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It is well known and often said that use of addictive  

substances is highly destructive to individuals and 
to society as a whole. Substance use, legal and illegal,  
is widespread in most populations. Individuals who 
use substances frequently or heavily can lose control of 
their substance use behaviours, resulting in substance use  

disorders (SUDs) — substance use that is no longer under 
the person’s full control, often because of physiological 
substance dependence. Over the years, there has been con­
siderable debate over the extent to which SUDs should 
be considered habits or behaviours on the one hand, or 
medical illnesses on the other. A rather dim view of these 
behaviours has been taken by some under the assumption 
that they can be controlled with sufficient effort; this view 
has influenced the stigma our society attaches to SUDs. 
The biological data, including the genetic data, tell a dif­
ferent story, however: what begins as a habit or volitional 
behaviour becomes a genetically influenced brain disease 
where substance abuse creates a continuing need for the 
substance in the affected individual.

Substance use is notoriously difficult to treat. Treat­
ment strategies have included replacement (as for nico­
tine and opioid replacement) and abstinence, sometimes 
together with self­ help groups or p sy ch ot he ra py1–3 ; alco­
hol and nicotine dependence also can be treated with 
non­ replacement pharmacotherapies. To provide bet­
ter treatments, we require better understanding of the 
underlying biology. SUDs have long been known to be 
moderately heritable. In particular, genetic influences 
on SUD traits were shown decades ago via genetic epi­
demiology methods: twin and adoption studies4. This 
research was critical in establishing a basis for gene map­
ping in SUDs, but the twin­ study framework was well 

established a decade ago and has advanced little relative 
to molecular gene mapping successes. Genetic studies 
have been considered a key tool for identifying targets to 
develop more effective treatments. However, we are just 
starting to comprehend and dissect the highly polygenic 
architecture of these complex traits. The main steps for­
ward in this field have occurred recently and over just 
a few years. This is attributable to the advent of large 
biobanks and consortia that are allowing study of sample 
sizes that until recently were unimaginable.

Large­ scale genome­ wide studies of complex traits 
illustrate several key propositions. First, bigger is better. 
Large genome­ wide association studies (GWAS) can 
uncover novel biology. Second, similar to other com­
plex traits5, genetic findings from European­ descent 
populations (EUR; for example, European American 
subjects) greatly exceed those from other populations 
(for example, African American (AA) subjects). Third, 
candidate genes selected based on known biology, which 
have a dismal record in the field as a whole6,7, have been 
successfully replicated by large­ scale SUD GWAS in a 
few instances.

In this Review, we focus on the largest and the most 
consequential studies based on genome­ wide designs 
(Fig. 1; Table 1). We discuss legal and illegal substances 
separately. Why so? This is not simply an administrative, 
or legal, issue. The environmental effects of exposure to 
various substances play a critical role in determining 
how an individual’s genetic risk to become addicted 
plays out; and legality plays a large role in exposure. 
Also, societies have tended to legalize those substances 
that are considered less harmful (at least at the time they 
are legalized) or to which exposure is deemed inevitable 
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and impossible to control. The unequivocally illegal sub­
stances, for example cocaine and opioids, are considered 
very harmful, and their use has comparatively low prev­
alence; the unequivocally legal ones, especially alcohol 
and tobacco, are freely available to almost everyone and 

are used more widely. Cannabis straddles the two catego­
ries. We describe emerging biological insights, including 
from large­ effect loci, and genetic overlap among SUDs 
and related traits. We also discuss how genomics studies 
can be complemented by other omics approaches such 
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Fig. 1 | From epidemiology and gene discovery to biology of SUDs. Genome- wide association data sets can be used  

as the basis for multiple analytical approaches to disentangle the biology of the traits investigated (for example, cellular 

processes and molecular functions) and to understand the mechanisms underlying the associations observed in 

epidemiological studies. IV, instrumental variable assumption; PRS, polygenic risk score; SUD, substance use disorder.
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as epigenomics and transcriptomics for a more complete 
biological understanding. Studies based on animal mod­
els and pedigree analyses are not included in detail due 
to space limitations, but we address the ongoing debate 
about optimal use of animal models for SUD genetics.

Legal substances

Alcohol. Alcohol use disorder (AUD) and related traits 
provide one of the very few examples of the survival 
into the current ‘big data’ era of large­ effect loci initially 

identified by candidate gene studies8. We discuss these 
loci — the alcohol­ metabolism genes alcohol dehydro­
genase 1B (class I) β­ polypeptide (ADH1B) and aldehyde 
dehydrogenase 2 family member (ALDH2) — in the pre­
disposition to alcohol use, abuse and dependence in the 
section ‘From large­ effect risk loci to disease biology’. 
However, these large­ effect alleles explain very little of 
the overall phenotypic variance, which is accounted for 
by the contribution of thousands of alleles with small 
effects (that is, polygenicity). Large­ scale GWAS are 

Table 1 | Main phenotypes related to SUDs investigated in the largest genome- wide association studies available

SUD outcome Description GWS 
loci

SNP- based 
heritability

Sample size Refs

Alcohol

Alcohol dependence AD diagnosis based on DSM- IV or DSM- III- R criteria 1 0.090 ± 0.019 14,904/37 ,944 8

Alcohol use disorder AUD diagnosis based on ICD-9 and ICD-10 codes 10 0.056 ± 0.004 55,584 /218,807 14

Problematic alcohol 
use

Meta- analysis of cohorts assessed using different phenotypic definitions 
including AD, AUD and AUDIT- P

42 0.068 ± 0.004 300,789a 13

Alcohol use disorder 
identification 
test:consumption

AUDIT- C scores were derived from electronic health records (EHRs) 13 0.068 ± 0.005 272,842 14

Drinks per week Average number of standard drinks a subject reports consuming each week 99 0.042 ± 0.002 941,280 15

Tobacco smoking

Nicotine dependence Nicotine dependence category (mild, moderate, severe) defined on the 
basis of the Fagerström Test for Nicotine Dependence (FTND) scores

5 0.086 ± 0.012 58,000 27

Age of initiation of 
regular smoking

Age at which an individual first became a regular smoker 10 0.047 ± 0.003 341,427 15

Cigarettes per day Average number of cigarettes smoked per day binned in categories 55 0.08 ± 0.008 337 ,334 15

Smoking initiation Binary phenotype with ever regular smokers coded as cases and never 
regular smokers coded as controls

378 0.078 ± 0.002 557 ,337/674,754 15

Smoking cessation Binary phenotype with current smokers coded as cases and former 
smokers coded as controls

24 0.046 ± 0.002 139,453/407 ,766 15

Smoking trajectories Longitudinal trajectory groups for smoking status based on electronic 
health records

20 0.187 ± 0.01

0.058 ± 0.005

286,118 28

Opioids

Opioid dependence OD diagnosis based on DSM- IV criteria; opioid exposure defined as 
being exposed to opioids at least once

0/1 NS 0.28 ± 0.1 4,503/4,173/32,500 41

Opioid use disorder OUD diagnosis and opioid exposure based on ICD-9 and ICD-10 codes 1 0.113 ± 0.018 15,756/99,039 44

Opioid exposure Opioid exposure defined as being exposed to opioids at least once 1 NS 4,173/32,500 41

Cannabis

Cannabis use Self- reported information on whether the participants had ever used 
cannabis during their lifetimes

8 0.11 ± 0.01 180,934a 34

Cannabis use disorder CUD diagnosis based on DSM- IV or DSM- III- R criteria or ICD-10 codes 2 0.067 ± 0.006 20,916/363,116 37

Age at first cannabis 
use

Age at first cannabis use assessed from questionnaires or clinical interviews 5 NS 24,953 35

Cocaine

Cocaine dependence DSM- IV symptom count for cocaine dependence; DSM- IV cocaine 
dependence diagnosis

1/0 NA 
0.30 ± 0.06

9,760

2,085/4,293

46,47

For each trait, we report a brief description, the number of genome- wide significant (GWS) loci, the single- nucleotide polymorphism (SNP)- based heritability  
and the sample size. For binary traits, we report the number of cases and controls (that is, cases/controls). For smoking trajectories, we report the SNP- based 
heritability calculated for contrast I (current versus never) and contrast II (current versus mixed). With respect to opioid dependence (OD), the case–control analysis 
was conducted considering opioid- exposed controls and opioid- unexposed controls separately; for this phenotype, we report information (that is, GWS loci, 
SNP- based heritability and sample size) for both analyses (cases/opioid- exposed controls/opioid- unexposed controls). With respect to cocaine dependence, we 
report results from two studies. AD, alcohol dependence; AUD, alcohol use disorder; AUDIT, Alcohol Use Disorders Identification Test for consumption (AUDIT- C) or 
problems (AUDIT- P); CUD, cannabis use disorder; DSM, Diagnostic and Statistical Manual of Mental Disorders; ICD, International Classification of Diseases; NA, not 
available in the referenced publication; NS, not significant (P > 0.05); OUD, opioid use disorder; SUD, substance use disorder. aFor traits meta- analysing different 
types of phenotypic definitions, we report the effective sample size.
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beginning to reveal the polygenic architecture of sev­
eral alcohol­ related traits, while identifying genetic 
differences between them that were not appreciated in 
the days of small­ scale studies. Many traits have been 
considered in GWAS of alcohol use (box 1). AUD (by the 
Diagnostic and Statistical Manual of Mental Disorders, 
fifth edition (DSM­5)) or alcohol dependence (AD) 
(by DSM­ IV and earlier) seeks to capture physiological 
dependence, which is an inability to discontinue use as 
opposed to use per se (as for all SUD diagnoses). The 
Alcohol Use Disorders Identification Test (AUDIT) is 
in clinical use and is collected by some biobank pro­
jects (box 2). The AUDIT can be separated into two sec­
tions, the AUDIT­ C focused on consumption and the 
AUDIT­ P focused on problems caused by alcohol use9. 
The AUDIT was designed to be able to detect drinkers 
who are less severely affected. As such, it identifies alco­
hol users who do not meet the diagnostic criteria for AD 
(as per DSM­ IV10) or AUD (as per DSM­5 (reF.11)). A 
GWAS including data from the UK Biobank sample and 
23andMe (N = 141,958 participants) investigated AUDIT 
scores, but also the AUDIT­ C and AUDIT­ P separately, 
and found several novel AUDIT associations (for exam­
ple, junctional cadherin 5 associated (JCAD) and solute 
carrier family 39 member 13 (SLC39A13)); an additional 

key finding was a different pattern of genetic correlations 
for the two AUDIT subscales12. The AUDIT­ P, but not 
the AUDIT­ C, was correlated with a range of psychiatric 
traits. This very important observation has been con­
firmed and amplified in numerous other studies13,14 and 
a similar pattern has been observed for some other sub­
stances, namely that dependence traits tend to be corre­
lated more strongly with other psychiatric phenotypes 
than quantity/frequency of use traits.

The easier the trait ascertainment, the larger the 
available samples; for the alcohol­ related trait ‘drinks per 
week’, data have been collected in numerous studies. The 
current largest meta­ analysis conducted by the GWAS 
and Sequencing Consortium of Alcohol and Nicotine 
use (GSCAN) for an alcohol­ related trait concerns 
drinks per week, with an included sample size of 941,280 
participants and 99 risk loci identified (for example, 
phosphodiesterase 4B (PDE4B) and cullin 3 (CUL3))15. 
This quantity/frequency measure tended not to show 
genetic correlation with other psychiatric traits, similar 
to the AUDIT­ C. As for the AUDIT­ C GWAS results, 
these quantity/frequency results are of great interest, 
but of less clear relevance to pathological AUD; much  
of the information would have derived from behaviour in  
the normal range.

Although many databases collect quantity/fre­
quency information for alcohol consumption, infor­
mation regarding AUD per  se — the more severe 
trait — is sparser. For more severe traits, the Million 
Veteran Program (MVP) sample has been particularly 
useful (box 2). There have been three major GWAS 
of alcohol­ related traits based on the MVP. The first 
examined maximum habitual alcohol use (MaxAlc)16, 
and included 126,936 EUR and 17,029 AA subjects. 
Consistent with previous reports, ADH1B was the lead 
locus for both populations. Also as in previous reports, 
different lead single­ nucleotide polymorphisms (SNPs) 
were seen in the two populations: rs1229984 for EUR and 
rs2066702 for AA subjects. Three other genome­ wide 
significant (GWS) MaxAlc loci were identified in EUR 
subjects, including corticotropin­ releasing hormone 
receptor 1 (CRHR1); the protein product of this gene is 
involved in stress and immune responses17.

Another MVP GWAS considered both AUD and the 
AUDIT­ C14 in a multi­ ancestry sample (N = 274,424) 
using electronic health record (EHR) data. ADH1B 
was again the lead locus (for both traits), and the lead 
SNPs were the same as those observed in the MaxAlc 
study, but this larger study identified 18 GWS loci — 
five associated with both traits (for example, ADH1B), 
eight associated with the AUDIT­ C only (for example, 
VRK serine/threonine kinase 2 (VRK2) and klotho β 
(KLB)) and five associated with AUD diagnosis only (for 
example, SIX homeobox 3 (SIX3) and dopamine recep­
tor D2 (DRD2)). AUD and the AUDIT­ C had a genetic 
correlation of only 0.52; unsurprisingly, considering 
the moderate correlation between these two traits, they 
showed differing correlations with other traits. AUD 
tended to be positively correlated with other psychiatric 
traits (such as schizophrenia), whereas the AUDIT­ C 
was not correlated with psychiatric diagnoses but was 
correlated with some healthy traits and behaviours 

Box 1 | Major instruments used to define SUD traits in large- scale genome- 

wide association studies

Different phenotyping strategies have been used by genetic studies to derive 

information regarding substance use disorder (SUD) traits from several thousand 

participants. Below, we describe the main instruments used in large- scale genome- wide 

association studies (GWAS).

DSM

The Diagnostic and Statistical Manual of Mental Disorders (DSM) is the evolving handbook 

published by the American Psychiatric Association used as the authoritative guide to 

the diagnosis of mental disorders. For addictive substances, DSM diagnostic criteria 

permit diagnoses of substance abuse, dependence and use disorders, depending on  

the DSM version used; the diagnostic definitions are updated during the subsequent 

DSM revisions. In the latest DSM version, DSM-5 (reF.11), SUD diagnosis combines  

the DSM- IV categories of substance abuse and substance dependence into a single 

disorder measured on a continuum from mild to severe based on the criterion count.

ICD

The International Classification of Disease (ICD)188 is a standardized set of criteria 

maintained by the World Health Organization (WHO) that is used globally to identify 

health trends and statistics and to report diseases and health conditions for clinical and 

research purposes. SUDs can be defined on the basis of algorithms that consider the 

occurrence of ICD codes related to substance abuse and dependence in the electronic 

health records (EHRs) of the participants involved. Similar to the DSM, the ICD code set 

is revised over the years. Recent SUD genetic studies were mostly based on ICD-9 and 

ICD-10 codes.

AUDIT

The Alcohol Use Disorders Identification Test (AUDIT)9 is a 10- item screening 

instrument developed by the WHO to evaluate alcohol consumption, drinking 

behaviours and related problems. The first three AUDIT items comprise AUDIT- C, which 

assesses the quantity and frequency of drinking and heavy or binge drinking. The last 

seven AUDIT items are the AUDIT- P, which covers problems: symptoms related to 

alcohol dependence (AD) and problems resulting from drinking.

FTND

The Fagerström Test for Nicotine Dependence (FTND)24 is a standard instrument for 

assessing the severity of nicotine use and dependence. It includes six items that evaluate 

the quantity of cigarette consumption, the compulsion to use, and dependence, 

yielding a score ranging from zero (no criteria) to ten (highest dependence level).

Substance dependence

Mental illness characterized  

by behavioural, cognitive  

and physiological symptoms 

developed after repeated 

substance use that make it 

difficult to discontinue use, 

often despite harmful effects. 

These symptoms, which extend 

beyond purely psychological 

effects, are commonly known 

as physiological dependence 

or physical dependence.

Substance abuse

The harmful or hazardous use 

of psychoactive substances, 

including alcohol and licit and 

illicit drugs.

Candidate genes

loci hypothesized to be 

associated with a complex 

traits on the basis of prevailing 

theories and positional 

mapping from linkage studies 

and/or cytogenetic studies.
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(for example, educational attainment). This might be 
because the AUDIT­ C indexes alcohol consumption 
more in the normal ‘social drinking’ range, whereas 
AUD is more sensitive to problematic drinking (that is, 
in the pathological range).

The largest GWAS to date with direct relevance 
to AUD is a meta­ analysis effort, combining AUD 
per se (from the MVP and the Psychiatric Genomics 
Consortium (PGC)) and the alcohol use component 
of the AUDIT related to medical problems, that is the 
AUDIT­ P (from the UK Biobank); the meta­ analysed 
trait was considered to be ‘problematic alcohol use’ 
(PAU). This study included 435,563 individuals of 
European ancestry and identified 29 independent risk 
variants (for example, thrombospondin type 1 domain 
containing 7B (THSD7B) and cell adhesion molecule 2 
(CADM2))13. In addition to the gene discovery, the large 
sample size permitted a much more powerful investiga­
tion of PAU polygenicity. For example, 138 significant 
genetic correlations with other traits were observed. 
Positive genetic correlations included major depression, 
depressive symptoms, attention deficit hyperactivity 

disorder (ADHD), schizophrenia and bipolar disorder 
among psychiatric traits, as well as insomnia; negative 
correlations included subjective well­ being and age of 
smoking initiation. With respect to physical health, 
phenome­ wide association analysis with a polygenic 
risk score (PRS) for PAU implicated several disorders 
associated with alcohol and tobacco abuse, including 
alcoholic liver disease and chronic airway obstruction 
and bronchitis.

Although this study roughly tripled the number of 
PAU risk loci, only EUR subjects were included. This 
illustrates a well­ known and critical issue in human 
genetics5: there are comparatively few studies in other 
populations. Studies in small Asian samples have 
alighted on ADH1B and/or ALDH2 (reFS18–20) but have 
not yet moved beyond the large­ effect alleles mapping 
in these alcohol­ metabolizing enzyme­ encoding genes.

Nicotine. Tobacco use genetics is one of the best studied 
among the addictive disorders. The medical importance 
to the research community is obvious owing to the well­ 
known increases in risk for cancer, cardiac disease and 

Diagnostic criteria

Criteria reflecting signs, 

symptoms and tests that are 

useful to guide the care of 

patients and understand 

prognosis.

Box 2 | The major biobanks and collaborative projects that have provided insights into SUD genetics

The high polygenicity seen in substance use disorders (SUDs) and related 

traits requires the analysis of large cohorts that may include hundreds  

of thousands of participants. To generate these large sample sizes, 

collaborative efforts are needed to integrate the work of many 

investigators and the support of adequate funding institutions.

Biobanks

•	 23andMe (reF.189) is a biotechnology company that offers direct  

to consumer genetic testing. To date, 80% of the >12,000,000 23andMe 

consumers have opted- in to participate in research projects, completing 

online surveys regarding health- related outcomes. In collaborations 

with academic groups and pharmaceutical companies, these data are 

being used to investigate the genetics of common diseases and traits. 

23andMe summary- level data can be accessed through the publication 

data set access program via a data transfer agreement.

•	BioBank Japan (BBJ)190 is a registry of patients suffering from lifestyle-  

related diseases and various cancers. DNA was collected from all 

participants at baseline. Serum samples and clinical information were 

collected annually until 2013 for 200,000 participants. From 2013 to 

2017, BBJ collected DNA and clinical information from an additional 

67,000 patients with common diseases.

•	China Kadoorie Biobank191 recruited >510,000 adult participants from 

10 geographically defined regions of China. Data were collected by 

questionnaires and physical measurements. Blood samples collected  

for each participant are stored long term for future studies. Additional 

clinical information is collected through linkage with established 

registries and health insurance databases.

•	deCODE Genetics192 is a biopharmaceutical company based in 

Reykjavík, Iceland. To date, deCODE have gathered genotypic and 

medical data from >160,000 volunteer participants, comprising half  

of Iceland’s adult population. In addition to their Icelandic data sets, 

deCODE investigators analyse genetic and medical data from around 

the world using proprietary statistical algorithms and informatics tools.

•	FinnGen193 is a personalized medicine project supported by public and 

private funding that includes Finnish universities, hospitals, biobanks 

and international pharmaceutical companies to improve human health 

through genetic research and identify new therapeutic targets and 

diagnostics. The project started in 2017 and is expected to continue  

for 10 years, recruiting 500,000 participants. FinnGen summary- level 

data are shared openly with the scientific community.

•	iPSYCH194 is a Danish national project with the goal of identifying  

the genetic causes and creating the basis for better treatment and 

prevention of psychiatric disorders. This cohort includes more than 

130,000 Danes with genetic and environmental information relevant  

to the study of mental health.

•	The Million Veteran Program (MVP)195 is a national research programme 

funded by the US Veterans Administration to learn how genes, lifestyle 

and military exposures affect health and illness. Participants are US 

veterans. Since launching in 2011, >825,000 veterans have been 

recruited in the MVP cohort. The MVP sample is remarkable for its 

population diversity, as it includes not only subjects of European 

ancestry but also substantial numbers of subjects of African ancestry 

and Latinx subjects, and smaller numbers of other US populations. 

Reflecting historical participation in the US military, the MVP sample  

is mostly male. The MVP limits access to its primary data to US 

Department of Veteran Affairs (VA) investigators at present, but makes 

summary statistics available freely at the time of publication of results.

•	The UK Biobank196 is an open- access resource available to investigate a 

wide range of serious and life- threatening illnesses. The cohort includes 

>500,000 participants with genome- wide data and detailed information 

regarding their diet, cognitive function, work history, health status and 

other relevant phenotypes. Individual- level data are made available to 

investigators worldwide after an application process.

Collaborative efforts

•	The GWAS and Sequencing Consortium of Alcohol and Nicotine use 

(GSCAN)15 is an international meta- analysis consortium aiming to 

aggregate genetic association findings of alcohol- drinking and 

tobacco- smoking traits across studies including millions of individuals.

•	The International Cannabis Consortium (ICC)34 is a worldwide 

collaborative effort that aims to identify genetic variants underlying 

individual differences in cannabis use phenotypes, including lifetime 

cannabis use, age at first cannabis use and quantity/frequency  

of cannabis use.

•	The Psychiatric Genomics Consortium (PGC)197 is a collaborative effort 

including >800 investigators from >150 institutions in >40 countries 

with the goal to advance genetic discovery of biologically, clinically and 

therapeutically meaningful insights. The PGC- SUD workgroup focuses 

on the study of use and misuse of alcohol, cannabis, cocaine, opioids, 

tobacco and other illicit substances.
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many other systemic illnesses associated with smok­
ing and nicotine, and it is so important medically that 
tobacco use information is collected in most investi­
gations of medical traits. Furthermore, tobacco use is 
highly prevalent, resulting in much useful information 
that can be obtained even from population­ based stud­
ies. There have been numerous well­ powered studies 
related to tobacco use; we focus here on the largest and 
most powerful such studies.

One of the strongest findings in drug dependence 
genetics pertains to nicotine use — the relationship 
between markers mapped to the gene cluster encod­
ing neuronal acetylcholine receptor (CHRNA3– 
CHRNA5–CHRNB4) and smoking heaviness or 
dependence21–23. These genes encode cholinergic nico­
tinic receptor α3, α5 and β4 subunits, and their protein 
products interact directly with nicotine. We review 
the functional consequences of genetic variation  
in the CHRNA3–CHRNA5–CHRNB4 gene cluster in the 
section ‘From large­ effect risk loci to disease biology’. 
There have been many comparatively large­ scale GWAS 
studies of behaviours related to cigarette smoking; the 
largest to date is, as for alcohol use, the GSCAN15, which 
considered up to 1.2 million subjects for ‘smoking initia­
tion’ and hundreds of thousands for several other smok­
ing phenotypes including cigarettes per day (where the 
lead variant mapped to CHRNA5 with P = 1.2 × 10−278) 
and smoking cessation. These phenotypes, however, 
relate mostly to quantity and frequency of use, rather 
than nicotine dependence; cessation and initiation of 
use, although very important clinically, are also dif­
ferent from dependence. This study was well­ powered 
and identified remarkably many significant risk loci; for 
example, 378 independent loci for smoking initiation.

Considering what was seen with AUD and quan­
tity/frequency measures of alcohol use, it would seem 
important to evaluate the analogous dependence trait 
for smoking behaviours. Several definitions of nic­
otine dependence are in common use, based on the 
Fagerström Test for Nicotine Dependence (FTND)24 
or on DSM­ IV or DSM­5 (box 1). In addition to the 
CHRNA3–CHRNA5–CHRNB4 locus, DNA (cytosine­5­)
methyltransferase 3β (DNMT3B), for example, was iden­
tified as associated with nicotine dependence (FTND) 
in a meta­ analysis study that included 38,602 smokers25, 
with both EUR and AA subjects contributing to the find­
ing. Several studies have reported significant association 
with related phenotypes, including ‘time to first cigarette’ 
(for example, reF.26). An FTND GWAS including 58,000 
smokers observed an 8.6% SNP­ based heritability and 
identified 5 GWS loci (for example, teneurin transmem­
brane protein 2 (TENM2) and dopamine β­ hydroxylase 
(DBH)) that were enriched for transcriptomic regulatory 
mechanisms in the cerebellum27.

A GWAS on smoking traits from the MVP also 
included meta­ analysis for smoking initiation and ces­
sation from the GSCAN28. The MVP EHR data also 
permitted analysis of nicotine use trajectories as a phe­
notype; 18 risk loci (for example, neuronal growth reg­
ulator 1 (NEGR1) and cyclin and CBS domain divalent 
metal cation transport mediator 2 (CNNM2)) for this 
trait were identified in the EUR sample. In addition to 

participants of European descent, this study has the 
merit of including comparatively large numbers of AA 
subjects and Latinx subjects, although only a few discov­
eries in those samples, still much smaller than the EUR 
sample, were reported.

Illegal substances

Cannabis. Cannabis is the most commonly used ille­
gal substance throughout most of the world29; in the 
United States, its status straddles the ‘legal’ and ‘illegal’ 
categories in many states, where use was decriminalized 
and then legalized for medical and/or recreational use, 
despite continuing illegality at the federal level. This has 
corresponded to gradually increasing societal accept­
ance of cannabis use, the natural outcome of which has 
been increased use and childhood exposure30. In this 
context, working out the genetic risk for cannabis use 
disorder (CUD) has taken on increased importance. 
The first two cannabis­ relevant GWAS that yielded 
significant results mapped risk loci for CUD in AA 
subjects in one study31 and in an EUR sample in the 
other32. The next several efforts, which put together 
considerably larger samples via meta­ analysis, did not 
address CUD per se but related traits, including life­
time cannabis use33,34 and age of first cannabis use35. The 
relationship these latter two traits bear to CUD is not 
entirely clear: these traits would appear to bear strong 
relationships to environmental exposures, drug availa­
bility and personality traits such as sensation seeking, 
as opposed to the transition from use to dependence. 
Larger studies directly relevant to CUD have shown 
association implicating CHRNA2 (2,387 cases, 48,985 
controls)36, and then several loci (for example, forkhead 
box P2 (FOXP2)), including additional evidence sup­
porting CHRNA2 effects in a recent PGC (box 2) meta­ 
analysis37. The latter study, which included 20,916 cases 
and >300,000 controls, identified two loci, and showed 
partial genetic overlap between CUD and cannabis use 
(rg = 0.50), generally consistent with the differences 
observed between quantity/frequency versus depend­
ence measures of alcohol use12–14. Thus, the situation 
with CUD is illustrative of illegal SUDs in general: a 
lower prevalence than alcohol and nicotine use, fewer 
available samples to study and reduced gene discovery 
that is seen mostly in populations of European descent.

Opioids. In the past 3 years, five opioid use disorder 
(OUD) GWAS have yielded GWS loci (for exam­
ple, repulsive guidance molecule BMP co­ receptor a 
(RGMA), cornichon family AMPA receptor auxiliary 
protein 3 (CNIH3) and potassium voltage­ gated chan­
nel subfamily C member 1 (KCNC1))38–41 and identified 
potential biological pathways involved in OUD patho­
genesis. However, the limited sample size of these studies 
did not permit investigation of the polygenic architec­
ture of OUD. The PGC­ SUD workgroup combined 
these GWAS data sets together with additional cohorts, 
comparing 4,503 opioid dependence (OD) cases, 4,173 
opioid­ exposed controls and 32,500 opioid­ unexposed 
controls41. There were GWS loci (for example, the 
SDCCAG8 SHH signalling and ciliogenesis regulator 
gene), and a different genetic overlap pattern observed 
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across the traits investigated. A PRS based on a GWAS of 
risk tolerance42 was positively associated with OD (OD 
cases versus unexposed or exposed controls) and opioid 
exposure (exposed controls versus unexposed controls). 
A PRS based on a GWAS of neuroticism43 was positively 
associated with OD (OD cases versus unexposed con­
trols and OD cases versus exposed controls) but not with 
opioid exposure (exposed versus unexposed controls). 
These analyses highlight the difference between depend­
ence and exposure and the importance of considering 
the definition of controls (exposed versus unexposed) 
in opioid studies: only subjects who are exposed to a 
substance have the opportunity to become dependent, 
thus unexposed controls can also be considered ‘diag­
nosis unknown’. The importance of this distinction for 
a particular substance depends largely on the risk of 
eventually becoming dependent upon exposure.

The largest study to date44 incorporated MVP and 
Yale–Penn data, and included more than 114,000 

informative EUR and AA subjects in total. This 
study identified significant association of OUD with 
a well­ known functional OPRM1 variant, A118G 
(Asn40Asp) — even in the largest study to date there 
was only one clear GWS finding. OPRM1 encodes the 
µ­ opioid receptor gene, considered the main biologi­
cal target of opioid drugs. Opioids such as methadone 
and morphine are full agonists at the μ­ opioid recep­
tor. OPRM1 has been the subject of intense interest, 
particularly this same common missense A118G SNP. 
Opioid dosing in therapeutic contexts is important clin­
ically, and another GWAS considered the trait of meth­
adone dose45. In AA subjects only, this study identified 
a significant association of methadone dose to a variant 
upstream of OPRM1, thus it could possibly have an effect 
through the same gene as that identified in the largest 
GWAS to date. The sample size for this latter study was 
very small and the results could be a false positive, but 
the proximity of this signal to the OUD GWAS signal 
is intriguing.

Cocaine. Very little work of genome­ wide scope has been 
accomplished for cocaine dependence or for other stim­
ulants; all cocaine­ related work has relied substantially 
on the Yale–Penn cohort. The first46 of the two available 
GWAS identified several risk variants (for example, fam­
ily with sequence similarity 53, member B (FAM53B)) 
that, despite the years since the completion of the study, 
still await not only replication but any suitably powered 
replication attempt. On the other hand, the FAM53B 
locus has seen replication of sorts in an animal model47. 
The second study48, which incorporated data used in the 
first together with additional cohorts, did not identify 
GWS risk loci but showed consistent genetic overlap of 
cocaine dependence with other psychiatric disorders 
and behavioural traits. Another analysis of the Yale–
Penn data showed that phenotypic heterogeneity and 
gene–environment interplay affect gene discovery (for 
example, transmembrane protein 51 (TMEM51)) in 
cocaine use disorder49. Despite the morbidity and mor­
tality associated with these traits, they are not common 
enough to be approachable through biobank data so far, 
and there is regional variation (cocaine use is more pre­
dominant in some parts of the United States, whereas 
methamphetamine use is more common in others) 
tending to increase heterogeneity.

From large- effect risk loci to disease biology

Alcohol­ drinking and tobacco­ smoking behaviours 
are among the few complex mental health phenotypes 
that have common risk alleles with relatively large effect 
sizes (box 3). Although these loci explain only a small 
proportion of the genetic heritability, the evidence gen­
erated by their investigation represents a proof of con­
cept regarding how to translate genetic associations into 
disease biology.

Alcohol- metabolism genes: ADH1B and ALDH2. Genes  
encoding alcohol­ metabolism enzymes represented 
obvious candidates in the study of AUD and other 
alcohol­drinking behaviours and were among the first­ 
studied candidate loci. Alcohol metabolism includes two 

Box 3 | Biological mechanisms of genes associated with a large effect on  

SUD traits

Substance use disorders (SUDs) are highly polygenic traits where their predisposition  

is due to the additive effect of numerous, perhaps thousands, of loci, mostly with small 

effect sizes. However, traits related to alcohol drinking and tobacco smoking present 

several common variants with relatively large effect size, which is unusual for a complex 

psychiatric trait. These large effects are attributable to the fact that these molecular 

changes affect key biological processes involved in the metabolism or the response  

of the human body to alcohol and nicotine; that is, they act pharmacogenomically. 

Further details are provided in the main text. The large- effect loci include the  

following genes:

•	ADH1B (alcohol dehydrogenase 1B) encodes a subunit of the alcohol dehydrogenase 

(ADH) enzyme which oxidizes alcohol to acetaldehyde53,54. Alleles increasing alcohol 

oxidation (A/G variant, rs1229984*A, previously denoted ADH1B*2; C/T variant, 

rs2066702*T, previously denoted ADH1B*3) lead to accumulation of acetaldehyde 

and are associated with increased aversive alcohol- related intoxication effects, and 

decreased risk of not only alcohol dependence (AD) but also an extensive range of 

alcohol- related traits. rs1229984 is observed in many populations, but especially in 

Asian subjects and to a lesser extent European subjects. rs2066702 is virtually 

exclusive to African populations54. For both, the minor allele increases enzyme activity 

in the encoded protein product, and is protective with respect to alcohol use, 

dependence and, indeed, an extensive range of alcohol- related traits53.

•	ALDH2 (aldehyde dehydrogenase 2 family member) encodes an aldehyde 

dehydrogenase (ALDH) enzyme that oxidizes acetaldehyde to acetate; the key 

functional single- nucleotide polymorphism (SNP) is rs671 G/A. rs671*A (previously 

denoted ALDH2*2) is associated with reduced acetaldehyde oxidation activity, which 

causes increased acute alcohol sensitivity (and decreased risk of AD)53. The protective 

very low- activity variant is observed only in East Asian populations.

•	CHRNA5–CHRNA3–CHRNB4 (cholinergic nicotinic receptor α5, α3 and β4 subunits)  

is a cluster of genes located on chromosome 15. These loci encode subunits of the 

nicotinic acetylcholine receptor (nAChR), a ligand- gated ion channel involved in 

synaptic signal transmission. Coding changes in these nAChR subunits (for example, 

CHRNA5Asp398Asn, rs16969968 G/A) affect the nAChR activity, reducing the aversive 

effects of nicotine56. The locus includes several functional risk alleles.

•	CYP2A6 (cytochrome P450 family 2 subfamily A member 6) encodes monooxygenase 

that is involved in nicotine and cotinine oxidation, accounting for up to 80% of 

nicotine clearance. Genetic variants associated with reduced CYP2A6 activity and, 

consequently, reduced nicotine metabolism appear to affect the brain concentration 

of nicotine influencing circuits involved in reward and impulsivity processes67,68,72.

•	AHRR (aryl hydrocarbon receptor repressor) encodes a protein involved in the aryl 

hydrocarbon receptor signalling cascade. It is known to mediate dioxin toxicity  

but is likely to have additional important biological functions. Tobacco smoking is 

associated with a very strong decrease in DNA methylation (that is, hypomethylation) 

of the CpG sites located in the AHRR gene131.
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key steps: alcohol oxidation to acetaldehyde by alcohol 
dehydrogenases (ADHs), followed by acetaldehyde oxi­
dation to acetate by aldehyde dehydrogenases (ALDHs). 
Acetaldehyde can cause a wide range of aversive reac­
tions and consequences, such as unpleasant or danger­
ous physical reactions including facial flushing, and 
gastrointestinal tract cancers50. In ADH1B, the Arg48His 
amino acid substitution (rs1229984) increases alcohol 
oxidation activity with respect to the more common 
variant in many worldwide populations. Analogously, 
the Glu504Lys amino acid substitution (rs671) in 
ALDH2 drastically reduces acetaldehyde oxidation 
activity of the encoded enzyme. Both ADH1BArg48His 
and ALDH2Glu504Lys cause increases in acetaldehyde 
levels with respect to a given dose of ethanol and, con­
sequently, increase its adverse effects. Due to the high 
frequency of ADH1BArg48His and ALDH2Glu504Lys variation 
in some East Asian populations and their pharmaco­
kinetic properties, initial studies explored the association 
of these alleles with drinking behaviours and AUD in 
Chinese and Japanese individuals51. ADH1BArg48His and 
ALDH2Glu504Lys showed robust associations with facial 
flushing, increased skin temperature, an increase in 
pulse rate and ventilation52. This is the case because after 
drinking alcohol, carriers of ADH1BHis48 and ALDH2Lys504 
have increased acetaldehyde levels and, consequently, 
more acetaldehyde­ induced toxic effects, which induce 
a protective effect with respect to alcohol intake53,54. The 
same mechanism is observed in populations of African 
descent for ADH1BArg370Cys (rs2066702; ADH1B*3), 
which causes an increase in the alcohol oxidation activ­
ity. ADH1B and ALDH2 alleles were also identified as 
risk loci of cancers localized in tissues directly exposed 
to alcohol ingestion55. With greater power and larger 
sample sizes, ADH1B variation has now been shown 
to be the most important genetic influence on alcohol 
intake and dependence in EUR populations as well.

The CHRNA5–CHRNA3–CHRNB4 nicotinic receptor 

gene cluster and the CYP2A6 nicotine- metabolizing gene. 

Nicotine is the primary addictive compound among 
the complex mixture in tobacco smoke. The addictive 
effect of nicotine is considered to be due to its binding 
of the nicotinic acetylcholine receptors (nAChRs)56. 
Ligand­ gated ion channels (including these) are widely 
distributed in the nervous system where they modulate 
the release of several neurotransmitters, including dopa­
mine, γ­ aminobutyric acid and glutamate57. Variants 
mapped to genes encoding nAChR subunits (specifi­
cally, the CHRNA5–CHRNA3–CHRNB4 gene cluster) 
were identified as associated with nicotine dependence 
in a candidate gene study58. The initial findings were 
replicated and expanded by numerous subsequent 
analy ses, also including large­ scale GWAS15. Multiple 
variants causing coding changes in the protein products 
of CHRNA5, CHRNA3 and CHRNB4 were confirmed as 
associated with a wide range of traits related to tobacco 
smoking, such as nicotine dependence, smoking severity 
and heaviness, smoking cessation and nicotine aversive 
effects59. Beyond the association with smoking behav­
iours, CHRNA5–CHRNA3–CHRNB4 variants showed 
associations with harmful downstream consequences 

of tobacco smoking, including lung cancer, chronic 
obstructive pulmonary disease and reduced pulmonary 
function60,61.

The functional role of CHRNA5Asp398Asn (rs16969968) 
has been investigated via different approaches. The 
CHRNA5Asn398 allele encodes an α5 subunit that forms 
nAChRs with lower activity, increased short­ term desen­
sitization and lower calcium relative permeability62.  
In mice, nicotine negatively affected cognitive perfor­
mance attention of wild­ type mice but not α5 (Chrna5) 
knockout mice, in line with the reduced nACh activity63. 
Viral­ mediated expression of the α5 subunit in the 
medial habenula in the brain restores the aversive effect 
of α5 knockout mice to the levels observed in the 
wild­ type animals. When their α5 expression is inhibited, 
wild­ type animals showed nicotine aversion at the level 
of α5 knockout mice64. In humans (overnight­ abstinent 
smokers) who received intravenous administration of 
nicotine, CHRNA5Asn398 carriers showed an attenuated 
aversive response65. The mechanism proposed to explain 
these concordant results is that nAChRs containing α5 
subunits limit nicotine effects due to the stimulation of 
the projections of the medial habenula into the interpe­
duncular nucleus that causes the aversive reaction. This 
illustrates an application of studies in model animals to 
further our understanding of the biological effects of a 
genetic risk variant in humans.

Nicotine biological effects are also modulated by 
metabolism, with multiple steps and several enzymatic 
pathways63. Cytochrome P450 family 2 subfamily A 
member 6 (CYP2A6) accounts for up to 80% of nico­
tine clearance. In particular, CYP2A6 is involved in two 
key reactions, nicotine oxidation to nicotine iminium 
ion and cotinine oxidation to hydroxycotinine. The 
hydroxycotinine to cotinine ratio (known as the nicotine 
metabolic ratio (NMR)) is a biomarker of CYP2A6 activ­
ity and nicotine clearance66. NMR heritability is about 
60–80%, and CYP2A6 variants account for up to 30% of 
the phenotypic variation67. In line with this functional 
effect, CYP2A6 variation showed consistent associations 
with nicotine dependence, smoking, smoking cessation, 
lung cancer and other related traits68–71. A brain imag­
ing study showed that in smokers, the CYP2A6 effect 
on brain concentration of nicotine influences circuits 
involved in reward and impulsivity processes72.

These biological mechanisms are inherently 
pharmacogenomic effects. SUD genetics is, in a very real 
sense, a pharmacogenomic application: it reflects the  
interaction of the body with exogenous substances.  
The principles are essentially the same as when dealing 
with therapeutic endogenous substances; indeed, some 
abusable substances, such as opioids used for pain, are 
themselves sometimes therapeutic, depending on the 
context.

Genetic overlap of addictions and related traits

The genetic architecture of complex traits — including 
SUDs — is mainly characterized by two phenomena: 
polygenicity (cumulative contribution of thousands of 
risk alleles with very small individual effects)73 and plei­
otropy (risk alleles are shared across human diseases and 
traits)74. Below, we review how different methods have 

Pharmacogenomic

The study of how genomic 

variation affects individual 

responses to drugs and  

drug metabolism.
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advanced our understanding of the polygenicity and 
pleiotropy of SUDs.

Genetic correlation. The high comorbidity observed 
within SUDs (that is, SUDs with other SUDs) and with 
respect to other psychiatric disorders reflects that there 
are shared genetic and non­ genetic risk factors linking 
them (Fig. 2).

As genome­ wide SNP data became widely available, 
novel approaches were developed to estimate pairwise 
genetic correlations using GWAS results75, for exam­
ple, the development of computational tools using 
genome­ wide association summary statistics (estimated 

effect sizes and standard errors for each variant analysed 
in a GWAS) instead of individual­ level data (genotypes 
and trait information for each participant tested in a 
GWAS)76. Methods based on genome­ wide association 
summary statistics no longer contain data from indi­
vidual subjects and greatly reduce privacy concerns and 
other logistic issues related to individual­ level genetic 
data, permitting wide data­ sharing that has allowed a 
growing number of investigators to explore the genetic 
correlation between SUDs and other complex traits.

Estimating genetic correlation across multiple psychi­
atric disorders using GWAS data has become standard 
analysis after the primary GWAS. Although SNP­ based 
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Fig. 2 | Genetic correlation among SUD traits and other phenotypes. 

Genetic correlation of problematic alcohol use (PAU), cannabis use disorder 

(CUD), cocaine dependence, opioid use disorder (OUD) and nicotine 

dependence with psychiatric disorders, behavioural traits and other 

complex phenotypes. The 95% confidence interval of the genetic correlation 

estimates were obtained from previous studies13,37,44,48,185 that applied the 

linkage disequilibrium score regression method. The traits included are 

those tested with respect to at least four out of the five addictions considered. 

There are some patterns of genetic correlation that are consistent across 

the five addictions presented. The major differences among them are 

related to the substance- specific genetic correlations; that is, nicotine 

addiction versus cigarettes per day, alcohol addiction versus drinks per 

week and cannabis addiction versus cannabis use. SUD, substance  

use disorder.
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heritability is low, based on current data (Table 1), these 
analyses have confirmed that SUDs are genetically cor­
related with other psychiatric disorders and behavioural 
traits, with the strongest overlap (besides other SUDs) 
observed for depression, anxiety, post­ traumatic stress 
disorder, neuroticism and risk­ taking behaviours42,77–83 
(Fig. 2). However, as detailed above, differences have 
been observed between SUD traits defined based on 
dependence criteria and phenotypes related to sub­
stance consumption/use. The dependence­ based traits 
tend to have significantly higher genetic correlation 
with psychopathology­ related traits than the use­ based 
traits12,14,41,82. This pattern — dependence for a given 
substance is genetically different from abuse — is seen 
across the small number of substances where there are 
sufficient data to make a comparison (for example, alco­
hol and cannabis), but insufficient data exist for many 
other SUDs (for example, for opioids and cocaine) for 
this pattern to be potentially confirmed as universal. An 
exception to the difference between frequency/quantity 
versus dependence is nicotine, where a high genetic 
correlation is observed (rg = 0.95)27; this may possibly be 
explicable on the basis that nicotine is so addictive and 
available that regular smoking very readily engenders 
physiological dependence84.

Polygenic risk scores. The availability of large GWAS 
permits us to weight and to model the cumulative effect 
of hundreds or even thousands of small­ effect variants 
into a PRS85. There is a wide range of methods available 
to model the polygenicity of complex traits determining 
the genetic risk of an individual86 (or that part of the 
risk affected by available common variant information). 
Similarly, the strength of prediction between the PRS 
and the outcome can be measured with several goodness 
of fit metrics86, such as the effect size estimate, the phe­
notypic variance explained, the area under the receiver–
operator curve (AUC) and the P value corresponding 
to a null hypothesis of no association. For SUDs, recent 
studies are applying these approaches mainly based on 
large­ scale GWAS of traits related to alcohol, cannabis 
and tobacco use, and dependence. SUD PRSs show lim­
ited predictive power on an individual basis — meaning 
they are not (yet) good at predicting disease risk in indi­
viduals — but are useful to understand genetic overlap 
of SUDs with psychiatric and behavioural traits. Due 
to the wide range of methods applied and SUD­ related 
traits tested, it is hard to compare studies using differ­
ent metrics, such as testing the PRS on other data sets 
when the PRS was generated from data sets based on 
different sample sizes and phenotype definitions. With 
respect to a PRS derived from traits related to alcohol 
consumption and dependence (for example, AUDIT­ 
C and AUDIT­ P), several associations were observed 
across traits related to cocaine, amphetamine and 
MDMA (3,4­ methylenedioxymethamphetamine; also 
known as ‘ecstasy’)87 in addition to alcohol use pheno­
types assessed in independent cohorts (that is, AD, AUD 
symptom count, maximum drinks, increased likelihood 
of AD onset, and International Classification of Disease 
(ICD)­ based alcohol­ related disorders88,89). In a cross­ 
ancestry analysis, an AD PRS derived from Thai and 

European American GWAS was associated with AD in 
Han Chinese subjects, although the effect was mostly 
due to the contribution of the ALDH2 and ADH1B loci19. 
Similar to alcohol­ related studies, PRSs derived from 
smoking traits showed associations across traits related 
to multiple substances (for example, cocaine, ampheta­
mine, hallucinogens, ecstasy and cannabis initiation, as 
well as DSM­5 AUD)87,90,91. For cannabis, the PRS derived 
from use (versus dependence) phenotypes showed 
association with depression, self­ harm behaviours and 
cannabis use assessed in an independent cohort92. In 
addition to testing SUD PRS prediction for other traits, 
some studies have investigated how PRSs derived from 
other psychiatric traits predict (are associated with) SUD 
phenotypes. For example, cocaine dependence was sig­
nificantly associated with multiple PRSs related to schiz­
ophrenia, ADHD, major depressive disorder, children’s 
aggressive behaviour, and antisocial behaviour48. With 
respect to dual diagnoses93, a schizophrenia PRS was 
associated with having any SUD diagnosis94 and, in an 
independent study, the same PRS was associated with 
lifetime tobacco smoking in women but not in men,  
with significant interactions of the PRS with sex and 
birth decade95. Several investigations have been con­
ducted to understand the interplay between SUD genetic 
risk and environmental factors. In a recent review article 
about this topic96, the most reported frameworks were 
differential susceptibility and diathesis stress, with sub­
stantial heterogeneity across environmental exposures, 
genetic factors, and outcomes tested.

A PRS that embodies genome­ wide risk for a 
trait can, depending on the GWAS data available on 
which the PRS is based, be used to predict risk in any 
array­ genotyped individual, and the statistical signif­
icance of this prediction can be measured. Current 
PRS studies identified several significant associations 
between SUD genetic liability and a wide range of psy­
chiatric and behavioural traits. However, there is still a 
wide gulf between a statistically significant prediction 
of risk and one that is clinically useful on an individual 
level. At this point, we have not yet approached clinical 
utility for the PRS in risk prediction, and although some 
commercial tests have been marketed that purport to do 
exactly that, we view them sceptically, and when evalu­
ated rigorously, they have failed to hold up. For exam­
ple, one test that purports to predict OUD risk actually 
predicts not the subject’s OUD risk but their ancestral 
background97.

Mendelian randomization. The consistent genetic corre­
lation among SUDs and other psychiatric disorders could 
be due to shared genetic effects or causal effects between 
the traits98. Mendelian randomization (MR) methods lev­
erage instrumental variables based on genetic informa­
tion to distinguish simple association from causation99. 
Alcohol drinking and tobacco smoking behaviours have 
been investigated using known risk alleles in the ALDH2, 
ADH1B and CHRNA5–CHRNA3–CHRNB4 loci to test 
causal relationships with respect to mental and physi­
cal health100–108. MR approaches based on polygenic 
instrumental variables are more powerful, and allow for 
exploration of a wider range of hypotheses, including 
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testing the difference between phenotypes based on 
diagnostic criteria and those based on consumption and 
frequency use82. Two­ sample MR approaches, which are 
based exclusively on genome­ wide association statistics, 
reduced the limitations due to the use of individual­ level 
data, allowing for a more extensive range of studies109. 
Polygenic instruments were investigated to test the causal 
links between traits related to tobacco smoking with 
psychiatric disorders and behavioural traits. Smoking 
initiation is affected by educational attainment but not 
by cognitive ability, suggesting a contribution to health 
inequality in less­ educated people110. Among personality 
traits, genetic liabilities to neuroticism and extraversion 
have a causal effect with smoking severity and initiation, 
respectively111. Studies investigating causality between 
smoking behaviours and schizophrenia showed conflict­
ing results112,113, whereas depression and bipolar disorder 
appear to have a bidirectional relationship with lifetime 
smoking and smoking initiation112,114. For physical 
health, several novel causal effects were observed such 
as smoking initiation on stroke risk115 and fracture risk116 
or body mass index on being a smoker117. Evidence of 
bidirectional associations was observed between can­
nabis use and schizophrenia34,118,119. Conversely, ADHD 
showed a causal effect on cannabis initiation together 
with smoking initiation and severity77,120. With respect 
to alcohol­ drinking behaviours, both major depression 
and ADHD have causal effects on AUD risk but not on 
alcohol consumption82,120. Although these studies pro­
vided novel insights useful to understand the mecha­
nisms underlying comorbidities of SUDs, MR analyses 
present several limitations that should be considered 
carefully when interpreting their findings in the con­
text of SUDs and other complex traits. Each MR design 
is based on specific assumptions121. Although several 
kinds of sensitivity analyses can be employed to eval­
uate possible biases122, it is hard to determine whether 
other unaccounted confounders are affecting the results. 
Additionally, the low SNP­ based heritability, the high 
polygenicity and the complex pleiotropy of SUD­ related 
traits strongly affect the statistical power and reliability 
of MR methods. Other analytical approaches there­
fore need to be used to extend and validate MR results. 
Longitudinal studies can be a viable option, although 
they also present certain limitations123. The gold stand­
ard for causal inference remain randomized controlled 
trials. However, there are several issues (for example, 
ethical quandaries) that limit their application to SUD 
research.

Integrating omics into addiction studies

High­ throughput technologies generating large amounts 
of individual data besides gene variant information have 
expanded, permitting investigators to analyse human 
variation across different omics data types (such as 
epigenomics and transcriptomics)124. Different tissues 
and cell types are expected to be more or less informa­
tive depending on the specific SUD traits studied. The 
brain is often the organ of greatest interest (but not nec­
essarily, because peripheral metabolism is, as detailed 
above, also important). However, study of brain tissue is 
possible only post­ mortem, and this entails substantial 

compromises. As discussed above, analyses of human 
GWAS results have demonstrated that the exact pheno­
type studied — substance use, initiation, quantity, physi­
ological dependence and so on — is critically important. 
But for deceased subjects, phenotypic information is 
often limited. Sometimes we find ourselves in the posi­
tion of needing, for example, to interpret epigenetic 
findings for subjects who have died of opioid overdose. 
But were they opioid dependent? Did they overdose 
accidentally, or did they die of suicide? If the latter, 
were they opioid­ exposed prior to the terminal event? 
When we study peripheral tissues from living subjects, 
we can have more extensive information about pheno­
type. There is an additional key consideration if omics 
results are to have clinical utility: utilization in the clinic 
depends on measurements being made on tissue that can 
be derived from living subjects. In the sections below, 
we focus on two main omics domains investigated with 
respect to SUD traits. As for GWAS, the general pattern 
that there are much more data for legal than for illegal 
SUDs pertains.

Epigenomics. Epigenetic changes are modifications that 
regulate gene function in response to endogenous and 
exogenous processes125. There has been some investiga­
tion of candidate loci126–128, but epigenome­ wide associ­
ation studies (EWAS), mostly done in peripheral tissues, 
provide a better understanding of the link between 
addictive substances and epigenetic regulation.

Large studies in this research field are, however, 
mostly lacking; some of the largest concern smoking 
traits. DNA methylation alteration extensively asso­
ciates with smoking and is a plausible link between 
smoking and adverse health129. A large­ scale EWAS of 
cigarette smoking in >15,500 participants identified 
thousands of methylation sites associated with smok­
ing status, with different patterns between current and 
former smokers130. A striking effect of tobacco smok­
ing was observed in reducing the methylation of CpG 
sites located in the AHRR locus, which encodes the aryl 
hydrocarbon receptor repressor131. This association is 
one of the strongest and most consistently replicated 
epigenetic relationships for psychiatric traits so far; in 
fact, several algorithms have been developed to predict 
smoking status on the basis of epigenetic variation132. 
Different aspects of how tobacco smoking affects meth­
ylation changes have been explored, including the role 
of nicotine metabolism, the effect of prenatal exposure 
and the risk of lung cancer in smokers133–135.

There is nothing else comparable with the remarka­
ble AHRR–smoking relationship in the rest of the SUD 
epigenetics literature, but alcohol consumption was 
also associated with epigenetic changes across hun­
dreds of methylation sites in the human genome136,137. 
Longitudinal investigations showed that the majority 
of these methylation changes are reversible in the con­
text of long­ term variation in alcohol consumption138. 
Chronic alcohol consumption appears to be related to 
methylation changes leading to neuroadaptations that 
may underlie some of the mechanisms of depend­
ence risk and persistence139. Across multiple CpG sites 
associated with AUD, there is a consistent correlation 
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of methylation profiles in buccal cells with putamen 
brain tissues140, highlighting the possibility to inves­
tigate brain­ related epigenetic changes in peripheral 
tissues. In a cross­ tissue and cross­ phenotypic analysis 
of AUD­ induced genome­ wide methylomic variation, 
epigenetic changes in PCSK9 (proprotein convertase 
subtilisin/kexin type 9) were a possible contributor to the 
effect of alcohol on lipid metabolism and cardiovascular 
risk141. A methylome­ wide analysis of 1,287 adolescents 
showed that methylation of the SPDEF (E­ twenty­ six 
transcription factor) gene moderated the association of 
psychosocial stress with alcohol and tobacco abuse142. 
Epigenetic dysregulation appears to be involved in 
reprogramming the medial prefrontal cortex after pro­
longed exposure to cycles of alcohol intoxication and 
withdrawal, which promotes the escalation of voluntary 
alcohol intake and aversion­ resistant alcohol seeking143 
(that is, AUD). Epigenome­ wide analysis in patients 
during acute alcohol withdrawal and after 2 weeks of 
recovery as well as in age­ matched controls showed 
that, although acute alcohol withdrawal in severely 
dependent patients was associated with extensive epi­
genetic changes, the differences between patients and 
controls diminished after recovery, suggesting partial 
reversibility of alcohol­ related and withdrawal­ related 
methylation144. Leveraging epigenetic clock algorithms145, 
epigenetic ageing in AD appears to be tissue­ specific 
with positive age acceleration in the blood and liver, but 
no significant effect was observed likely due to the small 
sample size (N < 50)146.

Very limited information is available regarding 
the epigenetic changes associated with other addiction 
disorders. A study of OD in 220 European American 
women identified differentially methylated CpG sites in 
genes involved in chromatin remodelling, DNA bind­
ing, cell survival, and cell projection147. A genome­ wide 
DNA methylation analysis of 48 heavy cannabis users 
confirmed the association of AHRR and F2RL3 genes 
with tobacco smoking in cannabis users and, for users 
of cannabis only, identified nominally significant meth­
ylation changes enriched for neuronal signalling (glu­
tamatergic synapse and long­ term potentiation) and 
cardiomyopathy148. But results from small studies such 
as these warrant cautious interpretation.

Transcriptomics. Understanding transcriptomics 
supports understanding of disease pathophysiology. 
Investigation of different tissue and cell types can pro­
vide different information regarding transcriptomic 
changes. Although studies of pathological states are 
limited by sample availability and phenotype ascer­
tainment, post­ mortem analyses provide an important 
approach towards understanding the normal brain, and 
the relationship between SUDs and brain transcriptomic 
regulation.

A candidate­ locus post­ mortem brain analysis 
showed that prodynorphin is downregulated in the 
dorsolateral prefrontal cortex of individuals with a 
diagnosis of AD or alcohol abuse when compared with 
controls149. The investigators hypothesized that pro­
dynorphin downregulation could lead to neurotrans­
mission disinhibition, which could contribute to the 

formation of alcohol­ related behaviour149. The cerebral 
cortex transcriptome­ wide profile of AUD showed a lack 
of overlap with the gene expression changes observed 
in other evaluated psychiatric disorders (that is, autism, 
schizophrenia, bipolar disorder and depression)150. In 
nucleus accumbens, subjects with AD showed transcrip­
tomic downregulation of gene modules enriched for 
neuronal­ specific marker genes and upregulation of gene 
modules enriched for astrocyte and microglial­ specific 
marker genes151. The neuronal­ specific modules were 
related to genes involved in oxidative phosphoryla­
tion, mitochondrial dysfunction and mitogen­ activated 
protein kinase (MAPK) signalling. The glial­ specific 
modules were related to genes involved in immune 
function151.

Another approach to investigate transcriptomic 
changes is based on cultured cell line models. In induced 
pluripotent stem cell (iPSC)­derived neural cell cultures 
obtained from healthy individuals and those with AD, 
significant changes in the expression of the candidate loci 
GABRA1, GABRG2 and GABRD were observed follow­
ing 21­ day alcohol exposure152. A model based on fore­
brain neural cells showed a module of 58 co­ expressed 
genes that were uniformly decreased following alcohol 
exposure153. These alcohol­ responsive genes are related 
to biological functions related to the cell cycle, Notch 
signalling, and cholesterol biosynthesis pathways. An 
early neural differentiation model showed a wide range 
of ethanol­ mediated transcriptional alterations, includ­
ing a strong association among modulators involved 
in protein modification, protein synthesis and gene 
expression154. A dopaminergic neuronal model based 
on SH­ SY5Y­ differentiated cells showed that cocaine 
exposure is associated with transcriptomic changes in 
genes involved in transcription regulation, cell cycle, 
adhesion, cell projection, MAPK, cAMP response 
element­ binding protein, and neurotrophin and neu­
regulin signalling155. In the same model, cocaine expo­
sure was associated with the downregulation of several 
microRNAs, which are involved in post­ transcriptional 
regulation of gene expression in the brain156. RNA tran­
scriptomic analyses in iPSC­ derived human neural cells 
revealed that tetrahydrocannabinol (THC) administra­
tion, either by acute or chronic exposure, dampened 
the neuronal transcriptional response following potas­
sium chloride­ induced neuronal depolarization with 
significant alterations to synaptic, mitochondrial and 
glutamate signalling157.

Although post­ mortem brain samples and models 
based on cultured human brain cells provide a reliable 
approach to investigate the human transcriptome, inves­
tigation of peripheral tissues can permit studies of larger 
samples. In a blood­ based transcriptome­ wide study, 
132 of 18,238 genes tested were differentially expressed 
between current smokers and never smokers, and the loci 
identified were involved in the immune system, blood 
coagulation, natural killer cell and cancer pathways158. 
By comparing former smokers with current and never 
smokers, it was possible to distinguish different status: 
reversible for 94 genes, slowly reversible for 31 genes 
and irreversible for 6 genes158. In the adipose tissue of 
542 healthy female twins, DNA methylation and gene 

Epigenetic clock algorithms

age predictors based on DNa 

methylation.

Addiction

exhibiting a psychiatric 

condition manifested by 

compulsive substance use 

despite its harmful 

consequences.

www.nature.com/nrg

R E V I E W S



0123456789();: 

expression changes were observed in 5 genes (AHRR, 
CYP1A1, CYP1B1, CYTL1 and F2RL3) in response to 
tobacco smoking159. Based on neonatal umbilical cord 
blood, prenatal smoking was associated with the tran­
scriptomic downregulation of fetal brain regulatory genes 
(BDNF, PLP1 and MBP) in active­ smoker mothers but 
not among passive smokers160. In prospectively collected 
saliva samples, prenatal opioid exposure was associated 
with sex­ dependent effects on hypothalamic feeding 
regulatory genes (DRD2 and NPY2R) with correlations  
with neonatal opioid withdrawal syndrome including 
hyperphagia and the severity of withdrawal state161.

Genome­ wide gene expression in whole blood of 90 
heavy cannabis users and 100 cannabis­ naïve partici­
pants showed that expression of PPFIA2 (protein tyros­
ine phosphatase receptor type F polypeptide­ interacting 
protein­ α2) is increased in cannabis users and is neg­
atively correlated with neuropsychological function in 
both groups162. Peripheral genome­ wide gene expression 
in individuals with cocaine use disorder identified that 
the expression of genes involved in inflammation and 
immune functions (IRF1 and GBP5) was negatively 
correlated with anhedonia scores163.

The availability of transcriptome­ informative data 
sets for a wide range of human tissues and cells has 
led to the development of computational methods to 
integrate transcriptomic data with information related 
to genetic variation. These approaches can be used to 
calculate the over­ representation of genes expressed in 
certain tissues and cell types164, and also to predict the 
component of the transcriptomic changes regulated by 
genetic variation and test its association with the pheno­
type of interest165,166. Applying these methods, investiga­
tors were able to derive additional information regarding 
SUD pathophysiology from genome­ wide association 
data34,167. For instance, the integration of genetic and 
transcriptomic information can permit calculation  
of the genetically regulated component of tissue­ specific 
transcriptomic changes associated with substance use 
traits168 or to estimate the co­ localization of risk alleles 
associated with alcohol consumption with expression 
quantitative trait loci169.

In summary, omics studies are improving our under­
standing of the biological mechanisms between genetic 
variation and phenotypes, and environmental effects on 
biology. Although a focus on brain studies has immedi­
ate intuitive appeal, the limitations of such studies (such 
as sample size and phenotype understanding) must also 
be recognized. Also, as for studies of genetic sequence 
variation, the field is generally limited by insufficient 
sample size, a problem that is more acute for illegal than 
for legal substance dependencies.

Human and animal research in SUD genetics

Much ongoing SUD genetic research is based on animal 
models170. There is disagreement regarding the trans­
lational value of animal models as a starting point in 
SUD genetic research and their predictive power with 
respect to clinical scenarios171. Investigators supporting 
the relevance to humans of animal models of addic­
tion put forward examples of medications developed 
based on molecular targets and circuits facilitated by 

animal studies: naloxone and acamprosate for alcohol­
ism, buprenorphine–naloxone for opioid addiction and 
varenicline for nicotine addiction172. However, in 2019, 
the US National Institute on Mental Health (NIMH) 
released a new notice regarding the use of animals in 
mental health research173. Based on the main conclusion 
that there is not a true animal model of a psychiatric 
disorder, it was decided that NIMH­ supported studies 
should not establish particular animal models to under­
stand a human mental illness but, instead, investigate 
areas of biology of relevance to mental illnesses174. 
Conversely, other institutes stress the use of non­ human 
animal models to understand the genomic architecture 
of SUDs and addictive behaviours172,175–177.

A clear difficulty is the identification of phenotypes 
for study in animal models, and establishing how those 
phenotypes relate to human phenotypes. As we have 
emphasized throughout this Review, it was only recently 
demonstrated that substance use and dependence may 
have important genetic differences; this is best estab­
lished with respect to alcohol. As this is a recent discov­
ery, based on the evidence available up to a few years ago, 
it would have been easy to argue that these traits were 
qualitatively similar and only quantitatively different. 
Since we barely know how to distinguish different traits 
that relate to use of the same substance in humans, what 
can we really say about what traits in animals might be 
analogous to human traits? Which animal traits might 
relate to quantity or frequency of use, which to depend­
ence, and which to neither? We do not have a full under­
standing of how SUD biology in model organisms relates 
to biology in humans. If we were to base genetic discov­
ery for SUDs on non­ human models, the utility of this 
approach would depend on the actual correspondence 
between relevant animal and human traits. But as for 
other psychiatric traits, this is very hard to establish. We 
can have animals that are, for example, more or less sus­
ceptible to developing substance self­ administration, but 
we do not have the means to determine why this is so, or 
how the animal’s motivations map onto human systems.

Animal studies provide very important contributions 
to understanding the molecular basis of human diseases 
and traits. However, similar to what is recognized by the 
National Advisory Mental Health Council Workgroup 
on Genomics for other psychiatric disorders178, we argue 
that there is no ‘probably true’ animal model mapping 
directly onto human SUDs. Psychiatric and behavioural 
traits appear to have a genetic architecture even more 
polygenic than other complex traits due to the action 
of two main forces: background selection and diag­
nostic heterogeneity179,180. Both of these mechanisms 
are human­ specific and we believe it is problematic to 
model them in animals. These limitations should be 
recognized when using animal models to investigate 
SUD pathogenesis. The utility of animal models for 
evaluating the biological properties and effects of genes 
and specific variants that were first identified in human 
studies is widely accepted, and an important method in 
understanding genetic phenomena identified in human 
subjects. On balance, we believe that the utility of animal 
studies for complex behavioural traits such as SUD risk 
in humans is mostly limited to evaluation and testing of 

NATURE REVIEWS | GENETICS

R E V I E W S



0123456789();: 

findings from humans, rather than in enhancing gene 
discovery for human traits (that are not necessarily 
congruent to animal traits).

Conclusions and perspectives

There has been enormous progress in SUD genetics 
research towards the goal of understanding the molec­
ular risk factors for SUDs, mostly in the past few years. 
For those traits that are well represented in biobanks, 
such as alcohol and tobacco use traits, the prospects are 
very good for continued progress, discovery of more risk 
loci and improvement in our knowledge of their biology. 
The prospects are not quite so good for illegal SUDs that 
tend to be less well represented in both existing sample 
collections and in biobanks. For these traits, we will need 
directed recruitment as well as biobank data. Biobanks 
have both strengths and weaknesses for discovery. For 
less prevalent or stigmatized traits, even large biobank 
samples may not provide sufficient information to inves­
tigate SUD polygenic architecture adequately. A further 
limitation of EHR data and some biobank assessments 

is that they measure state rather than trait, whereas we 
are generally more interested in lifetime diagnoses than 
the research participant’s characteristics at a specific 
point in time. As recently shown181, alcohol consump­
tion, tobacco smoking and phenotyping of other traits 
are subject to misreports and longitudinal changes, 
causing biases in gene discovery and follow­ up analy­
ses. Appropriate phenotyping strategies are needed to 
avoid this possible confounder, especially with respect 
to self­ reported frequency and quantity of substance use.

Until quite recently, the only risk genes that were well 
established for SUDs acted pharmacogenomically — 
metabolizing enzymes and receptor variants. This is seen 
for several SUDs discussed above where there is a strong 
genome­ wide­ significant signal: alcohol­ metabolizing 
enzyme genes for alcohol traits; nicotinic receptors 
for nicotine traits; and μ­ opioid receptor for opioid 
traits. For cannabis we have the possibility of another 
neurotransmitter receptor gene implicated, CHRNA2; 
this locus mapping is ambiguous and it is not the most 
obvious receptor. For some loci the risk gene had strong 
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prior support. However, this is less likely to be the case 
beyond the first locus or two. Beyond these initial risk 
loci, there has been deeper biology, and now, for some 
traits, we have many more significant risk variants, and 
have moved into additional brain biology. The single 
greatest advance to emerge from more powerful GWAS, 
in our view, has been the characterization of the genetic 
differences between quantity/frequency traits and 
dependence traits across multiple substances, resulting 
in a better understanding of these phenotypes. Despite 
these remarkable advances, we can still account for only 
a small proportion of genetic risk based on currently 
identified variants. Accordingly, we are very far from 
widespread clinical application of these data. Recent 
studies based on whole­ genome sequencing (WGS) data 
showed that the ‘missing heritability’182 of complex traits 
(that is, the difference between twin­ based heritability 
and GWAS­ based heritability; Fig. 3) appears to be due 

to, at least for some traits, uncommon variants located 
in regions with low linkage disequilibrium183,184 that 
cannot be ascertained by genotyping array. Accordingly, 
the WGS data being generated by large­ scale efforts  
(for example, AllOfUs, the MVP and the Trans­ Omics for  
Precision Medicine (TOPMed) programme) are likely 
to contribute to reduce SUD missing heritabilities. 
However, as these resources involve a population­ based 
design and are not specifically assessed for SUD research, 
they may have only limited impact for SUDs with low 
prevalence in the general population. In the next few 
years, we expect that our understanding of SUD genet­
ics will grow rapidly, commensurate with the increasing 
availability of large­ scale data sets for each trait and the 
advanced computational methods that continue to be 
developed to investigate them.
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