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D
epression is the most common mental health condition, with 
lifetime prevalence in the United States of more than 20%1. 
Over 300 million people, or 4.4% of the world’s population, 

are estimated to be affected by depression, which imposes substan-
tial costs on individuals and on society at large. In the United States 
in 2013, health expenditures exceeded $90 billion for treatment of 
depression and anxiety disorders2. There also is a substantial per-
sonal cost to depression; for example, 60% of people who die by 
suicide have a diagnosed mood disorder. Indeed, in several recent 
studies, depression and mood disorders have been shown to have 
genetic overlap with suicidal behavior3–6.

Only recently has substantial progress been made in understand-
ing the underlying genetic architecture of depression, led by the 
Psychiatric Genomics Consortium (PGC) and a large meta-analysis 
combining results from the PGC7, the UK Biobank (UKB)8, FinnGen 
(http://r2.finngen.fi/pheno/F5_MOOD) and 23andMe9,10. In this 
article, we describe a genome-wide association study (GWAS) anal-
ysis of ~310,000 participants from the U.S. Department of Veterans 

Affairs (VA) Million Veteran Program (MVP). The MVP is one of 
the largest and most diverse biobanks in the world with genetic and 
electronic health record (EHR) data available. Several approaches 
have previously been taken regarding phenotypes selected for study 
for a depression GWAS. The PGC2 report7 used a variety of ascer-
tainment methods within the cohorts used for meta-analysis, with 
a range of case definitions, including expert or clinician ascertain-
ment of formal diagnostic major depressive disorder (MDD) crite-
ria or treatment registers for approximately half of the cohorts, and 
combinations of self-report and clinical cutoffs on those self-report 
measures accounting for the other half7. Other studies8,10 inves-
tigated a broader trait definition of depression, which provided a 
larger sample size; a greater number of novel loci were discovered, 
with the potential caveat of less specificity to depression11. In the 
MVP, we had several potential case definitions available and chose 
to focus on the definition that provided the highest heritability: the 
EHR-derived International Classification of Diseases (ICD) codes 
for MDD.
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When combined with the previous analysis from the PGC, the 
UKB and 23andMe10, over 1.2 million participants were available for 
this study, which is, to our knowledge, the largest genetic analysis of 
depression to date. We identified 178 genetic risk loci and 223 inde-
pendently significant single-nucleotide polymorphisms (SNPs). 
We used the genome-wide association summary statistics from 
this analysis to investigate genetic correlations between depression 
and other cohorts with different phenotypic assessments as well as 
overlap with other related traits. We used genomic structural equa-
tion modeling (gSEM) to examine shared genetic architecture and 
pleiotropy among complex traits. We also investigated functional 
consequences through fine-mapping analysis, transcriptomic 
enrichment with respect to multiple brain tissues and functional 
annotation. The results provide a deep look into the genetic archi-
tecture of depression and its underlying complex biology. Finally, 
we replicated our findings in an entirely independent sample of 1.3 
million participants from 23andMe, demonstrating the consistency 
of GWAS findings once adequate power is achieved.

Results
Primary analysis. For the ICD code definition of MDD (see 
Methods for detailed diagnosis definitions), which was the pheno-
type with the most available data for the MVP cohort, we conducted 
a GWAS on 250,215 individuals of European ancestry (EA; 83,810 
cases). These MVP data were then included in a meta-analysis in 
METAL12 using inverse variance weighting with available depression 
GWAS summary statistics from cohorts of individuals of European 

ancestry (hereafter, ‘MDD-META’; Fig. 1 and Table 1): the PGC and 
the UKB10, FinnGen (http://r2.finngen.fi/pheno/F5_MOOD) and 
23andMe9, for a total of 1,154,267 individuals of European ancestry 
(340,591 cases). We identified 223 independently significant SNPs 
at 178 genomic risk loci in the primary analysis of European ances-
try (Fig. 1). We also conducted a GWAS in the African American 
(AA) sample from MVP in 59,600 participants (25,843 cases). 
There were no genome-wide significant (GWS) findings from our 
primary analysis of MDD in African Americans, so we examined 
overlap with the 223 GWS SNPs from our primary MDD-META 
meta-analysis of European ancestry. Of the 223 GWS SNPs from 
the primary analysis, 206 were available after quality control in the 
AA cohort. We found that 61% (n = 125) of the European GWS 
SNPs had the same direction of effect in African Americans, with 
20 nominally significant (P < 0.05) and one surviving Bonferroni 
correction. Finally, we conducted a transancestral meta-analysis of 
results from the primary GWAS of European and African ances-
try. This transancestral analysis of 366,434 cases and 847,433 con-
trols identified 233 independently significant SNPs at 183 genomic  
risk loci.

Replication of primary analysis results. We performed replication 
analysis in 1,342,778 independent samples provided by 23andMe, 
including 455,350 depression cases. Two hundred eleven variants 
were available for testing in the 23andMe sample. Of these 211 vari-
ants, two (0.9%) had discordant effect direction but not significantly 
so (P ≥ 0.28); 209 variants (99.1%) had concordant effect directions; 
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Fig. 1 | Design of the study and circular Manhattan plot. Top left: design of the study. Three phenotypes were evaluated within the MVP: MDD-META 

(outermost ring, right panel), which was derived from ICD codes; SR Depression (middle ring, right panel), which was defined by self-reported diagnosis 

of depression in the MVP survey; and depressive symptoms (innermost ring, right panel), which come from the PHQ-2 two-item scale found in the 

MVP survey. MVP-MDD and SR Depression were each meta-analyzed with depression results from 23andMe, the PGC and FinnGen. MVP PHQ-2 was 

meta-analyzed with results from the PHQ-2 two-item scale from the UKB. Right: circular Manhattan plot. Significant results are highlighted in purple. 

Lower left: accelerating pace of loci discovery in depression GWAS. y axis indicates the number of discovered loci in a study, with the x axis showing the 

number of cases included in each study. Red text and yellow markers indicate original analyses conducted for this study using MVP data for EA, AA and 

the overall MDD-META meta-analysis of EAs.
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192 variants (91%) showed at least nominal significance (P < 0.05); 
144 variants (68%) remained significant after Bonferroni correc-
tion for multiple comparisons (P < 0.05/211 = 2.37 × 10−4); and 81 
variants (38%) were genome-wide significant (P < 5 × 10−8). These 
results are reported in Supplementary Table 1.

Linkage disequilibrium score regression. Linkage disequilib-
rium score regression (LDSC) was used in two ways: (1) to iden-
tify genetic correlations and SNP-based heritability within each of 
the depression cohorts and phenotypes (Supplementary Table 5) 
and (2) to identify genetic correlation with other traits based on 
the primary meta-analysis (MDD-META). Heritability in the pri-
mary MDD-META analysis was 11.3% (z = 29.63, sample preva-
lence 28.6%, population prevalence 20%), whereas heritability in 
the secondary analyses of self-reported depression (SR Depression; 
Methods) and Patient Health Questionnaire-2 (PHQ-2) were 7.8% 
(z = 28.74, sample prevalence 27.1%, population prevalence 20%) 
and 5.5% (z = 14.0), respectively. Genetic correlation between 
depression phenotypes ranged from 0.59 to 1.21, with lower rg iden-
tified between measures of depressive symptoms and case–control 
phenotypes (Fig. 2a). Some of the genetic correlations from the 
LDSC were greater than 1; genetic correlation from LDSC does 
not bound to 1 (ref. 13), and the instances with values higher than 
1 occurred when testing in the same sample with similar pheno-
type (rg = 1.07, standard error (SE) = 0.0343) between MDD and 
SR Depression within the MVP or between the somewhat smaller 
FinnGen sample and the large PGC/UKB broad depression (rg = 
1.21, SE = 0.25) and 23andMe (rg = 1.07, SE = 0.21) samples. Linkage 
disequilibrium (LD) intercept (1.03, SE = 0.011) and attenuation 
ratio (0.0297, SE = 0.011) of the LDSC revealed minimal evidence 
for inflation or confounding, with 97% of inflation observed due to 
high polygenicity of depression.

Based on significant and robust heritability estimates (h2 z > 4),  
1,457 traits from available GWAS summary statistics were suf-
ficiently powered to assess genetic correlation with MDD-META. 
After multiple testing correction (P = 0.05/1,457 trait pairs = 3.43 
× 10−5), 669 phenotypes were significantly genetically correlated  
with MDD-META (Fig. 2b and Supplementary File 1). The 
most significant phenotypic correlations with MDD-META 

from each depressive trait category were: (1) depressive symp-
toms (Social Science Genetic Association Consortium (SSGAC)) 
(rg = 0.943 ± 0.029, P = 1.76 × 10−228); (2) depression medica-
tions (FinnGen) (rg = 0.890 ± 0.063, P = 6.22 × 10−45); (3) MDD 
(Psychiatry) (rg = 1.02 ± 0.017, P < 1.39 × 10−300); and (4) fre-
quency of tiredness/lethargy in last 2 weeks (UKB Field ID 2080) 
(rg = 0.684 ± 0.018, P < 1.39 × 10−300). No brain imaging pheno-
types met corrected significance criteria for genetic correlation 
with MDD-META; the most significantly genetically correlated 
brain imaging phenotype, using data provided from the Oxford 
Brain Imaging Genetics (BIG) project14, relative to MDD-META 
was left subcallosal cortex gray matter volume (BIG Field ID 0078) 
(rg = 0.205 ± 0.061, P = 9.00 × 10−4).

Transcriptome-wide association study. Gene-based association 
analysis was performed by integrating GWAS association statistics 
and expression quantitative trait loci (eQTL) data of all brain and 
whole-blood tissues from Genotype-Tissue Expression (GTEx) 
v8. To prioritize target genes further, joint effects of gene expres-
sion correlation across tissues was leveraged using SMultiXcan15. 
One hundred fifty-three genes and their best representative tis-
sues were below the Bonferroni corrected significance threshold 
(1.79 × 10−7) for predicted gene expression in 14 tissues (Fig. 3a 
and Supplementary File 2). Top genes for each tissue tested were 
as follows: amygdala (ZKSCAN4, P = 1.65 × 10−12), anterior cingu-
late cortex (L3MBTL2, P = 1.09 × 10−14), caudate (ZNF184, P = 1.85 
× 10−9), cerebellar hemisphere (PGBD1, P = 1.67 × 10−13), cerebel-
lum (ZSCAN9, P = 8.4 × 10−17), cortex (TMEM161B, P = 1.84 × 
10−12), frontal cortex (FAM120A, P = 3.25 × 10−10), hippocampus 
(ZSCAN12, P = 1.14 × 10−18), hypothalamus (NEGR1, P = 3.19 
× 10−25), nucleus accumbens (DRD2, P = 1.87 × 10−20), putamen 
(LIN28B-AS1, P = 2.13 × 10−12), spinal cord c-1 (HIST1H1B, P = 2.90 
× 10−18), substantia nigra (RP11–318C24.2, P = 2.41 × 10−12) and 
whole blood (ZNF165, P = 4.01 × 10−11).

Variant prioritization. All 178 risk loci were fine-mapped  
(Fig. 3b, bottom panel); 1,620 SNPs in the causal set out of 
14,016 GWS hits have high posterior probability for causal rela-
tion with MDD-META (Fig. 3b, middle panel). The SNPs with 
casual posterior probability (CPP) ≥ 30% were annotated with 
Combined Annotation Dependent Depletion (CADD) score16. 
There were 19 SNPs with CADD scores >10, representing the 
top 1% of pathogenic variants across the human genome (Fig. 3b,  
top panel). These SNPs were annotated to genes positioned 
within ±100 kb. We found 17 genes overlapping with significant 
genes identified from cross-tissue transcriptome‐wide associa-
tion study (TWAS) analysis. Each gene–tissue pair was tested for 
co-localization of the region for eQTL and GWAS. The coloc17 
method tests probability of four hypotheses (H0–4). Of these, H4 
tests the hypothesis that the same locus is shared between GWAS 
and tissue-specific eQTL. Loci that were found to have 80% or 
higher probability for H4 were compared, to understand the LD 
structure and the most prominent variant being shared by GWAS 
and eQTL. These gene–tissue pairs were CCDC71–amygdala 
(H4-CPP: 93.1%), FADS1–cerebellar hemisphere (H4-CPP: 96.6%), 
SPPL3–frontal cortex (H4-CPP: 83.9%), TRAF3–hypothalamus 
(H4-CPP: 95.2%) and LAMB2–whole blood (H4-CPP: 79.9%) 
(Supplementary File 2).

Tissue expression analysis and genome-wide gene-based associa-
tion study. A genome-wide gene-based association study (GWGAS) 
conducted in Multi-Marker Analysis of GenoMic Annotation 
(MAGMA) using the MDD-META GWAS meta-analysis identi-
fied 426 significant genes after Bonferroni correction for 16,038 
protein-coding genes. MAGMA tissue expression analysis identified 
enrichment across all brain tissues and pituitary using data from 

Table 1 | Demographics of european ancestry samples for 
different phenotype definitions

Cohort Case Control Total (% female)

MVP-MDD 83,810 166,405 250,215 (7)

MVP SR Depression 55,228 155,103 210,331 (7)

23andMe self-reported 
diagnosis of depression

75,607 231,747 307,354 (48)

PGC + UKB broad 
depression

170,756 329,443 500,199 (54)

FinnGen mood (affective) 
disorders

10,418 86,081 96,499

MDD-MeTA (MVP MDD 
+ 23andMe + uKB/PGC 
+ FinnGen)

340,591 813,676 1,154,267

SR Depression meta 
(MVP SR Depression + 
23andMe + uKB/PGC + 
FinnGen)

312,009 802,374 1,114,383

MVP PHQ-2 175,553 (8)

UKB PHQ-2 111,268 (54)

PHQ-2 meta (MVP PHQ2 
+ uKB PHQ2)

286,821
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GTEX v8, with the strongest findings for Brodmann area 9 (P = 7.31 
× 10−16) and no enrichment in non-neuronal tissue (Supplementary 
Fig. 1).

Gene ontology. Gene ontology analysis conducted in ShinyGO18 
identified 219 biological processes with false discovery rate (FDR) 
< 0.05, with top findings involved in nervous system development 
(q = 1.20 × 10−10) and synapse assembly (q = 9.75 × 10−9) and orga-
nization (q = 9.75 × 10−9) (Supplementary Table 2).

Drug mapping. The Manually Annotated Targets and  
Drugs Online Resource (MATADOR)19 database was tested for 

enrichment for 426 significant genes from the MAGMA analy-
sis. This analysis identified ten drug annotations with FDR < 
0.05, including four drugs that are either estrogen receptor ago-
nists (diethylstilbestrol, Implanon (etonogestril implant)) or 
anti-estrogens (tamoxifen and raloxifene), in addition to nicotine, 
cocaine, cyclothiazide, felbamate and riluzole.

Latent causal variable analysis. After filtering for suitable trait 
pairs with latent causal variable (LCV)-estimated h2 z-scores ≥ 4, 
1,667 phenotypes were powered to evaluate causal estimates relative 
to MDD-META; no statistically significant putatively causal genetic 
causality proportions (GCPs) were detected.
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gSEM was used to evaluate how the MDD-META phenotype 
relates to 15 previously published large-scale GWASs of men-
tal health and psychiatric phenotypes (Methods and Discussion). 
Exploratory factor analysis (EFA) was conducted simultaneously on 
all traits and supported three-factor (cumulative variance = 0.605) 
and four-factor (cumulative variance = 0.624) models, where each 

factor contributed over 10% to the cumulative explained variance. 
Anorexia nervosa did not load onto any factor during EFA and 
was, therefore, excluded from confirmatory factor analysis (CFA).  
CFA did not converge on a four-factor model due to high correla-
tion between two factors. CFA of the three-factor model produced  
modest fit (comparative fit index = 0.884, χ2 (83 degrees of freedom) 
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= 10,034.76, Akaike information criterion = 10,819.05, standardized 
root mean square error = 0.086; Fig. 4 and Supplementary File 3). 
Factor 1 generally represented internalizing phenotypes with major 
contributions from depressive symptoms (loading = 0.95 ± 0.03), 
anxiety symptoms (loading = 0.92 ± 0.03) and post-traumatic stress 
disorder (loading = 0.92 ± 0.04). Factor 2 represented externalizing 
phenotypes with major contributions from risky behavior (load-
ing = 0.85 ± 0.03) and cannabis use disorder (loading = 0.77 ± 0.04). 
Factor 3 represented educational attainment (loading = 0.99 ± 0.03) 
and cognitive performance (loading = 0.68 ± 0.03). MDD-META 
(DEP; Fig. 4 and Supplementary File 3) loaded onto Factor 1 and, 
less strongly, on Factor 2, independent of its covariance with all 
other phenotypes (DEP loading on Factor 1 = 0.77 ± 0.02; DEP 
loading on Factor 2 = 0.14 ± 0.02).

Conditional analysis. For the multi-trait-based conditional and 
joint analysis (mtCOJO) (Methods), all eight conditioned ver-
sions of the depression GWAS demonstrated substantial similarity 
to the unconditioned depression GWAS. We observed no changes 
in h2. All conditioned GWASs had correlation coefficient = 1.00 

with the unconditioned GWAS, and genomic control factor and 
intercepts consistently indicated a lack of population substruc-
ture (Supplementary Fig. 2). Although the genome-wide archi-
tecture of depression was robust to shared etiology with all other 
listed comorbid conditions, shared etiology with schizophrenia 
and anxiety symptoms resulted in substantial loss of GWS SNPs 
associated with depression when conditioned upon those traits 
(Supplementary Fig. 2).

Discussion
We present the first genetic study of depression including more 
than 1 million informative participants, with new large analyses 
from the MVP meta-analyzed with previous results from the PGC 
+ UKB, 23andMe and FinnGen—to our knowledge, the largest 
analysis so far in what is a fast-moving field. We investigated genetic 
correlation among three different definitions (MDD-META, 
SR Depression and PHQ-2) of the depression phenotype within  
the MVP cohort. We identified 223 independently significant SNPs 
in 178 genomic loci associated with the primary meta-analysis, 
using an ICD code-derived definition of depression for the MVP 
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sample and GWAS summary statistics from 23andMe, UKB, PGC 
and FinnGen. This finding is an increase of 77 loci over the larg-
est previous study that investigated a similar phenotype10. As these 
cohorts used somewhat different definitions for depression (Table 1,  
Fig. 1a and Methods), we also used LDSC to examine genetic cor-
relations between MVP depression phenotypes and these differen-
tially defined depression phenotypes in independent cohorts. We 
investigated genetic correlation with 1,457 traits using available 
GWAS data, identifying 669 that were significantly correlated. We 
also used gSEM to evaluate how depression relates to other mental 
health and psychiatric phenotypes.

The MVP sample added substantially to our ability to discover 
new loci. Two of the most powerful previous studies conducted to 
date7,8 had substantial contributions from the UKB. UKB and MVP 
represent large and non-overlapping samples with consistent phe-
notypic assessments. This consistency in collection reduces ascer-
tainment heterogeneity within samples and likely increases power 
to detect new loci. Adding another massive homogenously pheno-
typed sample here allowed us to discover 77 more loci than pre-
viously identified. It also provides a novel and large independent 
cohort for conducting post-GWAS analyses, leveraging the substan-
tial resources already produced by others in the field to improve 
understanding.

MVP is very informative for depression and related traits with 
several available measures, so we considered several different diag-
nosis definitions (Table 1), as follows. In the MVP, we considered 
(1) an ICD code-based algorithm to determine depression case 
status based on diagnosis codes captured in the VA EHRs (MDD); 
(2) self-reported diagnosis of depression as reported in the MVP 
baseline survey (SR Depression); and (3) the two-item PHQ scale 
of depressive symptoms in the past 2 weeks, included in the MVP 
baseline survey (depressive symptoms). Genetic correlations among 
these traits were high (rg = 0.81–1.07). We consider the first of 
these–MDD-META–to be our ‘primary’ analysis based on the larger 
explained heritability and sample size.

For meta-analyses of MDD-META and SR Depression, we also 
used available GWAS summary statistics from 23andMe, UKB, PGC 
and FinnGen (Table 1). Genetic correlation was conducted among 
the phenotypes to be meta-analyzed together to quantify potential 
heterogeneity among the studies to be combined. These studies 
used a variety of phenotype definitions, with some combining clini-
cal diagnosis of depression based on structured interview and other 
broader methods7, such as self-reported treatment7 or self-reported 
diagnosis items on questionnaires9. This analysis is discussed in 
greater detail in the Methods, but the genetic correlations among all 
traits ranged from 0.71 to 0.84.

We performed replication analysis in 1,342,778 samples pro-
vided by 23andMe (non-overlapping with the 23andMe samples 
included in our MDD-META), including 455,350 depression cases. 
Ninety-nine percent of our findings showed concordant direction 
of effect between these two very large and independent cohorts. Of 
211 variants tested, 209 (99%) had the same direction of effect; 192 
(91%) showed at least nominal significance (P < 0.05); 144 (68%) 
remained significant after correction for multiple comparisons 
(P < 0.05/211 = 2.37 × 10−4); and 81 (38%) were independently 
genome-wide significant (P < 5 × 10−8). Only two (0.9%) SNPs were 
discordant, both with P > 0.05. This very strong replication indi-
cates the consistency of the findings that we report herein.

The lead SNP from our primary analysis, rs7531118 (minor allele 
frequency = 0.48, P = 8.9 × 10−29), maps close to the NEGR1 (neuro-
nal growth regulator 1) gene and is a brain eQTL for NEGR1. This 
SNP was at least nominally significant with concordant effect direc-
tion in all four studies included in this meta-analysis (MVP P = 4.9 
× 10−5, FinnGen P = 0.04, PGC + UKB P = 1.6 × 10−17 and 23andMe 
P = 2.8 × 10−8). The SMultiXcan analysis prioritized hypothala-
mus as related to NEGR1. Negr−/− mice have shown irregularities  

in several brain regions, including reduced brain volume in the hip-
pocampus, and have also shown abnormalities in social behavior 
and non-social interest20. Another study of Negr−/− mice identified 
a variety of depression-like and anxiety-like features in behavioral 
assays, such as elevated plus maze and forced swim tests21.

The DRD2 (D2 dopamine) receptor was another top finding from 
the TWAS analysis (Fig. 3a), with significant predicted decreased 
expression in the nucleus accumbens. The mesolimbic dopamine 
reward circuit, of which nucleus accumbens is a critical part, has long 
been implicated in depression22. A recent optogenetic study exam-
ining dopaminergic ventral tegmental area (VTA) projections into 
nucleus accumbens found that dopamine receptors are required for 
the action of these neurons in depression-related escape behavior23. 
Depression-like behavior in animals might be related to depres-
sion in humans through links to the reward system and symptoms 
of anhedonia. A recent randomized proof-of-mechanism trial24 
investigated κ-opioid receptor (KOR) antagonists as treatment for 
anhedonia symptoms. KORs localize within the nucleus accumbens 
on the terminals of inputs from the mesolimbic dopamine reward 
circuit. Among the actions of KOR antagonists might be normaliza-
tion of VTA KOR function and D2 neuron activation, leading to dis-
inhibition of the excitatory circuit they project upon25. Indeed, the 
KOR JNJ-67953964 was found to increase VTA activation relative to 
placebo during reward anticipation, highlighting a potential thera-
peutic mechanism by which KOR is thought to release inhibition 
on D2 dopaminergic projections. The group receiving JNJ-67953964 
showed reduced anhedonic symptoms relative to controls24. That 
this gene and brain tissue emerged from hypothesis-free GWAS 
and TWAS tissue enrichment is a remarkable finding with respect 
to known biology and points to the potential value of other novel 
findings from this kind of research.

The CELF4 (CUGBP Elav-like family member 4) gene has been 
highlighted recently in an earlier precursor to this meta-analysis8 
and was our top finding for convergence between functional vari-
ant prioritization and multi-tissue TWAS results (Fig. 3b and 
Supplementary File 2). This gene is important in developmental 
disorders, with deletions of the 18q12.2 region that encompass the 
gene associated with autism spectrum disorder26. Celf4 mutant mice 
show aberrations in sodium channel function, perhaps through 
increased Nav1.6 in the axon initial segment of excitatory neurons, 
and increased susceptibility to seizures27. We agree with the asser-
tion made in previous studies, now with additional functional and 
expression evidence, that CELF4 should be a focus of future brain 
research in depression and depression-like behaviors.

Genetic correlations with available GWAS summary statistics 
from 1,457 traits were conducted to assess overlap with other traits. 
There was high genetic correlation between our MDD-META 
meta-analysis and depression medication prescription in FinnGen 
(rg = 0.89). This could be of value in evaluating depression pheno-
types from large cohorts with access to linked pharmacy records; 
anti-depressant medication prescription might be a viable proxy 
phenotype for depression diagnosis.

We used ShinyGO18 with the MATADOR19 database to iden-
tify overlap between top MAGMA genes and drugs of interest 
(Supplementary Fig. 3). Riluzole, an NMDA antagonist currently 
used to treat amyotrophic lateral sclerosis, was one of our top find-
ings. This drug is currently in trials for combination therapy for 
treatment-resistant depression28. Another drug, cyclothiazide, is an 
allosteric modulator of AMPA (glutamatergic) receptors. Allosteric 
modulation of glutamatergic receptors has been considered a mech-
anistic treatment target for depression29. This screen also identified 
an anti-seizure medication, felbamate, which has side effects includ-
ing increasing depressive symptoms, suicidal ideation and suicide 
attempts. These three identified drugs—riluzole, felbamate and 
cyclothiazide—have been shown to modulate glutamatergic activ-
ity30. Although the exact mechanisms underlying the drugs’ effects 
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on the system remain to be elucidated, it is especially interesting 
that they were identified in this study considering the emerging evi-
dence of glutamate’s role in the pathophysiology and treatment of 
mood disorders and the recent U.S. Food and Drug Administration 
approval of esketamine for treatment-resistant depression. Riluzole 
has already been identified as a potential antidepressant treatment, 
with support for its antidepressant properties found in rodent 
models31 and small clinical studies. However, larger-scale clini-
cal trials have not provided clear evidence to support its efficacy. 
These enrichments, from hypothesis-free association with depres-
sion, show converging independent evidence from genetics of 
existing pharmacological targets based on underlying biological 
mechanisms.

gSEM was used to investigate relationships between MDD-META 
and 15 other mental health and neurocognitive phenotypes (Fig. 4 
and Supplementary File 3); summary statistics come from the larg-
est studies available. All traits tested except anorexia nervosa loaded 
onto at least one factor during exploratory analysis. We identified 
three factors, with MDD-META loading onto the first two indepen-
dently of covariance with the other phenotypes. Factor 1 may be 
thought to represent internalizing phenotypes, with major contri-
butions from MDD-META, anxiety symptoms and post-traumatic 
stress disorder. MDD-META also loaded (but less strongly) onto 
Factor 2, which broadly represents externalizing phenotypes and 
psychosis, with the major contributions coming from risky behavior 
and cannabis use disorder. MDD-META did not load onto Factor 
3, which was mostly contributed to by educational attainment and 
cognitive performance and, thus, might represent a neurocogni-
tive domain. Many cross-disorder studies using GWAS, this one 
included, align themselves in ways consistent with existing theories 
of psychopathology.

We prioritized variants using biologically and statistically 
informed annotations. To prioritize genes and their target tissues, 

we integrated both transcriptomics and CADD score prioritized 
variants. This method aided in the identification of shared causal 
loci for phenotype and tissue-specific eQTLs as evidenced by the 
high probability for five of the 17 genes tested. SNPs at CCDC71 
(coiled-coil domain containing 71) have been reported to be associ-
ated with depressive symptoms in a multivariate genome-wide asso-
ciation meta-analysis, and our prioritized SNP is in strong LD with 
that study’s lead SNP (current study rs7617480, r2 = 0.83, D′ = 1.0)32. 
The FADS1 (fatty acid desaturase 1) protein product is involved in 
fatty acid regulation, and variants in this region have been reported 
to be associated with depression and substance use disorders. 
There is consistent evidence in the literature for an association with 
depleted omega-3 and increased depression risk, although a role for 
omega-3 supplementation in the treatment of depression is still con-
troversial33. Variants in SPPL3 (signal peptide peptidase-like 3) were 
reported by Hyde et al.9 to be associated with risk to major depres-
sion. The TRAF3 (TNF receptor-associated factor 3) protein prod-
uct controls type-1 interferon response34, and it has been reported 
that individuals treated with interferon are at high risk to develop 
depressive symptoms35. LAMB2 is involved in neuropathic pain and 
influencing gene expression changes in brain pathways implicated 
in depression36.

Because no GWS findings were identified in our primary analy-
sis of African ancestry, we performed cross-ancestry lookups in the 
summary statistics of European ancestry. Of 223 GWS SNPs from 
the European ancestry meta-analysis, 206 were available in African 
ancestry; 61% (n = 125) had the same effect direction; 20 were nom-
inally significant (P < 0.05); and one SNP survived Bonferroni cor-
rection (Fig. 5). This SNP that survived multiple testing correction 
(rs1950829 European P = 7.24 × 10−19, African P = 9.34 × 10−6) is in 
an intron of the LRFN5 (leucine-rich repeat and fibronectin type 
III domain containing 5) gene. This gene was previously detected 
in genome-wide gene- and pathway-based analyses of depressive 
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symptom burden conducted in three cohorts from the Alzheimer’s 
Disease Neuroimaging Initiative, the Health and Retirement Study 
and the Indiana Memory and Aging Study37. As larger samples are 
collected for more diverse ancestry groups, we expect to see more 
novel loci identified for non-European populations. Finally, we 
conducted a transancestral meta-analysis by combining studies  
of African and European ancestries in 1,213,867 participants, 
thereby identifying 233 independent SNPs and 183 risk loci.  
For now, transancestral analysis is a way to leverage results from 
understudied populations.

We recognize limitations in our study. Maximizing the power 
available for this analysis comes at the cost of accepting broader 
biobank phenotyping approaches, which might reduce specific-
ity of findings for the core depression phenotype11. Nonetheless, 
strong genetic correlations between the ICD-derived MDD and 
the broader definitions provide confidence in internal consis-
tency, and future studies could look to further refine phenotyp-
ing. Although all genetic correlations were significant, there was 
substantial variance (95% confidence interval (CI) = 0.72–1.7) 
in correlations with the FinnGen sample, probably due to power 
and heterogeneity in the broad phenotype that we used from this 
sample. Finally, other ancestries remain understudied in relation 
to Europeans. We hope that the initial results reported here for 
the MVP African ancestry sample can help advance the field by 
encouraging additional concerted research in African and other 
non-European ancestral groups.

In summary, we identified multiple novel loci, and several of 
these loci serve functions that should prioritize their further study 
in the pathology of major depression. We examined genetic corre-
lations between depression GWAS and other external phenotypes, 
largely confirming and strengthening previous observations. We 
showed substantial enrichments for several brain regions, such 
as hypothalamus and frontal cortex, known to be important for 
depression. We also found strong support for the importance of 
DRD2 in the nucleus accumbens, a finding that is consistent with an 
emerging role for dopaminergic function in symptoms of anhedo-
nia. Using gene and drug-based enrichments, we found overlapping 
biology with existing drugs—notably, those that affect glutama-
tergic function but also those that influence the actions of estro-
gen—that could offer repurposing opportunities. We used gSEM 
to show how the genetic architecture of depression maps onto the 
broader genetic structure of mental disorders and cognition, iden-
tifying emergent overlap from hypothesis-free GWAS approaches 
with existing theories of psychopathology with regard to clusters of 
internalizing and externalizing disorders. Finally, we showed that 
many of our findings replicate in a large and independent cohort 
provided by 23andMe, providing evidence for the stability of GWAS 
findings from adequately powered cohorts.

Online content
Any methods, additional references, Nature Research report-
ing summaries, source data, extended data, supplementary infor-
mation, acknowledgements, peer review information; details of 
author contributions and competing interests; and statements of 
data and code availability are available at https://doi.org/10.1038/
s41593-021-00860-2.

Received: 13 May 2020; Accepted: 16 April 2021;  
Published: xx xx xxxx

References
 1. Hasin, D. S. et al. Epidemiology of adult DSM-5 major depressive  

disorder and its specifiers in the United States. JAMA Psychiatry 75,  
336–346 (2018).

 2. Roehrig, C. Mental disorders top the list of the most costly  
conditions in the United States: $201 billion. Health Affairs 35,  
1130–1135 (2016).

 3. Mullins, N. et al. GWAS of suicide attempt in psychiatric disorders and 
association with major depression polygenic risk scores. Am. J. Psychiatry 
176, 651–660 (2019).

 4. Strawbridge, R. J. et al. Identification of novel genome-wide associations  
for suicidality in UK Biobank, genetic correlation with psychiatric disorders 
and polygenic association with completed suicide. EBioMedicine 41,  
517–525 (2019).

 5. Levey, D. F. et al. Genetic associations with suicide attempt severity and 
genetic overlap with major depression. Transl. Psychiatry 9, 22 (2019).

 6. Docherty, A. R. et al. Genome-wide association study of suicide death  
and polygenic prediction of clinical antecedents. Am. J. Psychiatry 177, 
917–927 (2020).

 7. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants 
and refine the genetic architecture of major depression. Nat. Genet. 50, 
668–681 (2018).

 8. Howard, D. M. et al. Genome-wide association study of depression 
phenotypes in UK Biobank identifies variants in excitatory synaptic pathways. 
Nat. Commun. 9, 1470 (2018).

 9. Hyde, C. L. et al. Identification of 15 genetic loci associated with risk of 
major depression in individuals of European descent. Nat. Genet. 48, 
1031–1036 (2016).

 10. Howard, D. M. et al. Genome-wide meta-analysis of depression identifies 102 
independent variants and highlights the importance of the prefrontal brain 
regions. Nat. Neurosci. 22, 343–352 (2019).

 11. Cai, N. et al. Minimal phenotyping yields genome-wide association signals of 
low specificity for major depression. Nat. Genet. 52, 437–447 (2020).

 12. Willer, C. J. et al. Newly identified loci that influence lipid concentrations and 
risk of coronary artery disease. Nat. Genet. 40, 161–169 (2008).

 13. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding 
from polygenicity in genome-wide association studies. Nat. Genet. 47, 
291–295 (2015).

 14. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and 
genomic data. Nature 562, 203–209 (2018).

 15. Barbeira, A. N. et al. Integrating predicted transcriptome from multiple 
tissues improves association detection. PLoS Genet. 15, e1007889 (2019).

 16. Rentzsch, P., Witten, D., Cooper, G. M., Shendure, J. & Kircher, M. CADD: 
predicting the deleteriousness of variants throughout the human genome. 
Nucleic Acids Res. 47, D886–D894 (2019).

 17. Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of 
genetic association studies using summary statistics. PLoS Genet. 10, 
e1004383 (2014).

 18. Ge, S. X., Jung, D. & Yao, R. ShinyGO: a graphical enrichment tool for 
animals and plants. Bioinformatics 36, 2628–2629 (2019).

 19. Gunther, S. et al. SuperTarget and Matador: resources for exploring 
drug-target relationships. Nucleic Acids Res. 36, D919–D922 (2008).

 20. Singh, K. et al. Neural cell adhesion molecule Negr1 deficiency in mouse 
results in structural brain endophenotypes and behavioral deviations related 
to psychiatric disorders. Sci. Rep. 9, 5457 (2019).

 21. Noh, K. et al. Negr1 controls adult hippocampal neurogenesis and affective 
behaviors. Mol. Psychiatry 24, 1189–1205 (2019).

 22. Nestler, E. J. & Carlezon, W. A. Jr. The mesolimbic dopamine reward circuit 
in depression. Biol. Psychiatry 59, 1151–1159 (2006).

 23. Tye, K. M. et al. Dopamine neurons modulate neural encoding and 
expression of depression-related behaviour. Nature 493, 537–541 (2013).

 24. Krystal, A. D. et al. A randomized proof-of-mechanism trial applying the 
‘fast-fail’ approach to evaluating κ-opioid antagonism as a treatment for 
anhedonia. Nat. Med. 26, 760–768 (2020).

 25. Carlezon, W. A. Jr., Beguin, C., Knoll, A. T. & Cohen, B. M. Kappa-opioid 
ligands in the study and treatment of mood disorders. Pharmacol. Ther. 123, 
334–343 (2009).

 26. Gilling, M. et al. A 3.2 Mb deletion on 18q12 in a patient with childhood 
autism and high-grade myopia. Eur J Hum Genet 16, 312–319 (2008).

 27. Sun, W. et al. Aberrant sodium channel activity in the complex seizure 
disorder of Celf4 mutant mice. J. Physiol. 591, 241–255 (2013).

 28. Sakurai, H. et al. Longer-term open-label study of adjunctive  
riluzole in treatment-resistant depression. J. Affect. Disord. 258,  
102–108 (2019).

 29. Alt, A., Nisenbaum, E. S., Bleakman, D. & Witkin, J. M. A role for AMPA 
receptors in mood disorders. Biochem. Pharmacol. 71, 1273–1288 (2006).

 30. Pittenger, C. et al. Riluzole in the treatment of mood and anxiety disorders. 
CNS Drugs 22, 761–786 (2008).

 31. Chowdhury, G. M. et al. Transiently increased glutamate cycling in rat PFC is 
associated with rapid onset of antidepressant-like effects. Mol. Psychiatry 22, 
120–126 (2017).

 32. Baselmans, B. M. L. et al. Multivariate genome-wide analyses of the 
well-being spectrum. Nat. Genet. 51, 445–451 (2019).

 33. Wani, A. L., Bhat, S. A. & Ara, A. Omega-3 fatty acids and the treatment  
of depression: a review of scientific evidence. Integr. Med. Res. 4,  
132–141 (2015).

NATuRe NeuROSCIeNCe | www.nature.com/natureneuroscience

https://doi.org/10.1038/s41593-021-00860-2
https://doi.org/10.1038/s41593-021-00860-2
http://www.nature.com/natureneuroscience


ARTICLES NATURE NEUROSCIENCE

 34. Hacker, H., Tseng, P. H. & Karin, M. Expanding TRAF function: TRAF3 as a 
tri-faced immune regulator. Nat. Rev. Immunol. 11, 457–468 (2011).

 35. Chiu, W. C., Su, Y. P., Su, K. P. & Chen, P. C. Recurrence of depressive disorders 
after interferon-induced depression. Transl. Psychiatry 7, e1026 (2017).

 36. Descalzi, G. et al. Neuropathic pain promotes adaptive changes in gene 
expression in brain networks involved in stress and depression. Sci. Signal 10, 
eaaj1549 (2017).

 37. Nho, K. et al. Comprehensive gene- and pathway-based analysis of depressive 
symptoms in older adults. J. Alzheimers Dis. 45, 1197–1206 (2015).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in 

published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature America, Inc. 2021

23andMe Research Team

Jingchunzi Shi13 and Suyash S. Shringarpure13

the Million Veteran Program

Daniel F. Levey1,2,15, Frank R. Wendt1,2, Gita A. Pathak1,2, Hang Zhou1,2, Mihaela Aslan5,6, 

Rachel Quaden7, Kelly M. Harrington7,8, Yaira Z. Nuñez1,2, Cassie Overstreet1,2, John Concato5,14, 

Renato Polimanti1,2 and Joel Gelernter1,2

NATuRe NeuROSCIeNCe | www.nature.com/natureneuroscience

http://www.nature.com/natureneuroscience


ARTICLESNATURE NEUROSCIENCE

Methods
Participants. The MVP cohort was previously described38–40. A GWAS was 
conducted in each of two tranches of data separately by ancestry, depending 
upon when the data became available. Ancestry was assigned using ten principal 
components (PCs) and the 1000 Genomes Project Phase 3 European and 
African reference within each tranche of data. For the analysis of the quantitative 
phenotype, we also performed a GWAS in the UKB sample. Finally, we 
conducted GWAS meta-analyses of traits related to depression using data from 
four large cohorts (Table 1 and Fig. 1a): the MVP34,41, the PGC/UKB10, FinnGen 
and 23andMe9. For the ICD definition of depression, the phenotype with the 
most available data for the MVP cohort, there were 1,154,267 total individuals 
for primary meta-analysis. For the secondary case–control meta-analysis, we 
performed a similar analysis except that we replaced the MDD diagnosis from 
MVP with the SR Depression GWAS for a total of 1,114,383 participants. For the 
secondary analysis of depressive symptoms by PHQ, we included 286,821 total 
participants from UKB and MVP. We also performed a GWAS in the MVP AA 
sample of 59,600 participants. We included these participants in a transancestral 
meta-analysis with a total sample size of 1,213,867 participants (Supplementary 
Fig. 5). Cohorts are detailed in Table 1. All data were collected independently,  
and, therefore, the analysts were blinded to the conditions of the analysis.  
No randomization was performed. No statistical methods were used to 
predetermine sample sizes, but our sample sizes are similar to those reported  
in previous publications8,10.

Phenotypes. Within MVP, three depression phenotypes were investigated across 
five different analyses. We used (1) an ICD code-based algorithm to determine 
depression case status based upon investigation of the EHRs (MDD, primary 
analysis), (2) self-reported physician diagnosis of depression as reported in 
the MVP baseline survey (SR Depression) and (3) the two-item PHQ scale of 
depressive symptoms in the past 2 weeks, included in the MVP baseline survey 
(depressive symptoms). Phenotypes in outside cohorts for UKB/PGC and 23andMe 
were previously described7–10. See Table 1 and Fig. 1 for a summary. For the ICD 
code-based algorithm in MVP, codes used to assess case status are presented in 
Supplementary Table 3. Cases included people with at least one inpatient diagnosis 
code or two outpatient diagnosis codes for MDD. Controls include only those 
without any inpatient or outpatient depression diagnosis codes for depression.

Secondary phenotype definitions. A similar meta-analysis was conducted using 
SR Depression (Methods) from MVP, conducted on 210,331 individuals who 
completed survey items on self-reported diagnosis of depression by a medical 
professional; the total meta-analysis with the traits from PGC, UKB and FinnGen 
included 1,114,383 individuals. A third analysis considered depressive symptoms 
from the PHQ-2 (ref. 42), a two-item scale that assesses depressive symptoms within 
the previous 2 weeks (Supplementary Table 4). For this phenotype, data were 
available only from MVP and UKB, with a total sample of 286,821 participants of 
European ancestry.

GWASs and meta-analyses. GWAS analysis was carried out in the MVP cohorts 
by logistic regression for MDD and SR Depression and by linear regression for 
PHQ-2 within each ancestry group and tranche using PLINK 2.0 on dosage data, 
covarying for age, sex and the first ten PCs. A similar GWAS was performed using 
linear regression in the UKB samples, also using age, sex and the first ten PCs for 
PHQ-2.

In individuals of European ancestry for MDD-META and SR Depression, 
meta-analysis was performed using METAL with inverse variance weighting for: 
MVP tranche 1, MVP tranche 2, the UKB/PGC MDD-META meta-analysis10, 
23andMe9 and FinnGen mood (affective) disorders (http://r2.finngen.fi/pheno/
F5_MOOD). For the PHQ-2 meta-analysis, the procedures were the same for the 
following samples: MVP tranche 1, MVP tranche 2 and UKB. Meta-analysis in the 
AA participants was carried out only between tranche 1 and 2 of the MVP data due 
to the absence of data in the other samples. Our results depend on contributions 
from many sources over many years. Some of the contributory studies and 
historical context of GWASs for MDD are presented in Supplementary Table 5.

The 23andMe phenotype was based on responses to four questions: ‘Have you 
ever been diagnosed by a doctor with any of the following psychiatric conditions?’, 
‘Have you ever been diagnosed with clinical depression?’, ‘Have you ever been 
diagnosed with or treated for any of the following conditions? (Depression)’ and ‘In 
the last 2 years, have you been newly diagnosed with or started treatment for any 
of the following conditions? (Depression)’. Cases were defined as having responded 
‘Yes’ to any of the above questions, and controls were defined when not a case and 
at least one ‘No’ response to the above questions.

The FinnGen diagnosis is defined by the F5 Mood category and was 
downloaded from Freeze 2 of the database (http://r2.finngen.fi/pheno/F5_
MOOD). This phenotype is broad and contains manic episodes, bipolar disorders, 
depression, persistent mood disorders and other unspecified mood (affective) 
disorders. Data from UKB8 represent a broad depression phenotype based on 
affirmative responses to either of the following questions: ‘Have you ever seen a 
general practitioner for nerves, anxiety, tension or depression?’ and ‘Have you ever 
seen a psychiatrist for nerves, anxiety, tension or depression?’. PGC data also were 

previously reported7 and come from a meta-analysis of 35 cohorts with a spectrum 
of depression phenotypes, including some with clinical diagnosis from structured 
interviews and others with broader definitions. LD intercept (1.03, SE = 0.011) and 
attenuation ratio (0.0297, SE = 0.011) of the LDSC revealed minimal evidence for 
inflation or confounding, with 97% of inflation observed due to high polygenicity 
of depression (Supplementary Fig. 4). Data distribution was assumed to be normal, 
but this was not formally tested.

Replication of primary analysis. An independent GWAS was run at 23andMe 
using logistic regression assuming an additive model for allelic effects while 
covarying for age, sex, four PCs and array platform, followed by SNP lookups of 
our 221 independent GWS SNPs. The phenotype was identical to that reported 
in ref. 9 (discussed in detail in the section above) but consisting of an entirely 
independent sample of 455,350 cases and 887,428 controls (n = 1,342,778) not 
previously included in any reported primary analysis.

Post-GWAS analysis. LDSC. For post-GWAS analysis, FinnGen was removed 
a priori due to potential for increased heterogeneity in the phenotype definition 
due to the broad nature of inclusion in the F5 Mood phenotype. Genetic 
correlation analyses were performed using LDSC to assess the degree of genetic 
overlap among phenotypes and across the cohorts included in the analysis. 
Per-trait observed-scale SNP-based heritability estimates were calculated 
via LDSC using the 1000 Genomes Project European linkage disequilibrium 
reference panel13. Heritability estimates were calculated for 1,468 phenotypes 
from FinnGen, 4,083 phenotypes from UKB, 3,143 brain image-derived 
phenotypes from the Oxford BIG project and phenotypes from the PGC, the 
SSGAC and the Genetics of Personality Consortium. Heritability z-scores were 
calculated by dividing the heritability estimate per phenotype by its associated 
SE. Phenotypes with heritability z-scores ≥ 4 were considered suitable for 
genetic correlation against MDD-META13. For continuous UKB phenotypes, 
we restricted our analyses to use inverse-rank normalized phenotypes instead 
of untransformed phenotypes. Genetic correlations are summarized by total 
phenotypes tested, nominally significant (P < 0.05) and after application of 5% 
FDR and Bonferroni thresholds (Fig. 2b).

LCV. The LCV model was used to infer genetic causal relationships between trait 
pairs using the 1000 Genomes Project European linkage disequilibrium reference 
panel. MDD-META was subjected to LCV with all traits described above for 
genetic correlation analysis. Due to differences in heritability calculation method 
and the number of SNPs used by LCV versus LDSC, genetic correlation results 
were not used to inform LCV trait pair selection. GCPs were interpreted only  
when the heritability z-score of both traits was ≥7, as determined by LCV, not 
LDSC43. Fully causal relationships were deduced for significant trait pairs with 
GCP estimates ≥0.70; otherwise, GCP estimates were considered evidence for 
partial causality43.

gSEM. gSEM was performed using GWAS summary statistics in the genomicSEM 
and lavaan R packages44. EFAs were performed on 16 traits simultaneously 
(MDD-META (the main phenotype of interest for this study), attention deficit 
hyperactivity disorder, anorexia nervosa, bipolar disorder, cannabis use disorder, 
cognitive performance, depressive symptoms, educational attainment, anxiety 
symptoms, neuroticism, post-traumatic stress disorder, problematic alcohol use, 
re-experiencing, risk tolerance, risky behavior and schizophrenia). EFAs were 
performed for 1 through n factors until the addition of factor n contributed less 
than 10% explained variance to the model. Confirmatory factor analysis was 
performed using the diagonally weighted least squares estimator and a genetic 
covariance matrix of munged GWAS summary statistics for all 16 phenotypes 
based on the 1000 Genome Project Phase 3 European linkage disequilibrium 
reference panel.

TWAS. We performed a TWAS using MetaXcan for 13 brain tissues and whole 
blood using GTEx v8. The MetaXcan framework consists of two prediction models 
for GTEx v8: elastic net and MASHR-based model for deriving eQTL values. The 
MASHR model is biologically informed, with deterministic approximation of 
posteriors-based fine-mapped variables, and recommended by the developers45. 
Because the eQTL effect is shared across several tissues, the joint effect of eQTL in 
14 tissues was tested using SMultiXcan, developed under the MetaXcan toolkit15. 
We applied Bonferroni correction (corrected P-value threshold = 1.79 × 10−7) for 
all gene–tissue pairs tested.

Variant prioritization. Each of the risk loci, determined from functional mapping 
and annotation (FUMA) (default LD = 0.6), were fine-mapped using CAVIAR46. 
The set of causal SNPs were annotated with CADD16 scores followed by positional 
gene mapping within ±100 kb. The genes that overlapped with significant gene 
cross-tissue eQTL analysis were further tested for co-localization. Coloc17 was used 
to test co-localization between specific gene eQTL tissue pairs (GTEx v8). The 
LocusCompareR R package was used to generate regional plots of tissue-specific 
eQTL and GWAS P values.

NATuRe NeuROSCIeNCe | www.nature.com/natureneuroscience

http://r2.finngen.fi/pheno/F5_MOOD
http://r2.finngen.fi/pheno/F5_MOOD
http://r2.finngen.fi/pheno/F5_MOOD
http://r2.finngen.fi/pheno/F5_MOOD
http://www.nature.com/natureneuroscience


ARTICLES NATURE NEUROSCIENCE

GWGAS and enrichment analysis. Summary statistics from the primary 
MDD-META meta-analysis were loaded into functional mapping and 
annotation of genome-wide association studies (FUMA GWAS) to test for 
gene-level associations using MAGMA47. Input SNPs were mapped to 17,927 
protein-coding genes. The GWS threshold for the gene-based test was, 
therefore, determined to be P = 0.05/17,927 = 2.79 × 10−6. Genes from MAGMA’s 
gene-based association were used for gene ontology and drug set enrichment 
using the ShinyGO18 web tool.

Conditional analysis. To evaluate whether the genetic signal of depression was 
independent of signals from comorbid conditions, we employed mtCOJO in 
GCTA48. With mtCOJO, per-SNP effect estimates and association statistics of 
MDD-META were adjusted for the causal effects between MDD and seven 
comorbid conditions estimated by Mendelian randomization. We required at least 
two GWS SNPs after Heidi outlier testing with which to estimate causality between 
phenotypes. MDD was conditioned eight times: once each for alcohol use disorder, 
digestive disorders, educational attainment, fibromyalgia, neuroticism (SSGAC), 
schizophrenia and subjective well-being and once using all seven correlates 
simultaneously. In this experimental design, we generated eight new versions of 
depression GWAS summary statistics, termed ‘conditioned’ GWASs, to analyze 
for heritability, genetic correlation versus the original unconditioned depression 
GWAS, SNP effects and P-value survival. These analyses are described in the 
Methods under ‘Post-GWAS analysis: LDSC’. Conditioned GWASs generated from 
mtCOJO are free of collider biases when estimating causal relationship between 
depression and each comorbid condition49.

Due to SNP matching procedures to condition depression with other 
phenotypes, some GWS SNPs for depression were not found in the conditioned 
depression GWAS. Where necessary, we selected proxy SNPs for each depression 
GWS SNP using SNPsnap50 with default settings. For each conditioned version of 
the depression GWS, a subset of SNPs could not be matched using direct or proxy 
SNP matching.

Ethics statement. The Central VA Institutional Review Board (IRB) and 
site-specific IRBs approved the MVP study. All relevant ethical regulations for 
work with human subjects were followed in the conduct of the study, and written 
informed consent was obtained from all participants. For 23andMe, participants 
provided informed consent and participated in the research online, under a 
protocol approved by the external Association for the Accreditation of Human 
Research Protection Programs-accredited IRB, Ethical & Independent Review 
Services. Participants were included in the analysis on the basis of consent status  
as checked at the time data analyses were initiated.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The GWAS summary statistics generated and/or analyzed during this study are 
available via dbGaP; the dbGaP accession assigned to the Million Veteran Program 
is phs001672.v1.p.
The full GWAS summary statistics for the 23andMe discovery dataset will be 
made available through 23andMe to qualified researchers under an agreement 
with 23andMe that protects the privacy of the 23andMe participants. Visit https://
research.23andme.com/collaborate/#dataset-access/ for more information and to 
apply to access the data.

Code availability
No custom code was used in this study. Software and R packages used are discussed 
in the text.
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 

Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 

AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 

Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis PLINK was used for GWAS, METAL was used for meta-analysis, R was used for statistical tests, all R packages are mentioned explicitly in text 

where the package was used.  The GTEx database v8 was used for tissue enrichment.  MetaXcan was used to predict gene expression using 

the GTEx database v8.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 

reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 

- Accession codes, unique identifiers, or web links for publicly available datasets 

- A list of figures that have associated raw data 

- A description of any restrictions on data availability

The GWAS summary statistics generated during and/or analyzed during the current study are available via dbGAP; the dbGaP accession assigned to the Million 

Veteran Program is phs001672.v1.p. The website is: https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001672.v1.p1. 

23andMe dataset access is available by request at the following website: https://research.23andme.com/dataset-access/
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Sample size Sample size reflected our best efforts to gather all possible participants with genetic data and available phenotypes as described, including ICD 

code derived diagnosis of depression, survey self-report of diagnosis of depression, and 2 item PHQ-2 depression screener.

Data exclusions All subjects that passed basic quality control, were assigned to either European or African ancestry, and had available phenotype information 

were retained. Subjects with only one outpatient ICD code for depression were considered undefined and excluded from analysis.  All 

exclusion criteria were pre-established.

Replication 23andMe provided an independent replication sample of 1.3 million participants. These participants are distinct and 

non-overlapping with the cohort used in the discovery analysis, but collection parameters and phenotype are the same (as the other 23andme 

subjects included in the primary analysis).  Of 211 variants tested, 209 (99%) had the same direction of effect, 192 showed at least nominal 

significance p<0.05 (91%), 144 remained significant after correction for multiple comparisons p<0.05/211=2.37x10-4 (68%), and 81 were 

independently genome-wide significant p<5x10-8 (38%).  Only 2 SNPs were discordant, both with p>0.05 (0.9%).  

Randomization Randomization was not applicable to this study. Cohorts were allocated to cases and controls based on available ICD codes in the electronic 

health records of participants.

Blinding Data were collected entirely independently of the analysts. There was no need for blinding or randomization.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Population characteristics The MVP is made of of veterans receiving care in the VA Healthcare System.  Participants were 64.78 years old on average.  

The sample contained 91.9% males. 

Recruitment All subjects are enrollees in the MVP. Active users of the Veterans Health Administration healthcare system (>8 million 

veterans) learn of MVP via an invitational mailing and/or through MVP staff while receiving clinical care with informed 

consent and HIPAA authorization as the only inclusion criteria. Enrollment involves providing a blood sample for genomic 

analyses, allowing ongoing access to medical records and other administrative health data by authorized MVP staff, and 

completing questionnaires.

Ethics oversight Research involving MVP in general is approved by the VA Central IRB; the current project was also approved by IRBs in 

Boston, San Diego, and West Haven.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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