals in the best and worst groups did

not overlap, but individual variation within each group provided

a continuous distribution from best to worst (Figure 1F). We

intentionally chose individuals with means in the tails of the

cognitive performance distribution (Figures 1E and 1F) to amplify

the signal of genetic associations, although we acknowledge

that this design could inflate associations from loci with the

largest effect to the detriment of small-effect polygenes. There

was a significant difference in themean number of errors per trial

between best (mean errors/trial: 0.16 ± 0.045) and worst (0.60 ±

0.05) performers (cognitive category [best versus worst]: F1,38 =

72.91, p < 0.0001; Figure 1F), but there was not a significant ef-

fect of elevation, as we selectively picked the best and worst

Figure 1. Testing spatial cognition in the

wild

(A) Schematic depicting high and low elevation

sites used for sampling, including effects of gene

flow (thickness of arrows represent high rates of

effective migration above and below the snowline,

with less movement across the snowline) and

strength of selection (white to black gradient rep-

resents increased strength of selection).

(B) Example of annual variation inmean snow depth

(cm) for high and low elevation sites across a total of

5 years, including 3 years used in the study (2016–

2018). Mean snow depth is from April 1st of each

year and collected from SNOTEL weather stations

at Sagehen Experimental Forest, CA, USA.

(C) Previously documented significant individual

differences in hippocampal neuron number and

soma size in our study population.7

(D) Schematic of ‘‘smart’’ spatial cognition testing

apparatus with inset showing an individual bird on

the RFID reader retrieving a seed with the me-

chanical door open.

(E) Distribution of spatial cognitive performance for

high (n = 243) and low (n = 162) elevation birds

across 3 years of testing (2016–2018). Individual

performance scores and total distribution of in-

dividuals selected for genomic analyses are out-

lined in black. Note that the distribution of selected

birds spans the entire range of performance. Mean

of best (mB) and worst (mW) groups used in our an-

alyses represented by dotted lines.

(F) Spatial cognitive performance of birds selected

for GWAS from (E). Black squares and whiskers

represent mean and standard deviation. Individual

points are adjusted to avoid overlap.13 High

elevation birds are represented by tan circles and

low elevation birds are represented by teal tri-

angles within best and worst cognitive category.

Related to Data S1.

ll

2 Current Biology 32, 1–10, January 10, 2022

Please cite this article in press as: Branch et al., The genetic basis of spatial cognitive variation in a food-caching bird, Current Biology (2021), https://

doi.org/10.1016/j.cub.2021.10.036

Report



performers at each elevation (elevation [high versus low]: F1,38 =

1.38, p = 0.247; total trials completed [covariate]: F1,38 = 5.26, p =

0.028).

We sequenced whole genomes of these individuals and iden-

tified �41 million SNPs after alignment to the closely related

black-capped chickadee (P. atricapillus) reference genome

(https://www.ncbi.nlm.nih.gov/bioproject/589043; accession:

JAAMOC00000000012), as there is nomountain chickadee refer-

ence genome available. This SNP dataset was further filtered to

12,106,779 SNPs for our GWAS analysis and 1,312,917 SNPs for

our Random Forest analysis. For the response variable in

genomic analyses, we used the continuous distribution of indi-

vidual performance (mean number of errors per trial for each

bird, as described above) across both groups, rather than a

discrete between-group approach.

Using genome-wide efficient mixed model analysis

(GEMMA),23 we identified 1,338 (p value of the Wald likelihood

ratio test�log10(p) > 5) and 305 (�log10(p) > 6) SNPs associated

with the cognitive phenotype (with 5 outliers of �log10(p) > 9)

(Figure 2). Given that our genomic dataset consisted of �12

million loci, the expected numbers of false positives under the

above significance thresholds are 120 and 12 loci, respectively,

indicating that our analysis picks up a meaningful signal of the

genotype-phenotype associations. Most strongly significant as-

sociations were represented by single physically unlinked SNPs

(rather than clusters of loci), consistent with a polygenic genetic

architecture of the phenotype. Next, we assessed the genetic

architecture and heritability of the spatial cognition phenotype

using Bayesian sparse linear mixedmodels (BSLMM).24BSLMM

accounts for linkage between loci and relatedness among indi-

viduals using a Bayesian, Markov Chain Monte Carlo approach.

The non-zero effect of each locus on the phenotype is estimated,

and a posterior probability distribution for the total percent

variation explained (PVE) across all loci is reported.24,25 The

spatial cognitive phenotype appears to be heritable with a pos-

terior PVE estimate of 92% (SD = 14.9%) when performed on

all loci. Despite the apparent polygenic nature of cognitive per-

formance differences, our BSLMM results suggested the major

phenotypic effects may be governed by �10 loci (n_gamma

parameter of GEMMA, SD = 29.6) which accounted for 87%

(PGE parameter of GEMMA, SD = 19%) of phenotypic variance.

To assess the predictive power of BSLMM, we performed leave-

one-out cross validation. This analysis revealed little ability of

predicting an individual’s phenotype based on its genotype

(r2 = 0.0027, p = 0.74; Figure S1), likely due to a modest sample

size unable to provide predictive power. Partial dominance and

epistasis can create a non-linear relationship between genotype

and phenotype even in traits with a simple genetic architecture

(e.g., Semenov et al.26), and such effects are expected to accu-

mulate rapidly with an increasing number of causal variants. It is

important to note that BSLMM may overestimate the heritability

of phenotypes;25 combined with our rather small sample size,

these results should be interpreted with caution. Nevertheless,

even if our estimates are inflated, they do suggest at least mod-

erate to high heritability of the spatial cognitive phenotype.

Using data from the same 42 individuals, we also performed a

Random Forest regression analysis using individual cognitive

phenotype as a continuous response variable. Machine learning

approaches, like Random Forest, consider combinations of mul-

tiple loci that may influence a single phenotype,20 providing valu-

able information complementary to GWAS, such as GEMMA.

This analysis assigned positive variable importance scores to

116,059 SNPs (averaged across 3 replicates), of which the top

�0.1% (n = 1,312) had the strongest (andmost consistent across

replicates) signal, suggesting a likely contribution of these loci in

explaining the cognitive phenotype. In further support of the

Figure 2. Genetic associations with the spatial cognition phenotype

Top: genome-wide association study results (GEMMA) with outliers exceeding �log10(p) > 5 highlighted in orange. Bottom: importance values for individual

SNPs inferred using a machine learning algorithm (Random Forest), with the top 0.1% of loci highlighted in red. Dark outlines on both plots are outliers matching

between GEMMA and Random Forest.

Related to Table S2.
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likely role of these loci in determining cognitive differences, 52

loci were identified as highly significant outliers by both GEMMA

and Random Forest (Figure 2), despite the drastically different

algorithms implemented in these analyses.

Using the above outlier loci, we identified 1,251 and 1,225

known genes for GEMMA and Random Forest analyses, respec-

tively, of which 766 and 937 were unique (Table S2). Strikingly,

266 genes overlapped between GEMMA (34% of total genes)

and Random Forest (28% of total genes) analyses. Using the

PANTHER classification system (http://pantherdb.org/), we

examined the list of genes from both the regression GWAS

(GEMMA) and Random Forest analyses for statistical overrepre-

sentation (PANTHER Gene Ontology [GO]-Biological Process

Complete) with a Bonferroni correction and the human and

chicken genome annotations (Tables S1 and S3). While the

chicken genome is taxonomically closer to the chickadee

genome, the human genome has far more detailed information

about gene models and functions. PANTHER revealed many

GO categories with significant positive overrepresentation and

connection to neurological function and development of the

nervous system (Table S1), including neuron growth and devel-

opment, telencephalon development, and neurogenesis (Fig-

ure S2). Interestingly, the top GO category for Random Forest

using the chicken genome as a reference was ‘‘regulation of

alkaline phosphatase activity’’ (Table S3), and alkaline phospha-

tase is known to promote axonal growth of hippocampal neu-

rons.27 Overall, the Developmental Process GO category was

associated with 41% of all outlier genes identified by both

GEMMA and Random Forest using the human genome as a

Figure 3. Genes in regions with highest as-

sociation signal and genotype-phenotype

relationship for significant SNPs

Left: zoom into a subset of genomic regions

(200,000-bp total length of each), containing some

of the most significant associations of GEMMA

(orange), Random Forest (red), or both. Gray dots

are single-locus FST. Black lines are gene models

with boxes indicating exons, and arrows show the

direction of reading frame. Indicated in bold are

names of genes with known behavioral or neuro-

logical function or/and connected to behavioral

disorders. Two genes with putative connection to

behavior (ANKRD42 and SSR1, known to express

in nervous system) are shown in regular font. Right:

relationships between genotypes at SNPs with the

highest significance in each region and cognitive

phenotype (total number of errors). H1, H2, and He

stand for homozygotes 1 and 2 and heterozygotes,

respectively. b is the slope of linear regression and

gray shading is its 95%CI. *** indicate significance

under 0.0001. r2 is adjusted R-squared. Dark and

light blue colors indicate males and females,

respectively. Note that there is an apparent lack of

‘‘worst’’ homozygotes, suggesting that carriers of

such genotypes did not survive to adulthood and

hence were not sampled.

Related to Figures S3 and S4.

reference (35.5% GEMMA and 39.5%

Random Forest using chicken genome).

The Nervous System Development GO

category was associated with 20.9% (GEMMA) and 19.4%

(Random Forest) of all outlier genes using human genome

(16.2% GEMMA and 19.7% Random Forest using chicken

genome).

We further looked at the distribution of outliers for a subset of

genes with the highest association values of GEMMA, Random

Forest, or both (Figures 3 and S3). Individual outlier loci showed

variable patterns of association with gene features and were

located within protein-coding regions and in non-coding regions

in the vicinity of genes (Figures 3 and S3). All of these genes are

particularly strong candidates for differences in cognitive perfor-

mance due to known functions in hippocampus development

and function including neurogenesis and associations with

behavioral disorders (see Table 1 for gene functions and refer-

ences). Several genes in our association datasets have well

known associations with the development of the nervous sys-

tem, the brain, and the hippocampus. These are of particular

interest given that the hippocampus (and its taxon-specific ho-

mologs) is the area of the brain associated with spatial learning

and memory.6 These include ROBO1, ROBO2, and SLIT2—

genes known for their involvement in axon guidance, brain devel-

opment, progenitor cell proliferation, andmigration28—aswell as

WNT3A, LEF1, and ZEB2, which are critical for development of

the hippocampus.29,30Additionally, FGF13 is essential for hippo-

campal neurogenesis in rodents;31CNTN6 is critical for brain and

hippocampus development, and it has been implicated as an

autism risk gene;32 BMP2 is known to affect hippocampal func-

tion associated with learning and memory;33 and AGAP3 is

involved in regulating synaptic strength associated with learning
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and memory.34 Some of the genes we detected (DRD2, NMDE2

[NR2B]) have also been specifically implicated in cognitive func-

tion in birds.35,36

We also detected two genes (GRM3 and ELMO1) that exhibit

differential expression in the hippocampus between black-cap-

ped chickadee populations at different latitudes.10 These two

black-capped chickadee populations also show differences in

hippocampal morphology and spatial learning and memory (bet-

ter spatial cognition, larger number of hippocampal neurons, and

higher rate of adult hippocampal neurogenesis in Alaska chicka-

dees compared to Kansas chickadees),10 like the mountain

chickadees studied here. Differential expression of these genes

was detected in birds that were hand-reared from when they

were 10 days old and maintained in identical lab conditions,

which suggests these differences are associated with genetic

variation rather than experience. That we detected significant

associations between these two genes and cognitive perfor-

mance in the present study suggests that these differences

are functional. GRM3 is well known to be associated with

hippocampal dependent function, including memory in

humans,77 and ELMO1 is involved in neuron development and

adult neurogenesis.78,79

Finally, there were significant associations between geno-

types and the cognitive phenotype at a series of individual

SNPs (best associations of GEMMA, Random Forest, or both)

we examined (Figures 3 and S4). The strength of association

was low tomoderate (r2 = 0.17-0.61), which follows expectations

for a highly polygenic trait. Interestingly, in all but one case exam-

ined (n = 14), there was an apparent lack of homozygous geno-

types for the ‘‘worst’’ allele (Figures 3 and S4). This result

suggests that carriers of these homozygous genotypes might

experience behavioral or physiological disadvantages and rarely

survive to adulthood (and hence were not sampled in our data-

set) and warrant further study. Overall, the fact that every SNP

Table 1. Top ranked genes and known cognitive relevance

Gene name Description References

HTR1F involved in learning and memory,

also reported in chickens

37

POU1F1 linked to cognitive delays 38

CHMP2B associated with cognitive

impairments

39

GH involved in cognitive function

both in mammals and in fish

40,41

MAP6 involved in cognitive function,

neuron development and

maturation, synaptic plasticity,

and brain connectivity

42,43

MOGAT2 linked to brain and hippocampal

function associated with

Alzheimer’s disease

44

DGAT2 linked to hippocampal function

associated with glucocorticoid

responsiveness

45

FSHB involved in brain development 46

RREB1 linked to hippocampus-related

psychiatric disorders

47

CCDC90B linked to hippocampal function 48

DLG2 linked to neural development

and cognitive function

49

SSR1 linked to apoptosis in zebrafish 50

ANKRD42 linked to brain-related complex

traits including intelligence

51

SESTD1 involved in development of

the brain and the hippocampus

52

IGSF11 involved in synaptic plasticity

in the hippocampus

53

RTN4R linked to cognitive function 54

TNC involved in neurogenesis 55

NEO1 involved in hippocampal

function

56

CCNE1 involved in cell proliferation in

humans (and also detected in birds)

57

VSTM2B linked to dementia 58

POP4 linked to hippocampal function,

aging, and Alzheimer’s disease

59

C19 or F12 linked to cognitive decline and

neuropsychiatric impairment

60

METRN involved in neuron development

and neurogenesis

61

WDR24 involved in cell growth and

metabolism

62

RHBDL1 involved in development 63

ZNF385B linked to neurodevelopmental

disorders

64

ARHGAP31 linked to brain development 65

ZFPM2 involved in neuron development

in the brain and the hippocampus

66

NME3 involved in hippocampal function 67

SPSB3 involved in hippocampal function 68

Table 1. Continued

Gene name Description References

IGFALS involved in hippocampal function 69

JMJD8 linked to cell metabolism, cell

proliferation, and apoptosis

70

PLEK linked to hippocampus

development and function

71

CFAP70 linked to brain function

related to Alzheimer’s disease

44

MSS51 linked to neurogenesis

and intellectual ability

72

RHOT2 linked to hippocampal plasticity 73

ANTKMT also known as FAM173A,

involved in hippocampal f

unction and memory

74

EIPR1 involved in neural functions

associated with psychiatric

disorders

75

UPK1B involved in hippocampal function 76

Description and references of the top ranked genes based on the highest

association values of GEMMA, Random Forest, or both. Related to

Figure S3 and Table S2.
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tested for our focal gene set exhibited a significant association

with cognitive phenotype suggests that these SNPs are impor-

tant for spatial cognition and that they contribute to individual

variation in cognitive phenotype. In half of the top SNPs analyzed

(7 of 14; Figures 3, S3, and S4) the strength of association with

cognitive phenotype was above 50%, suggesting at least mod-

erate heritability, consistent with our BSLMM results.

Overall, using our unique long-term field dataset, we found

significant differences in numerous genes associated with indi-

vidual variation in spatial learning and memory ability in food-

caching mountain chickadees. Many of these differences are

associated with development of the nervous system and the

brain, including neuron growth and development, and neurogen-

esis. While adult neurogenesis is known to occur in avian song

nuclei and in the olfactory system, hippocampal neurogenesis

consisting of proliferation, survival, and incorporation of new

neurons has received the most attention because of its direct

connection to general cognitive function and spatial learning

and memory in mammals and birds.80–83 The genes that differ

among the individuals varying in their spatial cognitive abilities

in our study population are also associated with nervous system

development and function, suggesting a genetic basis or

constraint on the natural variation present in the spatial memory

and learning abilities of food-caching species. In other words,

an individual’s genes appear to lay the cognitive foundation

upon which that individual may then build via learning and

experience.84 This suggests that the chickadee spatial cognition

phenotype may be determined, at least in part, early in develop-

ment,84 but more study is required to firmly establish if certain

genes or loci are predictive of spatial cognition in chickadees.

Our results are consistent with previous studies showing that dif-

ferences in the spatial cognition of chickadees are associated

with differences in the number and size of hippocampal neurons

(Figure 1C), as well as adult hippocampal neurogenesis rates.7,8

In addition to the genes involved in development, many of the

genes identified appear to be directly involved in neuronal and

hippocampal functions associated with learning and memory.

Combined with previous results showing differential survival of

chickadees based on their spatial cognitive abilities,14 our

finding that differences in spatial cognition have a genetic basis

indicates that natural selection on spatial cognition can result in

local adaptation.

Our results provide an important contribution to the under-

standing of the genetic basis of naturally occurring behavioral

and cognitive variation. Often behavior, and more specifically,

cognition, is thought of as labile and readily affected by

experience.4 Historically, much of the work addressing variation

in cognition was limited to lab environments and humans, which

comes with a host of biases; however, advances in technology

and genomic analytics have paved the way to test many long-

standing assumptions in ecology and evolutionary biology,

resulting in a better understanding of naturally occurring pheno-

typic variations. Our study provides the first direct evidence for

the critical component expected for the evolution of cognitive

variation by natural selection, clearly demonstrating that genetic

differences underlie natural individual variation of spatial cogni-

tive abilities in a wild population of birds.

The results of our study lay the foundation for future investiga-

tions into the genetic basis of, and natural selection on, spatial

cognitive abilities in wild food-caching birds. Future work will

focus on quantifying heritability using a larger and more repre-

sentative sample, investigating the impact of strong selective

events on allele frequencies, and understanding temporal varia-

tion and geographic consistency in selection on spatial learning

and memory.
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Vladimir

Pravosudov (vpravosu@unr.edu).

Materials availability

This study did not generate new unique reagents

Data and code availability

Raw cognitive testing data for this study is available as supplemental data file included with this manuscript (Data S1). Raw paired

whole genome sequencing reads are available through NCBI: PRJNA770082.

This paper does not report original code.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Study subjects and site

We selected individual birds in this study based on their performance on a spatial learning and memory task at our long-term study

site in northern California, Sagehen Experimental Forest, USA.7,9,14–16,19,22 Birds were tested in the wild using ‘smart’ feeder spatial

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Blood samples from wild birds Mountain chickadees N/A

Critical commercial assays

DNeasy Blood and Tissue DNA extraction kit QIAGEN 69506

Nextera XT DNA Library Preparation Kit Illumina FC-131-1096

Deposited data

Raw cognitive testing data This paper Data S1

Black-capped chickadee reference genome 12 NCBI: JAAMOC000000000

Raw paired whole genome sequencing reads This paper NCBI: PRJNA770082

Experimental models: Organisms/strains

Mountain chickadees (bird) Wild caught Poecile gambeli

Software and algorithms

GATK Broad Institute ver. 4.1.0.0

Picard Tools Broad Institute ver. 2.22.7

bcftools 85 ver. 1.7

vcftools 86 ver. 0.1.13

GEMMA 23 ver. 0.98

randomForest (R package) 87 ver. 4.6-14

SnpEff 88 ver. 4.3

Lifoff 89 ver. 1.5.2

R R Core Team ver. 3.6.3

Trimmomatic 90 ver. 0.39

FastQC 91 ver. 0.11.6

PANTHER 92 ver. 15
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arrays equipped with radiofrequency identification (RFID) technology (see diagram in Figure 1D and Video S1).9,14–16,21,22 Prior to

each year of testing, chickadees were trapped using mist nets at established feeders and their legs were fitted with unique color-

band and passive integrated transponder (PIT)-tag combinations. Birds were selected from 3 years of testing (2016 – 2018) based

on the mean number of errors they made across the entire testing period (16 days in 2016 and 5 days in 2017 and 2018; see more

detailed methods in 9 and 14). Birds from both high (ca 2400 m) and low (ca 1900 m) elevations were selected as best (few errors) or

worst (many errors) performers for subsequent genetic analyses. Birds were chosen as best and worst performers from the bottom

and top of the data distributions (Figure 1D), respectively, and selected such that all best performers were detected in more than one

year (22/22) and most of the worst performers were not detected in more than one year (15/20: 9 of 10 birds at high elevation and 6 of

10 birds at low elevation, Differences between best and worst performers: Fisher’s exact test, p < 0.001; e.g., 13). Due to the seden-

tary nature of chickadees, birds that were not detected in the following year after testing were presumed to have died.93We aimed for

a total sample size of 40 birds, whichmeant we selected the 10 best and 10 worst performers from high elevation and the 10 best and

10 worst performers from low elevation. Although we refer to birds in best and worst performance groups, the nature of our selection

process (and likely, the polygenic architecture of cognition) resulted in a continuous distribution of individual performance scores

used for all genetic analyses described throughout the manuscript (Figure 1F). Male and female chickadees in this population do

not differ in performance on the spatial cognitive task,94 however we did use sex as a covariate in GWAS (see below).

METHOD DETAILS

Cognitive testing in the wild

Birds were tested on the spatial cognitive task using 4 spatial arrays (example of one array in Figure 1D; 2 at each elevation), each

containing 8 RFID-enabled feeders mounted equidistant on an aluminum square frame (1.2 3 1.2 m), suspended 2-3 m above the

ground using a pulley system connected to 4 trees (to avoid damage by squirrels and black bears). Within each elevation, the two

arrays were positioned ca. 1.5 km apart and each was visited by mostly non-overlapping groups of chickadees. Each feeder has

a perch with an embedded RFID antenna that is mounted in front of a motorized door that allows access to a black oil sunflower

seed reward (Video S1). Feeders can function in one of three modes: (a) ‘open’ mode, where the door remains open with visible

food; (b) ‘all’ mode, where the door remains closed but opens when any PIT-tagged bird lands on the perch, allowing access to

food; and (c) ‘target’ mode, where the door opens only for PIT-tag IDs that have been programmed into the RFID reader memory.

‘Open’ and ‘all’ modes are largely used for training whereas ‘target’ mode allows us to restrict food access for individual birds to

a specific feeder. In all three modes, every feeder records the PIT-tag ID, date, and time of all visits. For each testing year, birds

were habituated to the moving feeder door (i.e., ‘all’ mode) for at least 2 weeks prior to testing. Birds that were consistently visiting

the feeder arrays were pseudo-randomly assigned to one individual feeder within the array (1 of 8). The measure of spatial cognitive

ability was assessed based on a birds’ visits to other feeders within the array (7 of 8) that were not its assigned rewarding feeder.

When a bird landed on the perch (with embedded RFID antenna) of its assigned feeder, the feeder door would open, and the bird

would obtain one sunflower seed. Unlike many fringillid or corvid species, chickadees do not consumemultiple seeds or monopolize

a feeder, but instead take one seed and either fly to a nearby tree to consume it or fly further to cache it. Therefore, we are confident

that birds received one seed at each correct feeder visit. Performance on the spatial task was measured as the number of location

errors an individual madewithin a trial. A trial beganwhen the bird visited any feeder within the array and endedwhen they visited their

rewarding feeder, at which time the number of location errors was reset to zero and a new trial started. Location errors were defined

as the number of unrewarding feeders a bird visited before landing on the correct, rewarding feeder. The mean number of location

errors per trial was calculated across the entire testing period and used to choose birds as best or worst based on their performance.

For this study we chose birds with particular cognitive phenotypes to assess genetic variation among best andworst performers. It

is worth noting that our previous work on cognitive variation in caching birds has focused on birds inhabiting locations that differ in

winter climate severity (e.g., high versus low elevations).9,14,15,21 In addition to cognitive variation at the group level, these birds also

vary in other traits, including aggression,95 social dominance, novel exploration,96 song,97 and daily foraging routines.98 While we

cannot completely rule out the possibility of confounding variation among the best and worst performing birds used in this study,

including birds from both high and low elevations in our best and worst performer groups aimed to reduce spurious correlations

(Figure 1E).

Library preparation and whole genome sequencing

We extracted DNA from blood stored in Queens lysis buffer using the QIAGEN DNeasy Blood and Tissue protocol and quantified it

using an Invitrogen Qubit 3.0 fluorometer (Invitrogen, Carlsbad CA) and the double-stranded DNA broad range assay kit. Whole

genome library preparation was carried out by the University of Colorado Boulder Next Generation Sequencing Facility using a Nex-

tera XT DNA Library Preparation Kit following standard protocol, except using half reaction volumes. Libraries were pooled and

sequenced on an Illumina NovaSEQ 6000 (paired end, 150 base pairs) at the University of Colorado Cancer Center Genomics

and Microarray Core Facility. Sequencing resulted in a total of 1 billion reads across all individuals, representing an average of

23 million reads per individual (17,124,662 – 73,759,522), and an average depth of coverage of 9.43X per individual. Filtering of

raw reads resulted in 671 Gb of data among 42 individuals. We trimmed raw reads of sequencing adapters and barcodes using

Trimmomatic (ver. 0.39)90 using the paired end (PE) settings and Illumina adapters. We performed quality control on trimmed

sequence files using FastQC (ver. 0.11.6).91 All sequences passed FastQC quality control.
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Whole genome alignment and filtering

We aligned filtered sequence data to the black-capped chickadee reference genome (https://www.ncbi.nlm.nih.gov/bioproject/

589043; Accession: JAAMOC000000000)12 according to GATK ‘‘Best Practices’’ using the GATK software (ver. 4.1.0.0).99 We

used the black-capped chickadee reference genome because no reference genome is available for the mountain chickadee at

the moment and these species are closely related. After initial alignment with Picard Tools (ver. 2.22.7),100 we used ‘‘mpileup’’

from the bcftools software (ver. 1.7)85 to identify single nucleotide polymorphisms (SNPs) and generate a variant call file (VCF). Align-

ment of filtered sequence data before VCF table filtering initially yielded 41,105,895 SNPs. Using vcftools (ver. 0.1.13),86 we initially

removed any genotype with a sequencing depth of less than 5, a quality score lower than 30, or a minor allele count less than 3, and

checked that no individuals had genotype missingness greater than 10%within each group. We removed any locus that did not pass

a Hardy-Weinberg Equilibrium test (P-value < 0.05) and removed all indels. We filtered SNPs so that all individuals had at least 95%of

all genotypes and a minor allele frequency of 10%. Data filtering yielded 12,106,779 SNPs in 42 individuals (20 individuals who per-

formed the worst on spatial cognition tests, the most of which did not survive past their first year, and 22 individuals who performed

the best on spatial cognition tests and survived beyond their first year). There were 24 males and 18 females in the dataset, but they

were distributed relatively equally across performance groups (12:8 males/females in the low performance group and 12:10 males/

females in the high performance group; furthermore, there are no significant differences in spatial cognitive performance between

males and females in this population94).

QUANTIFICATION AND STATISTICAL ANALYSIS

Measuring cognitive ability

We assessed the mean number of errors per trial over the entire testing period. This same measure has been used in our previous

studies on spatial cognition in wild mountain chickadees9,14,15,21 and its ecological relevance has been previously established,

showing that spatial cognitive ability predicts overwinter survival14 and that females increase reproductive output when mated to

males with better spatial cognition.22 Spatial cognitive performance of best and worst individuals was compared using general linear

mixed models (GLMM; lmer() function in R version 3.6.1, packages lme4 and lmerTest101,102) with mean performance across all trials

as the response variable; cognitive category (2 levels: best and worst), elevation (2 levels: high and low), and total number of trials

completed as fixed factors, and testing year as a random factor (see Data S1). Total number of trials was used as a fixed factor

to control for the effect of motivation and differences in the number of trials completed across birds over the fixed testing period.

Regression GWAS analysis

For GWAS, we combined individuals from high and low elevation sites because of a lack of population structure between the sites

and banding-based records demonstrating effective migration along the elevational gradient.19 We used GEMMA v.0.98 (Genome-

wide Efficient Mixed-Model Association23) to perform Linear Mixed-effects Models (LMM) to establish associations between cogni-

tion phenotype (total number of errors, see above) and individual SNPs (complete dataset of 12,106,779 loci). To account for potential

relatedness between individuals and potential effects of population stratification (e.g., recent migrants from other populations), we

estimated the relatedness matrix (gk �1 option of GEMMA) and supplied it as a covariate along with binary sex information in our

LMM analyses. We used Wald likelihood ratio test to assess significance of association under P value of 1.00E-05 (-log10(P) = 5)

and 1.00E-06 (-log10(P) = 6). These thresholds were chosen to minimize the number of expected false positives given the number

of loci in our dataset (120 false positives are expected for the former and 12 for the latter thresholds), while maximizing the number

of associations to use for gene ontology analyses. We used Bayesian Sparse Linear Mixed Models (BSLMM)24 implemented in

GEMMA to assess the genetic architecture of cognition.We ran fourMCMC chains with fivemillion steps and a subsequent 20million

MCMC step sampling every 1000 iterations.We assessed three BSLMMhyperparameters: PVE (the proportion of variance explained

by all SNPs), PGE (the proportion of genetic variance explained by alleles with measurable effect), and posterior number of SNPs

explaining trait variance in the model. Finally, we used a leave-one-out cross-validation approach to assess the posterior predictive

power of BSLMM (Figure S1). More specifically, we excluded phenotypic information for one individual at a time and used the remain-

ing dataset to predict its phenotype based on genotype by running BSLMMwith the settings indicated above. Linear regression was

used to estimate the proportion of variance explained by predicted phenotypes as a measure of predictive performance.

Random Forest filtering and analysis

Advances in genome sequencing and analyses have improved our ability to identify genes that underlie phenotypes when they have a

simple genetic basis, resulting in important insights into a variety of biological processes, from human disease103,104 to plumage

coloration105 and sexual dichromatism106 in birds. Traditionally, regression-based genome wide association studies (GWAS) have

been used for such investigations; however, these analyses are sometimes underpowered for detecting genotype associations

with polygenic phenotypes because of the statistical difficulty of detecting multiple genes each with a small effect on a phenotype

(e.g., human height107–111). In addition, most GWAS algorithms assume co-dominant and additive inheritance models of phenotypic

traits and are not well-suited for detecting complete or partial dominance and epistatic interactions between loci.112Machine learning

is a promising avenue for overcoming these issues and can provide valuable information complementary to GWAS.20,87

We performed a Random Forest analysis using the same 42 individuals with the best and the worst spatial cognitive performance

that were used for GWAS.We excluded loci that did not have 100%of genotypes in all individuals using vcftools. Tomake our dataset
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computationally manageable for RandomForest, we further thinned it to retain one SNPper 500bpwindow using vcftools, resulting in

1,312,917 SNPs.We performed a regression RandomForest analysis using the R package ‘‘randomForest’’ (ver. 4.6-14)113 in relation

to the spatial cognition phenotype, closely following the analysis outline and code from 19. The two parameters that have the most

influence on the OOB-ER or PVE are the number of trees grown (num.trees) per forest and the number of predictors to randomly sam-

ple at each node (mtry).113 We first ran the parameter optimization while simultaneously testing a range of num.trees (from 100 to

13,100 with a step of 500) and mtry: sqrt(n.loci), 2sqrt(n.loci), 20sqrt(n.loci), 0.1 n.loci, n.loci /4, n.loci /2. This analysis revealed

that num.trees values reached a plateau at �2,000 and that mtry of �23,000 maximized the PVE. Following recommendations,

we increased num.trees of trees by five times (10,000) and used mtry of 23,000 for the subsequent analysis.113 We ran three inde-

pendent Random Forests to test for correlation between importance scores assigned to individual loci. The correlation between all

loci was very low (r2 not exceeding 0.07, also tested with a broader range of num.trees andmtry) which was attributed to the majority

of loci having an unstable association signal, such as slightly negative importance values assigned in one analysis replicate, slightly

positive in the other and zero in the third. We subsampled the top 2 to 30% of loci with highest importance values and ran three sepa-

rate Random Forests on these datasets to identify the breakpoint of r2 increase. This revealed that a small fraction of loci have the

strongest association signal (best2% r2 = 0.27, best3% r2 = 0.27, best4% r2 = 0.1, best5% r2 = 0.1, best10% r2 = 0.1, best20% r2 =

0.1, best30% r2 = 0.1), with additional analyses indicating the breakpoint at around top 0.1% (n = 1,312), where r2 increased to 0.75.

We therefore used the top 0.1% of outliers for downstream analyses.

Gene ontology analysis

To identify which biological processes may be represented by the SNPs identified as significantly related to the spatial cognition

phenotype in the regression GWAS analysis and the Random Forest analysis, we first annotated the SNPs using SnpEff (ver.

4.3t)88 with the black-capped chickadee reference genome.12 We identified unique, known genes (i.e., those with a defined gene

name and accession number) to be used in the gene ontology analysis. After genes were annotated, we compared gene lists derived

from SNPs identified as important in both the regression GWAS analysis and the Random Forest analysis.

For the gene ontology analysis of the regression GWAS, we used all genes with a P-value < 1.00E-05. For the Random Forest anal-

ysis, we included all genes with 0.1% top positive importance score as indicated above. We used these cutoffs in order to maximize

the number of genes used in the gene ontology analysis, because we expect many genes with potentially small individual effects to

contribute to a complex phenotype, such as spatial cognition. We used PANTHER (ver. 15)92 to perform the gene ontology analysis.

Specifically, we tested for statistical overrepresentation in biological processes using the ‘‘PANTHER GO-Biological Process

Complete’’ analysis using the Bonferroni correction for multiple testing. We performed the analyses using the human (Homo sapiens)

and the chicken (Gallus gallus) reference genomes. We considered both reference genomes because the human genome has amore

complete annotation (and better characterized genes involved in behavior and cognition), while the chicken genome represents a

more closely related species to chickadees (Tables S1 and S3).

Gene annotation

To examine associations between Random Forest and GEMMA outliers and specific genes, we used Liftoff89 to annotate our black-

capped chickadee reference genome, using zebra finchmRNA and protein evidence (https://ftp.ncbi.nlm.nih.gov/genomes/all/GCF/

008/822/105/GCF_008822105.2_bTaeGut2.pat.W.v2/). This annotation resulted in 19,482 out of 21,049 (�93%) of zebra finch genes

mapped to the black-capped chickadee reference. We then used a 200,000bp window around specific SNPs to examine gene con-

tent and associations between outliers and individual gene features (such as coding versus non-coding regions, intronic versus

exonic parts of a gene, etc). Given that our GEMMA analysis of the cognition phenotype architecture revealed that �10 loci might

be explaining a high proportion of the trait variance, we focused on 14 genomic regionswith the exceptional outlier values of GEMMA,

Random Forest or both (Figures 3 and S3).

ll

e4 Current Biology 32, 1–10.e1–e4, January 10, 2022

Please cite this article in press as: Branch et al., The genetic basis of spatial cognitive variation in a food-caching bird, Current Biology (2021), https://

doi.org/10.1016/j.cub.2021.10.036

Report


	CURBIO17968_proof.pdf
	The genetic basis of spatial cognitive variation in a food-caching bird
	Results and discussion
	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	Acknowledgments
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Materials availability
	Data and code availability

	Experimental model and subject details
	Study subjects and site

	Method details
	Cognitive testing in the wild
	Library preparation and whole genome sequencing
	Whole genome alignment and filtering

	Quantification and statistical analysis
	Measuring cognitive ability
	Regression GWAS analysis
	Random Forest filtering and analysis
	Gene ontology analysis
	Gene annotation





